

In Praise of Computer Organization and Design: The Hardware/
Software Interface

“Textbook selection is often a frustrating act of compromise—pedagogy, content
coverage, quality of exposition, level of rigor, cost. Computer Organization and
Design is the rare book that hits all the right notes across the board, without
compromise. It is not only the premier computer organization textbook, it is a
shining example of what all computer science textbooks could and should be.”

—Michael Goldweber, Xavier University

“I have been using Computer Organization and Design for years, from the very first
edition. This new edition is yet another outstanding improvement on an already
classic text. The evolution from desktop computing to mobile computing to Big
Data brings new coverage of embedded processors such as the ARM, new material
on how software and hardware interact to increase performance, and cloud
computing. All this without sacrificing the fundamentals.”

—Ed Harcourt, St. Lawrence University

“To Millennials: Computer Organization and Design is the computer architecture
book you should keep on your (virtual) bookshelf. The book is both old and new,
because it develops venerable principles—Moore’s Law, abstraction, common case
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates
them with contemporary designs.”

—Mark D. Hill, University of Wisconsin-Madison

“The new edition of Computer Organization and Design keeps pace with advances
in emerging embedded and many-core (GPU) systems, where tablets and
smartphones will/are quickly becoming our new desktops. This text acknowledges
these changes, but continues to provide a rich foundation of the fundamentals
in computer organization and design which will be needed for the designers of
hardware and software that power this new class of devices and systems.”

—Dave Kaeli, Northeastern University

“Computer Organization and Design provides more than an introduction to computer
architecture. It prepares the reader for the changes necessary to meet the ever-
increasing performance needs of mobile systems and big data processing at a time
that difficulties in semiconductor scaling are making all systems power constrained.
In this new era for computing, hardware and software must be co-designed and
system-level architecture is as critical as component-level optimizations.”

—Christos Kozyrakis, Stanford University

“Patterson and Hennessy brilliantly address the issues in ever-changing computer
hardware architectures, emphasizing on interactions among hardware and software
components at various abstraction levels. By interspersing I/O and parallelism concepts
with a variety of mechanisms in hardware and software throughout the book, the new
edition achieves an excellent holistic presentation of computer architecture for the post-
PC era. This book is an essential guide to hardware and software professionals facing
energy efficiency and parallelization challenges in Tablet PC to Cloud computing.”

—Jae C. Oh, Syracuse University

This page intentionally left blank

R I S C - V E D I T I O N

Computer Organization and Design

T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

David A. Patterson is the Pardee Professor of Computer Science, Emeritus at the
University of California at Berkeley, which he joined after graduating from UCLA in
1977. His teaching has been honored by the Distinguished Teaching Award from the
University of California, the Karlstrom Award from ACM, and the Mulligan Education
Medal and Undergraduate Teaching Award from IEEE. Patterson received the IEEE
Technical Achievement Award and the ACM Eckert-Mauchly Award for contributions
to RISC, and he shared the IEEE Johnson Information Storage Award for contributions
to RAID. He also shared the IEEE John von Neumann Medal and the C & C Prize
with John Hennessy. Like his coauthor, Patterson is a Fellow of the American Academy
of Arts and Sciences, the Computer History Museum, ACM, and IEEE, and he was
elected to the National Academy of Engineering, the National Academy of Sciences,
and the Silicon Valley Engineering Hall of Fame. He served on the Information
Technology Advisory Committee to the US President, as chair of the CS division in the
Berkeley EECS department, as chair of the Computing Research Association, and as
President of ACM. This record led to Distinguished Service Awards from ACM, CRA,
and SIGARCH.

At Berkeley, Patterson led the design and implementation of RISC I, likely the first
VLSI reduced instruction set computer, and the foundation of the commercial SPARC
architecture. He was a leader of the Redundant Arrays of Inexpensive Disks (RAID) project,
which led to dependable storage systems from many companies. He was also involved in the
Network of Workstations (NOW) project, which led to cluster technology used by Internet
companies and later to cloud computing. These projects earned four dissertation awards
from ACM. His current research projects are Algorithm-Machine-People and Algorithms
and Specializers for Provably Optimal Implementations with Resilience and Efficiency. The
AMP Lab is developing scalable machine learning algorithms, warehouse-scale-computer-
friendly programming models, and crowd-sourcing tools to gain valuable insights quickly
from big data in the cloud. The ASPIRE Lab uses deep hardware and software co-tuning
to achieve the highest possible performance and energy efficiency for mobile and rack
computing systems.

John L. Hennessy is a Professor of Electrical Engineering and Computer Science at
Stanford University, where he has been a member of the faculty since 1977 and was,
from 2000 to 2016, its tenth President. Hennessy is a Fellow of the IEEE and ACM; a
member of the National Academy of Engineering, the National Academy of Science,
and the American Philosophical Society; and a Fellow of the American Academy of
Arts and Sciences. Among his many awards are the 2001 Eckert-Mauchly Award for
his contributions to RISC technology, the 2001 Seymour Cray Computer Engineering
Award, and the 2000 John von Neumann Award, which he shared with David Patterson.
He has also received seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students.
After completing the project in 1984, he took a leave from the university to cofound
MIPS Computer Systems (now MIPS Technologies), which developed one of the first
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have
been shipped in devices ranging from video games and palmtop computers to laser printers
and network switches. Hennessy subsequently led the DASH (Director Architecture
for Shared Memory) project, which prototyped the first scalable cache coherent
multiprocessor; many of the key ideas have been adopted in modern multiprocessors.
In addition to his technical activities and university responsibilities, he has continued to
work with numerous start-ups, both as an early-stage advisor and an investor.

R I S C - V E D I T I O N

Computer Organization and Design

T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

David A. Patterson
University of California, Berkeley

John L. Hennessy
Stanford University

RISC-V updates and contributions by
Andrew S. Waterman
SiFive, Inc.
Yunsup Lee
SiFive, Inc.

Additional contributions by
Perry Alexander
The University of Kansas

Peter J. Ashenden
Ashenden Designs Pty Ltd

Jason D. Bakos
University of South Carolina

Javier Diaz Bruguera
Universidade de Santiago de Compostela

Jichuan Chang
Google

Matthew Farrens
University of California, Davis
David Kaeli
Northeastern University

Nicole Kaiyan
University of Adelaide
David Kirk
NVIDIA

Zachary Kurmas
Grand Valley State University

James R. Larus
School of Computer and
Communications Science at EPFL

Jacob Leverich
Stanford University

Kevin Lim
Hewlett-Packard

Eric Love
University of California,
Berkeley

John Nickolls
NVIDIA

John Y. Oliver
Cal Poly, San Luis Obispo

Milos Prvulovic
Georgia Tech

Partha Ranganathan
Google

Mark Smotherman
Clemson University

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how
to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted
herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in
research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods,
compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the
safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/
or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

RISC-V and the RISC-V logo are registered trademarks managed by the RISC-V Foundation, used under permission of the RISC-V
Foundation. All rights reserved.

This publication is independent of the RISC-V Foundation, which is not affiliated with the publisher and the RISC-V Foundation does not
authorize, sponsor, endorse or otherwise approve this publication.

All material relating to ARM® technology has been reproduced with permission from ARM Limited, and should only be used for education
purposes. All ARM-based models shown or referred to in the text must not be used, reproduced or distributed for commercial purposes, and
in no event shall purchasing this textbook be construed as granting you or any third party, expressly or by implication, estoppel or otherwise,
a license to use any other ARM technology or know how. Materials provided by ARM are copyright © ARM Limited (or its affi liates).

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-812275-4

For Information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher
Acquisition Editor: Steve Merken
Development Editor: Nate McFadden
Production Project Manager: Lisa Jones
Designer: Victoria Pearson Esser

Typeset by MPS Limited, Chennai, India

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

To Linda,
who has been, is, and always will be the love of my life

A C K N O W L E D G M E N T S

Figures 1.7, 1.8 Courtesy of iFixit (www.ifixit.com).

Figure 1.9 Courtesy of Chipworks (www.chipworks.com).

Figure 1.13 Courtesy of Intel.

Figures 1.10.1, 1.10.2, 4.15.2 Courtesy of the Charles Babbage
Institute, University of Minnesota Libraries, Minneapolis.

Figures 1.10.3, 4.15.1, 4.15.3, 5.12.3, 6.14.2 Courtesy of IBM.

Figure 1.10.4 Courtesy of Cray Inc.

Figure 1.10.5 Courtesy of Apple Computer, Inc.

Figure 1.10.6 Courtesy of the Computer History Museum.

Figures 5.17.1, 5.17.2 Courtesy of Museum of Science, Boston.

Figure 5.17.4 Courtesy of MIPS Technologies, Inc.

Figure 6.15.1 Courtesy of NASA Ames Research Center.

http://www.ifixit.com
http://www.chipworks.com

Contents

Preface xv

C H A P T E R S

 1 Computer Abstractions and Technology 2

1.1 Introduction 3
1.2 Eight Great Ideas in Computer Architecture 11
1.3 Below Your Program 13
1.4 Under the Covers 16
1.5 Technologies for Building Processors and Memory 24
1.6 Performance 28
1.7 The Power Wall 40
1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors 43
1.9 Real Stuff: Benchmarking the Intel Core i7 46
1.10 Fallacies and Pitfalls 49
1.11 Concluding Remarks 52
1.12 Historical Perspective and Further Reading 54
1.13 Exercises 54

 2 Instructions: Language of the Computer 60

2.1 Introduction 62
2.2 Operations of the Computer Hardware 63
2.3 Operands of the Computer Hardware 67
2.4 Signed and Unsigned Numbers 74
2.5 Representing Instructions in the Computer 81
2.6 Logical Operations 89
2.7 Instructions for Making Decisions 92
2.8 Supporting Procedures in Computer Hardware 98
2.9 Communicating with People 108
2.10 RISC-V Addressing for Wide Immediates and Addresses 113
2.11 Parallelism and Instructions: Synchronization 121
2.12 Translating and Starting a Program 124
2.13 A C Sort Example to Put it All Together 133
2.14 Arrays versus Pointers 141
2.15 Advanced Material: Compiling C and Interpreting Java 144

x Contents

2.16 Real Stuff: MIPS Instructions 145
2.17 Real Stuff: x86 Instructions 146
2.18 Real Stuff: The Rest of the RISC-V Instruction Set 155
2.19 Fallacies and Pitfalls 157
2.20 Concluding Remarks 159
2.21 Historical Perspective and Further Reading 162
2.22 Exercises 162

 3 Arithmetic for Computers 172

3.1 Introduction 174
3.2 Addition and Subtraction 174
3.3 Multiplication 177
3.4 Division 183
3.5 Floating Point 191
3.6 Parallelism and Computer Arithmetic: Subword Parallelism 216
3.7 Real Stuff: Streaming SIMD Extensions and Advanced Vector Extensions

in x86 217
3.8 Going Faster: Subword Parallelism and Matrix Multiply 218
3.9 Fallacies and Pitfalls 222
3.10 Concluding Remarks 225
3.11 Historical Perspective and Further Reading 227
3.12 Exercises 227

 4 The Processor 234

4.1 Introduction 236
4.2 Logic Design Conventions 240
4.3 Building a Datapath 243
4.4 A Simple Implementation Scheme 251
4.5 An Overview of Pipelining 262
4.6 Pipelined Datapath and Control 276
4.7 Data Hazards: Forwarding versus Stalling 294
4.8 Control Hazards 307
4.9 Exceptions 315
4.10 Parallelism via Instructions 321
4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 334
4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply 342
4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware

Design Language to Describe and Model a Pipeline and More Pipelining
Illustrations 345

4.14 Fallacies and Pitfalls 345
4.15 Concluding Remarks 346
4.16 Historical Perspective and Further Reading 347
4.17 Exercises 347

 Contents xi

 5 Large and Fast: Exploiting Memory Hierarchy 364

5.1 Introduction 366
5.2 Memory Technologies 370
5.3 The Basics of Caches 375
5.4 Measuring and Improving Cache Performance 390
5.5 Dependable Memory Hierarchy 410
5.6 Virtual Machines 416
5.7 Virtual Memory 419
5.8 A Common Framework for Memory Hierarchy 443
5.9 Using a Finite-State Machine to Control a Simple Cache 449
5.10 Parallelism and Memory Hierarchy: Cache Coherence 454
5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive

Disks 458
5.12 Advanced Material: Implementing Cache Controllers 459
5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory

Hierarchies 459
5.14 Real Stuff: The Rest of the RISC-V System and Special Instructions 464
5.15 Going Faster: Cache Blocking and Matrix Multiply 465
5.16 Fallacies and Pitfalls 468
5.17 Concluding Remarks 472
5.18 Historical Perspective and Further Reading 473
5.19 Exercises 473

 6 Parallel Processors from Client to Cloud 490

6.1 Introduction 492
6.2 The Difficulty of Creating Parallel Processing Programs 494
6.3 SISD, MIMD, SIMD, SPMD, and Vector 499
6.4 Hardware Multithreading 506
6.5 Multicore and Other Shared Memory Multiprocessors 509
6.6 Introduction to Graphics Processing Units 514
6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing

Multiprocessors 521
6.8 Introduction to Multiprocessor Network Topologies 526
6.9 Communicating to the Outside World: Cluster Networking 529
6.10 Multiprocessor Benchmarks and Performance Models 530
6.11 Real Stuff: Benchmarking and Rooflines of the Intel Core i7 960 and the

NVIDIA Tesla GPU 540
6.12 Going Faster: Multiple Processors and Matrix Multiply 545
6.13 Fallacies and Pitfalls 548
6.14 Concluding Remarks 550
6.15 Historical Perspective and Further Reading 553
6.16 Exercises 553

xii Contents

A P P E N D I X

 A The Basics of Logic Design A-2

A.1 Introduction A-3
A.2 Gates, Truth Tables, and Logic Equations A-4
A.3 Combinational Logic A-9
A.4 Using a Hardware Description Language A-20
A.5 Constructing a Basic Arithmetic Logic Unit A-26
A.6 Faster Addition: Carry Lookahead A-37
A.7 Clocks A-47
A.8 Memory Elements: Flip-Flops, Latches, and Registers A-49
A.9 Memory Elements: SRAMs and DRAMs A-57
A.10 Finite-State Machines A-66
A.11 Timing Methodologies A-71
A.12 Field Programmable Devices A-77
A.13 Concluding Remarks A-78
A.14 Exercises A-79

Index I-1

O N L I N E C O N T E N T

 Graphics and Computing GPUs B-2
B.1 Introduction B-3
B.2 GPU System Architectures B-7
B.3 Programming GPUs B-12
B.4 Multithreaded Multiprocessor Architecture B-25
B.5 Parallel Memory System B-36
B.6 Floating Point Arithmetic B-41
B.7 Real Stuff: The NVIDIA GeForce 8800 B-46
B.8 Real Stuff: Mapping Applications to GPUs B-55
B.9 Fallacies and Pitfalls B-72
B.10 Concluding Remarks B-76
B.11 Historical Perspective and Further Reading B-77

 Mapping Control to Hardware C-2
C.1 Introduction C-3
C.2 Implementing Combinational Control Units C-4
C.3 Implementing Finite-State Machine Control C-8
C.4 Implementing the Next-State Function with a Sequencer C-22
C.5 Translating a Microprogram to Hardware C-28
C.6 Concluding Remarks C-32
C.7 Exercises C-33

B

C

 Contents xiii

 A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers D-2
D.1 Introduction D-3
D.2 Addressing Modes and Instruction Formats D-5
D.3 Instructions: the MIPS Core Subset D-9
D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs D-16
D.5 Instructions: Digital Signal-Processing Extensions of the Embedded

RISCs D-19
D.6 Instructions: Common Extensions to MIPS Core D-20
D.7 Instructions Unique to MIPS-64 D-25
D.8 Instructions Unique to Alpha D-27
D.9 Instructions Unique to SPARC v9 D-29
D.10 Instructions Unique to PowerPC D-32
D.11 Instructions Unique to PA-RISC 2.0 D-34
D.12 Instructions Unique to ARM D-36
D.13 Instructions Unique to Thumb D-38
D.14 Instructions Unique to SuperH D-39
D.15 Instructions Unique to M32R D-40
D.16 Instructions Unique to MIPS-16 D-40
D.17 Concluding Remarks D-43

Glossary G-1
Further Reading FR-1

D

This page intentionally left blank

Preface

The most beautiful thing we can experience is the mysterious. It is the
source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book
We believe that learning in computer science and engineering should reflect
the current state of the field, as well as introduce the principles that are shaping
computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, energy, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing
specialty to understand both hardware and software. The interaction between
hardware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and silicon
engineers to make their programs run faster or be more energy-efficient without
change, that era is over. For programs to run faster, they must become parallel.
While the goal of many researchers is to make it possible for programmers to be
unaware of the underlying parallel nature of the hardware they are programming,
it will take many years to realize this vision. Our view is that for at least the next
decade, most programmers are going to have to understand the hardware/software
interface if they want programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

xvi Preface

About the Other Book
Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
often called Patterson and Hennessy.) Our motivation in writing the earlier book
was to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeoffs. We used an approach
that combined examples and measurements, based on commercial systems, to
create realistic design experiences. Our goal was to demonstrate that computer
architecture could be learned using quantitative methodologies instead of a
descriptive approach. It was intended for the serious computing professional who
wanted a detailed understanding of computers.

A majority of the readers for this book do not plan to become computer
architects. The performance and energy efficiency of future software systems will
be dramatically affected, however, by how well software designers understand the
basic hardware techniques at work in a system. Thus, compiler writers, operating
system designers, database programmers, and most other software engineers
need a firm grounding in the principles presented in this book. Similarly,
hardware designers must understand clearly the effects of their work on software
applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions
of Computer Architecture were revised to remove most of the introductory
material; hence, there is much less overlap today than with the first editions of
both books.

Why RISC-V for This Edition?
The choice of instruction set architecture is clearly critical to the pedagogy of a
computer architecture textbook. We didn’t want an instruction set that required
describing unnecessary baroque features for someone’s first instruction set, no
matter how popular it is. Ideally, your initial instruction set should be an exemplar,
just like your first love. Surprisingly, you remember both fondly.

Since there were so many choices at the time, for the first edition of Computer
Architecture: A Quantitative Approach we invented our own RISC-style instruction
set. Given the growing popularity and the simple elegance of the MIPS instruction
set, we switched to it for the first edition of this book and to later editions of the
other book. MIPS has served us and our readers well.

It’s been 20 years since we made that switch, and while billions of chips that use
MIPS continue to be shipped, they are typically in found embedded devices where
the instruction set is nearly invisible. Thus, for a while now it’s been hard to find a
real computer on which readers can download and run MIPS programs.

The good news is that an open instruction set that adheres closely to the RISC
principles has recently debuted, and it is rapidly gaining a following. RISC-V, which
was developed originally at UC Berkeley, not only cleans up the quirks of the MIPS

 Preface xvii

instruction set, but it offers a simple, elegant, modern take on what instruction sets
should look like in 2017.

Moreover, because it is not proprietary, there are open-source RISC-V simulators,
compilers, debuggers, and so on easily available and even open-source RISC-V
implementations available written in hardware description languages. In addition,
there will soon be low-cost hardware platforms on which to run RISC-V programs.
Readers will not only benefit from studying these RISC-V designs, they will be able
to modify them and go through the implementation process in order to understand
the impact of their hypothetical changes on performance, die size, and energy.

This is an exciting opportunity for the computing industry as well as for
education, and thus at the time of this writing more than 40 companies have joined
the RISC-V foundation. This sponsor list includes virtually all the major players
except for ARM and Intel, including AMD, Google, Hewlett Packard Enterprise,
IBM, Microsoft, NVIDIA, Oracle, and Qualcomm.

It is for these reasons that we wrote a RISC-V edition of this book, and we are
switching Computer Architecture: A Quantitative Approach to RISC-V as well.

Given that RISC-V offers both 32-bit address instructions and 64-bit address
instructions with essentially the same instruction set, we could have switched
instruction sets but kept the address size at 32 bits. Our publisher polled the faculty
who used the book and found that 75% either preferred larger addresses or were
neutral, so we increased the address space to 64 bits, which may make more sense
today than 32 bits.

The only changes for the RISC-V edition from the MIPS edition are those
associated with the change in instruction sets, which primarily affects Chapter 2,
Chapter 3, the virtual memory section in Chapter 5, and the short VMIPS example
in Chapter 6. In Chapter 4, we switched to RISC-V instructions, changed several
figures, and added a few “Elaboration” sections, but the changes were simpler than
we had feared. Chapter 1 and the rest of the appendices are virtually unchanged.
The extensive online documentation and combined with the magnitude of RISC-V
make it difficult to come up with a replacement for the MIPS version of Appendix
A (“Assemblers, Linkers, and the SPIM Simulator” in the MIPS Fifth Edition).
Instead, Chapters 2, 3, and 5 include quick overviews of the hundreds of RISC-V
instructions outside of the core RISC-V instructions that we cover in detail in the
rest of the book.

Note that we are not (yet) saying that we are permanently switching to RISC-V. For
example, in addition to this new RISC-V edition, there are ARMv8 and MIPS versions
available for sale now. One possibility is that there will be a demand for all versions for
future editions of the book, or for just one. We’ll cross that bridge when we come to it.
For now, we look forward to your reaction to and feedback on this effort.

Changes for the Fifth Edition
We had six major goals for the fifth edition of Computer Organization and Design
demonstrate the importance of understanding hardware with a running example;
highlight main themes across the topics using margin icons that are introduced

xviii Preface

early; update examples to reflect changeover from PC era to post-PC era; spread
the material on I/O throughout the book rather than isolating it into a single
chapter; update the technical content to reflect changes in the industry since the
publication of the fourth edition in 2009; and put appendices and optional sections
online instead of including a CD to lower costs and to make this edition viable as
an electronic book.

Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5, and
6 are found on both paths, no matter what the experience or the focus. Chapter 1
discusses the importance of energy and how it motivates the switch from single
core to multicore microprocessors and introduces the eight great ideas in computer
architecture. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming
languages. Chapter 3 is for readers interested in constructing a datapath or in
learning more about floating-point arithmetic. Some will skip parts of Chapter 3,
either because they don’t need them, or because they offer a review. However, we
introduce the running example of matrix multiply in this chapter, showing how
subword parallels offers a fourfold improvement, so don’t skip Sections 3.6 to 3.8.
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews,
and Section 4.12 gives the next performance boost for matrix multiply for those
with a software focus. Those with a hardware focus, however, will find that this
chapter presents core material; they may also, depending on their background,
want to read Appendix A on logic design first. The last chapter, on multicores,
multiprocessors, and clusters, is mostly new content and should be read by
everyone. It was significantly reorganized in this edition to make the flow of
ideas more natural and to include much more depth on GPUs, warehouse-scale
computers, and the hardware–software interface of network interface cards that
are key to clusters.

 Preface xix

Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.11

 1.12 (History)

3. Arithmetic for Computers

3.1 to 3.5

 3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

D. RISC Instruction-Set Architectures D.1 to D.17

2. Instructions: Language
of the Computer

2.1 to 2.14

 2.15 (Compilers & Java)

2.16 to 2.20

 2.21 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

 4.16 (History)

A. The Basics of Logic Design A.1 to A.13

C. Mapping Control to Hardware C.1 to C.6

 B.1 to B.13

Read carefully

Review or read

Read if have time

Read for culture

Reference

 4.13 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.10

 5.18 (History)

4.14 to 4.15 (Fallacies)

6. Parallel Process from Client
to Cloud

6.1 to 6.8

 6.9 (Networks)

6.10 to 6.14

 6.15 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.17

B. Graphics Processor Units

 5.12 (Verilog Cache Controller)

 5.11 (Redundant Arrays of
Inexpensive Disks)

xx Preface

The first of the six goals for this fifth edition was to demonstrate the importance
of understanding modern hardware to get good performance and energy efficiency
with a concrete example. As mentioned above, we start with subword parallelism
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance
in Chapter 4 by unrolling the loop to demonstrate the value of instruction-level
parallelism. Chapter 5 doubles performance again by optimizing for caches using
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by
using thread-level parallelism. All four optimizations in total add just 24 lines of C
code to our initial matrix multiply example.

The second goal was to help readers separate the forest from the trees by
identifying eight great ideas of computer architecture early and then pointing out
all the places they occur throughout the rest of the book. We use (hopefully) easy-
to-remember margin icons and highlight the corresponding word in the text to
remind readers of these eight themes. There are nearly 100 citations in the book. No
chapter has less than seven examples of great ideas, and no idea is cited less than five
times. Performance via parallelism, pipelining, and prediction are the three most
popular great ideas, followed closely by Moore’s Law. Chapter 4, The Processor, is
the one with the most examples, which is not a surprise since it probably received
the most attention from computer architects. The one great idea found in every
chapter is performance via parallelism, which is a pleasant observation given the
recent emphasis in parallelism in the field and in editions of this book.

The third goal was to recognize the generation change in computing from the
PC era to the post-PC era by this edition with our examples and material. Thus,
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6
describes the computing infrastructure of the cloud. We also feature the ARM,
which is the instruction set of choice in the personal mobile devices of the post-
PC era, as well as the x86 instruction set that dominated the PC era and (so far)
dominates cloud computing.

The fourth goal was to spread the I/O material throughout the book rather
than have it in its own chapter, much as we spread parallelism throughout all the
chapters in the fourth edition. Hence, I/O material in this edition can be found in
Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. The thought is that readers (and instructors)
are more likely to cover I/O if it’s not segregated to its own chapter.

This is a fast-moving field, and, as is always the case for our new editions, an
important goal is to update the technical content. The running example is the ARM
Cortex A53 and the Intel Core i7, reflecting our post-PC era. Other highlights
include a tutorial on GPUs that explains their unique terminology, more depth on
the warehouse-scale computers that make up the cloud, and a deep dive into 10
Gigabyte Ethernet cards.

To keep the main book short and compatible with electronic books, we placed
the optional material as online appendices instead of on a companion CD as in
prior editions.

Finally, we updated all the exercises in the book.
While some elements changed, we have preserved useful book elements from

prior editions. To make the book work better as a reference, we still place definitions
of new terms in the margins at their first occurrence. The book element called

 Preface xxi

“Understanding Program Performance” sections helps readers understand the
performance of their programs and how to improve it, just as the “Hardware/Software
Interface” book element helped readers understand the tradeoffs at this interface.
“The Big Picture” section remains so that the reader sees the forest despite all the
trees. “Check Yourself ” sections help readers to confirm their comprehension of the
material on the first time through with answers provided at the end of each chapter.
This edition still includes the green RISC-V reference card, which was inspired by
the “Green Card” of the IBM System/360. This card has been updated and should be
a handy reference when writing RISC-V assembly language programs.

Instructor Support
We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture slides, and other
materials are available to instructors who register with the publisher. In addition,
the companion Web site provides links to a free RISC-V software. Check the
publisher’s Web site for more information:

textbooks.elsevier.com/9780128122754

Concluding Remarks
If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at codRISCVbugs@
mkp.com or by low-tech mail using the address found on the copyright page.

This edition is the third break in the long-standing collaboration between
Hennessy and Patterson, which started in 1989. The demands of running one of
the world’s great universities meant that President Hennessy could no longer make
the substantial commitment to create a new edition. The remaining author felt
once again like a tightrope walker without a safety net. Hence, the people in the
acknowledgments and Berkeley colleagues played an even larger role in shaping
the contents of this book. Nevertheless, this time around there is only one author
to blame for the new material in what you are about to read.

Acknowledgments
With every edition of this book, we are very fortunate to receive help from many
readers, reviewers, and contributors. Each of these people has helped to make this
book better.

We are grateful for the assistance of Khaled Benkrid and his colleagues at
ARM Ltd., who carefully reviewed the ARM-related material and provided helpful
feedback.

Chapter 6 was so extensively revised that we did a separate review for ideas and
contents, and I made changes based on the feedback from every reviewer. I’d like to
thank Christos Kozyrakis of Stanford University for suggesting using the network

mailto:codRISCVbugs@mkp.com
mailto:codRISCVbugs@mkp.com

xxii Preface

interface for clusters to demonstrate the hardware–software interface of I/O and
for suggestions on organizing the rest of the chapter; Mario Flagsilk of Stanford
University for providing details, diagrams, and performance measurements of the
NetFPGA NIC; and the following for suggestions on how to improve the chapter:
David Kaeli of Northeastern University, Partha Ranganathan of HP Labs,
David Wood of the University of Wisconsin, and my Berkeley colleagues Siamak
Faridani, Shoaib Kamil, Yunsup Lee, Zhangxi Tan, and Andrew Waterman.

Special thanks goes to Rimas Avizenis of UC Berkeley, who developed the
various versions of matrix multiply and supplied the performance numbers as well.
As I worked with his father while I was a graduate student at UCLA, it was a nice
symmetry to work with Rimas at UCB.

I also wish to thank my longtime collaborator Randy Katz of UC Berkeley, who
helped develop the concept of great ideas in computer architecture as part of the
extensive revision of an undergraduate class that we did together.

I’d like to thank David Kirk, John Nickolls, and their colleagues at NVIDIA
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm,
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov)
for writing the first in-depth appendix on GPUs. I’d like to express again my
appreciation to Jim Larus, recently named Dean of the School of Computer and
Communications Science at EPFL, for his willingness in contributing his expertise
on assembly language programming, as well as for welcoming readers of this book
with regard to using the simulator he developed and maintains.

I am also very grateful to Zachary Kurmas of Grand Valley State University,
who updated and created new exercises, based on originals created by Perry
Alexander (The University of Kansas); Jason Bakos (University of South Carolina);
Javier Bruguera (Universidade de Santiago de Compostela); Matthew Farrens
(University of California, Davis); David Kaeli (Northeastern University); Nicole
Kaiyan (University of Adelaide); John Oliver (Cal Poly, San Luis Obispo); Milos
Prvulovic (Georgia Tech); Jichuan Chang (Google); Jacob Leverich (Stanford);
Kevin Lim (Hewlett-Packard); and Partha Ranganathan (Google).

Additional thanks goes to Peter Ashenden for updating the lecture slides.
I am grateful to the many instructors who have answered the publisher’s surveys,

reviewed our proposals, and attended focus groups. They include the following
individuals: Focus Groups: Bruce Barton (Suffolk County Community College), Jeff
Braun (Montana Tech), Ed Gehringer (North Carolina State), Michael Goldweber
(Xavier University), Ed Harcourt (St. Lawrence University), Mark Hill (University
of Wisconsin, Madison), Patrick Homer (University of Arizona), Norm Jouppi
(HP Labs), Dave Kaeli (Northeastern University), Christos Kozyrakis (Stanford
University), Jae C. Oh (Syracuse University), Lu Peng (LSU), Milos Prvulovic (Georgia
Tech), Partha Ranganathan (HP Labs), David Wood (University of Wisconsin),
Craig Zilles (University of Illinois at Urbana-Champaign). Surveys and Reviews:
Mahmoud Abou-Nasr (Wayne State University), Perry Alexander (The University
of Kansas), Behnam Arad (Sacramento State University), Hakan Aydin (George
Mason University), Hussein Badr (State University of New York at Stony Brook),
Mac Baker (Virginia Military Institute), Ron Barnes (George Mason University),

 Preface xxiii

Douglas Blough (Georgia Institute of Technology), Kevin Bolding (Seattle Pacific
University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster
College), Jeff Braun (Montana Tech), Tom Briggs (Shippensburg University), Mike
Bright (Grove City College), Scott Burgess (Humboldt State University), Fazli Can
(Bilkent University), Warren R. Carithers (Rochester Institute of Technology),
Bruce Carlton (Mesa Community College), Nicholas Carter (University of Illinois
at Urbana-Champaign), Anthony Cocchi (The City University of New York), Don
Cooley (Utah State University), Gene Cooperman (Northeastern University),
Robert D. Cupper (Allegheny College), Amy Csizmar Dalal (Carleton College),
Daniel Dalle (Université de Sherbrooke), Edward W. Davis (North Carolina State
University), Nathaniel J. Davis (Air Force Institute of Technology), Molisa Derk
(Oklahoma City University), Andrea Di Blas (Stanford University), Derek Eager
(University of Saskatchewan), Ata Elahi (Souther Connecticut State University),
Ernest Ferguson (Northwest Missouri State University), Rhonda Kay Gaede (The
University of Alabama), Etienne M. Gagnon (L’Université du Québec à Montréal),
Costa Gerousis (Christopher Newport University), Paul Gillard (Memorial
University of Newfoundland), Michael Goldweber (Xavier University), Georgia
Grant (College of San Mateo), Paul V. Gratz (Texas A&M University), Merrill Hall
(The Master’s College), Tyson Hall (Southern Adventist University), Ed Harcourt
(St. Lawrence University), Justin E. Harlow (University of South Florida), Paul F.
Hemler (Hampden-Sydney College), Jayantha Herath (St. Cloud State University),
Martin Herbordt (Boston University), Steve J. Hodges (Cabrillo College), Kenneth
Hopkinson (Cornell University), Bill Hsu (San Francisco State University), Dalton
Hunkins (St. Bonaventure University), Baback Izadi (State University of New
York—New Paltz), Reza Jafari, Robert W. Johnson (Colorado Technical University),
Bharat Joshi (University of North Carolina, Charlotte), Nagarajan Kandasamy
(Drexel University), Rajiv Kapadia, Ryan Kastner (University of California,
Santa Barbara), E.J. Kim (Texas A&M University), Jihong Kim (Seoul National
University), Jim Kirk (Union University), Geoffrey S. Knauth (Lycoming College),
Manish M. Kochhal (Wayne State), Suzan Koknar-Tezel (Saint Joseph’s University),
Angkul Kongmunvattana (Columbus State University), April Kontostathis (Ursinus
College), Christos Kozyrakis (Stanford University), Danny Krizanc (Wesleyan
University), Ashok Kumar, S. Kumar (The University of Texas), Zachary Kurmas
(Grand Valley State University), Adrian Lauf (University of Louisville), Robert N.
Lea (University of Houston), Alvin Lebeck (Duke University), Baoxin Li (Arizona
State University), Li Liao (University of Delaware), Gary Livingston (University of
Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon Institute of Technology),
Yashwant K Malaiya (Colorado State University), Stephen Mann (University of
Waterloo), Bill Mark (University of Texas at Austin), Ananda Mondal (Claflin
University), Alvin Moser (Seattle University),

Walid Najjar (University of California, Riverside), Vijaykrishnan Narayanan
(Penn State University), Danial J. Neebel (Loras College), Victor Nelson (Auburn
University), John Nestor (Lafayette College), Jae C. Oh (Syracuse University),
Joe Oldham (Centre College), Timour Paltashev, James Parkerson (University of
Arkansas), Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted Pedersen

xxiv Preface

(University of Minnesota), Lu Peng (Louisiana State University), Gregory D.
Peterson (The University of Tennessee), William Pierce (Hood College), Milos
Prvulovic (Georgia Tech), Partha Ranganathan (HP Labs), Dejan Raskovic
(University of Alaska, Fairbanks) Brad Richards (University of Puget Sound),
Roman Rozanov, Louis Rubinfield (Villanova University), Md Abdus Salam
(Southern University), Augustine Samba (Kent State University), Robert Schaefer
(Daniel Webster College), Carolyn J. C. Schauble (Colorado State University),
Keith Schubert (CSU San Bernardino), William L. Schultz, Kelly Shaw (University
of Richmond), Shahram Shirani (McMaster University), Scott Sigman (Drury
University), Shai Simonson (Stonehill College), Bruce Smith, David Smith, Jeff W.
Smith (University of Georgia, Athens), Mark Smotherman (Clemson University),
Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M), Timothy
D. Stanley (Brigham Young University), Dean Stevens (Morningside College),
Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander Taubin
(Boston University), Will Thacker (Winthrop University), Mithuna Thottethodi
(Purdue University), Manghui Tu (Southern Utah University), Dean Tullsen (UC
San Diego), Steve VanderLeest (Calvin College), Christopher Vickery (Queens
College of CUNY), Rama Viswanathan (Beloit College), Ken Vollmar (Missouri
State University), Guoping Wang (Indiana-Purdue University), Patricia Wenner
(Bucknell University), Kent Wilken (University of California, Davis), David Wolfe
(Gustavus Adolphus College), David Wood (University of Wisconsin, Madison),
Ki Hwan Yum (University of Texas, San Antonio), Mohamed Zahran (City College
of New York), Amr Zaky (Santa Clara University), Gerald D. Zarnett (Ryerson
University), Nian Zhang (South Dakota School of Mines & Technology), Jiling
Zhong (Troy University), Huiyang Zhou (North Carolina State University), Weiyu
Zhu (Illinois Wesleyan University).

A special thanks also goes to Mark Smotherman for making multiple passes to
find technical and writing glitches that significantly improved the quality of this
edition.

We wish to thank the extended Morgan Kaufmann family for agreeing to
publish this book again under the able leadership of Katey Birtcher, Steve Merken,
and Nate McFadden: I certainly couldn’t have completed the book without them.
We also want to extend thanks to Lisa Jones, who managed the book production
process, and Victoria Pearson Esser, who did the cover design. The cover cleverly
connects the post-PC era content of this edition to the cover of the first edition.

Finally, I owe a huge debt to Yunsup Lee and Andrew Waterman for taking on
this conversion to RISC-V in their spare time while founding a startup company.
Kudos to Eric Love as well, who made RISC-V versions of the exercises in this
edition while finishing his Ph.D. We’re all excited to see what will happen with
RISC-V in academia and beyond.

The contributions of the nearly 150 people we mentioned here have helped
make this new edition what I hope will be our best book yet. Enjoy!

David A. Patterson

This page intentionally left blank

Computer
Abstractions and
Technology
1.1 Introduction 3
1.2 Eight Great Ideas in Computer

Architecture 11
1.3 Below Your Program 13
1.4 Under the Covers 16
1.5 Technologies for Building Processors and

Memory 24

1
Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.

Alfred North Whitehead,
An Introduction to Mathematics, 1911

Computer Organization and Design. DOI:
© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00001-4
2018

1.6 Performance 28
1.7 The Power Wall 40
1.8 The Sea Change: The Switch from Uniprocessors to

Multiprocessors 43
1.9 Real Stuff: Benchmarking the Intel Core i7 46
1.10 Fallacies and Pitfalls 49
1.11 Concluding Remarks 52
1.12 Historical Perspective and Further Reading 54
1.13 Exercises 54

 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Computers
are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s Law. This unusual
industry embraces innovation at a breath-taking rate. In the last 30 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception
of electronic computing in the late 1940s. Had the transportation industry kept
pace with the computer industry, for example, today we could travel from New
York to London in a second for a penny. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in San
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.

4 Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and industrial revolutions. The
resulting multiplication of humankind’s intellectual strength and reach naturally
has affected our everyday lives profoundly and changed the ways in which the
search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications that
were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fiction.”

■	 Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars was
ludicrous. Today, computers reduce pollution, improve fuel efficiency via
engine controls, and increase safety through blind spot warnings, lane
departure warnings, moving object detection, and air bag inflation to protect
occupants in a crash.

■	 Cell phones: Who would have dreamed that advances in computer
systems would lead to more than half of the planet having mobile phones,
allowing person-to-person communication to almost anyone anywhere in
the world?

■	 Human genome project: The cost of computer equipment to map and analyze
human DNA sequences was hundreds of millions of dollars. It’s unlikely that
anyone would have considered this project had the computer costs been 10
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,
costs continue to drop; you will soon be able to acquire your own genome,
allowing medical care to be tailored to you.

■	 World Wide Web: Not in existence at the time of the first edition of this book,
the web has transformed our society. For many, the web has replaced libraries
and newspapers.

■	 Search engines: As the content of the web grew in size and in value, finding
relevant information became increasingly important. Today, many people
rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our
society. Hardware advances have allowed programmers to create wonderfully
useful software, which explains why computers are omnipresent. Today’s science
fiction suggests tomorrow’s killer applications: already on their way are glasses that
augment reality, the cashless society, and cars that can drive themselves.

 1.1 Introduction 5

Traditional Classes of Computing Applications and Their
Characteristics
Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have distinct design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three dissimilar classes of applications.

Personal computers (PCs) are possibly the best-known form of computing,
which readers of this book have likely used extensively. Personal computers
emphasize delivery of good performance to single users at low cost and usually
execute third-party software. This class of computing drove the evolution of many
computing technologies, which is merely 35 years old!

Servers are the modern form of what were once much larger computers, and
are usually accessed only via a network. Servers are oriented to carrying sizable
workloads, which may consist of either single complex applications—usually a
scientific or engineering application—or handling many small jobs, such as would
occur in building a large web server. These applications are usually based on
software from another source (such as a database or simulation system), but are
often modified or customized for a particular function. Servers are built from the
same basic technology as desktop computers, but provide for greater computing,
storage, and input/output capacity. In general, servers also place a higher emphasis
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple web serving. At the other extreme are
supercomputers, which at the present consist of tens of thousands of processors
and many terabytes of memory, and cost tens to hundreds of millions of dollars.
Supercomputers are usually used for high-end scientific and engineering
calculations, such as weather forecasting, oil exploration, protein structure
determination, and other large-scale problems. Although such supercomputers
represent the peak of computing capability, they represent a relatively small fraction
of the servers and thus a proportionally tiny fraction of the overall computer market
in terms of total revenue.

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the
microprocessors found in your car, the computers in a television set, and the
networks of processors that control a modern airplane or cargo ship. Embedded
computing systems are designed to run one application or one set of related
applications that are normally integrated with the hardware and delivered as a
single system; thus, despite the large number of embedded computers, most users
never really see that they are using a computer!

personal computer
(PC) A computer
designed for use by
an individual, usually
incorporating a graphics
display, a keyboard, and a
mouse.

server A computer
used for running
larger programs for
multiple users, often
simultaneously, and
typically accessed only via
a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and typically
cost tens to hundreds of
millions of dollars.

terabyte (TB) Originally
1,099,511,627,776
(240) bytes, although
communications and
secondary storage
systems developers
started using the term to
mean 1,000,000,000,000
(1012) bytes. To reduce
confusion, we now use the
term tebibyte (TiB) for
240 bytes, defining terabyte
(TB) to mean 1012 bytes.
Figure 1.1 shows the full
range of decimal and
binary values and names.

embedded computer
A computer inside
another device used
for running one
predetermined application
or collection of software.

