跳转至

17 物质波

文本统计:约 1567 个字

17.1 波函数概述

物质波沿着 \(x\) 正方向传播

\[ \Psi(x, t) = \psi_0 e^{i(kx - \omega t)} = \psi_0 e^{\frac{i}{\hbar}(px - Et)} \]

其中 \(\Psi_0\) 为波的振幅,第二个等号的公式的依据是

\[ \begin{aligned} \hbar \omega = h \nu = E\\ \hbar k = \frac{h}{\lambda} = p \end{aligned} \]

波函数的物理解释

The product \(\Psi\Psi^*\text{d}x\) gives the probability that the particle in question will be found between positions \(x\) and \(x+\text{d}x\).

  • Probability density \(P(x)\)
\[ P(x) = \Psi\Psi^* \]
  • The probability in range from \(x_1\) to \(x_2\), 在 \(x_1\)\(x_2\) 之间找到的几率
\[ \int_{x_1}^{x_2} P(x) \text{d}x = \int_{x_1}^{x_2} \Psi\Psi^* \text{d}x \]
  • Normalization (归一化)
\[ \int_{-\infty}^{\infty} P(x) \text{d}x = \int_{-\infty}^{\infty} \Psi\Psi^* \text{d}x = 1 \]

自由粒子的概率密度,对于一个自由粒子,概率密度为:

\[ P(x) = [ \psi_0 e^{i(kx - \omega t)} ][ \psi_0^* e^{-i(kx - \omega t)} ] = \left| \psi_0 \right|^2 \]
Note

对于自由粒子来说,每一处的概率均为常数,物理意义就是该粒子在空间中的每一个位置被找到的概率相同,又由归一化条件,我认为这里的 \(\psi_0^2\) 非常小

预期值

预期值的意思就是某一个变量的期望

\[ \bar{x} = \frac{\int_{-\infty}^{\infty} x \Psi^* \Psi \, dx}{\int_{-\infty}^{\infty} \Psi^* \Psi \, dx} = \int_{-\infty}^{\infty} \Psi^* x \Psi \, dx = \langle \psi | x | \psi \rangle = \langle |x| \rangle, (\int_{-\infty}^{\infty} \Psi^* \Psi \, dx = 1) \]

The average value of the potential energy \(U(x)\) is

\[ \bar{U} = \int_{-\infty}^{\infty} \Psi^* U(x) \Psi \, dx = \langle \psi | U(x) | \psi \rangle \]

17.2 动量算符与能量算符

动量算符

Consider the free particle wave-function

\[ \Psi = \psi_0 e^{i(kx - \omega t)}, \quad p = \hbar k, \quad E = \hbar \omega, \]
\[ \frac{\partial \Psi}{\partial x} = ik \psi_0 e^{i(kx - \omega t)} \]
\[ -i\hbar \frac{\partial \Psi}{\partial x} = (-i\hbar)ik \psi_0 e^{i(kx - \omega t)} = \hbar k \psi_0 e^{i(kx - \omega t)} \]
\[ \therefore -i\hbar \frac{\partial \Psi}{\partial x} = p \psi_0 e^{i(kx - \omega t)} = p \Psi \]

We can see there is an association between the dynamical quantity \(p\) and the operator.

\[ p \leftrightarrow -i\hbar \frac{\partial}{\partial x} \]

计算平均动量 \(\overline{p}\)

\[ \therefore \bar{p} = \int_{-\infty}^{\infty} \Psi^* \left( -i\hbar \frac{\partial}{\partial x} \right) \Psi \, dx \]
\[ \begin{aligned} \overline{p} &= \int_{-\infty}^{\infty} \Psi^* \left( -i\hbar \frac{\partial}{\partial x} \right) \psi_0 e^{i(kx - \omega t)} \, \text{d}x\\ &= \int_{-\infty}^{\infty} \Psi^* \left( -i\hbar ik \psi_0 e^{i(kx - \omega t)} \right) \, \text{d}x = \hbar k \int_{-\infty}^{\infty} \Psi^* \psi_0 e^{i(kx - \omega t)} \, \text{d}x\\ &= \hbar k \int_{-\infty}^{\infty} \Psi^* \Psi \, \text{d}x = \hbar k \end{aligned} \]

能量算符

运用同样的方法,我们可以得到相应的能量算符

\[ \begin{aligned} &\frac{\partial \Psi}{\partial t} = -i\omega \psi_0 e^{i(kx - \omega t)}\\ &i\hbar \frac{\partial \Psi}{\partial t} = (i\hbar)(-i\omega) \psi_0 e^{i(kx - \omega t)} = \hbar \omega \psi_0 e^{i(kx - \omega t)} = E \Psi \end{aligned} \]

相应的能量算符为

\[ E \leftrightarrow i\hbar \frac{\partial}{\partial t} \]

计算平均能量 \(\overline{E}\)

\[ \begin{aligned} \overline{E} &= \int_{-\infty}^{\infty} \Psi^* \left( i\hbar \frac{\partial}{\partial t} \right) \Psi \, \text{d}x = \int_{-\infty}^{\infty} \Psi^* \left( i\hbar \frac{\partial}{\partial t} \right) \psi_0 e^{i(kx - \omega t)} \, \text{d}x\\ &= \int_{-\infty}^{\infty} \Psi^* \left( i\hbar (-i\omega) \psi_0 e^{i(kx - \omega t)} \right) \, \text{d}x = \hbar \omega \int_{-\infty}^{\infty} \Psi^* \psi_0 e^{i(kx - \omega t)} \, \text{d}x\\ &= \hbar \omega \int_{-\infty}^{\infty} \Psi^* \Psi \, \text{d}x = \hbar \omega \end{aligned} \]

17.3 薛定谔方程

Schrödinger’s Equation tell us how to obtain the wave-function \(\Psi(x,t)\) associated with a particle that is not free.

