1 Sets, Relations, and Languages¶
1.1 Some concepts¶
这些内容在离散数学课程中基本都有设计,这里仅仅做一个罗列。
下面是涉及到集合和关系的一些概念
- Power Set 幂集
- Properties of Relations (Reflexive, Symmetric, Antisymmetric, Transitive)
- Equivalence Relation (Reflexive, Symmetric, Transitive)
- Partial Order (Reflexive, Transitive, Antisymmetric)
- Total Order
- Closure
涉及到集合的大小的概念
- Equinumerous 等势(可以构成双射)
- 可数集和不可数集
- \(|\mathbb{R}|> |\mathbb{N}|\)
- Continuum hypothesis (by Cantor) 没有一个集合的势大于自然数集且小于实数集
- Cantor’s Theorem 任意集合的幂集的势比原集合的势要大【考虑集合 \(\{x\in A | x\notin f(x)\}\) ,其中 \(f(x)\) 是假设的从 \(A\) 到 \(P(A)\) 的映射,这个集合没有从 \(A\) 映射过来的元素】
- The Diagonalization Principle
1.2 Alphabet and Language¶
Alphabet 字母表,任意有限的集合都可以被称为字母表,用 \(\Sigma\) 来表示。
String 字符串,由字母表组成的有限序列
- \(e\) 代表空串
- \(\Sigma^*\) 代表由字母表 \(\Sigma\) 组成的所有字符串的集合
字符串的一些操作
- Concatenation: \(x \circ y\) or \(xy\)
- Substring, suffix, prefix
- Example: \(\forall w, we = ew = w\)
- String exponentiation
- \(w^0 = e\), the empty string
- \(w^{i+1} = w^i \circ w\), for each \(i \geq 0\)
- Reversal
- If \(w\) is a string of length 0, then \(w^R = w = e\)
- If \(w\) is a string of length \(n + 1 > 0\), then \(w = ua\) for some \(a \in \Sigma\), and \(w^R = au^R\)
Language 语言,是字符串的集合,也就是 \(\Sigma^*\) 的子集
- 有限语言可以通过列举展示,无限的语言可展示为 \(L = \{w\in \Sigma^*:w \text{ has property } P\}\)
Theorem: If \(Σ\) is a finite alphabet, then \(Σ^∗\) is countably infinite.
Operations of Languages:
-
Union, Intersection, Difference, Complement (\(\bar{L} = \Sigma^* - L\))
-
Exponentiation
- \(L^0 = \{e\}\)
-
\(L^{i+1} = LL^i\), for each \(i \geq 0\)
-
Concatenation
\[
L_1L_2 \equiv \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}
\]
Kleene Star,也是 L 在拼接运算下包含 L 的最小闭包
\[
L^* = \{w \in \Sigma^* : w = w_1 \cdots w_k, k \geq 0, w_1, \dots, w_k \in L\} = L^0 \cup L^1 \cup L^2 \cup \cdots
\]
We write \(L^+\) for the language \(LL^*\). Equivalently,
\[
L^+ = \{w \in \Sigma^* : w = w_1 \cdots w_k, k \geq 1, w_1, \dots, w_k \in L\} = L^1 \cup L^2 \cup L^3 \cup \cdots
\]