6 Chapter 1 Computer Abstractions and Technology

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only to be as fast as necessary
to handle its limited function, and beyond that, minimizing cost and power is the
most important objective. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in a
plane or cargo ship crashes). In consumer-oriented embedded applications, such as
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded
systems, techniques of redundancy from the server world are often employed.
Although this book focuses on general-purpose computers, most concepts apply
directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a
processor written in a hardware description language, such as Verilog or VHDL (see
Chapter 4). The core allows a designer to integrate other application-specific hardware
with the processor core for fabrication on a single chip.

Welcome to the Post-PC Era
The continuing march of technology brings about generational changes in
computer hardware that shake up the entire information technology industry.
Since the last edition of the book, we have undergone such a change, as significant
in the past as the switch starting 30 years ago to personal computers. Replacing the

Decimal
term Abbreviation Value

Binary
term Abbreviation Value % Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exbibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for
all the common size terms. In the last column we note how much larger the binary term is than its
corresponding decimal term, which is compounded as we head down the chart. These prefixes work for bits
as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.

 1.1 Introduction 7

PC is the personal mobile device (PMD). PMDs are battery operated with wireless
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,
users can download software (“apps”) to run on them. Unlike PCs, they no longer
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen
or even speech input. Today’s PMD is a smart phone or a tablet computer, but
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth over
time of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the conventional server is Cloud Computing, which relies
upon giant datacenters that are now known as Warehouse Scale Computers (WSCs).
Companies like Amazon and Google build these WSCs containing 100,000 servers
and then let companies rent portions of them so that they can provide software
services to PMDs without having to build WSCs of their own. Indeed, Software as a
Service (SaaS) deployed via the Cloud is revolutionizing the software industry just
as PMDs and WSCs are revolutionizing the hardware industry. Today’s software
developers will often have a portion of their application that runs on the PMD and
a portion that runs in the Cloud.

What You Can Learn in This Book
Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
popular software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the

Personal mobile
devices (PMDs) are
small wireless devices to
connect to the Internet;
they rely on batteries for
power, and software is
installed by downloading
apps. Conventional
examples are smart
phones and tablets.

Cloud Computing
refers to large collections
of servers that provide
services over the Internet;
some providers rent
dynamically varying
numbers of servers as a
utility.

Software as a Service
(SaaS) delivers software
and data as a service over
the Internet, usually via
a thin program such as a
browser that runs on local
client devices, instead of
binary code that must be
installed, and runs wholly
on that device. Examples
include web search and
social networking.

0

200

400

600

800

1000

1200

1400

2007 2008 2009 2010 2011 2012

Tablet

Smart phone sales

M
ill

io
ns

PC (not including
tablet)

Cell phone (not
including smart phone)

FIGURE 1.2 The number manufactured per year of tablets and smart phones, which
reflect the post-PC era, versus personal computers and traditional cell phones. Smart
phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the
fastest growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone
categories are relatively flat or declining.

8 Chapter 1 Computer Abstractions and Technology

last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature
of processors and the hierarchical nature of memories. We demonstrate the
importance of this understanding in Chapters 3 to 6 by showing how to improve
performance of a C program by a factor of 200. Moreover, as we explain in Section
1.7, today’s programmers need to worry about energy efficiency of their programs
running either on the PMD or in the Cloud, which also requires understanding
what is below your code. Programmers who seek to build competitive versions of
software will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary
machine, unraveling the software below your program and the hardware under the
covers of your computer. By the time you complete this book, we believe you will
be able to answer the following questions:

■	 How are programs written in a high-level language, such as C or Java,
translated into the language of the hardware, and how does the hardware
execute the resulting program? Comprehending these concepts forms the
basis of understanding the aspects of both the hardware and software that
affect program performance.

■	 What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

■	 What determines the performance of a program, and how can a programmer
improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s
language, and the effectiveness of the hardware in executing the program.

■	 What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

■	 What techniques can be used by hardware designers to improve energy
efficiency? What can the programmer do to help or hinder energy efficiency?

■	 What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 6).

■	 Since the first commercial computer in 1951, what great ideas did computer
architects come up with that lay the foundation of modern computing?

multicore
microprocessor
A microprocessor
containing multiple
processors (“cores”) in a
single integrated circuit.

 1.1 Introduction 9

Without understanding the answers to these questions, improving the
performance of your program on a modern computer or evaluating what features
might make one computer better than another for a particular application will be
a complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and energy, introduces
integrated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the
terminology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted definition
of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIe, SATA, and many others.

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

acronym A word
constructed by taking the
initial letters of a string
of words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

The performance of a program depends on a combination of the effectiveness of the
algorithms used in the program, the software systems used to create and translate
the program into machine instructions, and the effectiveness of the computer in
executing those instructions, which may include input/output (I/O) operations.
This table summarizes how the hardware and software affect performance.

Understanding
Program
Performance

Hardware or software
component How this component affects performance

Where is this
topic covered?

Algorithm Determines both the number of source-level
statements and the number of I/O operations
executed

Other books!

Programming language,
compiler, and architecture

Determines the number of computer instructions
for each source-level statement

Chapters 2 and 3

Processor and memory
system

Determines how fast instructions can be
executed

Chapters 4, 5, and 6

I/O system (hardware and
operating system)

Determines how fast I/O operations may be
executed

Chapters 4, 5, and 6

10 Chapter 1 Computer Abstractions and Technology

To demonstrate the impact of the ideas in this book, as mentioned above, we
improve the performance of a C program that multiplies a matrix times a vector
in a sequence of chapters. Each step leverages understanding how the underlying
hardware really works in a modern microprocessor to improve performance by a
factor of 200!

■	 In the category of data-level parallelism, in Chapter 3 we use subword
parallelism via C intrinsics to increase performance by a factor of 3.8.

■	 In the category of instruction-level parallelism, in Chapter 4 we use loop
unrolling to exploit multiple instruction issue and out-of-order execution
hardware to increase performance by another factor of 2.3.

■	 In the category of memory hierarchy optimization, in Chapter 5 we use
cache blocking to increase performance on large matrices by another factor of
2.0 to 2.5.

■	 In the category of thread-level parallelism, in Chapter 6 we use parallel for
loops in OpenMP to exploit multicore hardware to increase performance by
another factor of 4 to 14.

Check
Yourself

Check Yourself sections are designed to help readers assess whether they
comprehend the major concepts introduced in a chapter and understand the
implications of those concepts. Some Check Yourself questions have simple answers;
others are for discussion among a group. Answers to the specific questions can
be found at the end of the chapter. Check Yourself questions appear only at the
end of a section, making it easy to skip them if you are sure you understand the
material.

1. The number of embedded processors sold every year greatly outnumbers
the number of PC and even post-PC processors. Can you confirm or deny
this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of conventional computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

■	 The algorithm chosen
■	 The programming language or compiler
■	 The operating system
■	 The processor
■	 The I/O system and devices

 1.2 Eight Great Ideas in Computer Architecture 11

 1.2 Eight Great Ideas in Computer
Architecture

We now introduce eight great ideas that computer architects have invented in
the last 60 years of computer design. These ideas are so powerful they have lasted
long after the first computer that used them, with newer architects demonstrating
their admiration by imitating their predecessors. These great ideas are themes that
we will weave through this and subsequent chapters as examples arise. To point
out their influence, in this section we introduce icons and highlighted terms that
represent the great ideas and we use them to identify the nearly 100 sections of the
book that feature use of the great ideas.

Design for Moore’s Law
The one constant for computer designers is rapid change, which is driven largely by
Moore’s Law. It states that integrated circuit resources double every 18–24 months.
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made
by Gordon Moore, one of the founders of Intel. As computer designs can take years,
the resources available per chip can easily double or quadruple between the start
and finish of the project. Like a skeet shooter, computer architects must anticipate
where the technology will be when the design finishes rather than design for where
it starts. We use an “up and to the right” Moore’s Law graph to represent designing
for rapid change.

Use Abstraction to Simplify Design
Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew by Moore’s Law. A major productivity technique for
hardware and software is to use abstractions to characterize the design at different
levels of representation; lower-level details are hidden to offer a simpler model at
higher levels. We’ll use the abstract painting icon to represent this second great idea.

Make the Common Case Fast
Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the rare
case and hence is usually easier to enhance. This common sense advice implies
that you know what the common case is, which is only possible with careful
experimentation and measurement (see Section 1.6). We use a sports car as the
icon for making the common case fast, as the most common trip has one or two
passengers, and it’s surely easier to make a fast sports car than a fast minivan!

12 Chapter 1 Computer Abstractions and Technology

Performance via Parallelism
Since the dawn of computing, computer architects have offered designs that get
more performance by computing operations in parallel. We’ll see many examples
of parallelism in this book. We use multiple jet engines of a plane as our icon for
parallel performance.

Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining. For example, before fire engines, a “bucket
brigade” would respond to a fire, which many cowboy movies show in response to
a dastardly act by the villain. The townsfolk form a human chain to carry a water
source to fire, as they could much more quickly move buckets up the chain instead
of individuals running back and forth. Our pipeline icon is a sequence of pipes,
with each section representing one stage of the pipeline.

Performance via Prediction
Following the saying that it can be better to ask for forgiveness than to ask for
permission, the next great idea is prediction. In some cases, it can be faster on
average to guess and start working rather than wait until you know for sure,
assuming that the mechanism to recover from a misprediction is not too expensive
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

Hierarchy of Memories
Programmers want the memory to be fast, large, and cheap, as memory speed often
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is often the majority of computer cost. Architects have found
that they can address these conflicting demands with a hierarchy of memories, with
the fastest, smallest, and the most expensive memory per bit at the top of the hierarchy
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in Chapter
5, caches give the programmer the illusion that main memory is almost as fast as the
top of the hierarchy and nearly as big and cheap as the bottom of the hierarchy. We
use a layered triangle icon to represent the memory hierarchy. The shape indicates
speed, cost, and size: the closer to the top, the faster and more expensive per bit the
memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy
Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our icon, since the dual tires on each side of its rear axles allow the truck to continue
driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the flat tire can be fixed, thereby restoring redundancy!)

 1.3 Below Your Program 13

 1.3 Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the primitive instructions involves several
layers of software that interpret or translate high-level operations into simple
computer instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of software are organized primarily in a
hierarchical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and the application software.

There are many types of systems software, but two types of systems software
are central to every computer system today: an operating system and a compiler.
An operating system interfaces between a user’s program and the hardware
and provides a variety of services and supervisory functions. Among the most
important functions are:

■	 Handling basic input and output operations

■	 Allocating storage and memory

■	 Providing for protected sharing of the computer among multiple applications
using it simultaneously

Examples of operating systems in use today are Linux, iOS, and Windows.

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.Application software

Sys
tems software

Hardware

FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown
as concentric circles with hardware in the center and application software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.
Mark Twain, The
Innocents Abroad, 1869

14 Chapter 1 Computer Abstractions and Technology

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C++, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2.

From a High-Level Language to the Language of Hardware
To speak directly to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off, and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1001010100101110

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented software to translate from symbolic notation to binary. The first of
these programs was named an assembler. This program translates a symbolic version
of an instruction into the binary version. For example, the programmer would write

add A, B

and the assembler would translate this notation into

1001010100101110

This instruction tells the computer to add the two numbers A and B. The name coined
for this symbolic language, still used today, is assembly language. In contrast, the
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer
to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.

compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

 1.3 Below Your Program 15

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers
that translate programs in such languages into instructions. Figure 1.4 shows the
relationships among these programs and languages, which are more examples of
the power of abstraction.

high-level
programming
language A portable
language such as C, C++,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

swap(size_t v[], size_t k)
{
 size_t temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

Assembler

Compiler

Binary machine
language
program
(for RISC-V)

Assembly
language
program
(for RISC-V)

High-level
language
program
(in C)

slli x6, x11, 3
add x6, x10, x6
ld x5, 0(x6)
ld x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

 swap:

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

FIGURE 1.4 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2.

16 Chapter 1 Computer Abstractions and Technology

A compiler enables a programmer to write this high-level language expression:

A + B

The compiler would compile it into this assembly language statement:

add A, B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software development
is that it takes less time to develop programs when they are written in languages
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

The final advantage is that programming languages allow programs to be
independent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions of
any computer. These three advantages are so strong that today little programming
is done in assembly language.

 1.4 Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so significant that
we hope you will remember it forever, we emphasize it by identifying it as a Big
Picture item. We have about a dozen Big Pictures in this book, the first being the
five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

Two key components of computers are input devices, such as the microphone,
and output devices, such as the speaker. As the names suggest, input feeds the

input device
A mechanism through
which the computer is
fed information, such as a
keyboard.

output device
A mechanism that
conveys the result of a
computation to a user,
such as a display, or to
another computer.

 1.4 Under the Covers 17

computer, and output is the result of computation sent to the user. Some devices,
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s take
an introductory tour through the computer hardware, starting with the external
I/O devices.

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these five
categories. To help you keep all this in perspective, the five components of
a computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

The BIG
Picture

FIGURE 1.5 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data from
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

18 Chapter 1 Computer Abstractions and Technology

Through the Looking Glass
The most fascinating I/O device is probably the graphics display. Most personal
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCDs use an active matrix that has a tiny transistor switch at each
pixel to control current precisely and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three-
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can
be represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix in a typical tablet ranges in size from
1024 × 768 to 2048 × 1536. A color display might use 8 bits for each of the three
colors (red, blue, and green), for 24 bits per pixel, permitting millions of different
colors to be displayed.

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen
is stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

The goal of the bit map is to represent faithfully what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

liquid crystal display
(LCD) A display
technology using a thin
layer of liquid polymers
that can be used to
transmit or block light
according to whether a
charge is applied.

active matrix display
A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture
element. Screens are
composed of hundreds
of thousands to millions
of pixels, organized in a
matrix.

Through computer
displays I have landed
an airplane on the
deck of a moving
carrier, observed a
nuclear particle hit a
potential well, flown
in a rocket at nearly
the speed of light and
watched a computer
reveal its innermost
workings.
Ivan Sutherland, the
“father” of computer
graphics, Scientific
American, 1984

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X1, Y1).

 1.4 Under the Covers 19

Touchscreen
While PCs also use LCDs, the tablets and smartphones of the post-PC era have
replaced the keyboard and mouse with touch-sensitive displays, which has
the wonderful user interface advantage of users pointing directly at what they
are interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets
today use capacitive sensing. Since people are electrical conductors, if an insulator
like glass is covered with a transparent conductor, touching distorts the electrostatic
field of the screen, which results in a change in capacitance. This technology can
allow multiple touches simultaneously, which recognizes gestures that can lead to
attractive user interfaces.

Opening the Box
Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly,
of the five classic components of the computer, I/O dominates this reading device.
The list of I/O devices includes a capacitive multitouch LCD, front-facing camera,
rear-facing camera, microphone, headphone jack, speakers, accelerometer,
gyroscope, Wi-Fi network, and Bluetooth network. The datapath, control, and
memory are a tiny portion of the components.

The small rectangles in Figure 1.8 contain the devices that drive our advancing
technology, called integrated circuits and nicknamed chips. The A5 package
seen in the middle of Figure 1.8 contains two ARM processors that operate at a
clock rate of 1 GHz. The processor is the active part of the computer, following the
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O
devices to activate, and so on. Occasionally, people call the processor the CPU, for
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a
microprocessor. The processor logically comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

The A5 package in Figure 1.8 also includes two memory chips, each with
2 gibibits of capacity, thereby supplying 512 MiB. The memory is where the
programs are kept when they are running; it also contains the data needed by the
running programs. The memory is built from DRAM chips. DRAM stands for
dynamic random access memory. Multiple DRAMs are used together to contain
the instructions and data of a program. In contrast to sequential access memories,
such as magnetic tapes, the RAM portion of the term DRAM means that memory
accesses take basically the same amount of time no matter what portion of the
memory is read.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache memory.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

central processor unit
(CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations.

control The component
of the processor that
commands the datapath,
memory, and I/O
devices according to
the instructions of the
program.

memory The storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location. Access times
are 50 nanoseconds and
cost per gigabyte in 2012
was $5 to $10.

20 Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Components of the Apple iPad 2 A1395. The metal back of the iPad (with the reversed
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD. To the
far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and offers
10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. The
small components surrounding the metal back in the center are what we think of as the computer; they
are often L-shaped to fit compactly inside the case next to the battery. Figure 1.8 shows a close-up of the
L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the
processor and the memory. The tiny rectangle below the logic board contains a chip that provides wireless
communication: Wi-Fi, Bluetooth, and FM tuner. It fits into a small slot in the lower left corner of the logic
board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and
accelerometer. These last two chips combine to allow the iPad to recognize six-axis motion. The tiny rectangle
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. The
cable at the bottom is the connector between the logic board and the camera/volume control board. The
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy
iFixit, www.ifixit.com)

FIGURE 1.8 The logic board of Apple iPad 2 in Figure 1.7. The photo highlights five integrated circuits.
The large integrated circuit in the middle is the Apple A5 chip, which contains dual ARM processor cores
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of
the processor chip inside the A5 package. The similar-sized chip to the left is the 32 GB flash memory chip
for non-volatile storage. There is an empty space between the two chips where a second flash chip can be
installed to double storage capacity of the iPad. The chips to the right of the A5 include power controller and
I/O controller chips. (Courtesy iFixit, www.ifixit.com)

http://www.ifixit.com
http://www.ifixit.com

 1.4 Under the Covers 21

Cache memory consists of a small, fast memory that acts as a buffer for the DRAM
memory. (The nontechnical definition of cache is a safe place for hiding things.)
Cache is built using a different memory technology, static random access memory
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small,
fast memory that acts as a
buffer for a slower, larger
memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

FIGURE 1.9 The processor integrated circuit inside the A5 package. The size of chip is 12.1 by 10.1 mm, and
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or
cores in the middle left of the chip and a PowerVR graphics processing unit (GPU) with four datapaths in the
upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM).
(Courtesy Chipworks, www.chipworks.com)

http://www.chipworks.com

22 Chapter 1 Computer Abstractions and Technology

As mentioned above, one of the great ideas to improve design is abstraction.
One of the most important abstractions is the interface between the hardware
and the lowest-level software. Because of its importance, it is given a special
name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the
details of doing I/O, allocating memory, and other low-level system functions
so that application programmers do not need to worry about such details. The
combination of the basic instruction set and the operating system interface
provided for application programmers is called the application binary interface
(ABI).

An instruction set architecture allows computer designers to talk about functions
independently from the hardware that performs them. For example, we can talk
about the functions of a digital clock (keeping time, displaying the time, setting the
alarm) separately from the clock hardware (quartz crystal, LED displays, plastic
buttons). Computer designers distinguish architecture from an implementation of
an architecture along the same lines: an implementation is hardware that obeys the
architecture abstraction. These ideas bring us to another Big Picture.

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
lowest-level software
that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O, and
so on.

application binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
It defines a standard for
binary portability across
computers. Both hardware and software consist of hierarchical layers using abstraction,

with each lower layer hiding details from the level above. One key interface
between the levels of abstraction is the instruction set architecture—the
interface between the hardware and low-level software. This abstract
interface enables many implementations of varying cost and performance
to run identical software.

The BIG
Picture

A Safe Place for Data
Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off the
power to the DVD player, and is therefore a nonvolatile memory technology.

implementation
Hardware that obeys the
architecture abstraction.

volatile memory
Storage, such as DRAM,
that retains data only if it
is receiving power.

nonvolatile memory
A form of memory that
retains data even in the
absence of a power source
and that is used to store
programs between runs.
A DVD disk is nonvolatile.

 1.4 Under the Covers 23

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and
programs between runs, the term main memory or primary memory is used for
the former, and secondary memory for the latter. Secondary memory forms the
next lower layer of the memory hierarchy. DRAMs have dominated main memory
since 1975, but magnetic disks dominated secondary memory starting even earlier.
Because of their size and form factor, personal mobile devices use flash memory,
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip
containing the flash memory of the iPad 2. While slower than DRAM, it is much
cheaper than DRAM in addition to being nonvolatile. Although costing more per
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged,
and it is more power efficient than disks. Hence, flash memory is the standard
secondary memory for PMDs. Alas, unlike disks and DRAM, flash memory bits
wear out after 100,000 to 1,000,000 writes. Thus, file systems must keep track of
the number of writes and have a strategy to avoid wearing out storage, such as by
moving popular data. Chapter 5 describes disks and flash memory in more detail.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device
or server without a network interface would be ridiculed. Networked computers
have several major advantages:

■	 Communication: Information is exchanged between computers at high
speeds.

■	 Resource sharing: Rather than each computer having its own I/O devices,
computers on the network can share I/O devices.

■	 Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and
speed make Ethernet useful to connect computers on the same floor of a building;

main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

secondary memory
Nonvolatile memory
used to store programs
and data between runs;
typically consists of flash
memory in PMDs and
magnetic disks in servers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material. Because they
are rotating mechanical
devices, access times are
about 5 to 20 milliseconds
and cost per gigabyte in
2012 was $0.05 to $0.10.

flash memory
A nonvolatile semi-
conductor memory. It
is cheaper and slower
than DRAM but more
expensive per bit and
faster than magnetic disks.
Access times are about 5
to 50 microseconds and
cost per gigabyte in 2012
was $0.75 to $1.00.

24 Chapter 1 Computer Abstractions and Technology

hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the web. They are typically based on optical fibers and are
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by
becoming much more ubiquitous and by making dramatic increases in performance.
In the 1970s, very few individuals had access to electronic mail, the Internet and
web did not exist, and physically mailing magnetic tapes was the primary way to
transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became considerably cheaper and
had a significantly higher capacity. For example, the first standardized local area
network technology, developed about 30 years ago, was a version of Ethernet that
had a maximum capacity (also called bandwidth) of 10 million bits per second,
typically shared by tens of, if not a hundred, computers. Today, local area network
technology offers a capacity of from 1 to 40 gigabits per second, usually shared
by at most a few computers. Optical communications technology has allowed
similar growth in the capacity of wide area networks, from hundreds of kilobits
to gigabits and from hundreds of computers connected to a worldwide network to
millions of computers connected. This dramatic rise in deployment of networking
combined with increases in capacity have made network technology central to the
information revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way
computers communicate. Wireless technology is widespread, which enabled
the post-PC era. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmission
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit
different from wire-based networks, since all users in an immediate area share the
airwaves.

local area network
(LAN) A network
designed to carry data
within a geographically
confined area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

■	 Semiconductor DRAM memory, flash memory, and disk storage differ
significantly. For each technology, list its volatility, approximate relative
access time, and approximate relative cost compared to DRAM.

 1.5 Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.10 shows the technologies that have

 1.5 Technologies for Building Processors and Memory 25

been used over time, with an estimate of the relative performance per unit cost for
each technology. Since this technology shapes what computers will be able to do
and how quickly they will evolve, we believe all computer professionals should be
familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. When
Gordon Moore predicted the continuous doubling of resources, he was forecasting
the growth rate of the number of transistors per chip. To describe the tremendous
increase in the number of transistors from hundreds to millions, the adjective very
large scale is added to the term, creating the abbreviation VLSI, for very large-scale
integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For 35 years, the industry has consistently
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how to manufacture integrated circuits, we start at the beginning.
The manufacture of a chip begins with silicon, a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor. With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to
transform into one of three devices:

■	 Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

transistor An on/off
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device
containing hundreds of
thousands to millions of
transistors.

silicon A natural
element that is a
semiconductor.

semiconductor
A substance that does not
conduct electricity well.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 35
1975 Integrated circuit

Very large-scale integrated circuit
Ultra large-scale integrated circuit

Transistor
900

1995 2,400,000
2013 250,000,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See Section 1.12.

 1,000,000

 10,000,000

1976 1978 1980 1982 1984 1986

Year of introduction

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

K
ib

ib
it

ca
pa

ci
ty

16K

64K

256K

1M

4M

16M
64M

128M
256M 512M

1G
2G

4G

100,000

10,000

1000

100

10

FIGURE 1.11 Growth of capacity per DRAM chip over time. The y-axis is measured in kibibits (210 bits). The DRAM industry
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat
closer to doubling every two to three years.

26 Chapter 1 Computer Abstractions and Technology

■	 Excellent insulators from electricity (like plastic sheathing or glass)

■	 Areas that can conduct or insulate under specific conditions (as a switch)

Transistors fall into the last category. A VLSI circuit, then, is just billions of
combinations of conductors, insulators, and switches manufactured in a single
small package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.12 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot
is finely sliced into wafers no more than 0.1 inches thick. These wafers then go
through a series of processing steps, during which patterns of chemicals are placed
on each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

silicon crystal ingot
A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more than
0.1 inches thick, used to
create chips.

called dies and more informally known as chips. Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to
contain the flaws, rather than the whole wafer. This concept is quantified by the
yield of a process, which is defined as the percentage of good dies from the total
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and to the fewer dies that fit on a wafer. To reduce the cost,
using the next generation process shrinks a large die as it uses smaller sizes for
both transistors and wires. This improves the yield and the die count per wafer. A
32-nanometer (nm) process was typical in 2012, which means essentially that the
smallest feature size on the die is 32 nm.

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

die The individual
rectangular sections that
are cut from a wafer, more
informally known as
chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Next, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this final test.

A single microscopic flaw in the wafer itself or in one of the dozens of patterning
steps can result in that area of the wafer failing. These defects, as they are called,
make it virtually impossible to manufacture a perfect wafer. The simplest way to
cope with imperfection is to place many independent components on a single
wafer. The patterned wafer is then chopped up, or diced, into these components,

 1.5 Technologies for Building Processors and Memory 27

called dies and more informally known as chips. Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to
contain the flaws, rather than the whole wafer. This concept is quantified by the
yield of a process, which is defined as the percentage of good dies from the total
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and to the fewer dies that fit on a wafer. To reduce the cost,
using the next generation process shrinks a large die as it uses smaller sizes for
both transistors and wires. This improves the yield and the die count per wafer. A
32-nanometer (nm) process was typical in 2012, which means essentially that the
smallest feature size on the die is 32 nm.

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

die The individual
rectangular sections that
are cut from a wafer, more
informally known as
chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). The number of
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. The several dozen partially
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the
masks used to pattern the silicon. This die uses a 32-nanometer technology, which means that the smallest
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature
size, which refers to the size of the transistors as “drawn” versus the final manufactured size.

28 Chapter 1 Computer Abstractions and Technology

Once you’ve found good dies, they are connected to the input/output pins of a
package, using a process called bonding. These packaged parts are tested a final time,
since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple
equations:

Cost per die
Cost per wafer

Dies per wafer yield

Dies per waffer
Wafer area
Die area

Yield
Defects per area Die are

�

1

1((aa/2))2

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.13). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in the die area.

Check
Yourself

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore, have higher yield per wafer.

 1.6 Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of performance
improvement techniques employed by hardware designers, have made performance
assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to

 1.6 Performance 29

purchasers and therefore, to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of those measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance
When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.14
lists some typical passenger airplanes, together with their cruising speed, range,
and capacity. If we wanted to know which of the planes in this table had the best
performance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed was the Concorde (retired from service in 2003), the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747.

Airplane
Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h.)

Passenger throughput
(passengers × m.p.h.)

Boeing 777 375 4630 610 228,750
Boeing 747 470

132
146

4150 610 286,700
BAC/Sud Concorde 4000 1350 178,200
Douglas DC-8-50 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

Let’s suppose we define performance in terms of speed. This still leaves two
possible definitions. You could define the fastest plane as the one with the highest
cruising speed, taking a single passenger from one point to another in the least time.
If you were interested in transporting 450 passengers from one point to another,
however, the 747 would clearly be the fastest, as the last column of the figure shows.
Similarly, we can define computer performance in several distinct ways.

If you were running a program on two different desktop computers, you’d say
that the faster one is the desktop computer that gets the job done first. If you were
running a datacenter that had several servers running jobs submitted by many users,
you’d say that the faster computer was the one that completed the most jobs during
a day. As an individual computer user, you are interested in reducing response
time—the time between the start and completion of a task—also referred to as

response time Also
called execution time.
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/O activities,
operating system
overhead, CPU execution
time, and so on.

30 Chapter 1 Computer Abstractions and Technology

execution time. Datacenter managers often care about increasing throughput or
bandwidth—the total amount of work done in a given time. Hence, in most cases,
we will need different performance metrics as well as different sets of applications
to benchmark personal mobile devices, which are more focused on response time,
versus servers, which are more focused on throughput.

throughput Also called
bandwidth. Another
measure of performance,
it is the number of tasks
completed per unit time.

EXAMPLE

ANSWER

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case
1, both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost
as large as the throughput, the system might force requests to queue up. In
this case, increasing the throughput could also improve response time, since
it would reduce the waiting time in the queue. Thus, in many real computer
systems, changing either execution time or throughput often affects the other.

In discussing the performance of computers, we will be primarily concerned with
response time for the first few chapters. To maximize performance, we want to
minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

Performance
Execution timeX

X
�

1

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performance Performance

Execution time Execution time
Ex

X Y

YX

�

�
1 1

eecution time Execution timeXY �

That is, the execution time on Y is longer than that on X, if X is faster than Y.

 1.6 Performance 31

In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase “X is n times faster than
Y”—or equivalently “X is n times as fast as Y”—to mean

Performance
Performance

X

Y
� n

If X is n times as fast as Y, then the execution time on Y is n times as long as it is
on X:

Performance
Performance

Execution time
Execution time

X

Y

Y

X
� �

 n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if

Performance
Performance

Execution time
Execution time

A

B

B

A
� �

n

Thus the performance ratio is
15
10

1 5� .

and A is therefore 1.5 times as fast as B.

EXAMPLE

ANSWER

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance
Performance

A

B
� 1 5.

means that

Performance PerformanceA
B1 5.

�

32 Chapter 1 Computer Abstractions and Technology

For simplicity, we will normally use the terminology as fast as when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance
Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count. The most straightforward definition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize throughput
rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time over which the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult to
do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences between operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

CPU execution
time Also called CPU
time. The actual time the
CPU spends computing
for a specific task.

user CPU time The
CPU time spent in a
program itself.

system CPU time The
CPU time spent in
the operating system
performing tasks on
behalf of the program.

Different applications are sensitive to different aspects of the performance of a
computer system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In

Understanding
Program

Performance

 1.6 Performance 33

Although as computer users we care about time, when we examine the details
of a computer it’s convenient to think about performance in other metrics. In
particular, computer designers may want to think about a computer by using a
measure that relates to how fast the hardware can perform basic functions. Almost
all computers are constructed using a clock that determines when events take
place in the hardware. These discrete time intervals are called clock cycles (or
ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a
clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or
250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the
clock period. In the next subsection, we will formalize the relationship between the
clock cycles of the hardware designer and the seconds of the computer user.

clock cycle Also called
tick, clock tick, clock
period, clock, or cycle.
The time for one clock
period, usually of the
processor clock, which
runs at a constant rate.

clock period The length
of each clock cycle.

some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
find performance bottlenecks by measuring program execution and looking for
the likely bottlenecks. In the following chapters, we will describe how to search for
bottlenecks and improve performance in various parts of the system.

1. Suppose we know that an application that uses both personal mobile
devices and the Cloud is limited by network performance. For the following
changes, state whether only the throughput improves, both response time
and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is four times as fast as the performance of
computer B, which runs a given application in 28 seconds. How long will
computer C take to run that application?

Check
Yourself

CPU Performance and Its Factors
Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU

34 Chapter 1 Computer Abstractions and Technology

execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time
for a program

CPU clock cycles
for a program Clocck cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time
for a program

CPU clock cycles for a program
Clock

�
rrate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

Let’s first find the number of clock cycles required for the program on A:

CPU time
CPU clock cycles

Clock rate

seconds
CPU clock cycles

A
A

A

10 AA

A

cycles
second

CPU clock cycles seconds cycles
se

2 10

10 2 10

9

9

ccond
cycles20 109

EXAMPLE

ANSWER

 1.6 Performance 35

CPU time for B can be found using this equation:

CPU time CPU clock cycles
Clock rate

 seconds

B
A

B

1 2

6 1 2 20

.

. 10

1 2 20 10
6

9

9

 cycles
Clock rate

Clock rate cycles
 seco

B

B
.

nnds
 cycles

second
 cycles

second
 GHz0 2 20 10 4 10 4

9 9.

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance
The performance equations above did not include any reference to the number of
instructions needed for the program. However, since the compiler clearly generated
instructions to execute, and the computer had to execute the instructions to run
the program, the execution time must depend on the number of instructions in a
program. One way to think about execution time is that it equals the number of
instructions executed multiplied by the average time per instruction. Therefore, the
number of clock cycles required for a program can be written as

CPU clock cycles Instructions for a program
Average clock cycles

 pper instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different
instructions may take different amounts of time depending on what they do, CPI
is an average of all the instructions executed in the program. CPI provides one
way of comparing two different implementations of the identical instruction set
architecture, since the number of instructions executed for a program will, of
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture.
Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program,
and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same
program. Which computer is faster for this program and by how much?

clock cycles
per instruction
(CPI) Average number
of clock cycles per
instruction for a program
or program fragment.

EXAMPLE

36 Chapter 1 Computer Abstractions and Technology

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cycles
CPU clock cycles

A

B

I
I

2 0
1 2

.
.

Now we can compute the CPU time for each computer:

CPU time CPU clock cycles Clock cycle time
 ps

A A

I 2 0 250. 5500 I ps

Likewise, for B:

CPU time ps psB II 1 2 500 600.

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance
CPU performance

Execution time
Execution tim

A

B

B

ee
ps
psA

600
500

1 2
I
I

.

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

The Classic CPU Performance Equation
We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time Instructioncount CPI Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time
Instruction count CPI

Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

instruction count The
number of instructions
executed by the program.

ANSWER

 1.6 Performance 37

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a
computer. The hardware designers have supplied the following facts:

CPI for each instruction class

A B C

CPI 1 2 3

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 +
1 = 6 instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

CPU clock cycles CPI C()i i
i

n

=
∑

1

This yields

CPU clock cycles cycles
CPU clock cy

1 2 1 1 2 2 3 2 2 6 10() () ()
ccles cycles2 4 1 1 2 1 3 4 2 3 9() () ()

So code sequence 2 is faster, even though it executes one extra instruction. Since
code sequence 2 takes fewer overall clock cycles but has more instructions, it
must have a lower CPI. The CPI values can be computed by

CPI CPU clock cycles
Instruction count

CPI CPU clock cycles

�

�1
11

1

2
2

10
5

2 0
Instruction count

CPI CPU clock cycles
Instruct

� �

�

.

iion count2

9
6

1 5� � .

EXAMPLE

ANSWER

38 Chapter 1 Computer Abstractions and Technology

Figure 1.15 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

Time Seconds/Program Instructions
Program

Clock cycles
Instrucction

Seconds
Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on the type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

The BIG
Picture

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.15 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI,
and often, the sources of performance loss. Since the instruction count depends
on the architecture, but not on the exact implementation, we can measure the
instruction count without knowing all the details of the implementation. The CPI,
however, depends on a wide variety of design details in the computer, including
both the memory system and the processor structure (as we will see in Chapter 4
and Chapter 5), as well as on the mix of instruction types executed in an application.
Thus, CPI varies by application, as well as among implementations with the same
instruction set.

 1.6 Performance 39

The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are equal.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In

 Section 1.10, we’ll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix
A measure of the dynamic
frequency of instructions
across one or many
programs.

Understanding
Program
Performance

The performance of a program depends on the algorithm, the language, the
compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.

Hardware
or software
component Affects what? How?

Algorithm Instruction count,
CPI

The algorithm determines the number of source program
instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI,
by favoring slower or faster instructions. For example, if the
algorithm uses more divides, it will tend to have a higher CPI.

Programming
language

Instruction count,
CPI

The programming language certainly affects the instruction
count, since statements in the language are translated to
processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher CPI
instructions.

Compiler Instruction count,
CPI

The efficiency of the compiler affects both the instruction
count and average cycles per instruction, since the compiler
determines the translation of the source language instructions
into computer instructions. The compiler’s role can be very
complex and affect the CPI in varied ways.

Instruction set
architecture

Instruction count,
clock rate, CPI

The instruction set architecture affects all three aspects of
CPU performance, since it affects the instructions needed
for a function, the cost in cycles of each instruction, and the
overall clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To
reflect that approach, some designers invert CPI to talk about IPC, or instructions per
clock cycle. If a processor executes on average two instructions per clock cycle, then it
has an IPC of 2 and hence a CPI of 0.5.

40 Chapter 1 Computer Abstractions and Technology

Elaboration: Although clock cycle time has traditionally been fixed, to save energy
or temporarily boost performance, today’s processors can vary their clock rates, so we
would need to use the average clock rate for a program. For example, the Intel Core i7
will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls
this Turbo mode.

Check
Yourself

 1.7 The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

A given application written in Java runs 15 seconds on a desktop processor. A new
Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler? Pick the right answer from the three
choices below:

a.

15 0 6
1 1

8 2.
.

. sec

b. 15 0 6 1 1 9 9. . . sec

c.

1 5 1 1
0 6

27 5. .
.

. sec

2667 3300 3400

12.5 16

2000

200

66

25

3600

75.3
95

87
77

29.1
10.14.94.13.3

103

1

10

100

1000

10,000

80
28

6
(1

98
2)

80
38

6
(1

98
5)

80
48

6
(1

98
9)

P
en

tiu
m

(1
99

3)

P
en

tiu
m

P
ro

 (
19

97
)

P
en

tiu
m

 4
W

ill
am

et
te

(2
00

1)

P
en

tiu
m

 4
P

re
sc

ot
t

(2
00

4)

C
or

e
2

K
en

ts
fie

ld
(2

00
7)

C
lo

ck
 R

at
e

(M
H

z)

0

20

40

60

80

100

120

P
ow

er
 (

w
at

ts
)

Clock Rate

Power

C
or

e
i5

C
la

rk
da

le

(2
01

0)

C
or

e
i5

Iv
y

B
rid

ge
(2

01
2)

FIGURE 1.16 Clock rate and power for Intel x86 microprocessors over eight generations
and 30 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

 1.7 The Power Wall 41

Although power provides a limit to what we can cool, in the post-PC era the really
valuable resource is energy. Battery life can trump performance in the personal
mobile device, and the architects of warehouse scale computers try to reduce the
costs of powering and cooling 100,000 servers as the costs are high at this scale. Just
as measuring time in seconds is a safer evaluation of program performance than a
rate like MIPS (see Section 1.10), the energy metric joules is a better measure than
a power rate like watts, which is just joules/second.

The dominant technology for integrated circuits is called CMOS (complementary
metal oxide semiconductor). For CMOS, the primary source of energy consumption
is so-called dynamic energy—that is, energy that is consumed when transistors
switch states from 0 to 1 and vice versa. The dynamic energy depends on the
capacitive loading of each transistor and the voltage applied:

Energy Capacitive load Voltage∝ � 2

This equation is the energy of a pulse during the logic transition of 0 → 1 → 0 or
1 → 0 → 1. The energy of a single transition is then

Energy Capacitive load Voltage∝ 1 2 2/ � �

The power required per transistor is just the product of energy of a transition and
the frequency of transitions:

Power Capacitive load Voltage Frequency switched∝ 1 2 2/ � � �

Frequency switched is a function of the clock rate. The capacitive load per transistor
is a function of both the number of transistors connected to an output (called the
fanout) and the technology, which determines the capacitance of both wires and
transistors.

With regard to Figure 1.16, how could clock rates grow by a factor of 1000 while
power increased by only a factor of 30? Energy and thus power can be reduced by
lowering the voltage, which occurred with each new generation of technology, and
power is a function of the voltage squared. Typically, the voltage was reduced about
15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why
the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it can adjust
voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?

EXAMPLE

42 Chapter 1 Computer Abstractions and Technology

Power
Power

Capacitive load Voltage Fnew

old

〈 〉 〈 〉 〈0 85 0 85 2. . rrequency switched
Capacitive load Voltage Frequency

0 85
2

. 〉
 switched

Thus the power ratio is

0 85 0 524. .�

Hence, the new processor uses about half the power of the old processor.

The modern problem is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut off. Even
today about 40% of the power consumption in server chips is due to leakage. If
transistors started leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used in a
given clock cycle. Although there are many more expensive ways to cool chips and
thereby raise their power to, say, 300 watts, these techniques are generally too costly
for personal computers and even servers, not to mention personal mobile devices.

Since computer designers slammed into a power wall, they needed a new way
forward. They chose a different path from the way they designed microprocessors
for their first 30 years.

Elaboration: Although dynamic energy is the primary source of energy consumption
in CMOS, static energy consumption occurs because of leakage current that flows even
when a transistor is off. In servers, leakage is typically responsible for 40% of the energy
consumption. Thus, increasing the number of transistors increases power dissipation,
even if the transistors are always off. A variety of design techniques and technology
innovations are being deployed to control leakage, but it’s hard to lower voltage further.

Elaboration: Power is a challenge for integrated circuits for two reasons. First, power
must be brought in and distributed around the chip; modern microprocessors use
hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect
are used solely for power and ground distribution to portions of the chip. Second, power
is dissipated as heat and must be removed. Server chips can burn more than 100 watts,
and cooling the chip and the surrounding system is a major expense in warehouse scale
computers (see Chapter 6).

ANSWER

 1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors 43

 1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.17 shows the improvement in response time of programs for desktop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of one program running
on the single processor, as of 2006 all desktop and server companies are shipping
microprocessors with multiple processors per chip, where the benefit is often more
on throughput than on response time. To reduce confusion between the words
processor and microprocessor, companies refer to processors as “cores,” and
such microprocessors are generically called multicore microprocessors. Hence, a
“quadcore” microprocessor is a chip that contains four processors or four cores.

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get significant
improvement in response time, they need to rewrite their programs to take
advantage of multiple processors. Moreover, to get the historic benefit of running
faster on new microprocessors, programmers will have to continue to improve the
performance of their code as the number of cores increases.

To reinforce how the software and hardware systems work together, we use a
special section, Hardware/Software Interface, throughout the book, with the first
one appearing below. These elements summarize important insights at this critical
interface.

Up to now, most
software has been like
music written for a
solo performer; with
the current generation
of chips we’re getting a
little experience with
duets and quartets and
other small ensembles;
but scoring a work for
large orchestra and
chorus is a different
kind of challenge.
Brian Hayes, Computing
in a Parallel Universe,
2007.

Parallelism has always been crucial to performance in computing, but it was often
hidden. Chapter 4 will explain pipelining, an elegant technique that runs programs
faster by overlapping the execution of instructions. This optimization is one
example of instruction-level parallelism, where the parallel nature of the hardware
is abstracted away so the programmer and compiler can think of the hardware as
executing instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to rewrite
their programs to be parallel had been the “third rail” of computer architecture,
for companies in the past that depended on such a change in behavior failed (see

 Section 6.15). From this historical perspective, it’s startling that the whole IT
industry has bet its future that programmers will finally successfully switch to
explicitly parallel programming.