一个物体的总体能量为

\[ E=\frac12 mv^2+U=\frac{p^2}{2m}+U \]
\[ \begin{aligned} &E \Psi = \frac{p^2}{2m} \Psi + U \Psi\\ &i \hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m} (-i \hbar \frac{\partial}{\partial x})(-i \hbar \frac{\partial}{\partial x}) \Psi + U \Psi\\ &i \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U \Psi \end{aligned} \]

一维含时薛定谔方程

\[ i \hbar \frac{\partial \Psi(x, t)}{\partial t} = \left[ -\frac{\hbar^2}{2m} \frac{\text{d}^2}{\text{d}x^2} + U(x, t) \right] \Psi(x, t) \]
\[ i \hbar \frac{\partial \Psi(x, t)}{\partial t} = \hat{H} \Psi(x, t) \]
  • 一维(1D):
\[ \hat{H} = -\frac{\hbar^2}{2m} \frac{\text{d}^2}{\text{d}x^2} + U(x, t) \]
  • 三维(3D):
\[ \hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + U(x, t) \]

\(\hat{H}\) is energy operator (能量算符).

如果势能 \(U\) 是已知的,这个方程可以在原则上解出来,并且解出可能与粒子相关的波函数。

对于自由粒子来说, \(U(x) = 0\)

\[ i \hbar \frac{\partial \Psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\text{d}^2 \Psi(x, t)}{\text{d}x^2} \]

如果波函数为 \(\Psi = A \cos(kx - \omega t)\) 或者 \(\Psi = A \sin(kx - \omega t)\)

\[ \frac{\partial \Psi}{\partial t} = -\omega A \sin(kx - \omega t) \]
\[ \frac{\partial^2 \Psi}{\partial x^2} = -k^2 A \cos(kx - \omega t) \]

显然两者都不满足Schrödinger方程。然而,这两个函数的特定组合确实满足Schrödinger方程。

\[ \Psi = A \cos(kx - \omega t) + Ai \sin(kx - \omega t)= Ae^{i(kx - \omega t)} \]
\[ \begin{aligned} \frac{\partial^2 \Psi}{\partial x^2} = -k^2 Ae^{i(kx - \omega t)}\\ \frac{\partial \Psi}{\partial t} = -i\omega Ae^{i(kx - \omega t)} \end{aligned} \]

带入薛定谔方程,我们得到

\[ \begin{aligned} &\frac{\hbar^2 k^2}{2m} Ae^{i(kx - \omega t)} = \hbar \omega Ae^{i(kx - \omega t)}\\ &\frac{\hbar^2 k^2}{2m} = \hbar \omega \end{aligned} \]

这样我们得到了能量与动量关系

\[ E=\frac{p^2}{2m} \]

定态薛定谔方程

If the potential independent of \(t\): \(U(x)\)

\[ i \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U \Psi \]

如果势能 \(U\)\(t\) 无关,则可以将波函数 \(\Psi(x,t)\) 分解为位置依赖部分 \(\psi(x)\) 和时间依赖 \(e^{-i\omega t}\) 的乘积

\[ \Psi(x, t) = \psi(x) e^{-i \omega t} \]

将波函数带入到薛定谔方程中

\[ \begin{aligned} i \hbar \frac{\partial}{\partial t} (\psi e^{-i \omega t}) &= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} (\psi e^{-i \omega t}) + U \psi e^{-i \omega t}\\ (-i \omega) i \hbar \psi e^{-i \omega t} &= -\frac{\hbar^2}{2m} \frac{\text{d}^2 \psi}{\text{d}x^2} e^{-i \omega t} + U \psi e^{-i \omega t}\\ \hbar \omega \psi &= -\frac{\hbar^2}{2m} \frac{\text{d}^2 \psi}{\text{d}x^2} + U \psi \end{aligned} \]

这样我们得到了定态薛定谔方程

\[ -\frac{\hbar^2}{2m} \frac{\text{d}^2 \psi(x)}{\text{d}x^2} + U(x) \psi(x) = E \psi(x) \]

其中 \(E\) 为物体的总能量,\(U(x)\) 为相应的势能

\[ \frac{\text{d}^2 \psi(x)}{\text{d}x^2} + \frac{2m}{\hbar^2} (E - U) \psi(x) = 0 \]

结合之前的 \(\hat{H}\) 算符,我们可以得到

\[ \hat{H} \psi = E \psi \]

特征方程

\[ \hat{H} \psi_n = E_n \psi_n \]

其中 \(E_n\) 是特征值(能量本征值),\(\psi_n\) 是特征函数(波函数)。

特征值 (Eigenvalue):

  • 特征值 \(E_n\) 表示系统的能量水平。

特征函数 (Eigenfunction):

  • 特征函数 \(\psi_n\) 描述了对应于特定能量水平 \(E_n\) 的波函数。

特征态 (Eigenstate):

  • 特征态是由特征函数 \(\psi_n\) 描述的状态。

评论区

对你有帮助的话请给我个赞和 star => GitHub stars
欢迎跟我探讨!!!