Hardware/
Software
Interface

44 Chapter 1 Computer Abstractions and Technology

Why has it been so hard for programmers to write explicitly parallel programs?
The first reason is that parallel programming is by definition performance
programming, which increases the difficulty of programming. Not only does the
program need to be correct, solve an important problem, and provide a useful
interface to the people or other programs that invoke it; the program must also be
fast. Otherwise, if you don’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer
must divide an application so that each processor has roughly the same amount to
do at the same time, and that the overhead of scheduling and coordination doesn’t
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To achieve
this increased speed, one would need to break up the task so that each reporter had
something to do at the same time. Thus, we must schedule the sub-tasks. If anything
went wrong and just one reporter took longer than the seven others did, then the
benefits of having eight writers would be diminished. Thus, we must balance the

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20142012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

 Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

31,999

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0)

 34,967

FIGURE 1.17 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. The higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of
seven larger in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and
long memory latency have slowed uniprocessor performance recently, to about 22% per year.

 1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors 45

load evenly to get the desired speedup. Another danger would be if reporters had
to spend a lot of time talking to each other to write their sections. You would also
fall short if one part of the story, such as the conclusion, couldn’t be written until all
the other parts were completed. Thus, care must be taken to reduce communication
and synchronization overhead. For both this analogy and parallel programming, the
challenges include scheduling, load balancing, time for synchronization, and overhead
for communication between the parties. As you might guess, the challenge is stiffer with
more reporters for a newspaper story and more processors for parallel programming.

To reflect this sea change in the industry, the next five chapters in this edition of the
book each has a section on the implications of the parallel revolution to that chapter:

■	 Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually
independent parallel tasks need to coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multicore processors to synchronize tasks.

■	 Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword
Parallelism. Perhaps the simplest form of parallelism to build involves
computing on elements in parallel, such as when multiplying two vectors.
Subword parallelism takes advantage of the resources supplied by Moore’s
Law to provide wider arithmetic units that can operate on many operands
simultaneously.

■	 Chapter 4, Section 4.10: Parallelism via Instructions. Given the difficulty of
explicitly parallel programming, tremendous effort was invested in the 1990s
in having the hardware and the compiler uncover implicit parallelism, initially
via pipelining. This chapter describes some of these aggressive techniques,
including fetching and executing multiple instructions concurrently
and guessing on the outcomes of decisions, and executing instructions
speculatively using prediction.

■	 Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache
Coherence. One way to lower the cost of communication is to have all
processors use the same address space, so that any processor can read or
write any data. Given that all processors today use caches to keep a temporary
copy of the data in faster memory near the processor, it’s easy to imagine that
parallel programming would be even more difficult if the caches associated
with each processor had inconsistent values of the shared data. This chapter
describes the mechanisms that keep the data in all caches consistent.

■	 Chapter 5, Section 5.11: Parallelism and Memory Hierarchy: Redundant
Arrays of Inexpensive Disks. This section describes how using many disks
in conjunction can offer much higher throughput, which was the original
inspiration of Redundant Arrays of Inexpensive Disks (RAID). The real
popularity of RAID proved to be the much greater dependability offered by
including a modest number of redundant disks. The section explains the
differences in performance, cost, and dependability between the various RAID
levels.

46 Chapter 1 Computer Abstractions and Technology

In addition to these sections, there is a full chapter on parallel processing. Chapter
6 goes into more detail on the challenges of parallel programming; presents the
two contrasting approaches to communication of shared addressing and explicit
message passing; describes a restricted model of parallelism that is easier to
program; discusses the difficulty of benchmarking parallel processors; introduces
a new simple performance model for multicore microprocessors; and, finally,
describes and evaluates four examples of multicore microprocessors using this
model.

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running
example to show how each type of parallelism can significantly increase performance.

 Appendix B describes an increasingly popular hardware component that
is included with desktop computers, the graphics processing unit (GPU). Invented
to accelerate graphics, GPUs are becoming programming platforms in their own
right. As you might expect, given these times, GPUs rely on parallelism.

 Appendix B describes the NVIDIA GPU and highlights parts of its parallel
programming environment.

 1.9 Real Stuff: Benchmarking the
Intel Core i7

Each chapter has a section entitled “Real Stuff ” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern computers. For this first “Real Stuff ” section, we look at
how integrated circuits are manufactured and how performance and power are
measured, with the Intel Core i7 as the example.

SPEC CPU Benchmark
A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
a workload. To evaluate two computer systems, a user would simply compare
the execution time of the workload on the two computers. Most users, however,
are not in this situation. Instead, they must rely on other methods that measure
the performance of a candidate computer, hoping that the methods will reflect
how well the computer will perform with the user’s workload. This alternative is
usually followed by evaluating the computer using a set of benchmarks—programs
specifically chosen to measure performance. The benchmarks form a workload that
the user hopes will predict the performance of the actual workload. As we noted
above, to make the common case fast, you first need to know accurately which case
is common, so benchmarks play a critical role in computer architecture.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of benchmarks
for modern computer systems. In 1989, SPEC originally created a benchmark

workload A set of
programs run on a
computer that is either
the actual collection of
applications run by a user
or constructed from real
programs to approximate
such a mix. A typical
workload specifies both
the programs and the
relative frequencies.

benchmark A program
selected for use in
comparing computer
performance.

I thought [computers]
would be a universally
applicable idea, like a
book is. But I didn’t
think it would develop
as fast as it did, because
I didn’t envision we’d
be able to get as many
parts on a chip as
we finally got. The
transistor came along
unexpectedly. It all
happened much faster
than we expected.
J. Presper Eckert,
coinventor of ENIAC,
speaking in 1991

 1.9 Real Stuff: Benchmarking the Intel Core i7 47

set focusing on processor performance (now called SPEC89), which has evolved
through five generations. The latest is SPEC CPU2006, which consists of a set of 12
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The floating-point benchmarks include structured
grid codes for finite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.18 describes the SPEC integer benchmarks and their execution time
on the Intel Core i7 and shows the factors that explain execution time: instruction
count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5.

To simplify the marketing of computers, SPEC decided to report a single number
summarizing all 12 integer benchmarks. Dividing the execution time of a reference
processor by the execution time of the evaluated computer normalizes the execution
time measurements; this normalization yields a measure, called the SPECratio, which
has the advantage that bigger numeric results indicate faster performance. That is,
the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary
measurement is obtained by taking the geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, apply the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.

Description Name
Instruction
Count x 109 CPI

Clock cycle time
(seconds x 10–9)

Execution
T ime

(seconds)

Reference
Time

(seconds) SPECratio

Interpreted string processing perl 2252 0.60 0.376 508 9770 19.2

Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression

GNU C compiler gcc 794 1.20 0.376 358 8050 22.5

Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2

Go game (AI) go 1274 1.10 0.376 527 10490 19.9

Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8

Chess game (AI) sjeng 1948 0.80 0.376 586 12100 20.7

Quantum computer libquantum 659 0.44 0.376 109 20720 190.0

simulation

Video compression h264avc 3793 0.50 0.376 713 22130 31.0

Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library

Games/path finding astar 1250 1.00 0.376 470 7020 14.9

XML parsing xalancbmk 1045 0.70 0.376 275 6900 25.1

Geometric mean – – – – – 25.7 –

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 36 explains,
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. The single number
quoted as SPECINTC2006 is the geometric mean of the SPECratios.

48 Chapter 1 Computer Abstractions and Technology

The formula for the geometric mean is

Execution time ratioi
i

n
n

�1
∏

where Execution time ratio
i
 is the execution time, normalized to the reference computer,

for the ith program of a total of n in the workload, and

a a a ani
i

n

 means the product 1 2
1

…∏

SPEC Power Benchmark
Given the increasing importance of energy and power, SPEC added a benchmark
to measure power. It reports power consumption of servers at different workload
levels, divided into 10% increments, over a period of time. Figure 1.19 shows the
results for a server using Intel Nehalem processors similar to the above.

Target Load %
Performance

(ssj_ops)
Average Power

(watts)

 100% 865,618 258

 90% 786,688 242

 80% 698,051 224

 70% 607,826 204

 60% 521,391 185

 50% 436,757 170

 40% 345,919 157

 30% 262,071 146

 20% 176,061 135

 10% 86,784 121

 0% 0 80

 Overall Sum 4,787,166 1922

 ∑ssj_ops / ∑power = 2490

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650
with 16 GB of DRAM and one 100 GB SSD disk.

SPECpower started with another SPEC benchmark for Java business applications
(SPECJBB2005), which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operating
system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC

 1.10 Fallacies and Pitfalls 49

boils these numbers down to one number, called “overall ssj_ops per watt.” The
formula for this single summarizing metric is

overall ssj_ops per watt ssj_ops power�
� �

i
i

i
i0

10

0
∑

110

∑

where ssj_opsi is performance at each 10% increment and poweri is power
consumed at each performance level.

 1.10 Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call them fallacies. When discussing a fallacy, we try to give a
counterexample. We also discuss pitfalls, or easily made mistakes. Often pitfalls
are generalizations of principles that are true in a limited context. The purpose of
these sections is to help you avoid making these mistakes in the computers you
may design or use. Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement.

The great idea of making the common case fast has a demoralizing corollary
that has plagued designers of both hardware and software. It reminds us that the
opportunity for improvement is affected by how much time the event consumes.

A simple design problem illustrates it well. Suppose a program runs in 100
seconds on a computer, with multiply operations responsible for 80 seconds of this
time. How much do I have to improve the speed of multiplication if I want my
program to run five times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl’s Law:

 Executiontimeaf�er improvement

Execution timea�ected by improvement
Amount oof improvement

Execution time una�ected

For this problem:

Execution timea�er improvement
seconds

seconds
80

100 80
n

()

Amdahl’s Law
A rule stating that
the performance
enhancement possible
with a given improvement
is limited by the amount
that the improved feature
is used. It is a quantitative
version of the law of
diminishing returns.

Science must begin
with myths, and the
criticism of myths.
Sir Karl Popper, The
Philosophy of Science,
1957

50 Chapter 1 Computer Abstractions and Technology

Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

20 80 20

0 80

 seconds seconds seconds

 seconds
n

n

That is, there is no amount by which we can enhance-multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload. The
performance enhancement possible with a given improvement is limited by the amount
that the improved feature is used. In everyday life this concept also yields what we call
the law of diminishing returns.

We can use Amdahl’s Law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl’s
Law, together with the CPU performance equation, is a handy tool for evaluating
possible enhancements. Amdahl’s Law is explored in more detail in the exercises.

Amdahl’s Law is also used to argue for practical limits to the number of parallel
processors. We examine this argument in the Fallacies and Pitfalls section of
Chapter 6.

Fallacy: Computers at low utilization use little power.
Power efficiency matters at low utilizations because server workloads vary.
Utilization of servers in Google’s warehouse scale computer, for example, is
between 10% and 50% most of the time and at 100% less than 1% of the time. Even
given 5 years to learn how to run the SPECpower benchmark well, the specially
configured computer with the best results in 2012 still uses 33% of the peak power
at 10% of the load. Systems in the field that are not configured for the SPECpower
benchmark are surely worse.

Since servers’ workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve
“energy-proportional computing.” If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO2 emissions.

Fallacy: Designing for performance and designing for energy efficiency are
unrelated goals.

Since energy is power over time, it is often the case that hardware or software
optimizations that take less time save energy overall even if the optimization takes
a bit more energy when it is used. One reason is that all the rest of the computer is
consuming energy while the program is running, so even if the optimized portion
uses a little more energy, the reduced time can save the energy of the whole system.

Pitfall: Using a subset of the performance equation as a performance metric.
We have already warned about the danger of predicting performance based on
simply one of the clock rate, instruction count, or CPI. Another common mistake
is to use only two of the three factors to compare performance. Although using

 1.10 Fallacies and Pitfalls 51

two of the three factors may be valid in a limited context, the concept is also
easily misused. Indeed, nearly all proposed alternatives to the use of time as the
performance metric have led eventually to misleading claims, distorted results, or
incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given
program, MIPS is simply

MIPS
Instruction count

Execution time 106

Since MIPS is an instruction execution rate, MIPS specifies performance inversely
to execution time; faster computers have a higher MIPS rating. The good news
about MIPS is that it is easy to understand, and quicker computers mean bigger
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing computers.
First, MIPS specifies the instruction execution rate but does not take into account
the capabilities of the instructions. We cannot compare computers with different
instruction sets using MIPS, since the instruction counts will certainly differ.
Second, MIPS varies between programs on the same computer; thus, a computer
cannot have a single MIPS rating. For example, by substituting for execution time,
we see the relationship between MIPS, clock rate, and CPI:

MIPS
Instruction count

Instruction count CPI
Clock rate

Clo

106

cck rate
CPI 106

The CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer
in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new
program executes more instructions but each instruction is faster, MIPS can vary
independently from performance!

Consider the following performance measurements for a program:

million instructions
per second (MIPS)
A measurement of
program execution speed
based on the number of
millions of instructions.
MIPS is computed as the
instruction count divided
by the product of the
execution time and 106.

Check
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

52 Chapter 1 Computer Abstractions and Technology

 1.11 Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance computers
will have in the future, it’s a safe bet that they will be much better than they are
today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierarchical
layers, with each lower layer hiding details from the level above. This great idea
of abstraction is fundamental to understanding today’s computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintaining
the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innovations
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

Seconds
Program

Instructions
Program

Clock cycles
Instruction

SSeconds
Clock cycle

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

Where … the ENIAC
is equipped with
18,000 vacuum tubes
and weighs 30 tons,
computers in the
future may have 1,000
vacuum tubes and
perhaps weigh just
1½ tons.
Popular Mechanics,
March 1949

Execution time is the only valid and unimpeachable measure of
performance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting
execution time; other times a metric that is sound in a limited context
is extended and used beyond that context or without the additional
clarification needed to make it valid.

The BIG
Picture

 1.11 Concluding Remarks 53

The key hardware technology for modern processors is silicon. Equal in
importance to an understanding of integrated circuit technology is an understanding
of the expected rates of technological change, as predicted by Moore’s Law. While
silicon fuels the rapid advance of hardware, new ideas in the organization of
computers have improved price/performance. Two of the key ideas are exploiting
parallelism in the program, normally today via multiple processors, and exploiting
locality of accesses to a memory hierarchy, typically via caches.

Energy efficiency has replaced die area as the most critical resource of
microprocessor design. Conserving power while trying to increase performance
has forced the hardware industry to switch to multicore microprocessors, thereby
requiring the software industry to switch to programming parallel hardware.
Parallelism is now required for performance.

Computer designs have always been measured by cost and performance, as well
as other important factors such as energy, dependability, cost of ownership, and
scalability. Although this chapter has focused on cost, performance, and energy,
the best designs will strike the appropriate balance for a given market among all
the factors.

Road Map for This Book
At the bottom of these abstractions is the five classic components of a computer:
datapath, control, memory, input, and output (refer to Figure 1.5). These five
components also serve as the framework for the rest of the chapters in this book:

■	 Datapath: Chapter 3, Chapter 4, Chapter 6, and Appendix B

■	 Control: Chapter 4, Chapter 6, and Appendix B

■	 Memory: Chapter 5

■	 Input: Chapters 5 and 6

■	 Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit parallelism,
Chapter 6 describes the explicitly parallel multicore microprocessors that are at the
heart of the parallel revolution, and Appendix B describes the highly parallel
graphics processor chip. Chapter 5 describes how a memory hierarchy exploits
locality. Chapter 2 describes instruction sets—the interface between compilers and
the computer—and emphasizes the role of compilers and programming languages
in using the features of the instruction set. Chapter 3 describes how computers
handle arithmetic data. Appendix A introduces logic design.

54 Chapter 1 Computer Abstractions and Technology

 1.12 Historical Perspective and Further
Reading

For each chapter in the text, a section devoted to a historical perspective can be
found online on a site that accompanies this book. We may trace the development
of an idea through a series of computers or describe some important projects, and
we provide references in case you are interested in probing further.

The historical perspective for this chapter provides a background for some of the
key ideas presented in this opening chapter. Its purpose is to give you the human
story behind the technological advances and to place achievements in their historical
context. By studying the past, you may be better able to understand the forces that
will shape computing in the future. Each Historical Perspective section online ends
with suggestions for further reading, which are also collected separately online under
the section “Further Reading.” The rest of Section 1.12 is found online.

 1.13 Exercises

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <§1.4> means you should have read
Section 1.4, Under the Covers, to help you solve this exercise.

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and
describe four other types of computers.

1.2 [5] <§1.2> The eight great ideas in computer architecture are similar to ideas
from other fields. Match the eight ideas from computer architecture, “Design for
Moore’s Law,” “Use Abstraction to Simplify Design,” “Make the Common Case
Fast,” “Performance via Parallelism,” “Performance via Pipelining,” “Performance
via Prediction,” “Hierarchy of Memories,” and “Dependability via Redundancy” to
the following ideas from other fields:

a. Assembly lines in automobile manufacturing

b. Suspension bridge cables

c. Aircraft and marine navigation systems that incorporate wind information

d. Express elevators in buildings

1.12

An active field of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tumbling over
each other, carrying
information from place
to place, passing it
around at the speed of
light.
Lewis Thomas, “Natural
Science,” in The Lives of
a Cell, 1974

马德

 1.12 Historical Perspective and Further Reading 54.e1

1.12 Historical Perspective and Further
Reading

For each chapter in the text, a section devoted to a historical perspective can
be found online. We may trace the development of an idea through a series of
machines or describe some important projects, and we provide references in case
you are interested in probing further.

The historical perspective for this chapter provides a background for some of the
key ideas presented therein. Its purpose is to give you the human story behind the
technological advances and to place achievements in their historical context. By
learning the past, you may be better able to understand the forces that will shape
computing in the future. Each historical perspective section ends with suggestions
for additional reading, which are also collected separately in the online section
“Further Reading.”

The First Electronic Computers
J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built what is widely accepted to be the world’s first operational
electronic, general-purpose computer. This machine, called ENIAC (Electronic
Numerical Integrator and Calculator), was funded by the United States Army and
started working during World War II but was not publicly disclosed until 1946.
ENIAC was a general-purpose machine used for computing artillery-firing tables.
Figure e1.12.1 shows the U-shaped computer, which was 80 feet long by 8.5 feet

An active field of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tumbling over
each other, carrying
information from place
to place, passing it
around at the speed of
light.
Lewis Thomas, “Natural
Science,” in The Lives of
a Cell, 1974

FIGURE e1.12.1 ENIAC, the world’s first general-purpose electronic computer.

54.e2 1.12 Historical Perspective and Further Reading

high and several feet wide. Each of the 20 10-digit registers was 2 feet long. In total,
ENIAC used 18,000 vacuum tubes.

In size, ENIAC was two orders of magnitude bigger than machines built today,
yet it was more than eight orders of magnitude slower, performing 1900 additions
per second. ENIAC provided conditional jumps and was programmable, clearly
distinguishing it from earlier calculators. Programming was done manually by
plugging cables and setting switches, and data were entered on punched cards.
Programming for typical calculations required from half an hour to a whole day.
ENIAC was a general-purpose machine, limited primarily by a small amount of
storage and tedious programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing
programs as numbers; von Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDVAC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly used
term von Neumann computer. Several early pioneers in the computer field believe
that this term gives too much credit to von Neumann, who wrote up the ideas, and
too little to the engineers, Eckert and Mauchly, who worked on the machines. For
this reason, the term does not appear elsewhere in this book or in the online
sections.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School to
attend the latter part of a series of lectures on developments in electronic computers.
When he returned to Cambridge, Wilkes decided to embark on a project to build
a stored-program computer named EDSAC (Electronic Delay Storage Automatic
Calculator). EDSAC started working in 1949 and was the world’s first full-scale,
operational, stored-program computer [Wilkes, 1985]. (A small prototype called
the Mark-I, built at the University of Manchester in 1948, might be called the first
operational stored-program machine.) Section 2.5 explains the stored-program
concept.

In 1947, Eckert and Mauchly applied for a patent on electronic computers. The
dean of the Moore School demanded that the patent be turned over to the university,
which may have helped Eckert and Mauchly conclude that they should leave. Their
departure crippled the EDVAC project, delaying completion until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study (IAS)
at Princeton in 1946. Together with Arthur Burks, they issued a report based on
the memo written earlier [Burks et al., 1946]. The paper was incredible for the
period; reading it today, you would never guess this landmark paper was written
more than 50 years ago, because it discusses most of the architectural concepts
seen in modern computers. This paper led to the IAS machine built by Julian
Bigelow. It had a total of 1024 40-bit words and was roughly 10 times faster than
ENIAC. The group thought about uses for the machine, published a set of reports,

 1.12 Historical Perspective and Further Reading 54.e3

and encouraged visitors. These reports and visitors inspired the development of a
number of new computers.

Recently, there has been some controversy about the work of John Atanasoff,
who built a small-scale electronic computer in the early 1940s. His machine,
designed at Iowa State University, was a special-purpose computer that was never
completely operational. Mauchly briefly visited Atanasoff before he built ENIAC.
The presence of the Atanasoff machine, together with delays in filing the ENIAC
patents (the work was classified and patents could not be filed until after the war)
and the distribution of von Neumann’s EDVAC paper, was used to break the Eckert-
Mauchly patent. Though controversy still rages over Atanasoff ’s role, Eckert and
Mauchly are usually given credit for building the first working, general-purpose,
electronic computer [Stern, 1980].

Another pioneering computer that deserves credit was a special-purpose
machine built by Konrad Zuse in Germany in the late 1930s and early 1940s.
Although Zuse had the design for a programmable computer ready, the German
government decided not to fund scientific investigations taking more than 2 years
because the bureaucrats expected the war would be won by that deadline.

Across the English Channel, during World War II special-purpose electronic
computers were built to decrypt intercepted German messages. A team at Bletchley
Park, including Alan Turing, built the Colossus in 1943. The machines were kept
secret until 1970; after the war, the group had little impact on commercial British
computers.

While work on ENIAC went forward, Howard Aiken was building an electro-
mechanical computer called the Mark-I at Harvard (a name that Manchester later
adopted for its machine). He followed the Mark-I with a relay machine, the Mark-II,
and a pair of vacuum tube machines, the Mark-III and Mark-IV. In contrast to earlier
machines like EDSAC, which used a single memory for instructions and data, the
Mark-III and Mark-IV had separate memories for instructions and data. The machines
were regarded as reactionary by the advocates of stored-program computers; the term
Harvard architecture was coined to describe machines with distinct memories. Paying
respect to history, this term is used today in a different sense to describe machines
with a single main memory but with separate caches for instructions and data.

The Whirlwind project was begun at MIT in 1947 and was aimed at applications
in real-time radar signal processing. Although it led to several inventions, its most
important innovation was magnetic core memory. Whirlwind had 2048 16-bit
words of magnetic core. Magnetic cores served as the main memory technology
for nearly 30 years.

Commercial Developments
In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer
Corporation. Their first machine, the BINAC, was built for Northrop and was
shown in August 1949. After some financial difficulties, their firm was acquired
by Remington-Rand, where they built the UNIVAC I (Universal Automatic

54.e4 1.12 Historical Perspective and Further Reading

Computer), designed to be sold as a general-purpose computer (Figure e1.12.2).
Originally delivered in June 1951, UNIVAC I sold for about $1 million and was the
first successful commercial computer—48 systems were built! This early machine,
along with many other fascinating pieces of computer lore, may be seen at the
Computer History Museum in Mountain View, California.

FIGURE e1.12.2 UNIVAC I, the first commercial computer in the United States. It correctly
predicted the outcome of the 1952 presidential election, but its initial forecast was withheld from broadcast
because experts doubted the use of such early results.

IBM had been in the punched card and office automation business but didn’t
start building computers until 1950. The first IBM computer, the IBM 701, shipped
in 1952, and eventually 19 units were sold. In the early 1950s, many people
were pessimistic about the future of computers, believing that the market and
opportunities for these “highly specialized” machines were quite limited.

In 1964, after investing $5 billion, IBM made a bold move with the announcement
of the System/360. An IBM spokesman said the following at the time:
We are not at all humble in this announcement. This is the most important product
announcement that this corporation has ever made in its history. It’s not a computer
in any previous sense. It’s not a product, but a line of products … that spans in
performance from the very low part of the computer line to the very high.

 1.12 Historical Perspective and Further Reading 54.e5

Moving the idea of the architecture abstraction into commercial reality, IBM
announced six implementations of the System/360 architecture that varied in price
and performance by a factor of 25. Figure e1.12.3 shows four of these models. IBM
bet its company on the success of a computer family, and IBM won. The System/360
and its successors dominated the large computer market.

About a year later, Digital Equipment Corporation (DEC) unveiled the PDP-8,
the first commercial minicomputer. This small machine was a breakthrough
in low-cost design, allowing DEC to offer a computer for under $20,000.
Minicomputers were the forerunners of microprocessors, with Intel inventing the
first microprocessor in 1971—the Intel 4004.

FIGURE e1.12.3 IBM System/360 computers: models 40, 50, 65, and 75 were all introduced in 1964. These four models
varied in cost and performance by a factor of almost 10; it grows to 25 if we include models 20 and 30 (not shown). The clock rate, range of
memory sizes, and approximate price for only the processor and memory of average size: (a) model 40, 1.6 MHz, 32 KB–256 KB, $225,000; (b)
model 50, 2.0 MHz, 128 KB–256 KB, $550,000; (c) model 65, 5.0 MHz, 256 KB–1 MB, $1,200,000; and (d) model 75, 5.1 MHz, 256 KB–1 MB,
$1,900,000. Adding I/O devices typically increased the price by factors of 1.8 to 3.5, with higher factors for cheaper models.

54.e6 1.12 Historical Perspective and Further Reading

In 1963 came the announcement of the first supercomputer. This announcement
came neither from the large companies nor even from the high-tech centers.
Seymour Cray led the design of the Control Data Corporation CDC 6600 in
Minnesota. This machine included many ideas that are beginning to be found
in the latest microprocessors. Cray later left CDC to form Cray Research, Inc.,
in Wisconsin. In 1976, he announced the Cray-1 (Figure e1.12.4). This machine was
simultaneously the fastest in the world, the most expensive, and the computer with
the best cost/performance for scientific programs.

FIGURE e1.12.4 Cray-1, the first commercial vector supercomputer, announced in 1976.
This machine had the unusual distinction of being both the fastest computer for scientific applications and
the computer with the best price/performance for those applications. Viewed from the top, the computer
looks like the letter C. Seymour Cray passed away in 1996 because of injuries sustained in an automobile
accident. At the time of his death, this 70-year-old computer pioneer was working on his vision of the next
generation of supercomputers. (See www.cray.com for more details.)

While Seymour Cray was creating the world’s most expensive computer, other
designers around the world were looking at using the microprocessor to create a
computer so cheap that you could have it at home. There is no single fountainhead
for the personal computer, but in 1977, the Apple IIe (Figure e1.12.5) from Steve
Jobs and Steve Wozniak set standards for low cost, high volume, and high reliability
that defined the personal computer industry.

http://www.cray.com

 1.12 Historical Perspective and Further Reading 54.e7

However, even with a 4-year head start, Apple’s personal computers finished
second in popularity. The IBM Personal Computer, announced in 1981, became
the best-selling computer of any kind; its success gave Intel the most popular
microprocessor and Microsoft the most popular operating system. Today, the
most popular CD is the Microsoft operating system, even though it costs many
times more than a music CD! Of course, over the more than 30 years that the
IBM-compatible personal computer has existed, it has evolved greatly. In fact, the
first personal computers had 16-bit processors and 64 kilobytes of memory, and a
low-density, slow floppy disk was the only nonvolatile storage! Floppy disks were
originally developed by IBM for loading diagnostic programs in mainframes, but
were a major I/O device in personal computers for almost 20 years before the advent
of CDs and networking made them obsolete as a method for exchanging data.

Of course, Intel microprocessors have also evolved since the first PC, which used
a 16-bit processor with an 8-bit external interface! In Chapter 2, we write about the
evolution of the Intel architecture.

The first personal computers were quite simple, with little or no graphics
capability, no pointing devices, and primitive operating systems compared to
those of today. The computer that inspired many of the architectural and software
concepts that characterize the modern desktop machines was the Xerox Alto,
shown in Figure e1.12.6. The Alto was created as an experimental prototype of a
future computer; there were several hundred Altos built, including a significant

FIGURE e1.12.5 The Apple IIc Plus. Designed by Steve Wozniak, the Apple IIc set standards of cost
and reliability for the industry.

54.e8 1.12 Historical Perspective and Further Reading

FIGURE e1.12.6 The Xerox Alto was the primary inspiration for the modern desktop
computer. It included a mouse, a bit-mapped scheme, a Windows-based user interface, and a local network
connection.

number that were donated to universities. Among the technologies incorporated
in the Alto were:

■	 a bit-mapped graphics display integrated with a computer (earlier graphics
displays acted as terminals, usually connected to larger computers)

■	 a mouse, which was invented earlier, but included on every Alto and used
extensively in the user interface

■	 a local area network (LAN), which became the precursor to the Ethernet

■	 a user interface based on Windows and featuring a WYSIWYG (what you see
is what you get) editor and interactive drawing programs

 1.12 Historical Perspective and Further Reading 54.e9

In addition, both file servers and print servers were developed and interfaced
via the local area network, and connections between the local area network and
the wide area ARPAnet produced the first versions of Internet-style networking.
The Xerox Alto was incredibly influential and clearly affected the design of a
wide variety of computers and software systems, including the Apple Macintosh,
the IBM-compatible PC, MacOS and Windows, and Sun and other early
workstations.

Measuring Performance
From the earliest days of computing, designers have specified performance goals—
ENIAC was to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch
(7030) was to be 100 times faster than the fastest computer then in existence. What
wasn’t clear, though, was how this performance was to be measured.

The original measure of performance was the time required to perform an
individual operation, such as addition. Since most instructions took the same
execution time, the timing of one was the same as the others. As the execution times
of instructions in a computer became more diverse, however, the time required for
one operation was no longer useful for comparisons.

To consider these differences, an instruction mix was calculated by measuring
the relative frequency of instructions in a computer across many programs.
Multiplying the time for each instruction by its weight in the mix gave the user the
average instruction execution time. (If measured in clock cycles, average instruction
execution time is the same as average CPI.) Since instruction sets were similar, this
was a more precise comparison than add times. From average instruction execution
time, then, it was only a small step to MIPS. MIPS had the virtue of being easy to
understand; hence, it grew in popularity.

The Quest for an Average Program
As processors were becoming more sophisticated and relied on memory hierarchies
(the topic of Chapter 5) and pipelining (the topic of Chapter 4), a single execution
time for each instruction no longer existed; neither execution time nor MIPS,
therefore, could be calculated from the instruction mix and the manual.

Although it might seem obvious today that the right thing to do would have been
to develop a set of real applications that could be used as standard benchmarks, this
was a difficult task until relatively recent times. Variations in operating systems
and language standards made it hard to create large programs that could be moved
from computer to computer simply by recompiling.

Instead, the next step was benchmarking using synthetic programs. The
Whetstone synthetic program was created by measuring scientific programs
written in Algol-60 (see Curnow and Wichmann’s [1976] description). This

54.e10 1.12 Historical Perspective and Further Reading

program was converted to Fortran and was widely used to characterize scientific
program performance. Whetstone performance is typically quoted in Whetstones
per second—the number of executions of a single iteration of the Whetstone
benchmark! Dhrystone is another synthetic benchmark that is still used in some
embedded computing circles (see Weicker’s [1984] description and methodology).

About the same time Whetstone was developed, the concept of kernel benchmarks
gained popularity. Kernels are small, time-intensive pieces from real programs that
are extracted and then used as benchmarks. This approach was developed primarily
for benchmarking high-end computers, especially supercomputers. Livermore
Loops and Linpack are the best-known examples. The Livermore Loops consist of
a series of 21 small loop fragments. Linpack consists of a portion of a linear algebra
subroutine package. Kernels are best used to isolate the performance of individual
features of a computer and to explain the reasons for differences in the performance
of real programs. Because scientific applications often use small pieces of code that
execute for a long time, characterizing performance with kernels is most popular
in this application class. Although kernels help illuminate performance, they
frequently overstate the performance on real applications.

SPECulating about Performance
An important advance in performance evaluation was the formation of the System
Performance Evaluation Cooperative (SPEC) group in 1988. SPEC comprises
representatives of many computer companies—the founders being Apollo/
Hewlett-Packard, DEC, MIPS, and Sun—who have agreed on a set of real programs
and inputs that all will run. It is worth noting that SPEC couldn’t have come into
being before portable operating systems and the popularity of high-level languages.
Now compilers, too, are accepted as a proper part of the performance of computer
systems and must be measured in any evaluation.

History teaches us that while the SPEC effort may be useful with current computers,
it will not meet the needs of the next generation without changing. In 1991, a throughput
measure was added, based on running multiple versions of the benchmark. It is most
useful for evaluating timeshared usage of a uniprocessor or a multiprocessor. Other
system benchmarks that include OS-intensive and I/O-intensive activities have also
been added. Another change was the decision to drop some benchmarks and add
others. One result of the difficulty in finding benchmarks was that the initial version
of the SPEC benchmarks (called SPEC89) contained six floating-point benchmarks
but only four integer benchmarks. Calculating a single summary measurement using
the geometric mean of execution times normalized to a VAX-11/780 meant that this
measure favored computers with strong floating-point performance.

 1.12 Historical Perspective and Further Reading 54.e11

In 1992, a new benchmark set (called SPEC92) was introduced. It incorporated
additional benchmarks, dropped matrix300, and provided separate means (SPEC
INT and SPECFP) for integer and floating-point programs. In addition, the
SPECbase measure, which disallows program-specific optimization flags, was
added to provide users with a performance measurement that would more closely
match what they might experience on their own programs. The SPECFP numbers
show the largest increase versus the base SPECFP measurement, typically ranging
from 15% to 30% higher.

In 1995, the benchmark set was once again updated, adding some new integer
and floating-point benchmarks, as well as removing some benchmarks that suffered
from flaws or had running times that had become too small given the factor of
20 or more performance improvement since the first SPEC release. SPEC95 also
changed the base computer for normalization to a Sun SPARC Station 10/40, since
operating versions of the original base computer were becoming difficult to find!

The most recent version of SPEC is SPEC2006. What is perhaps most surprising
is that all floating-point programs in SPEC2006 are new, and for integer programs
just two are from SPEC2000, one from SPEC95, none from SPEC92, and one from
SPEC89. The sole survivor from SPEC89 is the gcc compiler.

SPEC has also added benchmark suites beyond the original suites targeted at
CPU performance. In 2008, SPEC provided benchmark sets for graphics, high-
performance scientific computing, object-oriented computing, file systems, Web
servers and clients, Java, engineering CAD applications, and power.

The Growth of Embedded Computing
Embedded processors have been around for a very long time; in fact, the first
minicomputers and the first microprocessors were originally developed for
controlling functions in a laboratory or industrial application. For many years, the
dominant use of embedded processors was for industrial control applications, and
although this use continued to grow, the processors tended to be very cheap and
the performance relatively low. For example, the best-selling processor in the world
remains an 8-bit micro controller used in cars, some home appliances, and other
simple applications.

The late 1980s and early 1990s saw the emergence of new opportunities for
embedded processors, ranging from more advanced video games and set-top boxes
to cell phones and personal digital assistants. The rapidly increasing number of
information appliances and the growth of networking have driven dramatic surges
in the number of embedded processors, as well as the performance requirements.
To evaluate performance, the embedded community was inspired by SPEC to
create the Embedded Microprocessor Benchmark Consortium (EEMBC). Started in
1997, it consists of a collection of kernels organized into suites that address different
portions of the embedded industry. They announced the second generation of
these benchmarks in 2007.

54.e12 1.12 Historical Perspective and Further Reading

Year Name
Size

(cu. ft.)
Power
(watts)

Performance
(adds/sec)

Memory
(KB) Price

Price/
performance
vs. UNIVAC

Adjusted
price

(2007 $)

Adjusted
price/

performance
vs. UNIVAC

1951 UNIVAC I 1000 125,000 2000 48 $1,000,000 0,000,001 $7,670,724 00,000,001

1964 IBM S/360
model 50

60 10,000 500,000 64 $1,000,000 0,000,263 $6,018,798 00,000,319

1965 PDP-8 8 500 330,000 4 0,0$16,000 0,010,855 0,0$94,685 00,013,367

1976 Cray-1 58 60,000 166,000,000 32,000 $4,000,000 0,021,842 $13,509,798 00,047,127

1981 IBM PC 1 000,150 240,000 256 0,00 $3000 0,042,105 0,00 $6859 00,134,208

1991 HP 9000/
model 750

 2 000,500 50,000,000 16,384 0,00 $7400 3,556,188 0,00$11,807 16,241,889

1996 Intel PPro
PC (200 MHz)

 2 000,500 400,000,000 16,384 0,00 $4400 47,846,890 $6211 247,021,234

2003 Intel Pentium 4
PC (3.0 GHz)

2 500 6,000,000,000 262,144 $1600 1,875,000,000 $2009 11,451,750,000

2007 AMD Barcelona
PC (2.5 GHz)

2 250 20,000,000,000 2,097,152 $800 12,500,000,000 $800 95,884,051,042

FIGURE e1.12.7 Characteristics of key commercial computers since 1950, in actual dollars and in 2007 dollars
adjusted for inflation. The last row assumes we can fully utilize the potential performance of the four cores in Barcelona. In contrast to
Figure e1.12.3, here the price of the IBM S/360 model 50 includes I/O devices. (Source: The Computer History Museum and Producer Price Index
for Industrial Commodities.)

A Half-Century of Progress
Since 1951, there have been thousands of new computers using a wide range of
technologies and having widely varying capabilities. Figure e1.12.7 summarizes
the key characteristics of some machines mentioned in this section and
shows the dramatic changes that have occurred in just over 50 years. After
adjusting for inflation, price/performance has improved by almost 100 billion in
55 years, or about 58% per year. Another way to say it is we’ve seen a factor of
10,000 improvement in cost and a factor of 10,000,000 improvement in
performance.

Readers interested in computer history should consult Annals of the History of
Computing, a journal devoted to the history of computing. Several books describing
the early days of computing have also appeared, many written by the pioneers
including Goldstine [1972], Metropolis et al. [1980], and Wilkes [1985].

 1.12 Historical Perspective and Further Reading 54.e13

Further Reading

Barroso, L. and U. Hölzle [2007]. “The case for energy-proportional computing”, IEEE Computer December.

A plea to change the nature of computer components so that they use much less power when lightly utilized.

Bell, C. G. [1996]. Computer Pioneers and Pioneer Computers, ACM and the Computer Museum, videotapes.

Two videotapes on the history of computing, produced by Gordon and Gwen Bell, including the following
machines and their inventors: Harvard Mark-I, ENIAC, EDSAC, IAS machine, and many others.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of the logical design
of an electronic computing instrument,” Report to the U.S. Army Ordnance Department, p. 1; also appears
in Papers of John von Neumann, W. Aspray and A. Burks (Eds.), MIT Press, Cambridge, MA, and Tomash
Publishers, Los Angeles, 1987, 97–146.

A classic paper explaining computer hardware and software before the first stored-program computer was built.
We quote extensively from it in Chapter 3. It simultaneously explained computers to the world and was a source
of controversy because the first draft did not give credit to Eckert and Mauchly.

Campbell-Kelly, M. and W. Aspray [1996]. Computer: A History of the Information Machine, Basic Books,
New York.

Two historians chronicle the dramatic story. The New York Times calls it well written and authoritative.

Ceruzzi, P. F. [1998]. A History of Modern Computing, MIT Press, Cambridge, MA.

Contains a good description of the later history of computing: the integrated circuit and its impact, personal
computers, UNIX, and the Internet.

Curnow, H. J. and B. A. Wichmann [1976]. “A synthetic benchmark”, The Computer J. 19(1):80.

Describes the first major synthetic benchmark, Whetstone, and how it was created.

Flemming, P. J. and J. J. Wallace [1986]. “How not to lie with statistics: The correct way to summarize
benchmark results”, Comm. ACM 29:3 (March), 218–21.

Describes some of the underlying principles in using different means to summarize performance results.

Goldstine, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University Press,
Princeton, NJ.

A personal view of computing by one of the pioneers who worked with von Neumann.

Hayes, B. [2007]. “Computing in a parallel universe”, American Scientist Vol. 95(November–
December):476–480.

An overview of the parallel computing challenge written for the layman.

Hennessy, J. L. and D. A. Patterson [2007]. Chapter 1 of Computer Architecture: A Quantitative Approach,
fourth edition, Morgan Kaufmann Publishers, San Francisco.

Section 1.5 goes into more detail on power, Section 1.6 contains much more detail on the cost of integrated
circuits and explains the reasons for the difference between price and cost, and Section 1.8 gives more details on
evaluating performance.

Lampson, B. W. [1986]. “Personal distributed computing; The Alto and Ethernet software.” In ACM
Conference on the History of Personal Workstations (January).

http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref9

54.e14 1.12 Historical Perspective and Further Reading

Thacker, C. R. [1986]. “Personal distributed computing: The Alto and Ethernet hardware,” In ACM
Conference on the History of Personal Workstations (January).

These two papers describe the software and hardware of the landmark Alto.

Metropolis, N., J. Howlett, and G.-C. Rota (Eds.) [1980]. A History of Computing in the Twentieth Century,
Academic Press, New York.

A collection of essays that describe the people, software, computers, and laboratories involved in the first
experimental and commercial computers. Most of the authors were personally involved in the projects. An
excellent bibliography of early reports concludes this interesting book.

Public Broadcasting System [1992]. The Machine That Changed the World, videotapes.

These five 1-hour programs include rare footage and interviews with pioneers of the computer industry.

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, MA.

Short biographies of 31 computer pioneers.

Stern, N. [1980]. “Who invented the first electronic digital computer?” Annals of the History of Computing
2:4 (October), 375–76.

A historian’s perspective on Atanasoff versus Eckert and Mauchly.

Weicker, R. P. [1984]. “Dhrystone: a synthetic systems programming benchmark”, Communications of the
ACM 27(10):1013–1030.

Description of a synthetic benchmarking program for systems code.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.

A personal view of computing by one of the pioneers.

http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00028-2/sbref14

 1.13 Exercises 55

e. Library reserve desk

f. Increasing the gate area on a CMOS transistor to decrease its switching time

g. Adding electromagnetic aircraft catapults (which are electrically powered
as opposed to current steam-powered models), allowed by the increased power
generation offered by the new reactor technology

h. Building self-driving cars whose control systems partially rely on existing sensor
systems already installed into the base vehicle, such as lane departure systems and
smart cruise control systems

1.3 [2] <§1.3> Describe the steps that transform a program written in a high-level
language such as C into a representation that is directly executed by a computer
processor.

1.4 [2] <§1.4> Assume a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel and a frame size of 1280 × 1024.

a. What is the minimum size in bytes of the frame buffer to store a frame?

b. How long would it take, at a minimum, for the frame to be sent over a 100 Mbit/s
network?

 1.5 [4] <§1.6> Consider three different processors P1, P2, and P3 executing
the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a
2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI
of 2.2.

a. Which processor has the highest performance expressed in instructions per second?

b. If the processors each execute a program in 10 seconds, find the number of
cycles and the number of instructions.

c. We are trying to reduce the execution time by 30%, but this leads to an increase
of 20% in the CPI. What clock rate should we have to get this time reduction?

 1.6 [20] <§1.6> Consider two different implementations of the same instruction
set architecture. The instructions can be divided into four classes according to
their CPI (classes A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2,
3, and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.

Given a program with a dynamic instruction count of 1.0E6 instructions divided
into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D,
which is faster: P1 or P2?

a. What is the global CPI for each implementation?

b. Find the clock cycles required in both cases.

马德

马德

56 Chapter 1 Computer Abstractions and Technology

 1.7 [15] <§1.6> Compilers can have a profound impact on the performance
of an application. Assume that for a program, compiler A results in a dynamic
instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B
results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.

a. Find the average CPI for each program given that the processor has a clock cycle
time of 1 ns.

b. Assume the compiled programs run on two different processors. If the execution
times on the two processors are the same, how much faster is the clock of the
processor running compiler A’s code versus the clock of the processor running
compiler B’s code?

c. A new compiler is developed that uses only 6.0E8 instructions and has an
average CPI of 1.1. What is the speedup of using this new compiler versus using
compiler A or B on the original processor?

 1.8 The Pentium 4 Prescott processor, released in 2004, had a clock rate of
3.6 GHz and voltage of 1.25 V. Assume that, on average, it consumed 10 W of static
power and 90 W of dynamic power.

The Core i5 Ivy Bridge, released in 2012, has a clock rate of 3.4 GHz and voltage
of 0.9 V. Assume that, on average, it consumed 30 W of static power and 40 W of
dynamic power.

1.8.1 [5] < §1.7> For each processor find the average capacitive loads.

1.8.2 [5] < §1.7> Find the percentage of the total dissipated power comprised by
static power and the ratio of static power to dynamic power for each technology.

1.8.3 [15] < §1.7> If the total dissipated power is to be reduced by 10%, how much
should the voltage be reduced to maintain the same leakage current? Note: power
is defined as the product of voltage and current.

 1.9 Assume for arithmetic, load/store, and branch instructions, a processor has
CPIs of 1, 12, and 5, respectively. Also assume that on a single processor a program
requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store
instructions, and 256 million branch instructions. Assume that each processor has
a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number
of arithmetic and load/store instructions per processor is divided by 0.7 × p (where
p is the number of processors) but the number of branch instructions per processor
remains the same.

1.9.1 [5] < §1.7> Find the total execution time for this program on 1, 2, 4, and 8
processors, and show the relative speedup of the 2, 4, and 8 processors result relative
to the single processor result.

马德

 1.13 Exercises 57

1.9.2 [10] <§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?

1.9.3 [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be
reduced in order for a single processor to match the performance of four processors
using the original CPI values?

 1.10 Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has
0.020 defects/cm2. Assume a 20 cm diameter wafer has a cost of 15, contains 100
dies, and has 0.031 defects/cm2.

1.10.1 [10] <§1.5> Find the yield for both wafers.

1.10.2 [5] <§1.5> Find the cost per die for both wafers.

1.10.3 [5] <§1.5> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, find the die area and yield.

1.10.4 [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to
0.95. Find the defects per area unit for each version of the technology given a die
area of 200 mm2.

 1.11 The results of the SPEC CPU2006 bzip2 benchmark running on an AMD
Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a
reference time of 9650 s.

1.11.1 [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns.

1.11.2 [5] <§1.9> Find the SPECratio.

1.11.3 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions
of the benchmark is increased by 10% without affecting the CPI.

1.11.4 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions
of the benchmark is increased by 10% and the CPI is increased by 5%.

1.11.5 [5] <§§1.6, 1.9> Find the change in the SPECratio for this change.

1.11.6 [10] <§1.6> Suppose that we are developing a new version of the AMD
Barcelona processor with a 4 GHz clock rate. We have added some additional
instructions to the instruction set in such a way that the number of instructions
has been reduced by 15%. The execution time is reduced to 700 s and the new
SPECratio is 13.7. Find the new CPI.

1.11.7 [10] <§1.6> This CPI value is larger than obtained in 1.11.1 as the clock
rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the
CPI is similar to that of the clock rate. If they are dissimilar, why?

1.11.8 [5] <§1.6> By how much has the CPU time been reduced?

58 Chapter 1 Computer Abstractions and Technology

1.11.9 [10] <§1.6> For a second benchmark, libquantum, assume an execution
time of 960 ns, CPI of 1.61, and clock rate of 3 GHz. If the execution time is
reduced by an additional 10% without affecting the CPI and with a clock rate of
4 GHz, determine the number of instructions.

1.11.10 [10] <§1.6> Determine the clock rate required to give a further 10%
reduction in CPU time while maintaining the number of instructions and with the
CPI unchanged.

1.11.11 [10] <§1.6> Determine the clock rate if the CPI is reduced by 15% and
the CPU time by 20% while the number of instructions is unchanged.

1.12 Section 1.10 cites as a pitfall the utilization of a subset of the performance
equation as a performance metric. To illustrate this, consider the following two
processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the
execution of 5.0E9 instructions. P2 has a clock rate of 3 GHz, an average CPI of
0.75, and requires the execution of 1.0E9 instructions.

1.12.1 [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the
largest clock rate as having the highest performance. Check if this is true for P1 and
P2.

1.12.2 [10] <§§1.6, 1.10> Another fallacy is to consider that the processor executing
the largest number of instructions will need a larger CPU time. Considering that
processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of
processors P1 and P2 do not change, determine the number of instructions that P2
can execute in the same time that P1 needs to execute 1.0E9 instructions.

1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of
instructions per second) to compare the performance of two different processors,
and consider that the processor with the largest MIPS has the largest performance.
Check if this is true for P1 and P2.

1.12.4 [10] <§1.10> Another common performance figure is MFLOPS (millions
of floating-point operations per second), defined as

MFLOPS No FP operations execution time 1E6. /()

but this figure has the same problems as MIPS. Assume that 40% of the instructions
executed on both P1 and P2 are floating-point instructions. Find the MFLOPS
figures for the processors.

1.13 Another pitfall cited in Section 1.10 is expecting to improve the overall
performance of a computer by improving only one aspect of the computer. Consider
a computer running a program that requires 250 s, with 70 s spent executing FP
instructions, 85 s executed L/S instructions, and 40 s spent executing branch
instructions.
1.13.1 [5] <§1.10> By how much is the total time reduced if the time for FP
operations is reduced by 20%?

马德

 1.13 Exercises 59

1.13.2 [5] <§1.10> By how much is the time for INT operations reduced if the
total time is reduced by 20%?

1.13.3 [5] <§1.10> Can the total time can be reduced by 20% by reducing only
the time for branch instructions?

1.14 Assume a program requires the execution of 50 × 106 FP instructions,
110 × 106 INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch
instructions. The CPI for each type of instruction is 1, 1, 4, and 2, respectively.
Assume that the processor has a 2 GHz clock rate.

1.14.1 [10] <§1.10> By how much must we improve the CPI of FP instructions if
we want the program to run two times faster?

1.14.2 [10] <§1.10> By how much must we improve the CPI of L/S instructions
if we want the program to run two times faster?

1.14.3 [5] <§1.10> By how much is the execution time of the program improved
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and
Branch is reduced by 30%?

1.15 [5] <§1.8> When a program is adapted to run on multiple processors in
a multiprocessor system, the execution time on each processor is comprised of
computing time and the overhead time required for locked critical sections and/or
to send data from one processor to another.

Assume a program requires t = 100 s of execution time on one processor. When run
p processors, each processor requires t/p s, as well as an additional 4 s of overhead,
irrespective of the number of processors. Compute the per-processor execution
time for 2, 4, 8, 16, 32, 64, and 128 processors. For each case, list the corresponding
speedup relative to a single processor and the ratio between actual speedup versus
ideal speedup (speedup if there was no overhead).

§1.1, page 10: Discussion questions: many answers are acceptable.
§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds,
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.
§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn’t have to be true.
§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.
§1.6, page 40: b.
§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to
Check Yourself

Instructions:
Language of the
Computer
2.1 Introduction 62
2.2 Operations of the Computer Hardware 63
2.3 Operands of the Computer Hardware 67
2.4 Signed and Unsigned Numbers 74
2.5 Representing Instructions in the

Computer 81
2.6 Logical Operations 89
2.7 Instructions for Making Decisions 92

2
I speak Spanish
to God, Italian to
women, French to
men, and German
to my horse.

Charles V, Holy Roman Emperor
(1500–1558)

Computer Organization and Design. DOI:
© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00002-6
2018

2.8 Supporting Procedures in Computer Hardware 98
2.9 Communicating with People 108
2.10 RISC-V Addressing for Wide Immediates and Addresses 113
2.11 Parallelism and Instructions: Synchronization 121
2.12 Translating and Starting a Program 124
2.13 A C Sort Example to Put it All Together 133
2.14 Arrays versus Pointers 141
2.15 Advanced Material: Compiling C and Interpreting Java 144
2.16 Real Stuff: MIPS Instructions 145
2.17 Real Stuff: x86 Instructions 146
2.18 Real Stuff: The Rest of the RISC-V Instruction Set 155
2.19 Fallacies and Pitfalls 157
2.20 Concluding Remarks 159
2.21 Historical Perspective and Further Reading 162
2.22 Exercises 162

The Five Classic Components of a Computer

62 Chapter 2 Instructions: Language of the Computer

 2.1 Introduction

To command a computer’s hardware, you must speak its language. The words
of a computer’s language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by people and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks like
a restricted programming language, we refine it step-by-step until you see the actual
language of a real computer. Chapter 3 continues our downward descent, unveiling
the hardware for arithmetic and the representation of floating-point numbers.

You might think that the languages of computers would be as diverse as those of
people, but in reality, computer languages are quite similar, more like regional dialects
than independent languages. Hence, once you learn one, it is easy to pick up others.

The chosen instruction set is RISC-V, which was originally developed at UC
Berkeley starting in 2010.

To demonstrate how easy it is to pick up other instruction sets, we will also take
a quick look at two other popular instruction sets.

1. MIPS is an elegant example of the instruction sets designed since the 1980s.
In several respects, RISC-V follows a similar design.

2. The Intel x86 originated in the 1970s, but still today powers both the PC and
the Cloud of the post-PC era.

This similarity of instruction sets occurs because all computers are constructed
from hardware technologies based on similar underlying principles and because
there are a few basic operations that all computers must provide. Moreover,
computer designers have a common goal: to find a language that makes it easy
to build the hardware and the compiler while maximizing performance and
minimizing cost and energy. This goal is time-honored; the following quote was
written before you could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets] that are in abstract adequate to control and cause the execution of any
sequence of operations.… The really decisive considerations from the present
point of view, in selecting an [instruction set], are more of a practical nature:
simplicity of the equipment demanded by the [instruction set], and the clarity of
its application to the actually important problems together with the speed of its
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s
computers as it was for those of the 1950s. The goal of this chapter is to teach
an instruction set that follows this advice, showing both how it is represented in

instruction set The
vocabulary of commands
understood by a given
architecture.

 2.2 Operations of the Computer Hardware 63

hardware and the relationship between high-level programming languages and this
more primitive one. Our examples are in the C programming language; Section
2.15 shows how these would change for an object-oriented language like Java.

By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover, you will exercise your “foreign
language” skills by writing programs in the language of the computer and running them
on the simulator that comes with this book. You will also see the impact of programming
languages and compiler optimization on performance. We conclude with a look at the
historical evolution of instruction sets and an overview of other computer dialects.

We reveal our first instruction set a piece at a time, giving the rationale along with
the computer structures. This top-down, step-by-step tutorial weaves the components
with their explanations, making the computer’s language more palatable. Figure 2.1
gives a sneak preview of the instruction set covered in this chapter.

 2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The RISC-V assembly
language notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each RISC-V arithmetic instruction performs only

one operation and must always have exactly three variables. For example, suppose
we want to place the sum of four variables b, c, d, and e into variable a. (In this
section, we are being deliberately vague about what a “variable” is; in the next
section, we’ll explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c // The sum of b and c is placed in a
add a, a, d // The sum of b, c, and d is now in a
add a, a, e // The sum of b, c, d, and e is now in a

Thus, it takes three instructions to sum the four variables.
The words to the right of the double slashes (//) on each line above are

comments for the human reader, so the computer ignores them. Note that unlike
other programming languages, each line of this language can contain at most one
instruction. Another difference from C is that comments always terminate at the
end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of

stored-program
concept The idea that
instructions and data of
many types can be stored
in memory as numbers
and thus be easy to
change, leading to the
stored-program computer.

There must certainly
be instructions
for performing
the fundamental
arithmetic operations.
Burks, Goldstine, and
von Neumann, 1947

64 Chapter 2 Instructions: Language of the Computer

RISC-V operands

Name Example Comments

32 registers x0-x31
Fast locations for data. In RISC-V, data must be in registers to perform arithmetic.
Register x0 always equals 0.

261 memory
words

Memory[0], Memory[8], …,
Memory[18,446,744,073,709,551,
608]

Accessed only by data transfer instructions. RISC-V uses byte addresses, so
sequential doubleword accesses differ by 8. Memory holds data structures,
arrays, and spilled registers.

RISC-V assembly language

Meaning Comments

Add add x5, x6, x7 Three register operands; add

Subtract sub x5, x6, x7 Three register operands; subtract

Add immediate addi x5, x6, 20 Used to add constants
Arithmetic

Data transfer

Logical

Load doubleword ld x5, 40(x6) Doubleword from memory to register

Store doubleword sd x5, 40(x6) Doubleword from register to memory

Load word lw x5, 40(x6) Word from memory to register

Load word, unsigned lwu x5, 40(x6) Unsigned word from memory to register
Store word sw x5, 40(x6)

x5 = x6 + x7

x5 = x6 - x7

x5 = x6 + 20

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]
Memory[x6 + 40] = x5 Word from register to memory

Load halfword lh x5, 40(x6) Halfword from memory to registerx5 = Memory[x6 + 40]
Load halfword,
unsigned

lhu x5, 40(x6) Unsigned halfword from memory
to register

x5 = Memory[x6 + 40]

Store halfword sh x5, 40(x6) Halfword from register to memory

Load byte lb x5, 40(x6) Byte from memory to register

Load byte, unsigned lbu x5, 40(x6) Byte unsigned from memory to register

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]
Store byte sb x5, 40(x6) Byte from register to memory

Load reserved lr.d x5, (x6) Load; 1st half of atomic swap

Store conditional sc.d x7, x5, (x6) Store; 2nd half of atomic swap

Load upper
immediate

lui x5, 0x12345 Loads 20-bit constant shifted left
12 bits

And

Memory[x6 + 40] = x5

x5 = Memory[x6]

Memory[x6] = x5; x7 = 0/1

x5 = 0x12345000

and x5, x6, x7 Three reg. operands; bit-by-bit AND

Three reg. operands; bit-by-bit XOR

x5 = x6 & x7
Inclusive or or x5, x6, x8 Three reg. operands; bit-by-bit ORx5 = x6 | x8

Exclusive or xor x5, x6, x9 x5 = x6 ^ x9

Bit-by-bit AND reg. with constantAnd immediate andi x5, x6, 20 x5 = x6 & 20

Bit-by-bit OR reg. with constantInclusive or immediate ori x5, x6, 20 x5 = x6 | 20
Bit-by-bit XOR reg. with constantExclusive or immediate xori x5, x6, 20 x5 = x6 ^ 20

ExampleInstructionCategory

Shift

Shift left logical sll x5, x6, x7 Shift left by register

Arithmetic shift right by register

x5 = x6 << x7
Shift right logical srl x5, x6, x7 Shift right by registerx5 = x6 >> x7

Shift right arithmetic sra x5, x6, x7 x5 = x6 >> x7

Shift left by immediateShift left logical
immediate

slli x5, x6, 3 x5 = x6 << 3

Shift right by immediateShift right logical
immediate

srli x5, x6, 3 x5 = x6 >> 3

Arithmetic shift right by immediateShift right arithmetic
immediate

srai x5, x6, 3 x5 = x6 >> 3

FIGURE 2.1 RISC-V assembly language revealed in this chapter. This information is also found in Column 1 of the RISC-V
Reference Data Card at the front of this book.

 2.2 Operations of the Computer Hardware 65

operands is more complicated than hardware for a fixed number. This situation
illustrates the first of three underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.
We can now show, in the two examples that follow, the relationship of programs

written in higher-level programming languages to programs in this more primitive
notation.

Compiling Two C Assignment Statements into RISC-V

This segment of a C program contains the five variables a, b, c, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a = b + c;
d = a − e;

The compiler translates from C to RISC-V assembly language instructions.
Show the RISC-V code produced by a compiler.

A RISC-V instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two RISC-V assembly language instructions:

add a, b, c
sub d, a, e

Conditional
branch

Unconditional
branch

PC-relative branch if registers equal

PC-relative branch if registers less

if (x5 == x6) go to PC+100
PC-relative branch if registers not equalif (x5 != x6) go to PC+100

if (x5 < x6) go to PC+100

PC-relative branch if registers greater
or equal

if (x5 >= x6) go to PC+100

PC-relative branch if registers less,
unsigned

if (x5 < x6) go to PC+100

PC-relative branch if registers greater
or equal, unsigned

if (x5 >= x6) go to PC+100

jal x1, 100 PC-relative procedure callx1 = PC+4; go to PC+100
jalr x1, 100(x5) Procedure return; indirect callx1 = PC+4; go to x5+100

Branch if equal beq x5, x6, 100
Branch if not equal bne x5, x6, 100

Branch if less than blt x5, x6, 100

Branch if greater or
equal

bge x5, x6, 100

Branch if less, unsigned bltu x5, x6, 100

Branch if greater or
equal, unsigned

bgeu x5, x6, 100

Jump and link

Jump and link register

FIGURE 2.1 (Continued).

EXAMPLE

ANSWER

66 Chapter 2 Instructions: Language of the Computer

Compiling a Complex C Assignment into RISC-V

A somewhat complicated statement contains the five variables f, g, h, i, and j:

f = (g + h) − (i + j);

What might a C compiler produce?

The compiler must break this statement into several assembly instructions,
since only one operation is performed per RISC-V instruction. The first
RISC-V instruction calculates the sum of g and h. We must place the result
somewhere, so the compiler creates a temporary variable, called t0:

add t0, g, h // temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and
j before we can subtract. Thus, the second instruction places the sum of i and
j in another temporary variable created by the compiler, called t1:

add t1, i, j // temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

sub f, t0, t1 // f gets t0 − t1, which is (g + h) − (i + j)

Elaboration: To increase portability, Java was originally envisioned as relying on
a software interpreter. The instruction set of this interpreter is called Java bytecodes
(see Section 2.15), which is quite different from the RISC-V instruction set. To get
performance close to the equivalent C program, Java systems today typically compile
Java bytecodes into the native instruction sets like RISC-V. Because this compilation is
normally done much later than for C programs, such Java compilers are often called Just
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers
in the start-up process, and Section 2.13 shows the performance consequences of
compiling versus interpreting Java programs.

EXAMPLE

ANSWER

Check
Yourself

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java

2. C

3. RISC-V assembly language

 2.3 Operands of the Computer Hardware 67

 2.3 Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built directly
in hardware called registers. Registers are primitives used in hardware design that
are also visible to the programmer when the computer is completed, so you can
think of registers as the bricks of computer construction. The size of a register in
the RISC-V architecture is 64 bits; groups of 64 bits occur so frequently that they
are given the name doubleword in the RISC-V architecture. (Another popular size
is a group of 32 bits, called a word in the RISC-V architecture.)

One major difference between the variables of a programming language and registers
is the limited number of registers, typically 32 on current computers, like RISC-V. (See

 Section 2.21 for the history of the number of registers.) Thus, continuing in our
top-down, stepwise evolution of the symbolic representation of the RISC-V language,
in this section we have added the restriction that the three operands of RISC-V
arithmetic instructions must each be chosen from one of the 32 64-bit registers.

The reason for the limit of 32 registers may be found in the second of our three
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.
A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Even so, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of
programs for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;
as we shall see in that chapter, effective use of registers is critical to program
performance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the RISC-V convention is x followed by the number of the register, except
for a few register names that we will cover later.

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f = (g + h) − (i + j);

word A natural unit
of access in a computer,
usually a group of 32 bits.

doubleword Another
natural unit of access in a
computer, usually a group
of 64 bits; corresponds to
the size of a register in the
RISC-V architecture.

EXAMPLE

68 Chapter 2 Instructions: Language of the Computer

The variables f, g, h, i, and j are assigned to the registers x19, x20, x21, x22,
and x23, respectively. What is the compiled RISC-V code?

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, x5 and x6, which correspond to the temporary variables above:

add x5, x20, x21 // register x5 contains g + h
add x6, x22, x23 // register x6 contains i + j
sub x19, x5, x6 // f gets x5 – x6, which is (g + h) − (i + j)

Memory Operands
Programming languages have simple variables that contain single data elements,
as in these examples, but they also have more complex data structures—arrays and
structures. These composite data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated
on page 61. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in RISC-V
instructions; thus, RISC-V must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word or doubleword in memory, the instruction must supply the
memory address. Memory is just a large, single-dimensional array, with the
address acting as the index to that array, starting at 0. For example, in Figure 2.2,
the address of the third data element is 2, and the value of memory [2] is 10.

data transfer
instruction A command
that moves data between
memory and registers.

address A value used to
delineate the location of
a specific data element
within a memory array.

ANSWER

Processor Memory

Address Data

1

101

10

100

0

1

2

3

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these
elements were doublewords, these addresses would be incorrect, since RISC-V actually uses byte addressing,
with each doubleword representing 8 bytes. Figure 2.3 shows the correct memory addressing for sequential
doubleword addresses.

 2.3 Operands of the Computer Hardware 69

The data transfer instruction that copies data from memory to a register is
traditionally called load. The format of the load instruction is the name of the
operation followed by the register to be loaded, then register and a constant used to
access memory. The sum of the constant portion of the instruction and the contents
of the second register forms the memory address. The real RISC-V name for this
instruction is ld, standing for load doubleword.

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 doublewords and that the compiler has
associated the variables g and h with the registers x20 and x21 as before. Let’s
also assume that the starting address, or base address, of the array is in x22.
Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of the
operands is in memory, so we must first transfer A[8] to a register. The address
of this array element is the sum of the base of the array A, found in register x22,
plus the number to select element 8. The data should be placed in a temporary
register for use in the next instruction. Based on Figure 2.2, the first compiled
instruction is

ld x9, 8(x22) // Temporary reg x9 gets A[8]

(We’ll be making a slight adjustment to this instruction, but we’ll use this
simplified version for now.) The following instruction can operate on the value
in x9 (which equals A[8]) since it is in a register. The instruction must add h
(contained in x21) to A[8] (contained in x9) and put the sum in the register
corresponding to g (associated with x20):

add x20, x21, x9 // g = h + A[8]

The register added to form the address (x22) is called the base register, and the
constant in a data transfer instruction (8) is called the offset.

EXAMPLE

ANSWER

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can then
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, virtually all architectures today
address individual bytes. Therefore, the address of a doubleword matches the
address of one of the 8 bytes within the doubleword, and addresses of sequential

Hardware/
Software
Interface

70 Chapter 2 Instructions: Language of the Computer

The instruction complementary to load is traditionally called store; it copies data
from a register to memory. The format of a store is similar to that of a load: the
name of the operation, followed by the register to be stored, then the base register,
and finally the offset to select the array element. Once again, the RISC-V address is
specified in part by a constant and in part by the contents of a register. The actual
RISC-V name is sd, standing for store doubleword.

Processor Memory

Byte Address Data

1

101

10

100

0

8

16

24

FIGURE 2.3 Actual RISC-V memory addresses and contents of memory for those
doublewords. The changed addresses are highlighted to contrast with Figure 2.2. Since RISC-V addresses
each byte, doubleword addresses are multiples of 8: there are 8 bytes in a doubleword.

Elaboration: In many architectures, words must start at addresses that are multiples
of 4 and doublewords must start at addresses that are multiples of 8. This requirement is
called an alignment restriction. (Chapter 4 suggests why alignment leads to faster data
transfers.) RISC-V and Intel x86 do not have alignment restrictions, but MIPS does.

alignment restriction
A requirement that data
be aligned in memory on
natural boundaries.

Hardware/
Software
Interface

As the addresses in loads and stores are binary numbers, we can see why the DRAM for
main memory comes in binary sizes rather than in decimal sizes. That is, in gibibytes
(230) or tebibytes (240), not in gigabytes (109) or terabytes (1012); see Figure 1.1.

doublewords differ by 8. For example, Figure 2.3 shows the actual RISC-V addresses
for the doublewords in Figure 2.2; the byte address of the third doubleword is 16.

Computers divide into those that use the address of the leftmost or “big end”
byte as the doubleword address versus those that use the rightmost or “little end”
byte. RISC-V belongs to the latter camp, referred to as little-endian. Since the order
matters only if you access the identical data both as a doubleword and as eight
individual bytes, few need to be aware of the “endianness.”

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register x22 must be 8 × 8, or 64,
so that the load address will select A[8] and not A[8/8]. (See the related Pitfall on
page 159 of Section 2.19.)

 2.3 Operands of the Computer Hardware 71

Compiling Using Load and Store

Assume variable h is associated with register x21 and the base address of the
array A is in x22. What is the RISC-V assembly code for the C assignment
statement below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the
operands are in memory, so we need even more RISC-V instructions. The first
two instructions are the same as in the prior example, except this time we use
the proper offset for byte addressing in the load register instruction to select
A[8], and the add instruction places the sum in x9:

ld x9, 64(x22) // Temporary reg x9 gets A[8]
add x9, x21, x9 // Temporary reg x9 gets h + A[8]

The final instruction stores the sum into A[12], using 96 (8 × 12) as the
offset and register x22 as the base register.

sd x9, 96(x22) // Stores h + A[8] back into A[12]

Load doubleword and store doubleword are the instructions that copy
doublewords between memory and registers in the RISC-V architecture. Some
brands of computers use other instructions along with load and store to transfer
data. An architecture with such alternatives is the Intel x86, described in Section
2.17.

EXAMPLE

ANSWER

Hardware/
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and places
the rest in memory, using loads and stores to move variables between registers and
memory. The process of putting less frequently used variables (or those needed
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers, since there are fewer registers. This suggestion is indeed the
case; data accesses are faster if data are in registers instead of memory.

Moreover, data are more useful when in a register. A RISC-V arithmetic
instruction can read two registers, operate on them, and write the result. A RISC-V
data transfer instruction only reads one operand or writes one operand, without
operating on it.

72 Chapter 2 Instructions: Language of the Computer

Elaboration: Let’s put the energy and performance of registers versus memory into
perspective. Assuming 64-bit data, registers are roughly 200 times faster (0.25 vs. 50
nanoseconds) and are 10,000 times more energy efficient (0.1 vs. 1000 picoJoules) than
DRAM in 2015. These large differences led to caches, which reduce the performance
and energy penalties of going to memory (see Chapter 5).

Constant or Immediate Operands
Many times a program will use a constant in an operation—for example,
incrementing an index to point to the next element of an array. In fact, more than
half of the RISC-V arithmetic instructions have a constant as an operand when
running the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant
from memory to use one. (The constants would have been placed in memory when
the program was loaded.) For example, to add the constant 4 to register x22, we
could use the code

ld x9, AddrConstant4(x3) // x9 = constant 4
add x22, x22, x9 // x22 = x22 + x9 (where x9 == 4)

assuming that x3 + AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arithmetic

instructions in which one operand is a constant. This quick add instruction with
one constant operand is called add immediate or addi. To add 4 to register x22,
we just write

addi x22, x22, 4 // x22 = x22 + 4

Constant operands occur frequently; indeed, addi is the most popular
instruction in most RISC-V programs. By including constants inside arithmetic
instructions, operations are much faster and use less energy than if constants were
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by
offering useful variations. For example, you can negate the value in a register by
using the sub instruction with zero for the first operand. Hence, RISC-V dedicates
register x0 to be hard-wired to the value zero. Using frequency to justify the
inclusions of constants is another example of the great idea from Chapter 1 of
making the common case fast.

Thus, registers take less time to access and have higher throughput than memory,
making data in registers both considerably faster to access and simpler to use.
Accessing registers also uses much less energy than accessing memory. To achieve
the highest performance and conserve energy, an instruction set architecture must
have enough registers, and compilers must use registers efficiently.

 2.3 Operands of the Computer Hardware 73

Check
Yourself

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s Law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the RISC-V registers in this book are 64 bits wide, the RISC-V
architects conceived multiple variants of the ISA. In addition to this variant, known as
RV64, a variant named RV32 has 32-bit registers, whose reduced cost make RV32
better suited to very low-cost processors.

Elaboration: The RISC-V offset plus base register addressing is an excellent match to
structures as well as arrays, since the register can point to the beginning of the structure
and the offset can select the desired element. We’ll see such an example in Section 2.13.

Elaboration: The register in the data transfer instructions was originally invented to
hold an index of an array with the offset used for the starting address of an array. Thus,
the base register is also called the index register. Today’s memories are much larger,
and the software model of data allocation is more sophisticated, so the base address of
the array is normally passed in a register since it won’t fit in the offset, as we shall see.

Elaboration: The migration from 32-bit address computers to 64-bit address
computers left compiler writers a choice of the size of data types in C. Clearly, pointers
should be 64 bits, but what about integers? Moreover, C has the data types int, long
int, and long long int. The problems come from converting from one data type to
another and having an unexpected overflow in C code that is not fully standard compliant,
which unfortunately is not rare code. The table below shows the two popular options:

Operating System pointers int long int long long int

Microsoft Windows 64 bits 32 bits 32 bits 64 bits

Linux, Most Unix 64 bits 32 bits 64 bits 64 bits

While each compiler could have different choices, generally the compilers associated
with each operating system make the same decision. To keep the examples simple,
in this book we’ll assume pointers are all 64 bits and declare all C integers as long
long int to keep them the same size. We also follow C99 standard and declare
variables used as indexes to arrays to be size_t, which guarantees they are the right
size no matter how big the array. They are typically declared the same as long int.

74 Chapter 2 Instructions: Language of the Computer

 2.4 Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught
to think in base 10, but numbers may be represented in any base. For example, 123
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all
information is composed of binary digits or bits. This fundamental building block
can be one of two values, which can be thought of as several alternatives: high or
low, on or off, true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d i� Base

where i starts at 0 and increases from right to left. This representation leads to an
obvious way to number the bits in the doubleword: simply use the power of the
base for that bit. We subscript decimal numbers with ten and binary numbers with
two. For example,

1011two

represents

 (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20)ten

= (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1)ten

= 8 + 0 + 2 + 1ten

= 11ten

We number the bits 0, 1, 2, 3, … from right to left in a doubleword. The drawing
below shows the numbering of bits within a RISC-V doubleword and the placement
of the number 1011two, (which we must unfortunately split in half to fit on the page
of the book):

Since doublewords are drawn vertically as well as horizontally, leftmost and
rightmost may be unclear. Hence, the phrase least significant bit is used to refer to
the rightmost bit (bit 0 above) and most significant bit to the leftmost bit (bit 63).

binary digit Also
called bit. One of
the two numbers in
base 2, 0 or 1, that are
the components of
information.

least significant bit The
rightmost bit in an
RISC-V doubleword.

most significant bit The
leftmost bit in an RISC-V
doubleword.

 2.4 Signed and Unsigned Numbers 75

The RISC-V doubleword is 64 bits long, so we can represent 264 different 64-bit
patterns. It is natural to let these combinations represent the numbers from 0 to 264
−1 (18,446,774,073,709,551,615ten):

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000two = 0ten

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

.

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = 18,446,774,073,709,551,613ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = 18,446,744,073,709,551,614ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = 18,446,744,073,709,551,615ten

That is, 64-bit binary numbers can be represented in terms of the bit value times
a power of 2 (here xi means the ith bit of x):

() () () () ()x x x x x63
63

62
62

61
61

1
1

0
02 2 2 2 2�

For reasons we will shortly see, these positive numbers are called unsigned numbers.

Base 2 is not natural to human beings; we have 10 fingers and so find base 10
natural. Why didn’t computers use decimal? In fact, the first commercial computer
did offer decimal arithmetic. The problem was that the computer still used on
and off signals, so a decimal digit was simply represented by several binary digits.
Decimal proved so inefficient that subsequent computers reverted to all binary,
converting to base 10 only for the relatively infrequent input/output events.

Keep in mind that the binary bit patterns above are simply representatives
of numbers. Numbers really have an infinite number of digits, with almost all
being 0 except for a few of the rightmost digits. We just don’t normally show
leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred.
It’s up to the programming language, the operating system, and the program to
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a
representation that distinguishes the positive from the negative. The most obvious
solution is to add a separate sign, which conveniently can be represented in a single
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early computers

Hardware/
Software
Interface

76 Chapter 2 Instructions: Language of the Computer

tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can’t know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and a negative
zero, which can lead to problems for inattentive programmers. Because of these
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of leading
0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the final solution was to pick
the representation that made the hardware simple: leading 0s mean positive, and
leading 1s mean negative. This convention for representing signed binary numbers
is called two’s complement representation:

00000000 00000000 00000000 00000000 00000000 00000000 00000000two = 0ten

00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

.

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = 9,223,372,036,854,775,805ten

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = 9,223,372,036,854,775,806ten

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = 9,223,372,036,854,775,807ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000two = − 9,223,372,036,854,775,808ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = − 9,223,372,036,854,775,807ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = − 9,223,372,036,854,775,806ten

… . . .

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = − 3ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = − 2ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = − 1ten

The positive half of the numbers, from 0 to 9,223,372,036,854,775,807ten (2
63−1),

use the same representation as before. The following bit pattern (1000 … 0000two)
represents the most negative number −9,223,372,036,854,775,808ten (−263). It is
followed by a declining set of negative numbers: −9,223,372,036,854,775,807ten (1000
… 0001two) down to −1ten (1111 … 1111two).

Two’s complement does have one negative number that has no corresponding
positive number: −9,223,372,036,854,775,808ten. Such imbalance was also a
worry to the inattentive programmer, but sign and magnitude had problems for
both the programmer and the hardware designer. Consequently, every computer
today uses two’s complement binary representations for signed numbers.

 2.4 Signed and Unsigned Numbers 77

Two’s complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Thus, hardware needs to test only this bit to
see if a number is positive or negative (with the number 0 is considered positive).
This bit is often called the sign bit. By recognizing the role of the sign bit, we can
represent positive and negative 64-bit numbers in terms of the bit value times a
power of 2:

() () () () ()x x x x x63
63

62
62

61
61

1
1

0
02 2 2 2 2�

The sign bit is multiplied by −263, and the rest of the bits are then multiplied by
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 64-bit two’s complement number?

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111100two

Substituting the number’s bit values into the formula above:

() () () () () ()1 2 1 2 1 2 1 2 0 2 0 2

2 2 2

63 62 61 1 1 0

63 62

�
661 22 0 0

9 223 372 036 854 775 80 9 223 372 036 8
�

, , , , , , , , , ,8ten 554 775 804
4

, , ten

ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hardware
to represent the result, so can an operation on two’s complement numbers. Overflow
occurs when the leftmost retained bit of the binary bit pattern is not the same as the
infinite number of digits to the left (the sign bit is incorrect): a 0 on the left of the bit
pattern when the number is negative or a 1 when the number is positive.

EXAMPLE

ANSWER

78 Chapter 2 Instructions: Language of the Computer

Signed versus unsigned applies to loads as well as to arithmetic. The function of a
signed load is to copy the sign repeatedly to fill the rest of the register—called sign
extension—but its purpose is to place a correct representation of the number within
that register. Unsigned loads simply fill with 0s to the left of the data, since the
number represented by the bit pattern is unsigned.

When loading a 64-bit doubleword into a 64-bit register, the point is moot;
signed and unsigned loads are identical. RISC-V does offer two flavors of byte
loads: load byte unsigned (lbu) treats the byte as an unsigned number and thus
zero-extends to fill the leftmost bits of the register, while load byte (lb) works with
signed integers. Since C programs almost always use bytes to represent characters
rather than consider bytes as very short signed integers, lbu is used practically
exclusively for byte loads.

Unlike the signed numbers discussed above, memory addresses naturally start at
0 and continue to the largest address. Put another way, negative addresses make
no sense. Thus, programs want to deal sometimes with numbers that can be
positive or negative and sometimes with numbers that can be only positive. Some
programming languages reflect this distinction. C, for example, names the former
integers (declared as long long int in the program) and the latter unsigned integers
(unsigned long long int). Some C style guides even recommend declaring the
former as signed long long int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement
numbers. The first shortcut is a quick way to negate a two’s complement binary
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result.
This shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 … 111two, which represents −1. Since x x 1,
therefore x x 1 0 or x x1 . (We use the notation x to mean invert
every bit in x from 0 to 1 and vice versa.)

Negation Shortcut

Negate 2ten, and then check the result by negating −2ten.

2ten = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two

Hardware/
Software
Interface

Hardware/
Software
Interface

EXAMPLE

ANSWER

 2.4 Signed and Unsigned Numbers 79

Negating this number by inverting the bits and adding one,

Going the other direction,

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two

is first inverted and then incremented:

Our next shortcut tells us how to convert a binary number represented in n bits
to a number represented with more than n bits. The shortcut is to take the most
significant bit from the smaller quantity—the sign bit—and replicate it to fill the
new bits of the larger quantity. The old nonsign bits are simply copied into the right
portion of the new doubleword. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and −2ten to 64-bit binary numbers.

The 16-bit binary version of the number 2 is

00000000 00000010two = 2ten

It is converted to a 64-bit number by making 48 copies of the value in the most
significant bit (0) and placing that in the left of the doubleword. The right part
gets the old value:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

EXAMPLE

ANSWER

80 Chapter 2 Instructions: Language of the Computer

Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 0010two

becomes

Creating a 64-bit version of the negative number means copying the sign bit
48 times and placing it on the left:

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = −2ten

This trick works because positive two’s complement numbers really have an infinite
number of 0s on the left and negative two’s complement numbers have an infinite
number of 1s. The binary bit pattern representing a number hides leading bits to fit
the width of the hardware; sign extension simply restores some of them.

Summary
The main point of this section is that we need to represent both positive and
negative integers within a computer, and although there are pros and cons to any
option, the unanimous choice since 1965 has been two’s complement.

Elaboration: For signed decimal numbers, we used “−” to represent negative
because there are no limits to the size of a decimal number. Given a fixed data size,
binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; therefore, we
do not normally use “+” or “−” with binary or hexadecimal notation.

What is the decimal value of this 64-bit two’s complement number?

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111000two

1) −4ten

2) −8ten

3) −16ten

4) 18,446,744,073,709,551,609ten

Elaboration: Two’s complement gets its name from the rule that the unsigned sum
of an n-bit number and its n-bit negative is 2n; hence, the negation or complement of a
number x is 2n − x, or its “two’s complement.”

1111 1111 1111 1101two

+ 1two

= 1111 1111 1111 1110two

Check
Yourself

 2.5 Representing Instructions in the Computer 81

A third alternative representation to two’s complement and sign and magnitude is
called one’s complement. The negative of a one’s complement is found by inverting
each bit, from 0 to 1 and from 1 to 0, or x. This relation helps explain its name since
the complement of x is 2n − x − 1. It was also an attempt to be a better solution than
sign and magnitude, and several early scientific computers did use the notation. This
representation is similar to two’s complement except that it also has two 0s: 00 … 00two
is positive 0 and 11 … 11two is negative 0. The most negative number, 10 … 000two,
represents −2,147,483,647ten, and so the positives and negatives are balanced. One’s
complement adders did need an extra step to subtract a number, and hence two’s
complement dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3,
is to represent the most negative value by 00 … 000two and the most positive value by
11 … 11two, with 0 typically having the value 10 … 00two. This representation is called a
biased notation, since it biases the number such that the number plus the bias has a
non-negative representation.

 2.5 Representing Instructions in the
Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by
side forms the instruction. The 32 registers of RISC-V are just referred to by their
number, from 0 to 31.

Translating a RISC-V Assembly Instruction into a Machine
Instruction

Let’s do the next step in the refinement of the RISC-V language as an example.
We’ll show the real RISC-V language version of the instruction represented
symbolically as

add x9, x20, x21

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

0 21 20 0 9 51

one’s complement A
notation that represents
the most negative value
by 10 … 000two and the
most positive value by
01 … 11two, leaving an
equal number of negatives
and positives but ending
up with two zeros, one
positive (00 … 00two) and
one negative (11 … 11two).
The term is also used to
mean the inversion of
every bit in a pattern: 0 to
1 and 1 to 0.
biased notation A
notation that represents
the most negative value
by 00 … 000two and the
most positive value by
11 … 11two, with 0
typically having the
value 10 … 00two, thereby
biasing the number such
that the number plus the
bias has a non-negative
representation.

EXAMPLE

ANSWER

82 Chapter 2 Instructions: Language of the Computer

Each of these segments of an instruction is called a field. The first, fourth,
and sixth fields (containing 0, 0, and 51 in this case) collectively tell the RISC-V
computer that this instruction performs addition. The second field gives
the number of the register that is the second source operand of the addition
operation (21 for x21), and the third field gives the other source operand for
the addition (20 for x20). The fifth field contains the number of the register
that is to receive the sum (9 for x9). Thus, this instruction adds register x20 to
register x21 and places the sum in register x9.

This instruction can also be represented as fields of binary numbers instead
of decimal:

0000000 10101 10100 000 01001 0110011

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this RISC-V instruction takes exactly 32 bits—a
word, or one half of a doubleword. In keeping with our design principle that
simplicity favors regularity, RISC-V instructions are all 32 bits long.

To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tiresome
strings of binary numbers. We avoid that tedium by using a higher base than
binary that converts easily into binary. Since almost all computer data sizes are
multiples of 4, hexadecimal (base 16) numbers are popular. As base 16 is a power
of 2, we can trivially convert by replacing each group of four binary digits by a
single hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal
and binary.

instruction format A
form of representation of
an instruction composed
of fields of binary
numbers.

machine
language Binary
representation used for
communication within a
computer system.

hexadecimal Numbers
in base 16.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.4 The hexadecimal–binary conversion table. Just replace one hexadecimal digit by the corresponding four binary digits,
and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion,
we will subscript decimal numbers with ten, binary numbers with two, and
hexadecimal numbers with hex. (If there is no subscript, the default is base 10.) By
the way, C and Java use the notation 0xnnnn for hexadecimal numbers.

 2.5 Representing Instructions in the Computer 83

Binary to Hexadecimal and Back

Convert the following 8-digit hexadecimal and 32-bit binary numbers into the
other base:

eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 1111two

Using Figure 2.4, the answer is just a table lookup one way:

eca8 6420hex

1110 1100 1010 1000 0110 0100 0010 0000two

And then the other direction:

0001 0011 0101 0111 1001 1011 1101 1111two

1357 9bdfhex

RISC-V Fields
RISC-V fields are given names to make them easier to discuss:

funct7 rs2 rs1 funct3 rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

Here is the meaning of each name of the fields in RISC-V instructions:

n	 opcode: Basic operation of the instruction, and this abbreviation is its
traditional name.

n	 rd: The register destination operand. It gets the result of the operation.

n	 funct3: An additional opcode field.

n	 rs1: The first register source operand.

n	 rs2: The second register source operand.

n	 funct7: An additional opcode field.

opcode The field that
denotes the operation and
format of an instruction.

EXAMPLE

ANSWER

84 Chapter 2 Instructions: Language of the Computer

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load register instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
largest constant within the load register instruction would be limited to only 25−1
or 31. This constant is used to select elements from arrays or data structures, and
it often needs to be much larger than 31. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This conflict leads us to
the final hardware design principle:

Design Principle 3: Good design demands good compromises.
The compromise chosen by the RISC-V designers is to keep all instructions the

same length, thereby requiring distinct instruction formats for different kinds of
instructions. For example, the format above is called R-type (for register). A second
type of instruction format is I-type and is used by arithmetic operands with one
constant operand, including addi, and by load instructions. The fields of the I-type
format are

immediate rs1 funct3 rd opcode

12 bits 5 bits 3 bits 5 bits 7 bits

The 12-bit immediate is interpreted as a two’s complement value, so it can
represent integers from −211 to 211−1. When the I-type format is used for load
instructions, the immediate represents a byte offset, so the load doubleword
instruction can refer to any doubleword within a region of ±211 or 2048 bytes (±28
or 256 doublewords) of the base address in the base register rd. We see that more
than 32 registers would be difficult in this format, as the rd and rs1 fields would
each need another bit, making it harder to fit everything in one word.

Let’s look at the load register instruction from page 71:

ld x9, 64(x22) // Temporary reg x9 gets A[8]

Here, 22 (for x22) is placed in the rs1 field, 64 is placed in the immediate
field, and 9 (for x9) is placed in the rd field. We also need a format for the store
doubleword instruction, sd, which needs two source registers (for the base address
and the store data) and an immediate for the address offset. The fields of the S-type
format are

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

The 12-bit immediate in the S-type format is split into two fields, which supply
the lower 5 bits and upper 7 bits. The RISC-V architects chose this design because it
keeps the rs1 and rs2 fields in the same place in all instruction formats. Keeping the
instruction formats as similar as possible reduces hardware complexity. Similarly,

 2.5 Representing Instructions in the Computer 85

the opcode and funct3 fields are the same size in all locations, and they are always
in the same place.

In case you were wondering, the formats are distinguished by the values in the
opcode field: each format is assigned a distinct set of opcode values in the first
field (opcode) so that the hardware knows how to treat the rest of the instruction.
Figure 2.5 shows the numbers used in each field for the RISC-V instructions
covered so far.

Instruction Format funct7 rs2 rs1 funct3 rd opcode

Instruction Format immediate rs1 funct3 rd opcode

add (add)

sub (sub)

R

R

0000000 0110011

01100110100000

reg

reg

reg

reg

000

000

reg

reg

Instruction Format immed
-iate

rs2 rs1 funct3 immed
-iate

opcode

sd (store doubleword) S address 0100011reg reg 011 address

addi (add immediate)

ld (load doubleword)

I

I

constant 0010011

0000011address

reg

reg

000

011

reg

reg

FIGURE 2.5 RISC-V instruction encoding. In the table above, “reg” means a register number between 0
and 31 and “address” means a 12-bit address or constant. The funct3 and funct7 fields act as additional opcode
fields.

Translating RISC-V Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes
to what the computer executes. If x10 has the base of the array A and x21
corresponds to h, the assignment statement

A[30] = h + A[30] + 1;

is compiled into

ld x9, 240(x10) // Temporary reg x9 gets A[30]
add x9, x21, x9 // Temporary reg x9 gets h+A[30]
addi x9, x9, 1 // Temporary reg x9 gets h+A[30]+1
sd x9, 240(x10) // Stores h+A[30]+1 back into A[30]

What is the RISC-V machine language code for these three instructions?

EXAMPLE

ANSWER

86 Chapter 2 Instructions: Language of the Computer

For convenience, let’s first represent the machine language instructions using
decimal numbers. From Figure 2.5, we can determine the three machine
language instructions:

immediate rs1 funct3 rd opcode

240 10 3 9 3

funct7 rs2 rs1 funct3 rd opcode

0 9 21 0 9 51

immediate rs1 funct3 rd opcode

1 9 0 9 19

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode

7 9 10 3 16 35

The ld instruction is identified by 3 (see Figure 2.5) in the opcode field
and 3 in the funct3 field. The base register 10 is specified in the rs1 field, and
the destination register 9 is specified in the rd field. The offset to select A[30]
(240 = 30 × 8) is found in the immediate field.

The add instruction that follows is specified with 51 in the opcode field, 0
in the funct3 field, and 0 in the funct7 field. The three register operands (9, 21,
and 9) are found in the rd, rs1, and rs2 fields.

The subsequent addi instruction is specified with 19 in the opcode field
and 0 in the funct3 field. The register operands (9 and 9) are found in the rd
and rs1 fields, and the constant addend 1 is found in the immediate field.

The sd instruction is identified with 35 in the opcode field and 3 in the
funct3 field. The register operands (9 and 10) are found in the rs2 and rs1
fields, respectively. The address offset 240 is split across the two immediate
fields. Since the upper part of the immediate holds bits 5 and above, we can
decompose the offset 240 by dividing by 25. The upper part of the immediate
holds the quotient, 7, and the lower part holds the remainder, 16.

Since 240ten = 0000 1111 0000two, the binary equivalent to the decimal form is:

immediate rs1 funct3 rd opcode

000011110000 01010 011 01001 0000011

funct7 rs2 rs1 funct3 rd opcode

0000000 01001 10101 000 01001 0110011

immediate rs1 funct3 rd opcode
000000000001 01001 000 01001 0010011

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode
0000111 01001 01010 011 10000 0100011

 2.5 Representing Instructions in the Computer 87

Elaboration: RISC-V assembly language programmers aren’t forced to use addi
when working with constants. The programmer simply writes add, and the assembler
generates the proper opcode and the proper instruction format depending on whether
the operands are all registers (R-type) or if one is a constant (I-type). We use the explicit
names in RISC-V for the different opcodes and formats as we think it is less confusing
when introducing assembly language versus machine language.

Elaboration: Although RISC-V has both add and sub instructions, it does not have
a subi counterpart to addi. This is because the immediate field represents a two’s
complement integer, so addi can be used to subtract constants.

The desire to keep all instructions the same size conflicts with the desire to have
as many registers as possible. Any increase in the number of registers uses up at
least one more bit in every register field of the instruction format. Given these
constraints and the design principle that smaller is faster, most instruction sets
today have 16 or 32 general-purpose registers.

Hardware/
Software
Interface

Figure 2.6 summarizes the portions of RISC-V machine language described in
this section. As we shall see in Chapter 4, the similarity of the binary representations
of related instructions simplifies hardware design. These similarities are another
example of regularity in the RISC-V architecture.

R-type Instructions funct7 rs2 rs1 funct3 rd opcode Example

S-type Instructions immed
-iate

rs2 rs1 funct3 immed
-iate

opcode Example

add (add)

sub (sub)

0000000

0100000

00011 add x1, x2, x3

sub x1, x2, x300011

00010

00010

000

000 00001

00001 0110011

0110011

sd (store doubleword) 0011111 00001 sd x1, 1000(x2)00010 011 01000 0100011

I-type Instructions immediate rs1 funct3 rd opcode Example

addi (add immediate)

ld (load doubleword)

001111101000

001111101000

addi x1, x2, 1000

ld x1, 1000 (x2)

00010

00010

000

011 00001

00001 0010011

0000011

FIGURE 2.6 RISC-V architecture revealed through Section 2.5. The three RISC-V instruction formats so far are R, I, and S. The
R-type format has two source register operand and one destination register operand. The I-type format replaces one source register operand
with a 12-bit immediate field. The S-type format has two source operands and a 12-bit immediate field, but no destination register operand. The
S-type immediate field is split into two parts, with bits 11—5 in the leftmost field and bits 4—0 in the second-rightmost field.

88 Chapter 2 Instructions: Language of the Computer

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like data.

These principles lead to the stored-program concept; its invention let
the computing genie out of its bottle. Figure 2.7 shows the power of the
concept; specifically, memory can contain the source code for an editor
program, the corresponding compiled machine code, the text that the
compiled program is using, and even the compiler that generated the
machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

The BIG
Picture

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch
happens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in a
notation far more convenient for humans into code that the computer can understand.

 2.6 Logical Operations 89

What RISC-V instruction does this represent? Choose from one of the four options
below.

funct7 rs2 rs1 funct3 rd opcode

32 9 10 000 11 51

1. sub x9, x10, x11

2. add x11, x9, x10

3. sub x11, x10, x9

4. sub x11, x9, x10

 2.6 Logical Operations

Although the first computers operated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which is stored as 8 bits, is one example
of such an operation (see Section 2.9). It follows that operations were added to
programming languages and instruction set architectures to simplify, among other
things, the packing and unpacking of bits into words. These instructions are called
logical operations. Figure 2.8 shows logical operations in C, Java, and RISC-V.

Check
Yourself

“Contrariwise,”
continued Tweedledee,
“if it was so, it might
be; and if it were so, it
would be; but as
it isn’t, it ain’t.
That’s logic.”
Lewis Carroll,
Alice’s Adventures in
Wonderland, 1865

Logical operations C operators Java operators RISC-V instructions

Shift left

Shift right

Shift right arithmetic >> >> sra, srai

<< << sll, slli

>> >>> srl, srli

Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit XOR

Bit-by-bit NOT
^

~ ~

^ xor, xori

xori

FIGURE 2.8 C and Java logical operators and their corresponding RISC-V instructions.
One way to implement NOT is to use XOR with one operand being all ones (FFFF FFFF FFFF FFFFhex).

90 Chapter 2 Instructions: Language of the Computer

The first class of such operations is called shifts. They move all the bits in a
doubleword to the left or right, filling the emptied bits with 0s. For example, if
register x19 contained

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001001two = 9ten

and the instruction to shift left by 4 was executed, the new value would be:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 10010000two = 144ten

The dual of a shift left is a shift right. The actual names of the two RISC-V shift
instructions are shift left logical immediate (slli) and shift right logical immediate
(srli). The following instruction performs the operation above, if the original
value was in register x19 and the result should go in register x11:

slli x11, x19, 4 // reg x11 = reg x19 << 4 bits

These shift instructions use the I-type format. Since it isn’t useful to shift a 64-bit
register by more than 63 bits, only the lower 6 bits of the I-type format’s 12-bit
immediate are actually used. The remaining 6 bits are repurposed as an additional
opcode field, funct6.

funct6 immediate rs1 funct3 rd opcode
0 4 19 1 11 19

The encoding of slli is 19 in the opcode field, rd contains 11, funct3 contains
1, rs1 contains 19, immediate contains 4, and funct6 contains 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the identical
result as multiplying by 2i, just as shifting a decimal number by i digits is equivalent
to multiplying by 10i. For example, the above slli shifts by 4, which gives the
same result as multiplying by 24 or 16. The first bit pattern above represents 9, and
9 × 16 = 144, the value of the second bit pattern. RISC-V provides a third type of
shift, shift right arithmetic (srai). This variant is similar to srli, except rather
than filling the vacated bits on the left with zeros, it fills them with copies of the old
sign bit. It also provides variants of all three shifts that take the shift amount from
a register, rather than from an immediate: sll, srl, and sra.

Another useful operation that isolates fields is AND. (We capitalize the word
to avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are
1. For example, if register x11 contains

AND A logical bit-by-
bit operation with two
operands that calculates
a 1 only if there is a 1 in
both operands.

 2.6 Logical Operations 91

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000two

and register x10 contains

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000two

then, after executing the RISC-V instruction

and x9, x10, x11 // reg x9 = reg x10 & reg x11

the value of register x9 would be

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally
called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1. To
elaborate, if the registers x10 and x11 are unchanged from the preceding example,
the result of the RISC-V instruction

or x9, x10, x11 // reg x9 = reg x10 | reg x11

is this value in register x9:

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000two

The final logical operation is a contrarian. NOT takes one operand and places a 1
in the result if one operand bit is a 0, and vice versa. Using our prior notation, it
calculates x.

In keeping with the three-operand format, the designers of RISC-V decided to
include the instruction XOR (exclusive OR) instead of NOT. Since exclusive OR
creates a 0 when bits are the same and a 1 if they are different, the equivalent to
NOT is an xor 111…111.

If the register x10 is unchanged from the preceding example and register x12
has the value 0, the result of the RISC-V instruction

xor x9, x10, x12 // reg x9 = reg x10 ^ reg x12

is this value in register x9:

00000000 00000000 00000000 00000000 00000000 00000000 00110001 11000000two

Figure 2.8 above shows the relationship between the C and Java operators and
the RISC-V instructions. Constants are useful in logical operations as well as in
arithmetic operations, so RISC-V also provides the instructions and immediate
(andi), or immediate (ori), and exclusive or immediate (xori).

OR A logical bit-by-
bit operation with two
operands that calculates
a 1 if there is a 1 in either
operand.
NOT A logical bit-by-
bit operation with one
operand that inverts the
bits; that is, it replaces
every 1 with a 0, and
every 0 with a 1.

XOR A logical bit-by-
bit operation with two
operands that calculates
the exclusive OR of the
two operands. That is, it
calculates a 1 only if the
values are different in the
two operands.

92 Chapter 2 Instructions: Language of the Computer

Elaboration: C allows bit fields or fields to be defined within doublewords, both
allowing objects to be packed within a doubleword and to match an externally enforced
interface such as an I/O device. All fields must fit within a single doubleword. Fields are
unsigned integers that can be as short as 1 bit. C compilers insert and extract fields
using logical instructions in RISC-V: andi, ori, slli, and srli.

Which operations can isolate a field in a doubleword?

1. AND

2. A shift left followed by a shift right

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five variables
f through j correspond to the five registers x19 through x23, what is the
compiled RISC-V code for this C if statement?

if (i == j) f = g + h; else f = g − h;

Figure 2.9 shows a flowchart of what the RISC-V code should do. The first
expression compares for equality between two variables in registers. It would
seem that we would want to branch if I and j are equal (beq). In general, the
code will be more efficient if we test for the opposite condition to branch over
the code that branches if the values are not equal (bne). Here is the code:

bne x22, x23, Else // go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add x19, x20, x21 // f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruction
says that the processor always follows the branch. One way to express an
unconditional branch in RISC-V is to use a conditional branch whose
condition is always true:

beq x0, x0, Exit // if 0 == 0, go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label Else to
this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub x19, x20, x21 // f = g − h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language
programmer from the tedium of calculating addresses for branches, just as it does
for calculating data addresses for loads and stores (see Section 2.12).

conditional branch An
instruction that tests a
value and that allows for
a subsequent transfer of
control to a new address
in the program based on
the outcome of the test.

The utility of an
automatic computer lies
in the possibility of using
a given sequence of
instructions repeatedly,
the number of times it is
iterated being dependent
upon the results of the
computation.… This
choice can be made
to depend upon the
sign of a number (zero
being reckoned as plus
for machine purposes).
Consequently,
we introduce an
[instruction] (the
conditional transfer
[instruction]) which
will, depending on the
sign of a given number,
cause the proper one
of two routines to be
executed.
Burks, Goldstine, and
von Neumann, 1947

Check
Yourself

 2.7 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during computation,
different instructions execute. Decision making is commonly represented in
programming languages using the if statement, sometimes combined with go to
statements and labels. RISC-V assembly language includes two decision-making
instructions, similar to an if statement with a go to. The first instruction is

beq rs1, rs2, L1

This instruction means go to the statement labeled L1 if the value in register rs1
equals the value in register rs2. The mnemonic beq stands for branch if equal. The
second instruction is

bne rs1, rs2, L1

It means go to the statement labeled L1 if the value in register rs1 does not equal
the value in register rs2. The mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

 2.7 Instructions for Making Decisions 93

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five variables
f through j correspond to the five registers x19 through x23, what is the
compiled RISC-V code for this C if statement?

if (i == j) f = g + h; else f = g − h;

Figure 2.9 shows a flowchart of what the RISC-V code should do. The first
expression compares for equality between two variables in registers. It would
seem that we would want to branch if I and j are equal (beq). In general, the
code will be more efficient if we test for the opposite condition to branch over
the code that branches if the values are not equal (bne). Here is the code:

bne x22, x23, Else // go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add x19, x20, x21 // f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruction
says that the processor always follows the branch. One way to express an
unconditional branch in RISC-V is to use a conditional branch whose
condition is always true:

beq x0, x0, Exit // if 0 == 0, go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label Else to
this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub x19, x20, x21 // f = g − h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language
programmer from the tedium of calculating addresses for branches, just as it does
for calculating data addresses for loads and stores (see Section 2.12).

conditional branch An
instruction that tests a
value and that allows for
a subsequent transfer of
control to a new address
in the program based on
the outcome of the test.

ANSWER

EXAMPLE

94 Chapter 2 Instructions: Language of the Computer

Compilers frequently create branches and labels where they do not appear in
the programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level.

Loops
Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[i] == k)

 i += 1;

Assume that i and k correspond to registers x22 and x24 and the base of the
array save is in x25. What is the RISC-V assembly code corresponding to this
C code?

The first step is to load save[i] into a temporary register. Before we can load
save[i] into a temporary register, we need to have its address. Before we
can add i to the base of array save to form the address, we must multiply
the index i by 8 due to the byte addressing issue. Fortunately, we can use shift
left, since shifting left by 3 bits multiplies by 23 or 8 (see page 90 in the prior

EXAMPLE

ANSWER

Hardware/
Software
Interface

f = g + h f = g – h

i = j i ≠ j
i = = j?

Else:

Exit:

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.

 2.7 Instructions for Making Decisions 95

section). We need to add the label Loop to it so that we can branch back to that
instruction at the end of the loop:

Loop: slli x10, x22, 3 // Temp reg x10 = i * 8

To get the address of save[i], we need to add x10 and the base of save
in x25:

add x10, x10, x25 // x10 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

ld x9, 0(x10) // Temp reg x9 = save[i]

The next instruction performs the loop test, exiting if save[i] ≠ k:

bne x9, x24, Exit // go to Exit if save[i] ≠ k

The following instruction adds 1 to i:

addi x22, x22, 1 // i = i + 1

The end of the loop branches back to the while test at the top of the loop. We
just add the Exit label after it, and we’re done:

beq x0, x0, Loop // go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling
that they are given their own buzzword: a basic block is a sequence of instructions
without branches, except possibly at the end, and without branch targets or branch
labels, except possibly at the beginning. One of the first early phases of compilation
is breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but there are
many other relationships between two numbers. For example, a for loop may want
to test to see if the index variable is less than 0. The full set of comparisons is less
than (<), less than or equal (≤), greater than (>), greater than or equal (≥), equal
(=), and not equal (≠).

Comparison of bit patterns must also deal with the dichotomy between signed
and unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit
represents a negative number and, of course, is less than any positive number, which
must have a 0 in the most significant bit. With unsigned integers, on the other hand,
a 1 in the most significant bit represents a number that is larger than any that begins

basic block A sequence
of instructions without
branches (except possibly
at the end) and without
branch targets or branch
labels (except possibly at
the beginning).

Hardware/
Software
Interface

96 Chapter 2 Instructions: Language of the Computer

with a 0. (We’ll soon take advantage of this dual meaning of the most significant
bit to reduce the cost of the array bounds checking.) RISC-V provides instructions
that handle both cases. These instructions have the same form as beq and bne, but
perform different comparisons. The branch if less than (blt) instruction compares
the values in registers rs1 and rs2 and takes the branch if the value in rs1 is smaller,
when they are treated as two’s complement numbers. Branch if greater than or equal
(bge) takes the branch in the opposite case, that is, if the value in rs1 is at least the
value in rs2. Branch if less than, unsigned (bltu) takes the branch if the value in rs1 is
smaller than the value in rs2 when the values are treated as unsigned numbers. Finally,
branch if greater than or equal, unsigned (bgeu) takes the branch in the opposite case.

An alternative to providing these additional branch instructions is to set a
register based upon the result of the comparison, then branch on the value in that
temporary register with the beq or bne instructions. This approach, used by the
MIPS instruction set, can make the processor datapath slightly simpler, but it takes
more instructions to express a program.

Yet another alternative, used by ARM’s instruction sets, is to keep extra bits that
record what occurred during an instruction. These additional bits, called condition
codes or flags, indicate, for example, if the result of an arithmetic operation was
negative, or zero, or resulted in overflow.

Conditional branches then use combinations of these condition codes to
perform the desired test.

One downside to condition codes is that if many instructions always set them, it will
create dependencies that will make it difficult for pipelined execution (see Chapter 4).

Bounds Check Shortcut
Treating signed numbers as if they were unsigned gives us a low-cost way of
checking if 0 ≤ x < y, which matches the index out-of-bounds check for arrays. The
key is that negative integers in two’s complement notation look like large numbers
in unsigned notation; that is, the most significant bit is a sign bit in the former
notation but a large part of the number in the latter. Thus, an unsigned comparison
of x < y checks if x is negative as well as if x is less than y.

Use this shortcut to reduce an index-out-of-bounds check: branch to
IndexOutOfBounds if x20 ≥ x11 or if x20 is negative.

The checking code just uses unsigned greater than or equal to do both checks:

bgeu x20, x11, IndexOutOfBounds // if x20 >= x11 or
x20 < 0, goto IndexOutOfBounds

EXAMPLE

ANSWER

 2.7 Instructions for Making Decisions 97

Hardware/
Software
Interface

Check
Yourself

I. C has many statements for decisions and loops, while RISC-V has few.
Which of the following does or does not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.
2. Fewer decision statements simplify the task of the underlying layer that is

responsible for execution.
3. More decision statements mean fewer lines of code, which generally

reduces coding time.
4. More decision statements mean fewer lines of code, which generally

results in the execution of fewer operations.

II. Why does C provide two sets of operators for AND (& and &&) and two sets
of operators for OR (| and ||), while RISC-V doesn’t?

1. Logical operations AND and ORR implement & and |, while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply
inherited from the programming language B, the predecessor of C.

Case/Switch Statement
Most programming languages have a case or switch statement that allows the
programmer to select one of many alternatives depending on a single value. The
simplest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a branch address table or
branch table, and the program needs only to index into the table and then branch
to the appropriate sequence. The branch table is therefore just an array of double-
words containing addresses that correspond to labels in the code. The program
loads the appropriate entry from the branch table into a register. It then needs to
branch using the address in the register. To support such situations, computers like
RISC-V include an indirect jump instruction, which performs an unconditional
branch to the address specified in a register. In RISC-V, the jump-and-link register
instruction (jalr) serves this purpose. We’ll see an even more popular use of this
versatile instruction in the next section.

Although there are many statements for decisions and loops in programming
languages like C and Java, the bedrock statement that implements them at the
instruction set level is the conditional branch.

branch address
table Also called
branch table. A table of
addresses of alternative
instruction sequences.

98 Chapter 2 Instructions: Language of the Computer

 2.8 Supporting Procedures in Computer
Hardware

A procedure or function is one tool programmers use to structure programs, both
to make them easier to understand and to allow code to be reused. Procedures
allow the programmer to concentrate on just one portion of the task at a time;
parameters act as an interface between the procedure and the rest of the program
and data, since they can pass values and return results. We describe the equivalent
to procedures in Java in Section 2.15, but Java needs everything from a computer
that C needs. Procedures are one way to implement abstraction in software.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his or her tracks, and then returns to the point
of origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about the spymaster.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. RISC-V software follows the following
convention for procedure calling in allocating its 32 registers:

n	 x10–x17: eight parameter registers in which to pass parameters or return
values.

n	 x1: one return address register to return to the point of origin.

In addition to allocating these registers, RISC-V assembly language includes an
instruction just for the procedures: it branches to an address and simultaneously
saves the address of the following instruction to the destination register rd. The
jump-and-link instruction (jal) is written

jal x1, ProcedureAddress // jump to

ProcedureAddress and write return address to x1

procedure A stored
subroutine that performs
a specific task based
on the parameters with
which it is provided.

jump-and-link
instruction An
instruction that branches
to an address and
simultaneously saves the
address of the following
instruction in a register
(usually x1 in RISC-V).

 2.8 Supporting Procedures in Computer Hardware 99

The link portion of the name means that an address or link is formed that
points to the calling site to allow the procedure to return to the proper address.
This “link,” stored in register x1, is called the return address. The return address
is needed because the same procedure could be called from several parts of the
program.

To support the return from a procedure, computers like RISC-V use an indirect
jump, like the jump-and-link instruction (jalr) introduced above to help with
case statements:

jalr x0, 0(x1)

The jump-and-link register instruction branches to the address stored in
register x1—which is just what we want. Thus, the calling program, or caller, puts
the parameter values in x10–x17 and uses jal x1, X to branch to procedure X
(sometimes named the callee). The callee then performs the calculations, places
the results in the same parameter registers, and returns control to the caller using
jalr x0, 0(x1).

Implicit in the stored-program idea is the need to have a register to hold the address
of the current instruction being executed. For historical reasons, this register is almost
always called the program counter, abbreviated PC in the RISC-V architecture,
although a more sensible name would have been instruction address register. The jal
instruction actually saves PC + 4 in its designation register (usually x1) to link to the
byte address of the following instruction to set up the procedure return.

Elaboration: The jump-and-link instruction can also be used to perform an
unconditional branch within a procedure by using x0 as the destination register. Since
x0 is hard-wired to zero, the effect is to discard the return address:

jal x0, Label // unconditionally branch to Label

Using More Registers
Suppose a compiler needs more registers for a procedure than the eight argument
registers. Since we must cover our tracks after our mission is complete, any registers
needed by the caller must be restored to the values that they contained before the
procedure was invoked. This situation is an example in which we need to spill registers
to memory, as mentioned in the Hardware/Software Interface section on page 69.

The ideal data structure for spilling registers is a stack—a last-in-first-out queue.
A stack needs a pointer to the most recently allocated address in the stack to show
where the next procedure should place the registers to be spilled or where old
register values are found. In RISC-V, the stack pointer is register x2, also known
by the name sp. The stack pointer is adjusted by one doubleword for each register
that is saved or restored. Stacks are so popular that they have their own buzzwords
for transferring data to and from the stack: placing data onto the stack is called a
push, and removing data from the stack is called a pop.

return address A link to
the calling site that allows
a procedure to return to
the proper address; in
RISC-V it is stored in
register x1.

caller The program that
instigates a procedure and
provides the necessary
parameter values.

callee A procedure that
executes a series of stored
instructions based on
parameters provided by
the caller and then returns
control to the caller.

program counter
(PC) The register
containing the address
of the instruction in the
program being executed.

stack A data structure
for spilling registers
organized as a last-in-
first-out queue.

stack pointer A value
denoting the most
recently allocated address
in a stack that shows
where registers should
be spilled or where old
register values can be
found. In RISC-V, it is
register sp, or x2.

push Add element to
stack.

pop Remove element
from stack.

100 Chapter 2 Instructions: Language of the Computer

By historical precedent, stacks “grow” from higher addresses to lower addresses.
This convention means that you push values onto the stack by subtracting from the
stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values
off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 66 from Section 2.2 into a C procedure:

long long int leaf_example (long long int g, long long
int h, long long int i, long long int j)
{
 long long int f;

 f = (g + h) − (i + j);
 return f;
}

What is the compiled RISC-V assembly code?

The parameter variables g, h, i, and j correspond to the argument registers
x10, x11, x12, and x13, and f corresponds to x20. The compiled program
starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 67, which
uses two temporary registers (x5 and x6). Thus, we need to save three registers:
x5, x6, and x20. We “push” the old values onto the stack by creating space for
three doublewords (24 bytes) on the stack and then store them:

addi sp, sp, -24 // adjust stack to make room for 3 items
sd x5, 16(sp) // save register x5 for use afterwards
sd x6, 8(sp) // save register x6 for use afterwards
sd x20, 0(sp) // save register x20 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which

follows the example on page 67:

add x5, x10, x11 // register x5 contains g + h
add x6, x12, x13 // register x6 contains i + j
sub x20, x5, x6 // f = x5 − x6, which is (g + h) − (i + j)

EXAMPLE

ANSWER

 2.8 Supporting Procedures in Computer Hardware 101

To return the value of f, we copy it into a parameter register:

addi x10, x20, 0 // returns f (x10 = x20 + 0)

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

ld x20, 0(sp) // restore register x20 for caller
ld x6, 8(sp) // restore register x6 for caller
ld x5, 16(sp) // restore register x5 for caller
addi sp, sp, 24 // adjust stack to delete 3 items

The procedure ends with a branch register using the return address:

jalr x0, 0(x1) // branch back to calling routine

In the previous example, we used temporary registers and assumed their old
values must be saved and restored. To avoid saving and restoring a register whose
value is never used, which might happen with a temporary register, RISC-V
software separates 19 of the registers into two groups:

n	 x5−x7 and x28−x31: temporary registers that are not preserved by the callee
(called procedure) on a procedure call

n	 x8−x9 and x18−x27: saved registers that must be preserved on a procedure
call (if used, the callee saves and restores them)

High address

Low address

Contents of register x5

Contents of register x6

Contents of register x20

SP

SP

SP

(a) (b) (c)

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last doubleword
in the stack in this drawing.

102 Chapter 2 Instructions: Language of the Computer

This simple convention reduces register spilling. In the example above, since the
caller does not expect registers x5 and x6 to be preserved across a procedure call,
we can drop two stores and two loads from the code. We still must save and restore
x20, since the callee must assume that the caller needs its value.

Nested Procedures
Procedures that do not call others are called leaf procedures. Life would be simple if
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other
spies as part of a mission, who in turn might use even more spies, so do procedures
invoke other procedures. Moreover, recursive procedures even invoke “clones”
of themselves. Just as we need to be careful when using registers in procedures,
attention must be paid when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument
of 3, by placing the value 3 into register x10 and then using jal x1, A. Then
suppose that procedure A calls procedure B via jal x1, B with an argument of
7, also placed in x10. Since A hasn’t finished its task yet, there is a conflict over the
use of register x10. Similarly, there is a conflict over the return address in register
x1, since it now has the return address for B. Unless we take steps to prevent the
problem, this conflict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved on the stack,
just as we did with the saved registers. The caller pushes any argument registers
(x10–x17) or temporary registers (x5-x7 and x28-x31) that are needed after the
call. The callee pushes the return address register x1 and any saved registers (x8-
x9 and x18-x27) used by the callee. The stack pointer sp is adjusted to account
for the number of registers placed on the stack. Upon the return, the registers are
restored from memory, and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let’s tackle a recursive procedure that calculates factorial:

long long int fact (long long int n)
{
 if (n < 1) return (1);
 else return (n * fact(n − 1));
}

What is the RISC-V assembly code?

The parameter variable n corresponds to the argument register x10. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and x10:

EXAMPLE

ANSWER

 2.8 Supporting Procedures in Computer Hardware 103

fact:
 addi sp, sp, -16 // adjust stack for 2 items
 sd x1, 8(sp) // save the return address
 sd x10, 0(sp) // save the argument n

The first time fact is called, sd saves an address in the program that called
fact. The next two instructions test whether n is less than 1, going to L1 if
n ≥ 1.

addi x5, x10, -1 // x5 = n - 1
bge x5, x0, L1 // if (n - 1) >= 0, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to
0 and places that sum in x10. It then pops the two saved values off the stack
and branches to the return address:

addi x10, x0, 1 // return 1
addi sp, sp, 16 // pop 2 items off stack
jalr x0, 0(x1) // return to caller

Before popping two items off the stack, we could have loaded x1 and
x10. Since x1 and x10 don’t change when n is less than 1, we skip those
instructions.

If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

L1: addi x10, x10, -1 // n >= 1: argument gets (n − 1)
 jal x1, fact // call fact with (n − 1)

The next instruction is where fact returns; its result is in x10 . Now the old
return address and old argument are restored, along with the stack pointer:

addi x6, x10, 0 // return from jal: move result of fact
(n - 1) to x6:

ld x10, 0(sp) // restore argument n
ld x1, 8(sp) // restore the return address
addi sp, sp, 16 // adjust stack pointer to pop 2 items

Next, argument register x10 gets the product of the old argument and the
result of fact(n - 1), now in x6. We assume a multiply instruction is available,
even though it is not covered until Chapter 3:

mul x10, x10, x6 // return n * fact (n − 1)

Finally, fact branches again to the return address:

jalr x0, 0(x1) // return to the caller

104 Chapter 2 Instructions: Language of the Computer

A C variable is generally a location in storage, and its interpretation depends both
on its type and storage class. Example types include integers and characters (see
Section 2.9). C has two storage classes: automatic and static. Automatic variables
are local to a procedure and are discarded when the procedure exits. Static variables
exist across exits from and entries to procedures. C variables declared outside all
procedures are considered static, as are any variables declared using the keyword
static. The rest are automatic. To simplify access to static data, some RISC-V
compilers reserve a register x3 for use as the global pointer, or gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that
several schemes preserve the stack, guaranteeing that the caller will get the same
data back on a load from the stack as it stored onto the stack. The stack above sp
is preserved simply by making sure the callee does not write above sp; sp is itself
preserved by the callee adding exactly the same amount that was subtracted from
it; and the other registers are preserved by saving them on the stack (if they are
used) and restoring them from there.

global pointer The
register that is reserved to
point to the static area.

the stack whether or not an explicit frame pointer is used. We’ve been avoiding
using fp by avoiding changes to sp within a procedure: in our examples, the stack
is adjusted only on entry to and exit from the procedure.

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need
space in memory for static variables and for dynamic data structures. Figure 2.13
shows the RISC-V convention for allocation of memory when running the Linux
operating system. The stack starts in the high end of the user addresses space (see
Chapter 5) and grows down. The first part of the low end of memory is reserved,
followed by the home of the RISC-V machine code, traditionally called the text
segment. Above the code is the static data segment, which is the place for constants
and other static variables. Although arrays tend to be a fixed length and thus are a
good match to the static data segment, data structures like linked lists tend to grow
and shrink during their lifetimes. The segment for such data structures is traditionally
called the heap, and it is placed next in memory. Note that this allocation allows
the stack and heap to grow toward each other, thereby allowing the efficient use of
memory as the two segments wax and wane.

frame pointer A value
denoting the location of
the saved registers and
local variables for a given
procedure.

text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

Hardware/
Software
Interface

Saved registers: x8-x9, x18-x27 Temporary registers: x5-x7, x28-x31

Preserved Not preserved

Stack pointer register: x2(sp) Argument/result registers: x10–x17

Stack above the stack pointer Stack below the stack pointer

Frame pointer: x8(fp)

Return address: x1(ra)

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the global pointer register, discussed in the following subsections, it is also preserved.

Allocating Space for New Data on the Stack
The final complexity is that the stack is also used to store variables that are local
to the procedure but do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.12 shows the state of the
stack before, during, and after the procedure call.

Some RISC-V compilers use a frame pointer fp, or register x8 to point to the
first doubleword of the frame of a procedure. A stack pointer might change during
the procedure, and so references to a local variable in memory might have different
offsets depending on where they are in the procedure, making the procedure harder
to understand. Alternatively, a frame pointer offers a stable base register within a
procedure for local memory-references. Note that an activation record appears on

procedure frame Also
called activation record.
The segment of the stack
containing a procedure’s
saved registers and local
variables.

 2.8 Supporting Procedures in Computer Hardware 105

the stack whether or not an explicit frame pointer is used. We’ve been avoiding
using fp by avoiding changes to sp within a procedure: in our examples, the stack
is adjusted only on entry to and exit from the procedure.

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need
space in memory for static variables and for dynamic data structures. Figure 2.13
shows the RISC-V convention for allocation of memory when running the Linux
operating system. The stack starts in the high end of the user addresses space (see
Chapter 5) and grows down. The first part of the low end of memory is reserved,
followed by the home of the RISC-V machine code, traditionally called the text
segment. Above the code is the static data segment, which is the place for constants
and other static variables. Although arrays tend to be a fixed length and thus are a
good match to the static data segment, data structures like linked lists tend to grow
and shrink during their lifetimes. The segment for such data structures is traditionally
called the heap, and it is placed next in memory. Note that this allocation allows
the stack and heap to grow toward each other, thereby allowing the efficient use of
memory as the two segments wax and wane.

frame pointer A value
denoting the location of
the saved registers and
local variables for a given
procedure.

text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

High address

Low address
(a) (b) (c)

Saved argument
registers (if any)

SP

SP

SP

FP

FP

FP

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer (fp or x8) points to the first doubleword of the frame, often a saved
argument register, and the stack pointer (sp) points to the top of the stack. The stack is adjusted to make room
for all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When
a frame pointer is used, it is initialized using the address in sp on a call, and sp is restored using fp. This
information is also found in Column 4 of the RISC-V Reference Data Card at the front of this book.

106 Chapter 2 Instructions: Language of the Computer

C allocates and frees space on the heap with explicit functions. malloc()
allocates space on the heap and returns a pointer to it, and free() releases space on
the heap to which the pointer points. C programs control memory allocation, which
is the source of many common and difficult bugs. Forgetting to free space leads to a
“memory leak,” which ultimately uses up so much memory that the operating system
may crash. Freeing space too early leads to “dangling pointers,” which can cause
pointers to point to things that the program never intended. Java uses automatic
memory allocation and garbage collection just to avoid such bugs.

Figure 2.14 summarizes the register conventions for the RISC-V assembly
language. This convention is another example of making the common case fast:
most procedures can be satisfied with up to eight argument registers, twelve saved
registers, and seven temporary registers without ever going to memory.

Elaboration: What if there are more than eight parameters? The RISC-V convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first eight parameters to be in registers x10 through x17 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because
all references to variables in the stack within a procedure will have the same offset.
The frame pointer is not necessary, however. The RISC-V C compiler only uses a frame
pointer in procedures that change the stack pointer in the body of the procedure.

FIGURE 2.13 The RISC-V memory allocation for program and data. These addresses are only a
software convention, and not part of the RISC-V architecture. The user address space is set to 238 of the potential
264 total address space given a 64-bit architecture (see Chapter 5). The stack pointer is initialized to 0000 003f
ffff fff0hex and grows down toward the data segment. At the other end, the program code (“text”) starts
at 0000 0000 0040 0000hex. The static data starts immediately after the end of the text segment; in this
example, we assume that address is 0000 0000 1000 0000hex. Dynamic data, allocated by malloc in C
and by new in Java, is next. It grows up toward the stack in an area called the heap. This information is also
found in Column 4 of the RISC-V Reference Data Card at the front of this book.

Stack

Dynamic data

Static data

Text

Reserved

SP 0000 003f ffff fff0hex

0000 0000 1000 0000hex

PC 0000 0000 0040 0000hex

0

 2.8 Supporting Procedures in Computer Hardware 107

Elaboration: Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing the overhead
associated with recursive procedure calls. For example, consider a procedure used to
accumulate a sum:

long long int sum (long long int n, long long int acc) {
 if (n > 0)
 return sum(n − 1, acc + n);
 else
 return acc;

}

Consider the procedure call sum(3,0). This will result in recursive calls to
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four
times. This recursive call of sum is referred to as a tail call, and this example use
of tail recursion can be implemented very efficiently (assume x10 = n, x11 =
acc, and the result goes into x12):

sum: ble x10, x0, sum_exit // go to sum_exit if n <= 0
 add x11, x11, x10 // add n to acc
 addi x10, x10, -1 // subtract 1 from n
 jal x0, sum // jump to sum
sum_exit:
 addi x12, x11, 0 // return value acc
 jalr x0, 0(x1) // return to caller

FIGURE 2.14 RISC-V register conventions. This information is also found in Column 2 of the
RISC-V Reference Data Card at the front of this book.

Name
Register
number

Usage
Preserved

on call?

x0 0 The constant value 0 n.a.

x1 (ra) 1 Return address (link register) yes

x2 (sp) 2 Stack pointer yes

x3 (gp) 3 Global pointer yes

x4 (tp) 4 Thread pointer yes

x5-x7 5–7 Temporaries no

x8-x9 8–9 Saved yes

x10-x17 10–17 Arguments/results no

x18-x27 18–27 Saved yes

x28-x31 28–31 Temporaries no

108 Chapter 2 Instructions: Language of the Computer

Which of the following statements about C and Java is generally true?

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 2.9 Communicating with People

Computers were invented to crunch numbers, but as soon as they became
commercially viable they were used to process text. Most computers today offer
8-bit bytes to represent characters, with the American Standard Code for Information
Interchange (ASCII) being the representation that nearly everyone follows. Figure
2.15 summarizes ASCII.

Check
Yourself

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can
lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a
backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses
to mark the end of a string.

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

096 ` 112 p

33 ! 49 097 a 113 q

34 " 50 098 b 114 r

35 # 51 3 6 099 c 115 s

36 $ 52

32 space 48 0 64 @ 80 P

1 65 A 81 Q

2 66 B 82 R

7 C 83 S

4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

!(@ | = > (wow open
tab at bar is great)
Fourth line of the
keyboard poem “Hatless
Atlas,” 1991 (some
give names to ASCII
characters: “!” is “wow,”
“(” is open, “|” is bar,
and so on).

 2.9 Communicating with People 109

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers.
How much does storage increase if the number 1 billion is represented in
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.
Thus the storage expansion would be (10 × 8)/32 or 2.5. Beyond the expansion
in storage, the hardware to add, subtract, multiply, and divide such decimal
numbers is difficult and would consume more energy. Such difficulties explain
why computing professionals are raised to believe that binary is natural and
that the occasional decimal computer is bizarre.

A series of instructions can extract a byte from a doubleword, so load register
and store register are sufficient for transferring bytes as well as words. Because
of the popularity of text in some programs, however, RISC-V provides instructions
to move bytes. Load byte unsigned (lbu) loads a byte from memory, placing
it in the rightmost 8 bits of a register. Store byte (sb) takes a byte from the
rightmost 8 bits of a register and writes it to memory. Thus, we copy a byte with
the sequence

lbu x12, 0(x10) // Read byte from source
sb x12, 0(x11) // Write byte to destination

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first position
of the string is reserved to give the length of a string, (2) an accompanying variable
has the length of the string (as in a structure), or (3) the last position of a string is
indicated by a character used to mark the end of a string. C uses the third choice,
terminating a string with a byte whose value is 0 (named null in ASCII). Thus,
the string “Cal” is represented in C by the following 4 bytes, shown as decimal
numbers: 67, 97, 108, and 0. (As we shall see, Java uses the first option.)

EXAMPLE

ANSWER

110 Chapter 2 Instructions: Language of the Computer

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte
termination convention of C:

void strcpy (char x[], char y[])
{
 size_t i;
 i = 0;
 while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */
 i += 1;
}

What is the RISC-V assembly code?

Below is the basic RISC-V assembly code segment. Assume that base addresses
for arrays x and y are found in x10 and x11, while i is in x19. strcpy adjusts
the stack pointer and then saves the saved register x19 on the stack:

strcpy:
 addi sp, sp, -8 // adjust stack for 1 more item
 sd x19, 0(sp) // save x19

To initialize i to 0, the next instruction sets x19 to 0 by adding 0 to 0 and
placing that sum in x19:

add x19, x0, x0 // i = 0+0

This is the beginning of the loop. The address of y[i] is first formed by adding
i to y[]:

L1: add x5, x19, x11 // address of y[i] in x5

Note that we don’t have to multiply i by 8 since y is an array of bytes and not
of doublewords, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the
character into x6:

lbu x6, 0(x5) // x6 = y[i]

EXAMPLE

ANSWER

 2.9 Communicating with People 111

A similar address calculation puts the address of x[i] in x7, and then the
character in x6 is stored at that address.

add x7, x19, x10 // address of x[i] in x7
sb x6, 0(x7) // x[i] = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last
character of the string:

beq x6, x0, L2

If not, we increment i and loop back:

addi x19, x19, 1 // i = i + 1
jal x0, L1 // go to L1

If we don’t loop back, it was the last character of the string; we restore x19 and
the stack pointer, and then return.

L2: ld x19, 0(sp) // restore old x19
 addi sp, sp, 8 // pop 1 doubleword off stack
 jalr x0, 0(x1) // return

String copies usually use pointers instead of arrays in C to avoid the operations
on i in the code above. See Section 2.14 for an explanation of arrays versus
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could
allocate i to a temporary register and avoid saving and restoring x19. Hence,
instead of thinking of these registers as being just for temporaries, we can think of
them as registers that the callee should use whenever convenient. When a compiler
finds a leaf procedure, it exhausts all temporary registers before using registers it
must save.

Characters and Strings in Java
Unicode is a universal encoding of the alphabets of most human languages. Figure
2.16 gives a list of Unicode alphabets; there are almost as many alphabets in Unicode
as there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for
characters. By default, it uses 16 bits to represent a character.

112 Chapter 2 Instructions: Language of the Computer

The RISC-V instruction set has explicit instructions to load and store such 16-
bit quantities, called halfwords. Load half unsigned loads a halfword from memory,
placing it in the rightmost 16 bits of a register, filling the leftmost 48 bits with
zeros. Like load byte, load half (lh) treats the halfword as a signed number and
thus sign-extends to fill the 48 leftmost bits of the register. Store half (sh) takes a
halfword from the rightmost 16 bits of a register and writes it to memory. We copy
a halfword with the sequence

lhu x19, 0(x10) // Read halfword (16 bits) from source
sh x19, 0(x11) // Write halfword (16 bits) to dest

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes a
word that gives the length of the string, similar to Java arrays.

Elaboration: RISC-V software is required to keep the stack aligned to “quadword”
(16 byte) addresses to get better performance. This convention means that a char
variable allocated on the stack may occupy as much as 16 bytes, even though it needs
less. However, a C string variable or an array of bytes will pack 16 bytes per quadword,
and a Java string variable or array of shorts packs 8 halfwords per quadword.

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,”
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at
0370hex, and Cyrillic at 0400hex. The first three columns show 48 blocks that correspond to human languages
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order.
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII
subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn
more, see www.unicode.org.

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

http://www.unicode.org

 2.10 RISC-V Addressing for Wide Immediates and Addresses 113

Elaboration: Reflecting the international nature of the web, most web pages today use
Unicode instead of ASCII. Hence, Unicode may be even more popular than ASCII today.

Elaboration: RISC-V also includes instructions to move 32-bit values to and from
memory. Load word unsigned (lwu) loads a 32-bit word from memory into the rightmost
32 bits of a register, filling the leftmost 32 bits with zeros. Load word (lw) instead fills the
leftmost 32 bits with copies of bit 31. Store word (sw) takes a word from the rightmost 32
bits of a register and stores it to memory.

I. Which of the following statements about characters and strings in C and
Java is true?

1. A string in C takes about half the memory as the same string in Java.
2. Strings are just an informal name for single-dimension arrays of

characters in C and Java.
3. Strings in C and Java use null (0) to mark the end of a string.
4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000ten takes the most
memory space?

1. long long int in C
2. string in C
3. string in Java

 2.10 RISC-V Addressing for Wide Immediates
and Addresses

Although keeping all RISC-V instructions 32 bits long simplifies the hardware,
there are times where it would be convenient to have 32-bit or larger constants or
addresses. This section starts with the general solution for large constants, and then
shows the optimizations for instruction addresses used in branches.

Wide Immediate Operands
Although constants are frequently short and fit into the 12-bit fields, sometimes they
are bigger.

The RISC-V instruction set includes the instruction Load upper immediate
(lui) to load a 20-bit constant into bits 12 through 31 of a register. The leftmost
32 bits are filled with copies of bit 31, and the rightmost 12 bits are filled with
zeros. This instruction allows, for example, a 32-bit constant to be created with

Check
Yourself

114 Chapter 2 Instructions: Language of the Computer

two instructions. lui uses a new instruction format, U-type, as the other formats
cannot accommodate such a large constant.

Loading a 32-Bit Constant

What is the RISC-V assembly code to load this 64-bit constant into register
x19?

00000000 00000000 00000000 00000000 00000000 00111101 00000101 00000000

First, we would load bits 12 through 31 with that bit pattern, which is 976 in
decimal, using lui:

lui x19, 976 // 976decimal = 0000 0000 0011 1101 0000

The value of register x19 afterward is:

0000000 00000000 00000000 00000000 00000000 00111101 00000000 00000000

The next step is to add in the lowest 12 bits, whose decimal value is 1280:

addi x19, x19, 1280 // 1280decimal = 00000101 00000000

The final value in register x19 is the desired value:

00000000 00000000 00000000 00000000 00000000 00111101 00000101 00000000

Hardware/
Software
Interface

EXAMPLE

ANSWER

Elaboration: In the previous example, bit 11 of the constant was 0. If bit 11 had
been set, there would have been an additional complication: the 12-bit immediate
is sign-extended, so the addend would have been negative. This means that in
addition to adding in the rightmost 11 bits of the constant, we would have also
subtracted 212. To compensate for this error, it suffices to add 1 to the constant
loaded with lui, since the lui constant is scaled by 212.

Either the compiler or the assembler must break large constants into pieces and
then reassemble them into a register. As you might expect, the immediate field’s
size restriction may be a problem for memory addresses in loads and stores as well
as for constants in immediate instructions.
Hence, the symbolic representation of the RISC-V machine language is no longer
limited by the hardware, but by whatever the creator of an assembler chooses to
include (see Section 2.12). We stick close to the hardware to explain the architecture
of the computer, noting when we use the enhanced language of the assembler that
is not found in the processor.

 2.10 RISC-V Addressing for Wide Immediates and Addresses 115

Addressing in Branches
The RISC-V branch instructions use the RISC-V instruction format called SB-
type. This format can represent branch addresses from −4096 to 4094, in multiples
of 2. For reasons revealed shortly, it is only possible to branch to even addresses.
The SB-type format consists of a 7-bit opcode, a 3-bit function code, two 5-bit
register operands (rs1 and rs2), and a 12-bit address immediate. The address uses
an unusual encoding, which simplifies datapath design but complicates assembly.
The instruction

bne x10, x11, 2000 // if x10 != x11, go to location 2000ten = 0111 1101 0000

could be assembled into this format (it’s actually a bit more complicated, as we will
see):

0 111110 01011 01010 001 1000 0 1100111

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

where the opcode for conditional branches is 1100111two and bne’s funct3 code is
001two.

The unconditional jump-and-link instruction (jal) is the only instruction
that uses the UJ-type format. This instruction consists of a 7-bit opcode, a 5-bit
destination register operand (rd), and a 20-bit address immediate. The link address,
which is the address of the instruction following the jal, is written to rd.

Like the SB-type format, the UJ-type format’s address operand uses an unusual
immediate encoding, and it cannot encode odd addresses. So,

jal x0, 2000 // go to location 2000ten = 0111 1101 0000

is assembled into this format:

0 1111101000 0 00000000 00000 1101111

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

If addresses of the program had to fit in this 20-bit field, it would mean that no
program could be bigger than 220, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added
to the branch offset, so that a branch instruction would calculate the following:

Program counter Register Branch o�set

This sum allows the program to be as large as 264 and still be able to use
conditional branches, solving the branch address size problem. Then the question
is, which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a

116 Chapter 2 Instructions: Language of the Computer

nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
±210 words of the current instruction, or jump within ±218 words of the current
instruction, if we use the PC as the register to be added to the address. Almost all
loops and if statements are smaller than 210 words, so the PC is the ideal choice.
This form of branch addressing is called PC-relative addressing.

Like most recent computers, RISC-V uses PC-relative addressing for both
conditional branches and unconditional jumps, because the destination of these
instructions is likely to be close to the branch. On the other hand, procedure calls
may require jumping more than 218 words away, since there is no guarantee that
the callee is close to the caller. Hence, RISC-V allows very long jumps to any 32-
bit address with a two-instruction sequence: lui writes bits 12 through 31 of the
address to a temporary register, and jalr adds the lower 12 bits of the address to
the temporary register and jumps to the sum.

Since RISC-V instructions are 4 bytes long, the RISC-V branch instructions could
have been designed to stretch their reach by having the PC-relative address refer to
the number of words between the branch and the target instruction, rather than the
number of bytes. However, the RISC-V architects wanted to support the possibility of
instructions that are only 2 bytes long, so the branch instructions represent the number
of halfwords between the branch and the branch target. Thus, the 20-bit address field
in the jal instruction can encode a distance of ±219 halfwords, or ±1 MiB from the
current PC. Similarly, the 12-bit field in the conditional branch instructions is also a
halfword address, meaning that it represents a 13-bit byte address.

Showing Branch Offset in Machine Language

The while loop on page 94 was compiled into this RISC-V assembler code:

Loop:slli x10, x22, 3 // Temp reg x10 = i * 8
 add x10, x10, x25 // x10 = address of save[i]
 ld x9, 0(x10) // Temp reg x9 = save[i]
 bne x9, x24, Exit // go to Exit if save[i] != k
 addi x22, x22, 1 // i = i + 1
 beq x0, x0, Loop // go to Loop
Exit:

If we assume we place the loop starting at location 80000 in memory, what is
the RISC-V machine code for this loop?

PC-relative
addressing An
addressing regime
in which the address
is the sum of the
program counter (PC)
and a constant in the
instruction.

EXAMPLE

ANSWER

 2.10 RISC-V Addressing for Wide Immediates and Addresses 117

The assembled instructions and their addresses are:

Address Instruction

80000 0000000 00011 10110 001 01010 0010011

80004 0000000 11001 01010 000 01010 0110011

80008 0000000 00000 01010 011 01001 0000011

80012 0000000 11000 01001 001 01100 1100011

80016 0000000 00001 10110 000 10110 0010011

80020 1111111 00000 00000 000 01101 1100011

Remember that RISC-V instructions have byte addresses, so addresses of
sequential words differ by 4. The bne instruction on the fourth line adds 3 words
or 12 bytes to the address of the instruction, specifying the branch destination
relative to the branch instruction (12 + 80012) and not using the full destination
address (80024). The branch instruction on the last line does a similar calculation
for a backwards branch (−20 + 80020), corresponding to the label Loop.

Hardware/
Software
Interface

EXAMPLE

ANSWER

addressing mode One
of several addressing
regimes delimited by their
varied use of operands
and/or addresses.

Most conditional branches are to a nearby location, but occasionally they branch
far away, farther than can be represented in the 12-bit address in the conditional
branch instruction. The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional branch to the branch target, and
inverts the condition so that the conditional branch decides whether to skip the
unconditional branch.

Branching Far Away

Given a branch on register x10 being equal to zero,

beq x10, x0, L1

replace it by a pair of instructions that offers a much greater branching distance.
These instructions replace the short-address conditional branch:

 bne x10, x0, L2
 jal x0, L1
L2:

RISC-V Addressing Mode Summary
Multiple forms of addressing are generically called addressing modes. Figure
2.17 shows how operands are identified for each addressing mode. The addressing
modes of the RISC-V instructions are the following:

118 Chapter 2 Instructions: Language of the Computer

1. Immediate addressing, where the operand is a constant within the instruction
itself.

2. Register addressing, where the operand is a register.

3. Base or displacement addressing, where the operand is at the memory location
whose address is the sum of a register and a constant in the instruction.

4. PC-relative addressing, where the branch address is the sum of the PC and a
constant in the instruction.

Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the
original assembly language. One example is when looking at “core dump.” Figure
2.18 shows the RISC-V encoding of the opcodes for the RISC-V machine language.
This figure helps when translating by hand between assembly language and machine
language.

FIGURE 2.17 Illustration of four RISC-V addressing modes. The operands are shaded in color. The operand of mode 3 is in
memory, whereas the operand for mode 2 is a register. Note that versions of load and store access bytes, halfwords, words, or doublewords.
For mode 1, the operand is part of the instruction itself. Mode 4 addresses instructions in memory, with mode 4 adding a long address to the
PC. Note that a single operation can use more than one addressing mode. Add, for example, uses both immediate (addi) and register (add)
addressing.

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

funct7 rs2 funct3 op

Register

Registers

Word Doubleword

Memory

+Register HalfwordByte

Word

Memory

PC

rs1 rd

immediate funct3 oprs1 rd

immediate funct3 oprs1 rd

funct3 oprs1 immimm rs2

+

 2.10 RISC-V Addressing for Wide Immediates and Addresses 119

FIGURE 2.18 RISC-V instruction encoding. All instructions have an opcode field, and all formats
except U-type and UJ-type use the funct3 field. R-type instructions use the funct7 field, and immediate shifts
(slli, srli, srai) use the funct6 field.

Format Instruction Opcode Funct3 Funct6/7

R-type

add 0110011 000 0000000
sub 0110011 000 0100000
sll 0110011 001 0000000
xor 0110011 100 0000000
srl 0110011 101 0000000
sra 0110011 101 0000000
or 0110011 110 0000000
and 0110011 111 0000000
lr.d 0110011 011 0001000
sc.d 0110011 011 0001100
lb 0000011 000 n.a.
lh 0000011 001 n.a.
lw 0000011 010 n.a.
ld 0000011 011 n.a.

n.a.lbu 0000011 100
lhu 0000011 101 n.a.
lwuI-type 0000011 110 n.a.
addi 0010011 000 n.a.

000000

n.a.
000000
010000

n.a.
n.a.
n.a.

slli 0010011 001
xori 0010011 100
srli 0010011 101
srai 0010011 101
ori 0010011 110
andi 0010011 111
jalr 1100111 000
sb 0100011 000 n.a.

n.a.
n.a.
n.a.

n.a.

n.a.

S-type

SB-type

sh 0100011 001
sw 0100011 010
sd 0100011 111
beq 1100111 000
bne 1100111 001
blt 1100111 100 n.a.
bge 1100111 101 n.a.
bltu 1100111 110

n.a.

n.a.
n.a.

n.a.
n.a.

bgeu
lui

1100111 111
U-type 0110111 n.a.

jalUJ-type 1101111 n.a.

120 Chapter 2 Instructions: Language of the Computer

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

00578833hex

The first step is converting hexadecimal to binary:

0000 0000 0101 0111 1000 1000 0011 0011

To know how to interpret the bits, we need to determine the instruction
format, and to do that we first need to determine the opcode. The opcode is
the rightmost 7 bits, or 0110011. Searching Figure 2.20 for this value, we see
that the opcode corresponds to the R-type arithmetic instructions. Thus, we
can parse the binary format into fields listed in Figure 2.21:

funct7 rs2 rs1 funct3 rd opcode

0000000 00101 01111 000 10000 0110011

We decode the rest of the instruction by looking at the field values. The
funct7 and funct3 fields are both zero, indicating the instruction is add. The
decimal values for the register operands are 5 for the rs2 field, 15 for rs1, and 16
for rd. These numbers represent registers x5, x15, and x16. Now we can reveal
the assembly instruction:

add x16, x15, x5

Figure 2.19 shows all the RISC-V instruction formats. Figure 2.1 on pages
64–65 shows the RISC-V assembly language revealed in this chapter. The next
chapter covers RISC-V instructions for multiply, divide, and arithmetic for real
numbers.

EXAMPLE

ANSWER

FIGURE 2.19 RISC-V instruction formats.

(Field size)
Name Field Comments

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-type funct7 rs2 rs1 funct3 rd opcode Arithmetic instruction format

I-type rs1 funct3 rd opcode Loads & immediate arithmetic

S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode Stores

SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode Conditional branch format

UJ-type rd opcode Unconditional jump format

U-type rd opcode Upper immediate format

immediate[11:0]

immediate[20,10:1,11,19:12]
immediate[31:12]

 2.11 Parallelism and Instructions: Synchronization 121

 2.11
Parallelism and Instructions:
Synchronization

Parallel execution is easier when tasks are independent, but often they need to
cooperate. Cooperation usually means some tasks are writing new values that
others must read. To know when a task is finished writing so that it is safe for
another to read, the tasks need to synchronize. If they don’t synchronize, there is a
danger of a data race, where the results of the program can change depending on
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on pages 44–45
of Chapter 1. Suppose one reporter needs to read all the prior sections before writing
a conclusion. Hence, he or she must know when the other reporters have finished
their sections, so that there is no danger of sections being changed afterwards. That
is, they had better synchronize the writing and reading of each section so that the
conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level
software routines that rely on hardware-supplied synchronization instructions. In
this section, we focus on the implementation of lock and unlock synchronization
operations. Lock and unlock can be used straightforwardly to create regions
where only a single processor can operate, called a mutual exclusion, as well as to
implement more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiprocessor
is a set of hardware primitives with the ability to atomically read and modify a
memory location. That is, nothing else can interpose itself between the read and
the write of the memory location. Without such a capability, the cost of building
basic synchronization primitives will be high and will increase unreasonably as the
processor count increases.

data race Two memory
accesses form a data race
if they are from different
threads to the same
location, at least one is a
write, and they occur one
after another.

I. What is the range of byte addresses for conditional branches in RISC-V
(K = 1024)?

1. Addresses between 0 and 4K − 1
2. Addresses between 0 and 8K − 1
3. Addresses up to about 2K before the branch to about 2K after
4. Addresses up to about 4K before the branch to about 4K after

II. What is the range of byte addresses for the jump-and-link instruction in
RISC-V (M = 1024K)?

1. Addresses between 0 and 512K − 1
2. Addresses between 0 and 1M − 1
3. Addresses up to about 512K before the branch to about 512K after
4. Addresses up to about 1M before the branch to about 1M after

Check
Yourself

122 Chapter 2 Instructions: Language of the Computer

There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. In general,
architects do not expect users to employ the basic hardware primitives, but instead
expect system programmers will use the primitives to build a synchronization
library, a process that is often complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to
build a basic synchronization primitive. One typical operation for building
synchronization operations is the atomic exchange or atomic swap, which inter-
changes a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that
we want to build a simple lock where the value 0 is used to indicate that the lock
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set
the lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1
if some other processor had already claimed access, and 0 otherwise. In the latter
case, the value is also changed to 1, preventing any competing exchange in another
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange simultane-
ously: this race is prevented, since exactly one of the processors will perform the
exchange first, returning 0, and the second processor will return 1 when it does the
exchange. The key to using the exchange primitive to implement synchronization
is that the operation is atomic: the exchange is indivisible, and two simultaneous
exchanges will be ordered by the hardware. It is impossible for two processors
trying to set the synchronization variable in this manner to both think they have
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in
the design of the processor, since it requires both a memory read and a write in a
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction
returns a value showing whether the pair of instructions was executed as if the pair
was atomic. The pair of instructions is effectively atomic if it appears as if all other
operations executed by any processor occurred before or after the pair. Thus, when
an instruction pair is effectively atomic, no other processor can change the value
between the pair of instructions.

In RISC-V this pair of instructions includes a special load called a load-reserved
doubleword (lr.d) and a special store called a store-conditional doubleword (sc.d).
These instructions are used in sequence: if the contents of the memory location
specified by the load-reserved are changed before the store-conditional to the same
address occurs, then the store-conditional fails and does not write the value to memory.
The store-conditional is defined to both store the value of a (presumably different)
register in memory and to change the value of another register to a 0 if it succeeds
and to a nonzero value if it fails. Thus, sc.d specifies three registers: one to hold the
address, one to indicate whether the atomic operation failed or succeeded, and one to
hold the value to be stored in memory if it succeeded. Since the load-reserved returns
the initial value, and the store-conditional returns 0 only if it succeeds, the following

 2.11 Parallelism and Instructions: Synchronization 123

sequence implements an atomic exchange on the memory location specified by the
contents of x20:

again:lr.d x10, (x20) // load-reserved
 sc.d x11, x23, (x20) // store-conditional
 bne x11, x0, again // branch if store fails
 addi x23, x10, 0 // put loaded value in x23

Any time a processor intervenes and modifies the value in memory between the
lr.d and sc.d instructions, the sc.d writes a nonzero value into x11, causing
the code sequence to try again. At the end of this sequence, the contents of x23 and
the memory location specified by x20 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic
exchange is also useful for the operating system in dealing with multiple processes
in a single processor. To make sure nothing interferes in a single processor, the store-
conditional also fails if the processor does a context switch between the two instructions
(see Chapter 5).

Elaboration: An advantage of the load-reserved/store-conditional mechanism is that it
can be used to build other synchronization primitives, such as atomic compare and swap
or atomic fetch-and-increment, which are used in some parallel programming models.
These involve more instructions between the lr.d and the sc.d, but not too many.

Since the store-conditional will fail after either another attempted store to the load
reservation address or any exception, care must be taken in choosing which instructions
are inserted between the two instructions. In particular, only integer arithmetic, forward
branches, and backward branches out of the load-reserved/store-conditional block can
safely be permitted; otherwise, it is possible to create deadlock situations where the
processor can never complete the sc.d because of repeated page faults. In addition,
the number of instructions between the load-reserved and the store-conditional should
be small to minimize the probability that either an unrelated event or a competing
processor causes the store-conditional to fail frequently.

Elaboration: While the code above implemented an atomic exchange, the following
code would more efficiently acquire a lock at the location in register x20, where the
value of 0 means the lock was free and 1 to mean lock was acquired:

 addi x12, x0, 1 // copy locked value
again: lr.d x10, (x20) // load-reserved to read lock
 bne x10, x0, again // check if it is 0 yet
 sc.d x11, x12, (x20) // attempt to store new value
 bne x11, x0, again // branch if store fails

We release the lock just using a regular store to write 0 into the location:

sd x0, 0(x20) // free lock by writing 0

124 Chapter 2 Instructions: Language of the Computer

When do you use primitives like load-reserved and store-conditional?

1. When cooperating threads of a parallel program need to synchronize to get
proper behavior for reading and writing shared data.

2. When cooperating processes on a uniprocessor need to synchronize for
reading and writing shared data.

Check
Yourself

 2.12 Translating and Starting a Program

This section describes the four steps in transforming a C program in a file from
storage (disk or flash memory) into a program running on a computer. Figure
2.20 shows the translation hierarchy. Some systems combine these steps to reduce
translation time, but programs go through these four logical phases. This section
follows this translation hierarchy.

FIGURE 2.20 A translation hierarchy for C. A high-level language program is first compiled into an assembly language program and
then assembled into an object module in machine language. The linker combines multiple modules with library routines to resolve all references.
The loader then places the machine code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use linking loaders that perform the
last two steps. To identify the type of file, UNIX follows a suffix convention for files: C source files are named x.c, assembly files are x.s, object
files are named x.o, statically linked library routines are x.a, dynamically linked library routes are x.so, and executable files by default are
called a.out. MS-DOS uses the suffixes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect.

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program

 2.12 Translating and Starting a Program 125

Compiler
The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level language programs
take many fewer lines of code than assembly language, so programmer productivity
is much higher.

In 1975, many operating systems and assemblers were written in assembly
language because memories were small and compilers were inefficient. The
million-fold increase in memory capacity per single DRAM chip has reduced
program size concerns, and optimizing compilers today can produce assembly
language programs nearly as well as an assembly language expert, and sometimes
even better for large programs.

Assembler
Since assembly language is an interface to higher-level software, the assembler
can also treat common variations of machine language instructions as if they
were instructions in their own right. The hardware need not implement these
instructions; however, their appearance in assembly language simplifies translation
and programming. Such instructions are called pseudoinstructions.

As mentioned above, the RISC-V hardware makes sure that register x0
always has the value 0. That is, whenever register x0 is used, it supplies a 0, and
if the programmer attempts to change the value in x0, the new value is simply
discarded. Register x0 is used to create the assembly language instruction that
copies the contents of one register to another. Thus, the RISC-V assembler accepts
the following instruction even though it is not found in the RISC-V machine
language:

li x9, 123 // load immediate value 123 into register x9

The assembler converts this assembly language instruction into the machine
language equivalent of the following instruction:

addi x9, x0, 123 // register x9 gets register x0 + 123

The RISC-V assembler also converts mv (move) into an addi instruction. Thus

mv x10, x11 // register x10 gets register x11

becomes

addi x10, x11, 0 // register x10 gets register x11 + 0

The assembler also accepts j Label to unconditionally branch to a label, as a
stand-in for jal x0, Label. It also converts branches to faraway locations into
a branch and a jump. As mentioned above, the RISC-V assembler allows large
constants to be loaded into a register despite the limited size of the immediate
instructions. Thus, the load immediate (li) pseudoinstruction introduced above can

assembly language A
symbolic language that
can be translated into
binary machine language.

pseudoinstruction A
common variation
of assembly language
instructions often treated
as if it were an instruction
in its own right.

126 Chapter 2 Instructions: Language of the Computer

create constants larger than addi’s immediate field can contain; the load address (la)
macro works similarly for symbolic addresses. Finally, it can simplify the instruction
set by determining which variation of an instruction the programmer wants. For
example, the RISC-V assembler does not require the programmer to specify the
immediate version of the instruction when using a constant for arithmetic and logical
instructions; it just generates the proper opcode. Thus

and x9, x10, 15 // register x9 gets x10 AND 15

becomes

andi x9, x10, 15 // register x9 gets x10 AND 15

We include the “i” on the instructions to remind the reader that andi produces
a different opcode in a different instruction format than the and instruction with
no immediate operands.

In summary, pseudoinstructions give RISC-V a richer set of assembly language
instructions than those implemented by the hardware. If you are going to write
assembly programs, use pseudoinstructions to simplify your task. To understand
the RISC-V architecture and be sure to get best performance, however, study the
real RISC-V instructions found in Figures 2.1 and 2.18.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet
converts easily to a bit pattern. RISC-V assemblers use hexadecimal and octal.

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language
program, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions in a
symbol table. As you might expect, the table contains pairs of symbols and addresses.

The object file for UNIX systems typically contains six distinct pieces:

n	 The object file header describes the size and position of the other pieces of the
object file.

n	 The text segment contains the machine language code.

n	 The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use both static data, which is allocated throughout
the program, and dynamic data, which can grow or shrink as needed by the
program. See Figure 2.13.)

n	 The relocation information identifies instructions and data words that depend
on absolute addresses when the program is loaded into memory.

symbol table A table
that matches names of
labels to the addresses of
the memory words that
instructions occupy.

 2.12 Translating and Starting a Program 127

n	 The symbol table contains the remaining labels that are not defined, such as
external references.

n	 The debugging information contains a concise description of how the modules
were compiled so that a debugger can associate machine instructions with C
source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker
What we have presented so far suggests that a single change to one line of one procedure
requires compiling and assembling the whole program. Complete retranslation is
a terrible waste of computing resources. This repetition is particularly wasteful for
standard library routines, because programmers would be compiling and assembling
routines that by definition almost never change. An alternative is to compile and
assemble each procedure independently, so that a change to one line would require
compiling and assembling only one procedure. This alternative requires a new systems
program, called a link editor or linker, which takes all the independently assembled
machine language programs and “stitches” them together. The reason a linker is useful
is that it is much faster to patch code than it is to recompile and reassemble.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instructions
and data addresses, so the job of this program is much like that of an editor: it finds
the old addresses and replaces them with the new addresses. Editing is the origin
of the name “link editor,” or linker for short.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.13 on page 106 shows
the RISC-V convention for allocation of program and data to memory. Since the
files were assembled in isolation, the assembler could not know where a module’s
instructions and data would be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typically,
this file has the same format as an object file, except that it contains no unresolved
references. It is possible to have partially linked files, such as library routines, that
still have unresolved addresses and hence result in object files.

linker Also called
link editor. A systems
program that combines
independently assembled
machine language
programs and resolves all
undefined labels into an
executable file.

executable file A
functional program in
the format of an object
file that contains no
unresolved references.
It can contain symbol
tables and debugging
information. A “stripped
executable” does not
contain that information.
Relocation information
may be included for the
loader.

128 Chapter 2 Instructions: Language of the Computer

Linking Object Files

Link the two object files below. Show updated addresses of the first few
instructions of the completed executable file. We show the instructions in
assembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the addresses
of data doublewords X and Y.

Object file header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 ld x10, 0(x3)

4 jal x1, 0

.
Data segment 0 (X)

.
Relocation information Address Instruction type Dependency

0 ld X

4 jal B
Symbol table Label Address

X –
B –

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sd x11, 0(x3)

4 jal x1, 0

.
Data segment 0 (Y)

.
Relocation information Address Instruction type Dependency

0 sd Y

4 jal A
Symbol table Label Address

Y –
A –

Procedure A needs to find the address for the variable labeled X to put in the
load instruction and to find the address of procedure B to place in the jal

EXAMPLE

 2.12 Translating and Starting a Program 129

instruction. Procedure B needs the address of the variable labeled Y for the
store instruction and the address of procedure A for its jal instruction.

From Figure 2.14 on page 107, we know that the text segment starts at
address 0000 0000 0040 0000hex and the data segment at 0000 0000
1000 0000hex. The text of procedure A is placed at the first address and its data
at the second. The object file header for procedure A says that its text is 100hex
bytes and its data is 20hex bytes, so the starting address for procedure B text is
40 0100hex, and its data starts at 1000 0020hex.

Executable file header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0000 0000 0040 0000hex ld x10, 0(x3)

0000 0000 0040 0004hex jal x1, 252ten

.

0000 0000 0040 0100hex sd x11, 32(x3)

0000 0000 0040 0104hex jal x1, -260ten

.
Data segment Address

0000 0000 1000 0000hex (X)

.

0000 0000 1000 0020hex (Y)

.

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
three types here:

1. The jump and link instructions use PC-relative addressing. Thus, for the
jal at address 40 0004hex to go to 40 0100hex (the address of procedure B),
it must put (40 0100hex – 40 0004hex) or 252ten in its address field.
Similarly, since 40 0000hex is the address of procedure A, the jal at
40 0104hex gets the negative number -260ten (40 0000hex – 40 0104hex)
in its address field.

2. The load addresses are harder because they are relative to a base register.
This example uses x3 as the base register, assuming it is initialized
to 0000 0000 1000 0000hex. To get the address 0000 0000
1000 0000hex (the address of doubleword X), we place 0ten in the address
field of ld at address 40 0000hex. Similarly, we place 20hex in the address
field of sd at address 40 0100hex to get the address 0000 0000 1000
0020hex (the address of doubleword Y).

3. Store addresses are handled just like load addresses, except that their S-type
instruction format represents immediates differently than loads’ I-type
format. We place 32ten in the address field of sd at address 40 0100hex to
get the address 0000 0000 1000 0020hex (the address of doubleword Y).

ANSWER

130 Chapter 2 Instructions: Language of the Computer

Loader
Now that the executable file is on disk, the operating system reads it to memory and
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data
segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the processor registers and sets the stack pointer to the first free
location.

6. Branches to a start-up routine that copies the parameters into the argument
registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system call.

Dynamically Linked Libraries
The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadvantages:

n	 The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

n	 It loads all routines in the library that are called anywhere in the executable,
even if those calls are not executed. The library can be large relative to the
program; for example, the standard C library on a RISC-V system running
the Linux operating system is 1.5 MiB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the
program and library routines keep extra information on the location of nonlocal
procedures and their names. In the original version of DLLs, the loader ran
a dynamic linker, using the extra information in the file to find the appropriate
libraries and to update all external references.

The downside of the initial version of DLLs was that it still linked all routines of
the library that might be called, versus just those that are called during the running
of the program. This observation led to the lazy procedure linkage version of DLLs,
where each routine is linked only after it is called.

Like many innovations in our field, this trick relies on a level of indirection.
Figure 2.21 shows the technique. It starts with the nonlocal routines calling a set of

loader A systems
program that places an
object program in main
memory so that it is ready
to execute.

dynamically linked
libraries (DLLs) Library
routines that are linked
to a program during
execution.

Virtually every
problem in computer
science can be solved
by another level of
indirection.
David Wheeler

 2.12 Translating and Starting a Program 131

dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect branch.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect branch. It points to code that puts a number in a register
to identify the desired library routine and then branches to the dynamic linker/
loader. The linker/loader finds the wanted routine, remaps it, and changes the
address in the indirect branch location to point to that routine. It then branches to
it. When the routine completes, it returns to the original calling site. Thereafter, the
call to the library routine branches indirectly to the routine without the extra hops.

FIGURE 2.21 Dynamically linked library via lazy procedure linkage. (a) Steps for the first
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.

Text

JAL

(a) First call to DLL routine (b) Subsequent calls to DLL routine

LD
JALR

...

...

Data

Text

LA ID
 JAL

...

...

Text

Data/Text

Dynamic linker/loader
Remap DLL routine
 JAL

...

DLL routine

 JALR
...

Text

LD
JALR

...

...

JAL

Data

DLL routine

 JALR
...

Text

132 Chapter 2 Instructions: Language of the Computer

In summary, DLLs require additional space for the information needed for
dynamic linking, but do not require that whole libraries be copied or linked. They
pay a good deal of overhead the first time a routine is called, but only a single
indirect branch thereafter. Note that the return from the library pays no extra
overhead. Microsoft’s Windows relies extensively on dynamically linked libraries,
and it is also the default when executing programs on UNIX systems today.

Starting a Java Program
The discussion above captures the traditional model of executing a program, where
the emphasis is on fast execution time for a program targeted to a specific instruction
set architecture, or even a particular implementation of that architecture. Indeed, it
is possible to execute Java programs just like C. Java was invented with a different
set of goals, however. One was to run safely on any computer, even if it might slow
execution time.

Figure 2.22 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled first
to instructions that are easy to interpret: the Java bytecode instruction set (see
Section 2.15). This instruction set is designed to be close to the Java language so that
this compilation step is trivial. Virtually no optimizations are performed. Like the C
compiler, the Java compiler checks the types of data and produces the proper operation
for each type. Java programs are distributed in the binary version of these bytecodes.

Java bytecode
Instruction from an
instruction set designed
to interpret Java
programs.

Java Virtual Machine
(JVM) The program that
interprets Java bytecodes.

FIGURE 2.22 A translation hierarchy for Java. A Java program is first compiled into a binary
version of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run
on the interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java
library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler,
which selectively compiles methods into the native machine language of the machine on which it is running.

Java program

Compiler

Class files (Java bytecodes)

Java Virtual Machine

Compiled Java methods (machine language)

Java library routines (machine language)

Just In Time
compiler

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. An interpreter is a program that simulates an instruction set architecture.
For example, the RISC-V simulator used with this book is an interpreter. There is

 2.13 A C Sort Example to Put it All Together 133

In summary, DLLs require additional space for the information needed for
dynamic linking, but do not require that whole libraries be copied or linked. They
pay a good deal of overhead the first time a routine is called, but only a single
indirect branch thereafter. Note that the return from the library pays no extra
overhead. Microsoft’s Windows relies extensively on dynamically linked libraries,
and it is also the default when executing programs on UNIX systems today.

Starting a Java Program
The discussion above captures the traditional model of executing a program, where
the emphasis is on fast execution time for a program targeted to a specific instruction
set architecture, or even a particular implementation of that architecture. Indeed, it
is possible to execute Java programs just like C. Java was invented with a different
set of goals, however. One was to run safely on any computer, even if it might slow
execution time.

Figure 2.22 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled first
to instructions that are easy to interpret: the Java bytecode instruction set (see
Section 2.15). This instruction set is designed to be close to the Java language so that
this compilation step is trivial. Virtually no optimizations are performed. Like the C
compiler, the Java compiler checks the types of data and produces the proper operation
for each type. Java programs are distributed in the binary version of these bytecodes.

Java bytecode
Instruction from an
instruction set designed
to interpret Java
programs.

Java Virtual Machine
(JVM) The program that
interprets Java bytecodes.

no need for a separate assembly step since either the translation is so simple that
the compiler fills in the addresses or JVM finds them at runtime.

The upside of interpretation is portability. The availability of software Java virtual
machines meant that most people could write and run Java programs shortly after
Java was announced. Today, Java virtual machines are found in billions of devices,
in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances in
performance of the 1980s and 1990s made interpretation viable for many important
applications, but the factor of 10 slowdown when compared to traditionally
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java’s
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the “hot” methods are and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers
invent betters ways to compile Java on the fly, the performance gap between Java
and C or C++ is closing. Section 2.15 goes into much greater depth on the
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator was the most important
for the designers of Java?

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

Just In Time compiler
(JIT) The name
commonly given to a
compiler that operates at
runtime, translating the
interpreted code segments
into the native code of the
computer.

Check
Yourself

 2.13 A C Sort Example to Put it All Together

One danger of showing assembly language code in snippets is that you will have no
idea what a full assembly language program looks like. In this section, we derive
the RISC-V code from two procedures written in C: one to swap array elements
and one to sort them.

134 Chapter 2 Instructions: Language of the Computer

The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.23. This procedure
simply swaps two locations in memory. When translating from C to assembly
language by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap
As mentioned on page 98, the RISC-V convention on parameter passing is to use
registers x10 to x17. Since swap has just two parameters, v and k, they will be found
in registers x10 and x11. The only other variable is temp, which we associate with
register x5 since swap is a leaf procedure (see page 102). This register allocation
corresponds to the variable declarations in the first part of the swap procedure in
Figure 2.23.

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Recall that the memory address for RISC-V refers to the byte address, and so
doublewords are really 8 bytes apart. Hence, we need to multiply the index k by
8 before adding it to the address. Forgetting that sequential doubleword addresses
differ by 8 instead of by 1 is a common mistake in assembly language programming.

FIGURE 2.23 A C procedure that swaps two locations in memory. This subsection uses this
procedure in a sorting example.

void swap(long long int v[], size_t k)
{

 long long int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;

}

 2.13 A C Sort Example to Put it All Together 135

Hence, the first step is to get the address of v[k] by multiplying k by 8 via a shift
left by 3:

slli x6, x11, 3 // reg x6 = k * 8
add x6, x10, x6 // reg x6 = v + (k * 8)

Now we load v[k] using x6, and then v[k+1] by adding 8 to x6:

ld x5, 0(x6) // reg x5 (temp) = v[k]
ld x7, 8(x6) // reg x7 = v[k + 1]
 // refers to next element of v

Next we store x9 and x11 to the swapped addresses:

sd x7, 0(x6) // v[k] = reg x7
sd x5, 8(x6) // v[k+1] = reg x5 (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers
used within swap. Since we are not using saved registers in this leaf procedure,
there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine. All that remains is to add the procedure
label and the return branch.

swap:

slli x6, x11, 3 // reg x6 = k * 8
 add x6, x10, x6 // reg x6 = v + (k * 8)
 ld x5, 0(x6) // reg x5 (temp) = v[k]
 ld x7, 8(x6) // reg x7 = v[k + 1]
 sd x7, 0(x6) // v[k] = reg x7
 sd x5, 8(x6) // v[k+1] = reg x5 (temp)
 jalr x0, 0(x1) // return to calling routine

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language, we’ll
try a second, longer example. In this case, we’ll build a routine that calls the swap
procedure. This program sorts an array of integers, using bubble or exchange sort,
which is one of the simplest if not the fastest sorts. Figure 2.24 shows the C version
of the program. Once again, we present this procedure in several steps, concluding
with the full procedure.

136 Chapter 2 Instructions: Language of the Computer

Register Allocation for sort

The two parameters of the procedure sort, v and n, are in the parameter registers
x10 and x11, and we assign register x19 to i and register x20 to j.

Code for the Body of the Procedure sort

The procedure body consists of two nested for loops and a call to swap that includes
parameters. Let’s unwrap the code from the outside to the middle.

The first translation step is the first for loop:

for (i = 0; i < n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and
iteration increment. It takes just one instruction to initialize i to 0, the first part of
the for statement:

li x19, 0

(Remember that li is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 125.) It also takes just
one instruction to increment i, the last part of the for statement:

addi x19, x19, 1 // i += 1

The loop should be exited if i < n is not true or, said another way, should be
exited if i ≥ n. This test takes just one instruction:

for1tst: bge x19, x11, exit1 // go to exit1 if x19 ≥ x1 (i≥n)

The bottom of the loop just branches back to the loop test:

 j for1tst // branch to test of outer loop

exit1:

The skeleton code of the first for loop is then

 li x19, 0 // i = 0
for1tst:
 bge x19, x11, exit1 // go to exit1 if x19 ≥ x1 (i≥n)

 …

FIGURE 2.24 A C procedure that performs a sort on the array v.

void sort (long long int v[], size_t int n)
{
 size_t i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {
 swap(v,j);
 }
 }
}

 2.13 A C Sort Example to Put it All Together 137

 (body of first for loop)
 …

 addi x19, x19, 1 // i += 1
 j for1tst // branch to test of outer loop
exit1:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {

The initialization portion of this loop is again one instruction:

addi x20, x19, -1 // j = i – 1

The decrement of j at the end of the loop is also one instruction:

addi x20, x20, -1 j -= 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:
 blt x20, x0, exit2 // go to exit2 if x20 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, then j ≥ 0.
The second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤ v[j +

1]. First we create the address by multiplying j by 8 (since we need a byte address)
and add it to the base address of v:

slli x5, x20, 3 // reg x5 = j * 8
add x5, x10, x5 // reg x5 = v + (j * 8)

Now we load v[j]:

ld x6, 0(x5) // reg x6 = v[j]

Since we know that the second element is just the following doubleword, we add
8 to the address in register x5 to get v[j + 1]:

ld x7, 8(x5) // reg x7 = v[j + 1]

We test v[j] ≤ v[j + 1] to exit the loop:

ble x6, x7, exit2 // go to exit2 if x6 ≤ x7

The bottom of the loop branches back to the inner loop test:

j for2tst // branch to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

addi x20, x19, -1 // j = i - 1
for2tst: blt x20, x0, exit2 // go to exit2 if x20 < 0 (j < 0)

138 Chapter 2 Instructions: Language of the Computer

 slli x5, x20, 3 // reg x5 = j * 8
 add x5, x10, x5 // reg x5 = v + (j * 8)
 ld x6, 0(x5) // reg x6 = v[j]
 ld x7, 8(x5) // reg x7 = v[j + 1]
 ble x6, x7, exit2 // go to exit2 if x6 ≤ x7
 . . .
 (body of second for loop)
 . . .
 addi x20, x20, -1 // j -= 1
 j for2tst // branch to test of inner loop

exit2:

The Procedure Call in sort

The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal x1, swap

Passing Parameters in sort

The problem comes when we want to pass parameters because the sort procedure
needs the values in registers x10 and x11, yet the swap procedure needs to have its
parameters placed in those same registers. One solution is to copy the parameters
for sort into other registers earlier in the procedure, making registers x10 and
x11 available for the call of swap. (This copy is faster than saving and restoring
on the stack.) We first copy x10 and x11 into x21 and x22 during the procedure:

mv x21, x10 // copy parameter x10 into x21
mv x22, x11 // copy parameter x11 into x22

Then we pass the parameters to swap with these two instructions:

mv x10, x21 // first swap parameter is v
mv x11, x20 // second swap parameter is j

Preserving Registers in sort

The only remaining code is the saving and restoring of registers. Clearly, we must
save the return address in register x1, since sort is a procedure and is itself called.
The sort procedure also uses the callee-saved registers x19, x20, x21, and x22, so
they must be saved. The prologue of the sort procedure is then

addi sp, sp, -40 // make room on stack for 5 regs
sd x1, 32(sp) // save x1 on stack
sd x22, 24(sp) // save x22 on stack
sd x21, 16(sp) // save x21 on stack

 2.13 A C Sort Example to Put it All Together 139

sd x20, 8(sp) // save x20 on stack
sd x19, 0(sp) // save x19 on stack

The tail of the procedure simply reverses all these instructions, and then adds a
jalr to return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.25, being careful to replace references
to registers x10 and x11 in the for loops with references to registers x21 and x22.
Once again, to make the code easier to follow, we identify each block of code with

Saving registers

sort: addi sp, sp, -40 # make room on stack for 5 registers
sd x1, 32(sp) # save return address on stack
sd x22, 24(sp) # save x22 on stack
sd x21, 16(sp) # save x21 on stack
sd x20, 8(sp) # save x20 on stack
sd x19, 0(sp) # save x19 on stack

Procedure body

Move parameters
mv x21, x10 # copy parameter x10 into x21
mv x22, x11 # copy parameter x11 into x22

Outer loop

li x19, 0 # i = 0
for1tst:bge x19, x22, exit1 # go to exit1 if i >= n

Inner loop

addi x20, x19, -1 # j = i - 1
go to exit2 if j < 0for2tst:blt x20, x0, exit2

slli x5, x20, 3
add x5, x21, x5
ld x6, 0(x5)
ld x7, 8(x5)
ble x6, x7, exit2

x5 = j * 8
x5 = v + (j * 8)
x6 = v[j]
x7 = v[j + 1]
go to exit2 if x6 < x7

Pass parameters
and call

mv x10, x21
mv x11, x20
jal x1, swap

first swap parameter is v
second swap parameter is j
call swap

Inner loop addi x20, x20, -1
j for2tst

j for2tst
go to for2tst

Outer loop exit2: addi x19, x19, 1 # i += 1
j for1tst # go to for1tst

Restoring registers

exit1: ld x19, 0(sp)
ld x20, 8(sp)
ld x21, 16(sp)
ld x22, 24(sp)
ld x1, 32(sp)
addi sp, sp, 40

restore x19 from stack
restore x20 from stack
restore x21 from stack
restore x22 from stack
restore return address from stack
restore stack pointer

Procedure return

jalr x0, 0(x1) # return to calling routine

FIGURE 2.25 RISC-V assembly version of procedure sort in Figure 2.27.

140 Chapter 2 Instructions: Language of the Computer

its purpose in the procedure. In this example, nine lines of the sort procedure in
C became 34 lines in the RISC-V assembly language.

Elaboration: One optimization that works with this example is procedure inlining.
Instead of passing arguments in parameters and invoking the code with a jal
instruction, the compiler would copy the code from the body of the swap procedure
where the call to swap appears in the code. Inlining would avoid four instructions in this
example. The downside of the inlining optimization is that the compiled code would be
bigger if the inlined procedure is called from several locations. Such a code expansion
might turn into lower performance if it increased the cache miss rate; see Chapter 5.

Figure 2.26 shows the impact of compiler optimization on sort program
performance, compile time, clock cycles, instruction count, and CPI. Note that
unoptimized code has the best CPI, and O1 optimization has the lowest instruction
count, but O3 is the fastest, reminding us that time is the only accurate measure of
program performance.

Figure 2.27 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth column
shows that the unoptimized C program is 8.3 times faster than the interpreted
Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times faster than
the unoptimized C and within a factor of 1.13 of the highest optimized C code.
(Section 2.15 gives more details on interpretation versus compilation of Java
and the Java and jalr code for Bubble Sort.) The ratios aren’t as close for Quicksort
in Column 5, presumably because it is harder to amortize the cost of runtime
compilation over the shorter execution time. The last column demonstrates the
impact of a better algorithm, offering three orders of magnitude a performance
increase by when sorting 100,000 items. Even comparing interpreted Java in
Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats
Bubble Sort by a factor of 50 (0.05 × 2468, or 123 times faster than the unoptimized
C code versus 2.41 times faster).

Understanding
Program

Performance

FIGURE 2.26 Comparing performance, instruction count, and CPI using compiler
optimization for Bubble Sort. The programs sorted 100,000 32-bit words with the array initialized to
random values. These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system
bus with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.

Relative
performance

Clock cycles
(millions)

Instruction count
(millions) CPIgcc optimization

None 1.00 158,615 114,938 1.38

O1 (medium) 2.37 66,990 37,470 1.79

O2 (full) 2.38 66,521 39,993 1.66

O3 (procedure integration) 2.41 65,747 44,993 1.46

 2.14 Arrays versus Pointers 141

 2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing
assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and RISC-V assembly
versions of two procedures to clear a sequence of doublewords in memory: one
using array indices and one with pointers. Figure 2.28 shows the two C procedures.

The purpose of this section is to show how pointers map into RISC-V
instructions, and not to endorse a dated programming style. We’ll see the impact of
modern compiler optimization on these two procedures at the end of the section.

FIGURE 2.27 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and
execution option. These programs were run on the same system as in Figure 2.29. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot
version 1.3.1.

Language Execution method Optimization
Bubble Sort relative

performance
Quicksort relative

performance
Speedup Quicksort

vs. Bubble Sort

C Compiler None 1.00 1.00 2468

Compiler O1 2.37 1.50 1562

Compiler O2 2.38 1.50 1555

Compiler O3 2.41 1.91 1955

Java Interpreter – 0.12 0.05 1050

JIT compiler – 2.13 0.29 338

FIGURE 2.28 Two C procedures for setting an array to all zeros. clear1 uses indices,
while clear2 uses pointers. The second procedure needs some explanation for those unfamiliar with C.
The address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The
declarations declare that array and p are pointers to integers. The first part of the for loop in clear2
assigns the address of the first element of array to the pointer p. The second part of the for loop tests to see
if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the bottom
part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a
pointer to integers, the compiler will generate RISC-V instructions to increment p by eight, the number of
bytes in an RISC-V integer. The assignment in the loop places 0 in the object pointed to by p.

clear1(long long int array[], size_t int size)
{
 size_t i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}
clear2(long long int *array, size_t int size)
{
 long long int *p;
 for (p = &array[0]; p < &array[size]; p = p + 1)
 *p = 0;
}

142 Chapter 2 Instructions: Language of the Computer

Array Version of Clear
Let’s start with the array version, clear1, focusing on the body of the loop and
ignoring the procedure linkage code. We assume that the two parameters array and
size are found in the registers x10 and x11, and that i is allocated to register x5.

The initialization of i, the first part of the for loop, is straightforward:

li x5, 0 // i = 0 (register x5 = 0)

To set array[i] to 0 we must first get its address. Start by multiplying i by 8
to get the byte address:

loop1: slli x6, x5, 3 // x6 = i * 8

Since the starting address of the array is in a register, we must add it to the index
to get the address of array[i] using an add instruction:

add x7, x10, x6 // x7 = address of array[i]

Finally, we can store 0 in that address:

sd x0, 0(x7) // array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

addi x5, x5, 1 // i = i + 1

The loop test checks if i is less than size:

blt x5, x11, loop1 // if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the RISC-V code for
clearing an array using indices:

 li x5, 0 // i = 0
loop1: slli x6, x5, 3 // x6 = i * 8
 add x7, x10, x6 // x7 = address of array[i]
 sd x0, 0(x7) // array[i] = 0
 addi x5, x5, 1 // i = i + 1
 blt x5, x11, loop1 // if (i < size) go to loop1

(This code works as long as size is greater than 0; ANSI C requires a test of size
before the loop, but we’ll skip that legality here.)

Pointer Version of Clear
The second procedure that uses pointers allocates the two parameters array and
size to the registers x10 and x11 and allocates p to register x5. The code for the

 2.14 Arrays versus Pointers 143

second procedure starts with assigning the pointer p to the address of the first
element of the array:

mv x5, x10 // p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sd x0, 0(x5) // Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next doubleword:

addi x5, x5, 8 // p = p + 8

Incrementing a pointer by 1 means moving the pointer to the next sequential object
in C. Since p is a pointer to integers declared as long long int, each of which
uses 8 bytes, the compiler increments p by 8.

The loop test is next. The first step is calculating the address of the last element
of array. Start with multiplying size by 8 to get its byte address:

slli x6, x11, 3 // x6 = size * 8

and then we add the product to the starting address of the array to get the address
of the first doubleword after the array:

add x7, x10, x6 // x7 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

bltu x5, x7, loop2 // if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero
an array:

 mv x5, x10 // p = address of array[0]
loop2: sd x0, 0(x5) // Memory[p] = 0
 addi x5, x5, 8 // p = p + 8
 slli x6, x11, 3 // x6 = size * 8
 add x7, x10, x6 // x7 = address of array[size]

 bltu x5, x7, loop2 // if (p<&array[size]) go to loop2

As in the first example, this code assumes size is greater than 0.
Note that this program calculates the address of the end of the array in every

iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

 mv x5, x10 // p = address of array[0]
 slli x6, x11, 3 // x6 = size * 8
 add x7, x10, x6 // x7 = address of array[size]
loop2: sd x0, 0(x5) // Memory[p] = 0
 addi x5, x5, 8 // p = p + 8
 bltu x5, x7, loop2 // if (p < &array[size]) go to loop2

144 Chapter 2 Instructions: Language of the Computer

 2.15 Advanced Material: Compiling C and
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java
is executed. Because the compiler will significantly affect the performance of a
computer, understanding compiler technology today is critical to understanding

2.15

Comparing the Two Versions of Clear
Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are
highlighted):

li x5, 0 // i = 0 mv x5, x10 // p = address of array[0]

loop1: slli x6, x5, 3 // x6 = i * 8 slli x6, x11, 3 // x6 = size * 8

add x7, x10, x6 // x7 = address of array[i] add x7, x10, x6 // x7 = address of array[size]

sd x0, 0(x7) // array[i] = 0 loop2: sd x0, 0(x5) // Memory[p] = 0

addi x5, x5, 1 // i = i + 1 addi x5, x5, 8 // p = p + 8

blt x5, x11, loop1 // if (i < size) go to loop1 bltu x5, x7, loop2 // if (p < &array[size]) go to loop2

The version on the left must have the “multiply” and add inside the loop
because i is incremented and each address must be recalculated from the new
index. The memory pointer version on the right increments the pointer p directly.
The pointer version moves the scaling shift and the array bound addition outside
the loop, thereby reducing the instructions executed per iteration from five to
three. This manual optimization corresponds to the compiler optimization of
strength reduction (shift instead of multiply) and induction variable elimination
(eliminating array address calculations within loops). Section 2.15 describes
these two and many other optimizations.

Elaboration: As mentioned earlier, a C compiler would add a test to be sure that
size is greater than 0. One way would be to branch to the instruction after the loop
with blt x0, x11, afterLoop.

People were once taught to use pointers in C to get greater efficiency than that
available with arrays: “Use pointers, even if you can’t understand the code.” Modern
optimizing compilers can produce code for the array version that is just as good.
Most programmers today prefer that the compiler do the heavy lifting.

Understanding
Program

Performance

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e1

2.15 Advanced Material: Compiling C and
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java
is executed. Because the compiler will significantly affect the performance of a
computer, understanding compiler technology today is critical to understanding
performance. Keep in mind that the subject of compiler construction is usually
taught in a one- or two-semester course, so our introduction will necessarily only
touch on the basics.

The second part of this section, starting on page 150.e15, is for readers interested
in seeing how an objected-oriented language like Java executes on the RISC-V
architecture. It shows the Java bytecodes used for interpretation and the RISC-V code
for the Java version of some of the C segments in prior sections, including Bubble
Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers.

Compiling C
This first part of the section introduces the internal anatomy of a compiler. To
start, Figure e2.15.1 shows the structure of recent compilers, and we describe the
optimizations in the order of the passes of that structure.

FIGURE e2.15.1 The structure of a modern optimizing compiler consists of a number of
passes or phases. Logically, each pass can be thought of as running to completion before the next occurs.
In practice, some passes may handle one procedure at a time, essentially interleaving with another pass.

Dependencies
Language dependent;
machine independent

Somewhat language dependent;
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Front end per
language

Function
Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

144.e2 2.15 Advanced Material: Compiling C and Interpreting Java

To illustrate the concepts in this part of this section, we will use the C version of
a while loop from page 95:

while (save[i] == k)
 i += 1;

The Front End
The function of the front end is to read in a source program; check the syntax
and semantics; and translate the source program to an intermediate form that
interprets most of the language-specific operation of the program. As we will see,
intermediate forms are usually simple, and some are, in fact, similar to the Java
bytecodes (see Figure e2.15.8).

The front end is typically broken into four separate functions:

1. Scanning reads in individual characters and creates a string of tokens.
Examples of tokens are reserved words, names, operators, and punctuation
symbols. In the above example, the token sequence is while, (, save,
[, i,], ==, k,), i, +=, 1. A word like while is recognized as
a reserved word in C, but save, i, and j are recognized as names, and 1 is
recognized as a number.

2. Parsing takes the token stream, ensures the syntax is correct, and produces
an abstract syntax tree, which is a representation of the syntactic structure of
the program. Figure e2.15.2 shows what the abstract syntax tree might look
like for this program fragment.

3. Semantic analysis takes the abstract syntax tree and checks the program for
semantic correctness. Semantic checks normally ensure that variables and
types are properly declared and that the types of operators and objects match,
a step called type checking. During this process, a symbol table representing
all the named objects—classes, variables, and functions—is usually created
and used to type-check the program.

4. Generation of the intermediate representation (IR) takes the symbol table and
the abstract syntax tree and generates the intermediate representation that is
the output of the front end. Intermediate representations usually use simple
operations on a small set of primitive types, such as integers, characters, and
reals. Java bytecodes represent one type of intermediate form. In modern
compilers, the most common intermediate form looks much like the
RISC-V instruction set but with an infinite number of virtual registers; later,
we describe how to map these virtual registers to a finite set of real registers.
Figure e2.15.3 shows how our example might be represented in such an
intermediate form.

The intermediate form specifies the functionality of the program in a manner
independent of the original source. After this front end has created the intermediate
form, the remaining passes are largely language independent.

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e3

High-Level Optimizations
High-level optimizations are transformations that are done at something close to
the source level.

The most common high-level transformation is probably procedure inlining,
which replaces a call to a function by the body of the function, substituting the
caller’s arguments for the procedure’s parameters. Other high-level optimizations
involve loop transformations that can reduce loop overhead, improve memory
access, and exploit the hardware more effectively. For example, in loops that
execute many iterations, such as those traditionally controlled by a for statement,
the optimization of loop-unrolling is often useful. Loop-unrolling involves taking
a loop, replicating the body multiple times, and executing the transformed loop
fewer times. Loop-unrolling reduces the loop overhead and provides opportunities
for many other optimizations. Other types of high-level transformations include

while statement

while ydob tnemetats noitidnoc

expression �� assignment

�� comparison left-hand side expression

identifier factor

l number

1

 k yarra expression

expression expression

factor factor

array access identifier

identifier factor

save identifier

i

FIGURE e2.15.2 An abstract syntax tree for the while example. The roots of the tree consist
of the informational tokens such as numbers and names. Long chains of straight-line descendents are often
omitted in constructing the tree.

loop-unrolling
A technique to get more
performance from loops
that access arrays, in
which multiple copies of
the loop body are made
and instructions from
different iterations are
scheduled together.

144.e4 2.15 Advanced Material: Compiling C and Interpreting Java

sophisticated loop transformations such as interchanging nested loops and
blocking loops to obtain better memory behavior; see Chapter 5 for examples.

Local and Global Optimizations
Within the pass dedicated to local and global optimization, three classes of
optimization are performed:

1. Local optimization works within a single basic block. A local optimization
pass is often run as a precursor and successor to global optimization to
“clean up” the code before and after global optimization.

2. Global optimization works across multiple basic blocks; we will see an
example of this shortly.

3. Global register allocation allocates variables to registers for regions of the
code. Register allocation is crucial to getting good performance in modern
processors.

Several optimizations are performed both locally and globally, including
common subexpression elimination, constant propagation, copy propagation,
dead store elimination, and strength reduction. Let’s look at some simple examples
of these optimizations.

loop:
 # comments are written like this--source code often included
 # while (save[i] == k)
 la r100, save # r100 = &save[0]
 ld r101, i
 li r102, 8
 mul r103, r101, r102
 add r104, r103, r100
 ld r105, 0(r104) # r105 = save[i]
 ld r106, k
 bne r105, r106, exit
 # i += 1
 ld r106, i
 addi r107, r106, i # increment
 sd r107, i
 j loop # next iteration
exit:

FIGURE e2.15.3 The while loop example is shown using a typical intermediate representation.
In practice, the names save, i, and k would be replaced by some sort of address, such as a reference to either
the local stack pointer or a global pointer, and an offset, similar to the way save[i] is accessed. Note that the
format of the RISC-V instructions is different from the rest of the chapter, because they represent intermediate
representations here using rXX notation for virtual registers.

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e5

Common subexpression elimination finds multiple instances of the same
expression and replaces the second one by a reference to the first. Consider, for
example, a code segment to add 4 to an array element:

x[i] = x[i] + 4

The address calculation for x[i] occurs twice and is identical since neither the
starting address of x nor the value of i changes. Thus, the calculation can be reused.
Let’s look at the intermediate code for this fragment, since it allows several other
optimizations to be performed. The unoptimized intermediate code is on the left. On
the right is the optimized code, using common subexpression elimination to replace
the second address calculation with the first. Note that the register allocation has
not yet occurred, so the compiler is using virtual register numbers like r100 here.

// x[i] + 4 // x[i] + 4
la r100,x la r100,x
ld r101,i ld r101,i
mul r102,r101,8 slli r102,r101,3
add r103,r100,r102 add r103,r100,r102
ld r104, 0(r103) ld r104, 0(r103)
// // value of x[i] is in r104
addi r105, r104,4 addi r105, r104,4
la r106,x sd r105, 0(r103)
ld r107,i
mul r108,r107,8
add r109,r106,r107
sd r105,0(r109)

If the same optimization were possible across two basic blocks, it would then be
an instance of global common subexpression elimination.

Let’s consider some of the other optimizations:

■	 Strength reduction replaces complex operations by simpler ones and can be
applied to this code segment, replacing the mul by a shift left.

■	 Constant propagation and its sibling constant folding find constants in code
and propagate them, collapsing constant values whenever possible.

■	 Copy propagation propagates values that are simple copies, eliminating the
need to reload values and possibly enabling other optimizations, such as
common subexpression elimination.

■	 Dead store elimination finds stores to values that are not used again and
eliminates the store; its “cousin” is dead code elimination, which finds unused
code—code that cannot affect the result of the program—and eliminates it.
With the heavy use of macros, templates, and the similar techniques designed
to reuse code in high-level languages, dead code occurs surprisingly often.

144.e6 2.15 Advanced Material: Compiling C and Interpreting Java

Compilers must be conservative. The first task of a compiler is to produce correct
code; its second task is usually to produce fast code, although other factors, such as
code size, may sometimes be important as well. Code that is fast but incorrect—for
any possible combination of inputs—is simply wrong. Thus, when we say a compiler
is “conservative,” we mean that it performs an optimization only if it knows with
100% certainty that, no matter what the inputs, the code will perform as the user
wrote it. Since most compilers translate and optimize one function or procedure
at a time, most compilers, especially at lower optimization levels, assume the worst
about function calls and about their own parameters.

Programmers concerned about the performance of critical loops, especially in real-
time or embedded applications, can find themselves staring at the assembly language
produced by a compiler and wondering why the compiler failed to perform some
global optimization or to allocate a variable to a register throughout a loop. The
answer often lies in the dictate that the compiler be conservative. The opportunity for
improving the code may seem obvious to the programmer, but then the programmer
often has knowledge that the compiler does not have, such as the absence of aliasing
between two pointers or the absence of side effects by a function call. The compiler
may indeed be able to perform the transformation with a little help, which could
eliminate the worst-case behavior that it must assume. This insight also illustrates
an important observation: programmers who use pointers to try to improve
performance in accessing variables, especially pointers to values on the stack that
also have names as variables or as elements of arrays, are likely to disable many
compiler optimizations. The result is that the lower-level pointer code may run no
better, or perhaps even worse, than the higher-level code optimized by the compiler.

Understanding
Program

Performance

Global Code Optimizations

Many global code optimizations have the same aims as those used in the local
case, including common subexpression elimination, constant propagation, copy
propagation, and dead store and dead code elimination.

There are two other important global optimizations: code motion and induction
variable elimination. Both are loop optimizations; that is, they are aimed at code
in loops. Code motion finds code that is loop invariant: a particular piece of
code computes the same value on every iteration of the loop and, hence, may be
computed once outside the loop. Induction variable elimination is a combination of
transformations that reduce overhead on indexing arrays, essentially replacing array
indexing with pointer accesses. Rather than examine induction variable elimination
in depth, we point the reader to Section 2.14, which compares the use of array
indexing and pointers; for most loops, a modern optimizing compiler can perform
the transformation from the more obvious array code to the faster pointer code.

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e7

Implementing Local Optimizations

Local optimizations are implemented on basic blocks by scanning the basic block
in instruction execution order, looking for optimization opportunities. In the
assignment statement example on page 150.e6, the duplication of the entire address
calculation is recognized by a series of sequential passes over the code. Here is how
the process might proceed, including a description of the checks that are needed:

1. Determine that the two LDA operations return the same result by observing
that the operand x is the same and that the value of its address has not been
changed between the two LDA operations.

2. Replace all uses of R106 in the basic block by R101.

3. Observe that i cannot change between the two LDURs that reference it. So
replace all uses of R107 with R101.

4. Observe that the MUL instructions now have the same input operands, so
that R108 may be replaced by R102.

5. Observe that now the two ADD instructions have identical input operands
(R100 and R102), so replace the R109 with R103.

6. Use dead store code elimination to delete the second set of LDA,LDUR,
MUL, and ADD instructions since their results are unused.

Throughout this process, we need to know when two instances of an operand
have the same value. This is easy to determine when they refer to virtual registers,
since our intermediate representation uses such registers only once, but the
problem can be trickier when the operands are variables in memory, even though
we are only considering references within a basic block.

It is reasonably easy for the compiler to make the common subexpression
elimination determination in a conservative fashion in this case; as we will see in
the next subsection, this is more difficult when branches intervene.

Implementing Global Optimizations

To understand the challenge of implementing global optimizations, let’s consider
a few examples:

■	 Consider the case of an opportunity for common subexpression elimination,
say, of an IR statement like ADD Rx, R20, R50. To determine whether two
such statements compute the same value, we must determine whether the
values of R20 and R50 are identical in the two statements. In practice, this
means that the values of R20 and R50 have not changed between the first
statement and the second. For a single basic block, this is easy to decide; it is
more difficult for a more complex program structure involving multiple basic
blocks and branches.

■	 Consider the second LDUR of i into R107 within the earlier example: how do
we know whether its value is used again? If we consider only a single basic

144.e8 2.15 Advanced Material: Compiling C and Interpreting Java

block, and we know that all uses of R107 are within that block, it is easy to see.
As optimization proceeds, however, common subexpression elimination and
copy propagation may create other uses of a value. Determining that a value is
unused and the code is dead is more difficult in the case of multiple basic blocks.

■	 Finally, consider the load of k in our loop, which is a candidate for code
motion. In this simple example, we might argue that it is easy to see that k
is not changed in the loop and is, hence, loop invariant. Imagine, however, a
more complex loop with multiple nestings and if statements within the body.
Determining that the load of k is loop invariant is harder in such a case.

The information we need to perform these global optimizations is similar: we
need to know where each operand in an IR statement could have been changed or
defined (use-definition information). The dual of this information is also needed:
that is, finding all the uses of that changed operand (definition-use information).
Data flow analysis obtains both types of information.

Global optimizations and data flow analysis operate on a control flow graph, where
the nodes represent basic blocks and the arcs represent control flow between basic
blocks. Figure e2.15.4 shows the control flow graph for our simple loop example,
with one important transformation introduced. We describe the transformation in
the caption, but see if you can discover it, and why it was done, on your own!

FIGURE e2.15.4 A control flow graph for the while loop example. Each node represents a basic
block, which terminates with a branch or by sequential fall-through into another basic block that is also
the target of a branch. The IR statements have been numbered for ease in referring to them. The important
transformation performed was to move the while test and conditional branch to the end. This eliminates the
unconditional branch that was formerly inside the loop and places it before the loop. This transformation
is so important that many compilers do it during the generation of the IR. The mul was also replaced with
(“strength-reduced to”) an slli.

9. ld r1, i
10. addi r2, r1, 1
11. sd r2, i

1. la r3, save
2. ld r4, i
3. slli r5, r4, 3
4. add r6, r5, r3
5. ld r7, 0(r6)
6. ld r8, k
7. beq r7, r8, head

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e9

Suppose we have computed the use-definition information for the control flow
graph in Figure e2.15.4. How does this information allow us to perform code
motion? Consider IR statements number 1 and 6: in both cases, the use-definition
information tells us that there are no definitions (changes) of the operands of these
statements within the loop. Thus, these IR statements can be moved outside the
loop. Notice that if the LDA of save and the LDUR of k are executed once, just prior
to the loop entrance, the computational effect is the same, but the program now
runs faster since these two statements are outside the loop. In contrast, consider
IR statement 2, which loads the value of i. The definitions of i that affect this
statement are both outside the loop, where i is initially defined, and inside the loop
in statement 10 where it is stored. Hence, this statement is not loop invariant.

Figure e2.15.5 shows the code after performing both code motion and induction
variable elimination, which simplifies the address calculation. The variable i can
still be register allocated, eliminating the need to load and store it every time, and
we will see how this is done in the next subsection.

Before we turn to register allocation, we need to mention a caveat that also
illustrates the complexity and difficulty of optimizers. Remember that the compiler
must be cautious. To be conservative, a compiler must consider the following
question: Is there any way that the variable k could possibly ever change in this
loop? Unfortunately, there is one way. Suppose that the variable k and the variable
i actually refer to the same memory location, which could happen if they were
accessed by pointers or reference parameters.

FIGURE e2.15.5 The control flow graph showing the representation of the while loop
example after code motion and induction variable elimination. The number of instructions in
the inner loop has been reduced from 10 to 6.

ld r2, i
addi r7, r6, 1
addi r4, r4, 8
sd r7, i

la r1, save
ld r6, k
ld r2, i
slli r3, r2, 3
add r4, r3, r1

ld r5, 0(r4)
beq r5, r6, head

144.e10 2.15 Advanced Material: Compiling C and Interpreting Java

I am sure that many readers are saying, “Well, that would certainly be a stupid
piece of code!” Alas, this response is not open to the compiler, which must
translate the code as it is written. Recall too that the aliasing information must
also be conservative; thus, compilers often find themselves negating optimization
opportunities because of a possible alias that exists in one place in the code or
because of incomplete information about aliasing.

Register Allocation
Register allocation is perhaps the most important optimization for modern
load-store architectures. Eliminating a load or a store gets rid of an instruction.
Furthermore, register allocation enhances the value of other optimizations, such as
common subexpression elimination. Fortunately, the trend toward larger register
counts in modern architectures has made register allocation simpler and more
effective. Register allocation is done on both a local basis and a global basis, that is,
across multiple basic blocks but within a single function. Local register allocation
is usually done late in compilation, as the final code is generated. Our focus here is
on the more challenging and more opportunistic global register allocation.

Modern global register allocation uses a region-based approach, where a
region (sometimes called a live range) represents a section of code during which
a particular variable could be allocated to a particular register. How is a region
selected? The process is iterative:

1. Choose a definition (change) of a variable in a given basic block; add that
block to the region.

2. Find any uses of that definition, which is a data flow analysis problem; add
any basic blocks that contain such uses, as well as any basic block that the
value passes through to reach a use, to the region.

3. Find any other definitions that also can affect a use found in the previous
step and add the basic blocks containing those definitions, as well as the
blocks the definitions pass through to reach a use, to the region.

4. Repeat steps 2 and 3 using the definitions discovered in step 3 until
convergence.

The set of basic blocks found by this technique has a special property: if the
designated variable is allocated to a register in all these basic blocks, then there is
no need for loading and storing the variable.

Modern global register allocators start by constructing the regions for every
virtual register in a function. Once the regions are constructed, the key question
is how to allocate a register to each region: the challenge is that certain regions
overlap and may not use the same register. Regions that do not overlap (i.e.,
share no common basic blocks) can share the same register. One way to record
the interference among regions is with an interference graph, where each node
represents a region, and the arcs between nodes represent that the regions have
some basic blocks in common.

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e11

Once an interference graph has been constructed, the problem of allocating
registers is equivalent to a famous problem called graph coloring: find a color for
each node in a graph such that no two adjacent nodes have the same color. If the
number of colors equals the number of registers, then coloring an interference
graph is equivalent to allocating a register for each region! This insight was the
initial motivation for the allocation method now known as region-based allocation,
but originally called the graph-coloring approach. Figure e2.15.6 shows the flow
graph representation of the while loop example after register allocation.

What happens if the graph cannot be colored using the number of registers
available? The allocator must spill registers until it can complete the coloring. By
doing the coloring based on a priority function that takes into account the number
of memory references saved and the cost of tying up the register, the allocator
attempts to avoid spilling for the most important candidates.

Spilling is equivalent to splitting up a region (or live range); if the region is split,
fewer other regions will interfere with the two separate nodes representing the
original region. A process of splitting regions and successive coloring is used to
allow the allocation process to complete, at which point all candidates will have
been allocated a register. Of course, whenever a region is split, loads and stores
must be introduced to get the value from memory or to store it there. The location
chosen to split a region must balance the cost of the loads and stores that must be
introduced against the advantage of freeing up a register and reducing the number
of interferences.

FIGURE e2.15.6 The control flow graph showing the representation of the while loop
example after code motion and induction variable elimination and register allocation,
using the RISC-V register names. The number of IR statements in the inner loop has now dropped to
only four from six before register allocation and 10 before any global optimizations. The value of i resides
in x12 at the end of the loop and may need to be stored eventually to maintain the program semantics. If i
were unused after the loop, not only could the store be avoided, but also the increment inside the loop could
be eliminated!

addi x12, x12, 1
addi x14, x14, 8

la x10, save
ld x11, k
ld x12, i
slli x13, x12, 3
add x14, x13, x10

ld x13, 0(x14)
beq x13, x11, head

144.e12 2.15 Advanced Material: Compiling C and Interpreting Java

Modern register allocators are incredibly effective in using the large register
counts available in modern processors. In many programs, the effectiveness of
register allocation is limited not by the availability of registers but by the possibilities
of aliasing that cause the compiler to be conservative in its choice of candidates.

Code Generation
The final steps of the compiler are code generation and assembly. Most compilers
do not use a stand-alone assembler that accepts assembly language source code;
to save time, they instead perform most of the same functions: filling in symbolic
values and generating the binary code as the last stage of code generation.

In modern processors, code generation is reasonably straightforward, since
the simple architectures make the choice of instruction relatively obvious. Code
generation is more complex for the more complicated architectures, such as the
x86, since multiple IR instructions may collapse into a single machine instruction.
In modern compilers, this compilation process uses pattern matching with either a
tree-based pattern matcher or a pattern matcher driven by a parser.

During code generation, the final stages of machine-dependent optimization
are also performed. These include some constant folding optimizations, as well as
localized instruction scheduling (see Chapter 4).

Optimization Summary
Figure e2.15.7 gives examples of typical optimizations, and the last column

indicates where the optimization is performed in the gcc compiler. It is sometimes
difficult to separate some of the simpler optimizations—local and processor-
dependent optimizations—from transformations done in the code generator, and
some optimizations are done multiple times, especially local optimizations, which
may be performed before and after global optimization as well as during code
generation.

Today, essentially all programming for desktop and server applications is done in
high-level languages, as is most programming for embedded applications. This
development means that since most instructions executed are the output of a
compiler, an instruction set architecture is mainly a compiler target. With Moore’s
Law comes the temptation of adding sophisticated operations in an instruction
set. The challenge is that they may not exactly match what the compiler needs to
produce or may be so general that they aren’t fast. For example, consider special
loop instructions found in some computers. Suppose that instead of decrementing
by one, the compiler wanted to increment by four, or instead of branching on not
equal zero, the compiler wanted to branch if the index was less than or equal to the
limit. The loop instruction may be a mismatch. When faced with such objections,

Hardware/
Software
Interface

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e13

Elaboration Some more sophisticated compilers, and many research compilers, use
an analysis technique called interprocedural analysis to obtain more information about
functions and how they are called. Interprocedural analysis attempts to discover what
properties remain true across a function call. For example, we might discover that a
function call can never change any global variables, which might be useful in optimizing
a loop that calls such a function. Such information is called may-information or flow-
insensitive information and can be obtained reasonably efficiently, although analyzing
a call to a function F requires analyzing all the functions that F calls, which makes
the process somewhat time consuming for large programs. A more costly property to
discover is that a function must always change some variable; such information is called
must-information or flow-sensitive information. Recall the dictate to be conservative:
may-information can never be used as must-information—just because a function may
change a variable does not mean that it must change it. It is conservative, however, to
use the negation of may-information, so the compiler can rely on the fact that a function
will never change a variable in optimizations around the call site of that function.

the instruction set designer might next generalize the operation, adding another
operand to specify the increment and perhaps an option on which branch condition
to use. Then the danger is that a common case, say, incrementing by one, will be
slower than a sequence of simple operations.

FIGURE e2.15.7 Major types of optimizations and explanation of each class. The third column shows when these occur
at different levels of optimization in gcc. The GNU organization calls the three optimization levels medium (O1), full (O2), and full with
integration of small procedures (O3).

level ccgnoitanalpxEeman noitazimitpO

 edni rossecorp ;level ecruos eht raen ro tAlevel hgiH pendent

3Oydob erudecorp yb llac erudecorp ecalpeRnoitargetni erudecorP

edoc enil-thgiarts nihtiWlacoL

1 atupmoc emas eht fo secnatsni owt ecalpeRnoitanimile noisserpxebus nommoC Oypoc elgnis yb noit

Constant propagation Replace all instances of a variable that is as signed a constant with the
constant

O1

Stack height reduction Rearrange expression tree to minimize re sources needed for ex pression evaluation O1

hcnarb a ssorcAlabolG

Global common subexpression
elimi nation

2Osehcnarb sessorc noisrev siht tub ,lacol sa emaS

 elbairav a fo secnatsni lla ecalpeRnoitagaporp ypoC A that has been assigned X (i.e., A = X) with X O2

2Opool ehteht fo noitareti hcae eulav emas setupmoc taht pool a morf edoc evomeRnoitom edoC

Induction variable elimina 2 aluclac gnisserdda yarra etanimile/yfilpmiSnoit Ospool nihtiw snoit

Processor dependent Depends on processor knowledge

1 noc a yb ylpitlum ecalper ;selpmaxe ynaMnoitcuder htgnertS Ostfihs htiw tnats

1 rep enilepip evorpmi ot snoitcurtsni redroeRgniludehcs enilepiP Oecnamrof

1Otegrat sehcaer taht tnemecalpsid hcnarb tsetrohs eht esoohCnoitazimitpo tesffo hcnarB

144.e14 2.15 Advanced Material: Compiling C and Interpreting Java

One of the most important uses of interprocedural analysis is to obtain so-
called alias information. An alias occurs when two names may designate the same
variable. For example, it is quite helpful to know that two pointers passed to a
function may never designate the same variable. Alias information is usually flow-
insensitive and must be used conservatively.

Interpreting Java
This second part of the section is for readers interested in seeing how an object-
oriented language like Java executes on an RISC-V architecture. It shows the Java
bytecodes used for interpretation and the RISC-V code for the Java version of some
of the C segments in prior sections, including Bubble Sort.

Let’s quickly review the Java lingo to make sure we are all on the same page. The
big idea of object-oriented programming is for programmers to think in terms
of abstract objects, and operations are associated with each type of object. New
types can often be thought of as refinements to existing types, and so the new types
use some operations for the existing types without change. The hope is that the
programmer thinks at a higher level, and that code can be reused more readily if
the programmer implements the common operations on many different types.

This different perspective led to a different set of terms. The type of an object
is a class, which is the definition of a new data type together with the operations
that are defined to work on that data type. A particular object is then an instance
of a class, and creating an object from a class is called instantiation. The operations
in a class are called methods, which are similar to C procedures. Rather than call
a procedure as in C, you invoke a method in Java. The other members of a class
are fields, which correspond to variables in C. Variables inside objects are called
instance fields. Rather than access a structure with a pointer, Java uses an object
reference to access an object. The syntax for method invocation is x.y, where x is
an object reference and y is the method name.

The parent–child relationship between older and newer classes is captured by
the verb “extends”: a child class extends (or subclasses) a parent class. The child
class typically will redefine some of the methods found in the parent to match the
new data type. Some methods work fine, and the child class inherits those methods.

To reduce the number of errors associated with pointers and explicit memory
deallocation, Java automatically frees unused storage, using a separate garbage
collector that frees memory when it is full. Hence, new creates a new instance of a
dynamic object on the heap, but there is no free in Java. Java also requires array
bounds to be checked at runtime to catch another class of errors that can occur in
C programs.

object-oriented
language
A programming language
that is oriented around
objects rather than
actions, or data versus
logic.

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e15

Interpretation
As mentioned before, Java programs are distributed as Java bytecodes, and the Java
Virtual Machine (JVM) executes Java byte codes. The JVM understands a binary
format called the class file format. A class file is a stream of bytes for a single class,
containing a table of valid methods with their bytecodes, a pool of constants that
acts in part as a symbol table, and other information such as the parent class of this
class.

When the JVM is first started, it looks for the class method main. To start any
Java class, the JVM dynamically loads, links, and initializes a class. The JVM loads
a class by first finding the binary representation of the proper class (class file) and
then creating a class from that binary representation. Linking combines the class
into the runtime state of the JVM so that it can be executed. Finally, it executes the
class initialization method that is included in every class.

Figure e2.15.8 shows Java bytecodes and their corresponding RISC-V instructions,
illustrating five major differences between the two:

1. To simplify compilation, Java uses a stack instead of registers for operands.
Operands are pushed on the stack, operated on, and then popped off the
stack.

2. The designers of the JVM were concerned about code size, so bytecodes vary
in length between one and five bytes, versus the four-byte, fixed-size RISC-V
instructions. To save space, the JVM even has redundant instructions of
varying lengths whose only difference is size of the immediate. This decision
illustrates a code size variation of our third design principle: make the
common case small.

3. The JVM has safety features embedded in the architecture. For example,
array data transfer instructions check to be sure that the first operand is a
reference and that the second index operand is within bounds.

4. To allow garbage collectors to find all live pointers, the JVM uses different
instructions to operate on addresses versus integers so that the JVM can
know what operands contain addresses. RISC-V generally lumps integers
and addresses together.

5. Finally, unlike RISC-V, Java bytecodes include Java-specific instructions that
perform complex operations, like allocating an array on the heap or invoking
a method.

144.e16 2.15 Advanced Material: Compiling C and Interpreting Java

FIGURE e2.15.8 Java bytecode architecture versus RISC-V. Although many bytecodes are simple, those in the last half-dozen rows
above are complex and specific to Java. Bytecodes are one to five bytes in length, hence their name. The Java mnemonics uses the prefix i for
32-bit integer, a for reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a
16-bit constant. RISC-V uses registers for operands, but the JVM uses a stack. The compiler knows the maximum size of the operand stack for
each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS: top of stack; NOS: next
position below TOS; NNOS: next position below NOS; pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to
the stack. *NOS and *NNOS mean access the memory location pointed to by the address in the stack at those positions. Const[] refers
to the runtime constant pool of a class created by the JVM, and Frame[] refers to the variables of the local method frame. The missing Java
bytecodes from Figure e2.1 are a few arithmetic and logical operators, some tricky stack management, compares to 0 and branch, support for
branch tables, type conversions, more variations of the complex, Java-specific instructions plus operations on floating-point data, 64-bit integers
(longs), and 16-bit characters.

Java bytecodeOperationCategory
Size

(bits) Meaning
RISC-V
instr.

NOS=TOS+NOS; popadd8ddaiddaArithmetic
NOS=TOS–NOS; popsub8busitcartbus
Frame[I8a]= Frame[I8a] + I8baddi8b8Ia8Icniitnemercni

Data transfer load local integer/address iload I8/aload I 8 16 ld TOS=Frame[I8]
load local integer/addres s iload_/aload_{0,1,2,3 } 8 ld TOS=Frame[{0,1,2,3}]
store local integer/addres s istore I8/astore I 8 16 sd Frame[I8]=TOS; pop
load integer/address from a rray iaload/aaloa d 8 ld NOS=*NOS[TOS]; pop
store integer/address into a rray iastore/aastor e 8 sd *NNOS[NOS]=TOS; pop2

pop;]SOT[SON*=SONlh8daolasyarramorfflahdaol
2pop;SOT=]SON[SONN*sh8erotsasyarraotniflaherots

pop;]SOT[SON*=SONlb8daolabyarramorfetybdaol
2pop;SOT=]SON[SONN*sb8erotsabyarraotnietyberots

load immediat e bipush I8 , sipush I1 6 16, 24 addi push; TOS=I8 or I16
load immediat e iconst_{–1,0,1,2,3,4,5 } 8 addi push; TOS={–1,0,1,2,3,4,5}

pop;SON&SOT=SONand8dnaidnalacigoL
pop;SON|SOT=SONor8roiro

pop;SOT<<SON=SONsll8lhsitfeltfihs
pop;SOT>>SON=SONsrl8rhsuithgirtfihs

Conditional
branch

branch on equa l if_icompeq I1 6 24 beq if TOS == NOS , go to I16; pop2
branch on not equa l if_icompne I1 6 24 bne if TOS != NOS , go to I16; pop2

2pop;61Iotog,SON}=>,>,=<,<{SOTfiblt/bge4261I}eg,tg,el,tl{pmoci_fierapmoc
Unconditional
jump

61Iotogjal4261Iotogpmuj
jalr8nruteri,ternruter

3+CP=SOT;hsup;61Iotogjal4261Irsjenituorbusotpmuj
Stack
management

remove from stack pop, pop2 8 pop, pop2
SON=SOT;hsup8pudkcatsnoetacilpud

T=SOT;SOT=SON;SON=T8pawskcatsnosnoitisop2potpaws
Safety check check for null reference ifnull I16, ifnotnull I16 24 if TOS {==,!=} null, go to I16

get length of array arraylength 8 push; TOS = length of array
check if object a type instanceof I16 24 TOS = 1 if TOS matches type of

Const[I16]; TOS = 0 otherwise

on type
Invocation invoke metho d invokevirtual I16 24 Invoke method in Const[I16] , dispatching

Allocatio n create new class instanc e new I16 24 Allocate object type Const[I16] on heap

create new array newarray I16 24 Allocate array type Const[I16] on heap

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e17

Compiling a while Loop in Java Using Bytecodes

Compile the while loop from page 95, this time using Java bytecodes:

while (save[i] == k)
 i += 1;

Assume that i, k, and save are the first three local variables. Show the
addresses of the bytecodes. The RISC-V version of the C loop in Figure e2.15.3
took six instructions and 24 bytes. How big is the bytecode version?

The first step is to put the array reference in save on the stack:

0 aload_3 // Push local variable 3 (save[]) onto stack

This 1-byte instruction informs the JVM that an address in local variable 3 is
being put on the stack. The 0 on the left of this instruction is the byte address
of this first instruction; bytecodes for each method start at 0. The next step is
to put the index on the stack:

1 iload_1 // Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more
general instruction that takes 2 bytes to load a local variable onto the stack. The
next instruction is to get the value from the array element:

2 iaload // Put array element (save[i]) onto stack

This 1-byte instruction checks the prior two operands, pops them off the stack,
and then puts the value of the desired array element onto the new top of the
stack. Next, we place k on the stack:

3 iload_2 // Push local variable 2 (k) onto stack

We are now ready for the while test:

4 if_icompne, Exit // Compare and exit if not equal

This 3-byte instruction compares the top two elements of the stack, pops them
off the stack, and branches if they are not equal. We are finally prepared for the
body of the loop:

7 iinc, 1, 1 // Increment local variable 1 by 1 (i+=1)

EXAMPLE

ANSWER

144.e18 2.15 Advanced Material: Compiling C and Interpreting Java

This unusual 3-byte instruction increments a local variable by 1 without using
the operand stack, an optimization that again saves space. Finally, we return to
the top of the loop with a 3-byte branch:

10 go to 0 // Go to top of Loop (byte address 0)

Thus, the bytecode version takes seven instructions and 13 bytes, just over
half the size of the RISC-V C code. (As before, we can optimize this code to
branch less.)

Compiling for Java
Since Java is derived from C and Java has the same built-in types as C, the assignment
statement examples in Sections 2.2 to 2.6 are the same in Java as they are in C. The
same is true for the if statement example in Section 2.7.

The Java version of the while loop is different, however. The designers of C
leave it up to the programmers to be sure that their code does not exceed the array
bounds. The designers of Java wanted to catch array bound bugs, and thus require
the compiler to check for such violations. To check bounds, the compiler needs to
know what they are. Java includes an extra doubleword in every array that holds
the upper bound. The lower bound is defined as 0.

Compiling a while Loop in Java

Modify the RISC-V code for the while loop on page 95 to include the array
bounds checks that are required by Java. Assume that the length of the array is
located just before the first element of the array.

Let’s assume that Java arrays reserved the first two doublewords of arrays before
the data start. We’ll see the use of the first doubleword soon, but the second
doubleword has the array length. Before we enter the loop, let’s load the length
of the array into a temporary register:

ld x5, 8(x25) // Temp reg x5 = length of array save

Before we multiply i by 8, we must test to see if it’s less than 0 or greater
than the last element of the array. The first step is to check if i is less than 0:

Loop: blt x22, x0, IndexOutOfBounds // if i<0, goto Error

Since the array starts at 0, the index of the last array element is one less than the
length of the array. Thus, the test of the upper array bound is to be sure that i is

EXAMPLE

ANSWER

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e19

less than the length of the array. Thus, the second step is to branch to an error
if it’s greater than or equal to length.

bge x22, x5, IndexOutOfBounds //if i>=length, goto Error

The next two lines of the RISC-V while loop are unchanged from the C version:

slli x10, x22, 3 // Temp reg x10 = i * 8
add x10, x10, x25 // x10 = address of save[i]

We need to account for the first 16 bytes of an array that are reserved in Java.
We do that by changing the address field of the load from 0 to 16:

ld x9, 16(x10) // Temp reg x9 = save[i]

The rest of the RISC-V code from the C while loop is fine as is:

bne x9, x24, Exit // go to Exit if save[i] ≠ k
addi x22, x22, 1 // i = i + 1
beq x0, x0, Loop // go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Invoking Methods in Java
The compiler picks the appropriate method depending on the type of object. In
a few cases, it is unambiguous, and the method can be invoked with no more
overhead than a C procedure. In general, however, the compiler knows only that
a given variable contains a pointer to an object that belongs to some subtype of a
general class. Since it doesn’t know at compile time which subclass the object is,
and thus which method should be invoked, the compiler will generate code that
first tests to be sure the pointer isn’t null and then uses the code to load a pointer to
a table with all the legal methods for that type. The first doubleword of the object
has the method table address, which is why Java arrays reserve two doublewords.
Let’s say it’s using the fifth method that was declared for that class. (The method
order is the same for all subclasses.) The compiler then takes the fifth address from
that table and invokes the method at that address.

The cost of object orientation in general is that method invocation takes five
steps:

1. A conditional branch to be sure that the pointer to the object is valid;

2. A load to get the address of the table of available methods;

3. Another load to get the address of the proper method;

144.e20 2.15 Advanced Material: Compiling C and Interpreting Java

4. Placing a return address into the return register; and finally

5. A branch register to invoke the method.

A Sort Example in Java
Figure e2.15.9 shows the Java version of exchange sort. A simple difference is that
there is no need to pass the length of the array as a separate parameter, since Java
arrays include their length: v.length denotes the length of v.

A more significant difference is that Java methods are prepended with keywords
not found in the C procedures. The sort method is declared public static
while swap is declared protected static. Public means that sort can be
invoked from any other method, while protected means swap can only be called by
other methods within the same package and from methods within derived classes.
A static method is another name for a class method—methods that perform
class-wide operations and do not apply to an individual object. Static methods are
essentially the same as C procedures.

This straightforward translation from C into static methods means there is no
ambiguity on method invocation, and so it can be just as efficient as C. It also is limited
to sorting integers, which means a different sort has to be written for each data type.

To demonstrate the object orientation of Java, Figure e2.15.10 shows the
new version with the changes highlighted. First, we declare v to be of the type
Comparable and replace v[j] > v[j + 1] with an invocation of compareTo.
By changing v to this new class, we can use this code to sort many data types.

public A Java keyword
that allows a method to
be invoked by any other
method.

protected A Java key
word that restricts
invocation of a method
to other methods in that
package.

package Basically a
directory that contains a
group of related classes.

static method A method
that applies to the whole
class rather than to an
individual object. It is
unrelated to static in C.

FIGURE e2.15.9 An initial Java procedure that performs a sort on the array v. Changes from
Figures e2.24 and e2.26 are highlighted.

public class sort {

 public static void sort (int[] v) {

 for (int i = 0; i < v.length; i += 1) {

 for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

 swap(v, j);

 }

 }

 protected static void swap(int[] v, int k) {

 int temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

 }}

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e21

The method compareTo compares two elements and returns a value greater than
0 if the parameter is larger than the object, 0 if it is equal, and a negative number
if it is smaller than the object. These two changes generalize the code so it can
sort integers, characters, strings, and so on, if there are subclasses of Comparable
with each of these types and if there is a version of compareTo for each type.
For pedagogic purposes, we redefine the class Comparable and the method
compareTo here to compare integers. The actual definition of Comparable in the
Java library is considerably different.

Starting from the RISC-V code that we generated for C, we show what changes
we made to create the RISC-V code for Java.

For swap, the only significant differences are that we must check to be sure the
object reference is not null and that each array reference is within bounds. The first
test checks that the address in the first parameter is not zero:

swap: beq x10, x0, Error x10, NullPointer // if X0==0,goto Error

FIGURE e2.15.10 A revised Java procedure that sorts on the array v that can take on more types. Changes from Figure
e2.15.9 are highlighted.

public class sort {

 public static void sort (Comparable[] v) {

 for (int i = 0; i < v.length; i += 1) {

 for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]);

j –= 1) {

 swap(v, j);

 }

 }

 protected static void swap(Comparable[] v, int k) {

 Comparable temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

 }}

public class Comparable {

 public int(compareTo (int x)

 { return value – x; }

 public int value;

}

144.e22 2.15 Advanced Material: Compiling C and Interpreting Java

Next, we load the length of v into a register and check that index k is OK.

ld x5, 8(x10) // Temp reg x5 = length of array v
blt x11, x0, IndexOutOfBounds // if k < 0, goto Error
bge x11, x5, IndexOutOfBounds // if k >= length, goto Error

This check is followed by a check that k+1 is within bounds.

addi x6,x11,1 // Temp reg x6 = k+1
blt x6, x0, IndexOutOfBounds // if k+1 < 0, goto Error
bge x6, x5, IndexOutOfBounds // if k+1 >= length, goto Error

Figure e2.15.11 highlights the extra RISC-V instructions in swap that a Java
compiler might produce. We again must adjust the offset in the load and store to
account for two doublewords reserved for the method table and length.

Figure e2.15.12 shows the method body for those new instructions for sort.
(We can take the saving, restoring, and return from Figure e2.28.)

The first test is again to make sure the pointer to v is not null:

beq x10, x0, Error // if x10==0,goto Error

FIGURE e2.15.11 RISC-V assembly code of the procedure swap in Figure e2.24.

Bounds check

swap: beq x10, x0, NullPointer # If x10==0, goto Error
ld x5, 8(x10) # Temp reg x5 = length of array v

If k < 0, goto Errorblt x11, x0, IndexOutOfBounds
If k >= length, goto Errorbge x11, x5, IndexOutOfBounds
Temp reg x6 = k+1addi x6, x11, 1
If k+1 < 0, goto Errorblt x6, x0, IndexOutOfBounds

bge x6, x5, IndexOutOfBOunds # If k+1 >= length, goto Error

Method body

slli x11, x11, 3 # reg X11 = k * 8
add x11, x11, x10 # reg X11 = v + (k * 8)

ld x12, 0(x11) # reg x12 = v[k]
ld x13, 8(x11) # reg x13 = v[k+1]

ld x13, 0(x11) # v[k] = reg x13
ld x12, 8(x11) # v[k+1] = reg x12

Method return

jalr x0,0(x1) # return to calling routine

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e23

Next, we load the length of the array (we use register x22 to keep it similar to the
code for the C version of sort):

ld x22, 8(x10) // x22 = length of array v

Now we must ensure that the index is within bounds. Since the first test of the
inner loop is to test if j is negative, we can skip that initial bound test. That leaves
the test for too big:

bge x20, x22, IndexOutOfBounds // if j > = length, goto Error

FIGURE e2.15.12 RISC-V assembly version of the method body of the Java version of sort. The new code is highlighted in
this figure. We must still add the code to save and restore registers and the return from the RISC-V code found in Figure e2.27. To keep the code
similar to that figure, we load v.length into x22 instead of into a temporary register. To reduce the number of lines of code, we make the
simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on the stack.

Method body

Move parameters # Copy parameter x10 into x21mv x21, x10

Test ptr null beq x10, x0, NullPointer # If x10==0, goto Error

Get array length # x22 = length of array vld x22, 8(x10)

Outer loop head
i = 0li x19, 0

for1tst: bge x19, x22, exit1 # If i >= length, go to exit1

Inner loop head
addi x20, x19, -1 # j = i - 1

for2tst: blt x20, x0, exit1 # If j < 0, goto exit2

Test if j too big bge x20, x22, IndexOutOfBounds # If j >= length, goto error

Get v[j]
slli x5, x20, 3 # x5 = j * 8
add x5, x21, x5 # x5 = v + (j * 8)
ld x6, 0(x5) # x6 = v[j]

Test if j+1 < 0 or
too big

x7 = j + 1addi x7, x20, 1
blt x7, x0, IndexOutOfBounds # If j + 1 < 0, goto Error
bge x7, x22, IndexOutOfBounds # If j + 1 >= length, goto Error

Get v[j+1] ld x7, 8(x5) # x7 = v[j+1]

Load method table # x28 = address of method tableld x28, 0(x10)

Get method address # x28 = address of third methodld x28, 16(x28)

Pass parameters # 1st parameter is v[j]mv x10, x6
2nd parameter is v[j+1]mv x11, x7

Call method indirectly # Call compareTojalr x1, 0(x28)

Test if should skip
swap

ble x10, x0, exit2 # If result <= 0, skip swap

Pass parameters
and call swap

1st parameter is vmv x10, x21
2nd parameter is jmv x11, x20
Invoke swap routine (Figure 2.34)jal x1, swap

Inner loop end addi x20,x20,-1 # j -= 1
j for2tst # Go to for2tst

Outer loop end exit2:

for2tst:

addi x19,x19,1 # i += 1
j for1tst # Go to for1tst

144.e24 2.15 Advanced Material: Compiling C and Interpreting Java

The code for testing j + 1 is quite similar to the code for checking k + 1 in
swap, so we skip it here.

The key difference is the invocation of compareTo. We first load the address
of the table of legal methods, which we assume is two doublewords before the
beginning of the array:

ld x28, 0(x10) // x28 = address of method table

Given the address of the method table for this object, we then get the desired
method. Let’s assume compareTo is the third method in the Comparable class.
To pick the address of the third method, we load that address into a temporary
register:

ld x28, 16(x28) // x28 = address of third method

We are now ready to call compareTo. The next step is to save the necessary
registers on the stack. Fortunately, we don’t need the temporary registers or
argument registers after the method invocation, so there is nothing to save. Thus,
we simply pass the parameters for compareTo:

mv x10, x6 // 1st parameter of compareTo is v[j]
mv x11, x7 // 2nd parameter of compareTo is v[j+1]

Then, we use the jump-and-link register to invoke compareTo:

jalr x1, 0(x28) // invoke compareTo, and save return address in x1

The method returns, with x10 determining which of the two elements is larger.
If x10 > 0, then v[j] >v[j+1], and we need to swap. Thus, to skip the swap,
we need to test if x10 ≤ 0:

ble x10, x0, exit2 // go to exit2 if v[j] ≤ v[j+1]

The RISC-V code for compareTo is left as an exercise.

The main changes for the Java versions of sort and swap are testing for null object
references and index out-of-bounds errors, and the extra method invocation to
give a more general compare. This method invocation is more expensive than a
C procedure call, since it requires, a conditional branch, a pair of chained loads,
and an indirect branch. As we see in Chapter 4, dependent loads and indirect
branches can be relatively slow on modern processors. The increasing popularity
of Java suggests that many programmers today are willing to leverage the high
performance of modern processors to pay for error checking and code reuse.

Hardware/
Software
Interface

 2.15 Advanced Material: Compiling C and Interpreting Java 144.e25

Elaboration Although we test each reference to j and j + 1 to be sure that these
indices are within bounds, an assembly language programmer might look at the code
and reason as follows:

1. The inner for loop is only executed if j ≤ 0 and since j + 1 > j, there is no
need to test j + 1 to see if it is less than 0.

2. Since i takes on the values, 0, 1, 2, …, (data.length − 1) and since j takes on
the values i − 1, i − 2, …, 2, 1, 0, there is no need to test if j ≤ data.length
since the largest value j can be is data.length − 2.

3. Following the same reasoning, there is no need to test whether j + 1 ≤
data.length since the largest value of j+1 is data.length − 1.

There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that
lower the effective cost of such bounds checking, but only high optimizing compilers
can reason this way. Note that if the compiler inlined the swap method into sort, many
checks would be unnecessary.

Elaboration Look carefully at the code for swap in Figure e2.15.11. See anything
wrong in the code, or at least in the explanation of how the code works? It implicitly
assumes that each Comparable element in v is 8 bytes long. Surely, you need much
more than 8 bytes for a complex subclass of Comparable, which could contain any
number of fields. Surprisingly, this code does work, because an important property of
Java’s semantics forces the use of the same, small representation for all variables,
fields, and array elements that belong to Comparable or its subclasses.

Java types are divided into primitive types—the predefined types for numbers,
characters, and Booleans—and reference types—the built-in classes like String,
user-defined classes, and arrays. Values of reference types are pointers (also called
references) to anonymous objects that are themselves allocated in the heap. For the
programmer, this means that assigning one variable to another does not create a new
object, but instead makes both variables refer to the same object. Because these
objects are anonymous, and programs therefore have no way to refer to them directly,
a program must use indirection through a variable to read or write any objects’ fields
(variables). Thus, because the data structure allocated for the array v consists entirely
of pointers, it is safe to assume they are all the same size, and the same swapping code
works for all of Comparable’s subtypes.

To write sorting and swapping functions for arrays of primitive types requires that
we write new versions of the functions, one for each type. This replication is for two
reasons. First, primitive type values do not include the references to dispatching tables
that we used on Comparables to determine at runtime how to compare values.
Second, primitive values come in different sizes: 1, 2, 4, or 8 bytes.

The pervasive use of pointers in Java is elegant in its consistency, with the penalty
being a level of indirection and a requirement that objects be allocated on the heap.
Furthermore, in any language where the lifetimes of the heap-allocated anonymous
objects are independent of the lifetimes of the named variables, fields, and array
elements that reference them, programmers must deal with the problem of deciding
when it is safe to deallocate heap-allocated storage. Java’s designers chose to use

144.e26 2.15 Advanced Material: Compiling C and Interpreting Java

garbage collection. Of course, use of garbage collection rather than explicit user memory
management also improves program safety.

C++ provides an interesting contrast. Although programmers can write essentially
the same pointer-manipulating solution in C++, there is another option. In C++,
programmers can elect to forgo the level of indirection and directly manipulate an array
of objects, rather than an array of pointers to those objects. To do so, C++ programmers
would typically use the template capability, which allows a class or function to be
parameterized by the type of data on which it acts. Templates, however, are compiled
using the equivalent of macro expansion. That is, if we declared an instance of sort
capable of sorting types X and Y, C++ would create two copies of the code for the
class: one for sort<X> and one for sort<Y>, each specialized accordingly. This solution
increases code size in exchange for making comparison faster (since the function calls
would not be indirect, and might even be subject to inline expansion). Of course, the
speed advantage would be canceled if swapping the objects required moving large
amounts of data instead of just single pointers. As always, the best design depends on
the details of the problem.

 2.16 Real Stuff: MIPS Instructions 145

performance. Keep in mind that the subject of compiler construction is usually
taught in a one- or two-semester course, so our introduction will necessarily only
touch on the basics.

The second part of this section is for readers interested in seeing how an object-
oriented language like Java executes on an RISC-V architecture. It shows the Java
byte-codes used for interpretation and the RISC-V code for the Java version of
some of the C segments in prior sections, including Bubble Sort. It covers both the
Java Virtual Machine and JIT compilers.

The rest of Section 2.15 can be found online.

 2.16 Real Stuff: MIPS Instructions

The instruction set most similar to RISC-V, MIPS, also originated in academia,
but is now owned by Imagination Technologies. MIPS and RISC-V share the same
design philosophy, despite MIPS being 25 years more senior than RISC-V. The
good news is that if you know RISC-V, it will be very easy to pick up MIPS. To show
their similarity, Figure 2.29 compares instruction formats for RISC-V and MIPS.

The MIPS ISA has both 32-bit address and 64-bit address versions, sensibly
called MIPS-32 and MIPS-64. These instruction sets are virtually identical except
for the larger address size needing 64-bit registers instead of 32-bit registers. Here
are the common features between RISC-V and MIPS:

n	 All instructions are 32 bits wide for both architectures.

n	 Both have 32 general-purpose registers, with one register being hardwired to 0.

n	 The only way to access memory is via load and store instructions on both
architectures.

n	 Unlike some architectures, there are no instructions that can load or store
many registers in MIPS or RISC-V.

n	 Both have instructions that branch if a register is equal to zero and branch if
a register is not equal to zero.

n	 Both sets of addressing modes work for all word sizes.

One of the main differences between RISC-V and MIPS is for conditional
branches other than equal or not equal. Whereas RISC-V simply provides branch
instructions to compare two registers, MIPS relies on a comparison instruction that
sets a register to 0 or 1 depending on whether the comparison is true. Programmers
then follow that comparison instruction with a branch on equal to or not equal
to zero depending on the desired outcome of the comparison. Keeping with its
minimalist philosophy, MIPS only performs less than comparisons, leaving it up to
the programmer to switch order of operands or to switch the condition being tested

object-oriented
language A
programming language
that is oriented around
objects rather than
actions, or data versus
logic.

146 Chapter 2 Instructions: Language of the Computer

FIGURE 2.29 Instruction formats of RISC-V and MIPS. The similarities result in part from both instruction sets having 32
registers.

Register-register
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 11 10 6 5 0

MIPS

Load
31 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Store
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Branch
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Const(5) Opx(6)

funct7(7)

Op(6) Rs1(5) Rs2(5) Rd(5)

opcode(7)rd(5)funct3(3)rs1(5)rs2(5)

opcode(7)rd(5)funct3(3)rs1(5)immediate(12)

Const(16)Rs2(5)Rs1(5)Op(6)

Op(6)

immediate(7)

Rs1(5) Rs2(5) Const(16)

opcode(7)immediate(5)funct3(3)rs1(5)rs2(5)

Op(6) Rs1(5) Opx/Rs2(5) Const(16)

opcode(7)immediate(7) rs2(5) rs1(5) funct3(3) immediate(5)

by the branch to get all the desired outcomes. MIPS has both signed and unsigned
versions of the set on less than instructions: slt and sltu.

When we look beyond the core instructions that are most commonly used, the
other main difference is that the full MIPS is a much larger instruction set than
RISC-V, as we shall see in Section 2.18.

 2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than
those found in RISC-V and MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can occur at
the cost of simplicity, increasing the time a program takes to execute because the
instructions are slower. This slowness may be the result of a slower clock cycle time
or of requiring more clock cycles than a simpler sequence.

The path toward operation complexity is thus fraught with peril. Section 2.19
demonstrates the pitfalls of complexity.

Beauty is altogether in
the eye of the beholder.
Margaret Wolfe
Hungerford, Molly
Bawn, 1877

 2.17 Real Stuff: x86 Instructions 147

Evolution of the Intel x86
RISC-V and MIPS were the vision of single groups working at the same time; the
pieces of these architectures fit nicely together. Such is not the case for the x86; it
is the product of several independent groups who evolved the architecture over
almost 40 years, adding new features to the original instruction set as someone
might add clothing to a packed bag. Here are important x86 milestones.

n	 1978: The Intel 8086 architecture was announced as an assembly language-
compatible extension of the then-successful Intel 8080, an 8-bit
microprocessor. The 8086 is a 16-bit architecture, with all internal registers
16 bits wide. Unlike RISC-V, the registers have dedicated uses, and hence the
8086 is not considered a general-purpose register (GPR) architecture.

n	 1980: The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Instead of
using registers, it relies on a stack (see Section 2.21 and Section 3.7).

n	 1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 5), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

n	 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The expanded
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

n	 1989–95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro
in 1995 were aimed at higher performance, with only four instructions added
to the user-visible instruction set: three to help with multiprocessing (see
Chapter 6) and a conditional move instruction.

n	 1997: After the Pentium and Pentium Pro were shipping, Intel announced that
it would expand the Pentium and the Pentium Pro architectures with MMX
(Multi Media Extensions). This new set of 57 instructions uses the floating-
point stack to accelerate multimedia and communication applications. MMX
instructions typically operate on multiple short data elements at a time, in
the tradition of single instruction, multiple data (SIMD) architectures (see
Chapter 6). Pentium II did not introduce any new instructions.

n	 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single precision
floating-point data type. Hence, four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE includes cache

general-purpose
register (GPR) A
register that can be used
for addresses or for
data with virtually any
instruction.

148 Chapter 2 Instructions: Language of the Computer

prefetch instructions plus streaming store instructions that bypass the caches
and write directly to memory.

n	 2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are
versions of existing MMX and SSE instructions that operate on 64 bits of data
in parallel. Not only does this change enable more multimedia operations;
it gives the compiler a different target for floating-point operations than
the unique stack architecture. Compilers can choose to use the eight SSE
registers as floating-point registers like those found in other computers. This
change boosted the floating-point performance of the Pentium 4, the first
microprocessor to include SSE2 instructions.

n	 2003: A company other than Intel enhanced the x86 architecture this time.
AMD announced a set of architectural extensions to increase the address
space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address
space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also
increases the number of registers to 16 and increases the number of 128-bit
SSE registers to 16. The primary ISA change comes from adding a new mode
called long mode that redefines the execution of all x86 instructions with
64-bit addresses and data. To address the larger number of registers, it adds a
new prefix to instructions. Depending how you count, long mode also adds
four to 10 new instructions and drops 27 old ones. PC-relative data addressing
is another extension. AMD64 still has a mode that is identical to x86
(legacy mode) plus a mode that restricts user programs to x86 but allows
operating systems to use AMD64 (compatibility mode). These modes allow
a more graceful transition to 64-bit addressing than the HP/Intel IA-64
architecture.

n	 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMD64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating-point
conversion, and thread synchronization (see Section 2.11). AMD added SSE3
in subsequent chips and the missing atomic swap instruction to AMD64 to
maintain binary compatibility with Intel.

n	 2006: Intel announces 54 new instructions as part of the SSE4 instruction set
extensions. These extensions perform tweaks like sum of absolute differences,
dot products for arrays of structures, sign or zero extension of narrow data to
wider sizes, population count, and so on. They also added support for virtual
machines (see Chapter 5).

 2.17 Real Stuff: x86 Instructions 149

n	 2007: AMD announces 170 instructions as part of SSE5, including 46
instructions of the base instruction set that adds three operand instructions
like RISC-V.

n	 2011: Intel ships the Advanced Vector Extension that expands the SSE
register width from 128 to 256 bits, thereby redefining about 250 instructions
and adding 128 new instructions.

This history illustrates the impact of the “golden handcuffs” of compatibility on
the x86, as the existing software base at each step was too important to jeopardize
with significant architectural changes.

Whatever the artistic failures of the x86, keep in mind that this instruction set
largely drove the PC generation of computers and still dominates the Cloud portion
of the post-PC era. Manufacturing 350M x86 chips per year may seem small
compared to 14 billion ARM chips, but many companies would love to control
such a market. Nevertheless, this checkered ancestry has led to an architecture that
is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section
with the care you would need to write x86 programs; the goal instead is to give you
familiarity with the strengths and weaknesses of the world’s most popular desktop
architecture.

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this
section we concentrate on the 32-bit subset that originated with the 80386. We start
our explanation with the registers and addressing modes, move on to the integer
operations, and conclude with an examination of instruction encoding.

x86 Registers and Data Addressing Modes
The registers of the 80386 show the evolution of the instruction set (Figure 2.30).
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits,
prefixing an E to their name to indicate the 32-bit version. We’ll refer to them
generically as GPRs (general-purpose registers). The 80386 contains only eight
GPRs. This means RISC-V and MIPS programs can use four times as many.

Figure 2.31 shows the arithmetic, logical, and data transfer instructions are
two-operand instructions. There are two important differences here. The x86
arithmetic and logical instructions must have one operand act as both a source
and a destination; RISC-V and MIPS allow separate registers for source and
destination. This restriction puts more pressure on the limited registers, since one
source register must be modified. The second important difference is that one of
the operands can be in memory. Thus, virtually any instruction may have one
operand in memory, unlike RISC-V and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of
addresses within the instruction. These so-called displacements can be 8 bits or
32 bits.

150 Chapter 2 Instructions: Language of the Computer

FIGURE 2.30 The 80386 register set. Starting with the 80386, the top eight registers were extended
to 32 bits and could also be used as general-purpose registers.

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

FIGURE 2.31 Instruction types for the arithmetic, logical, and data transfer instructions.
The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.33
(not EIP or EFLAGS).

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 2.17 Real Stuff: x86 Instructions 151

Although a memory operand can use any addressing mode, there are restrictions
on which registers can be used in a mode. Figure 2.32 shows the x86 addressing
modes and which GPRs cannot be used with each mode, as well as how to get the
same effect using RISC-V instructions.

x86 Integer Operations
The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (doublewords) in the x86. (AMD64 adds 64-
bit addresses and data, called quad words; we’ll stick to the 80386 in this section.)
The data type distinctions apply to register operations as well as memory accesses.

Almost every operation works on both 8-bit data and on one longer data size.
That size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386
architects provided a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominate most
programs, and so it made sense to be able to set a default large size. This default
data size is set by a bit in the code segment register. To override the default data
size, an 8-bit prefix is attached to the instruction to tell the machine to use the other
large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default
segment register, lock the bus to support synchronization (see Section 2.11), or
repeat the following instruction until the register ECX counts down to 0. This last

FIGURE 2.32 x86 32-bit addressing modes with register restrictions and the equivalent RISC-V code. The Base plus
Scaled Index addressing mode, not found in RISC-V or MIPS, is included to avoid the multiplies by 8 (scale factor of 3) to turn an index in a
register into a byte address (see Figures 2.26 and 2.28). A scale factor of 1 is used for 16-bit data, and a scale factor of 2 for 32-bit data. A scale
factor of 0 means the address is not scaled. If the displacement is longer than 12 bits in the second or fourth modes, then the RISC-V equivalent
mode would need more instructions, usually a lui to load bits 12 through 31 of the displacement, followed by an add to sum these bits
with the base register. (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are essentially
identical and we combine them here.)

Description
Register

restrictions RISC-V equivalent

Address is in a register. Not ESP or EBP ld x10, 0(x11)

Address is contents of base register plus
displacement.

Not ESP ld x10, 40(x11)

The address is
Base + (2Scale× Index)

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

slli x12, x12, 3
add x11, x11, x12
ld x10, 0(x11)

The address is
Base + (2Scale× Index) + Displacement

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

slli x12, x12, 3
add x11, x11, x12
ld x10, 40(x11)

Mode

Register indirect

Based mode with 8- or 32-bit
displacement

Base plus scaled index

Base plus scaled index with
8- or 32-bit displacement

152 Chapter 2 Instructions: Language of the Computer

prefix was intended to be paired with a byte move instruction to move a variable
number of bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop.

2. Arithmetic and logic instructions, including test, integer, and decimal
arithmetic operations.

3. Control flow, including conditional branches, unconditional branches, calls,
and returns.

4. String instructions, including string move and string compare.

The first two categories are unremarkable, except that the arithmetic and logic
instruction operations allow the destination to be either a register or a memory
location. Figure 2.33 shows some typical x86 instructions and their functions.

FIGURE 2.33 Some typical x86 instructions and their functions. A list of frequent operations
appears in Figure 2.37. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

Instruction Function

je name if equal(condition code) {EIP=name};
EIP–128 <= name < EIP+128

jmp name EIP=name

call name SP=SP–4; M[SP]=EIP+5; EIP=name;

movw EBX,[EDI+45] EBX=M[EDI+45]

push ESI SP=SP–4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765 EAX= EAX+6765

test EDX,#42 Set condition code (fl ags) with EDX and 42

movsl M[EDI]=M[ESI];
EDI=EDI+4; ESI=ESI+4

Conditional branches on the x86 are based on condition codes or flags. Condition
codes are set as a side effect of an operation; most are used to compare the value of
a result to 0. Branches then test the condition codes. PC-relative branch addresses
must be specified in the number of bytes, since unlike RISC-V and MIPS, 80386
instructions have no alignment restriction.

String instructions are part of the 8080 ancestry of the x86 and are not commonly
executed in most programs. They are often slower than equivalent software routines
(see the Fallacy on page 157).

Figure 2.34 lists some of the integer x86 instructions. Many of the instructions
are available in both byte and word formats.

 2.17 Real Stuff: x86 Instructions 153

x86 Instruction Encoding
Saving the worst for last, the encoding of instructions in the 80386 is complex, with
many different instruction formats. Instructions for the 80386 may vary from 1
byte, when there is only one operand, up to 15 bytes.

Figure 2.35 shows the instruction format for several of the example instructions in
Figure 2.33. The opcode byte usually contains a bit saying whether the operand is 8 bits
or 32 bits. For some instructions, the opcode may include the addressing mode and
the register; this is true in many instructions that have the form “register = register op
immediate.” Other instructions use a “postbyte” or extra opcode byte, labeled “mod,
reg, r/m,” which contains the addressing mode information. This postbyte is used for
many of the instructions that address memory. The base plus scaled index mode uses
a second postbyte, labeled “sc, index, base.”

Instruction Meaning

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are
alternative names

jmp Unconditional jump—8-bit or 16-bit offset

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0
Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fi ll

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefi x

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.34 Some typical operations on the x86. Many operations use register-memory format,
where either the source or the destination may be memory and the other may be a register or immediate
operand.

154 Chapter 2 Instructions: Language of the Computer

Figure 2.36 shows the encoding of the two postbyte address specifiers for
both 16-bit and 32-bit modes. Unfortunately, to understand fully which registers
and which addressing modes are available, you need to see the encoding of all
addressing modes and sometimes even the encoding of the instructions.

x86 Conclusion
Intel had a 16-bit microprocessor two years before its competitors’ more elegant
architectures, such as the Motorola 68000, and this head start led to the selection

FIGURE 2.35 Typical x86 instruction formats. Figure 2.39 shows the encoding of the postbyte.
Many instructions contain the 1-bit field w, which says whether the operation is a byte or a doubleword. The
d field in MOV is used in instructions that may move to or from memory and shows the direction of the move.
The ADD instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are
either 8 bits or 32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for
test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. The long length comes from
extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of
2 bytes, and using the scaled index mode specifier, which adds another byte.

a. JE EIP + displacement

b. CALL

c. MOV EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

 2.18 Real Stuff: The Rest of the RISC-V Instruction Set 155

of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that
the x86 is more difficult to build than computers like RISC-V and MIPS, but the
large market meant in the PC era that AMD and Intel could afford more resources
to help overcome the added complexity. What the x86 lacks in style, it rectifies with
market size, making it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural components
are not too difficult to implement, as AMD and Intel have demonstrated by rapidly
improving performance of integer programs since 1978. To get that performance,
compilers must avoid the portions of the architecture that are hard to implement fast.

In the post-PC era, however, despite considerable architectural and
manufacturing expertise, x86 has not yet been competitive in the personal mobile
device.

 2.18 Real Stuff: The Rest of the RISC-V
Instruction Set

With the goal of making an instruction set architecture suitable for a wide variety
of computers, the RISC-V architects partitioned the instruction set into a base
architecture and several extensions. Each is named with a letter of the alphabet,
and the base architecture is named I for integer. The base architecture has few
instructions relative to other popular instruction sets today; indeed, this chapter
has already covered nearly all of them. This section rounds out the base architecture,
then describes the five standard extensions.

FIGURE 2.36 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386).
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1)
r/m = 6 when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in
Figure 2.35. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+S I =EAX same same same same same

1 CL CX ECX 1 addr=BX+D I =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 fi eld

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “

156 Chapter 2 Instructions: Language of the Computer

Figure 2.37 lists the remaining instructions in the base RISC-V architecture.
The first instruction, auipc, is used for PC-relative memory addressing. Like the
lui instruction, it holds a 20-bit constant that corresponds to bits 12 through 31
of an integer. auipc’s effect is to add this number to the PC and write the sum to a
register. Combined with an instruction like addi, it is possible to address any byte
of memory within 4 GiB of the PC. This feature is useful for position-independent
code, which can execute correctly no matter where in memory it is loaded. It is
most frequently used in dynamically linked libraries.

The next four instructions compare two integers, then write the Boolean result
of the comparison to a register. slt and sltu compare two registers as signed
and unsigned numbers, respectively, then write 1 to a register if the first value is
less than the second value, or 0 otherwise. slti and sltiu perform the same
comparisons, but with an immediate for the second operand.

The remaining instructions should all look familiar, as their names are the
same as other instructions discussed in this chapter, but with the letter w, short for
word, appended. These instructions perform the same operation as the similarly
named ones we’ve discussed, except these only operate on the lower 32 bits of their
operands, ignoring bits 32 through 63. Additionally, they produce sign-extended
32-bit results: that is, bits 32 through 63 are all the same as bit 31. The RISC-V
architects included these w instructions because operations on 32-bit numbers
remain very common on computers with 64-bit addresses. The main reason is that
the popular data type int remains 32 bits in Java and in most implementations of
the C language.

FIGURE 2.37 The remaining 14 instructions in the base RISC-V instruction set
architecture.

Additional Instructions in RISC-V Base Architecture

Format Description

Add upper immediate to PC Add 20-bit upper immediate to PC; write sum to register

Set if less than Compare registers; write Boolean result to register

Set if less than, unsigned Compare registers; write Boolean result to register

Set if less than, immediate Compare registers; write Boolean result to register

Set if less than immediate, unsigned Compare registers; write Boolean result to register

Add word Add 32-bit numbers

Subtract word Subtract 32-bit numbers
Add word immediate

U

R

R

I

I

R

R

I Add constant to 32-bit number
Shift left logical word Shift 32-bit number left by registerR

Shift right logical word Shift 32-bit number right by registerR

Shift right arithmetic word Shift 32-bit number right arithmetically by register

Shift left logical word immedate Shift 32-bit number left by immediate

Shift right logical word immediate Shift 32-bit number right by immediate

R

I

I

Shift right arithmetic word immediate

auipc

slt

sltu

slti

sltiu

addw

subw
addiw
sllw

srlw

sraw

slliw

srliw

sraiw Shift 32-bit number right arithmetically by immediateI

NameInstruction

 2.19 Fallacies and Pitfalls 157

That’s it for the base architecture! Figure 2.38 lists the five standard extensions.
The first, M, adds instructions to multiply and divide integers. Chapter 3 will
introduce several instructions in the M extension.

The second extension, A, supports atomic memory operations for multiprocessor
synchronization. The load-reserved (lr.d) and store-conditional (sc.d)
instructions introduced in Section 2.11 are members of the A extension. Also
included are versions that operate on 32-bit words (lr.w and sc.w). The remaining
18 instructions are optimizations of common synchronization patterns, like atomic
exchange and atomic addition, but do not add any additional functionality over
load-reserved and store-conditional.

The third and fourth extensions, F and D, provide operations on floating-point
numbers, which are described in Chapter 3.

The last extension, C, provides no new functionality at all. Rather, it takes the
most popular RISC-V instructions, like addi, and provides equivalent instructions
that are only 16 bits in length, rather than 32. It thereby allows programs to be
expressed in fewer bytes, which can reduce cost and, as we will see in Chapter 5,
can improve performance. To fit in 16 bits, the new instructions have restrictions
on their operands: for example, some instructions can only access some of the 32
registers, and the immediate fields are narrower.

Taken together, the RISC-V base and extensions have 184 instructions, plus 13
system instructions that will be introduced at the end of Chapter 5.

 2.19 Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.
Part of the power of the Intel x86 is the prefixes that can modify the execution of
the following instruction. One prefix can repeat the subsequent instruction until

FIGURE 2.38 The RISC-V instruction set architecture is divided into the base ISA, named
I, and five standard extensions, M, A, F, D, and C.

RISC-V Base and Extensions

Insn. Count

I

M

A

F

D

C

51

13

22

30

32

36

Base architecture

Integer multiply/divide

Atomic operations

Single-precision floating point

Double-precision floating point

Compressed instructions

DescriptionMnemonic

158 Chapter 2 Instructions: Language of the Computer

a counter steps down to 0. Thus, to move data in memory, it would seem that the
natural instruction sequence is to use move with the repeat prefix to perform 32-bit
memory-to-memory moves.

An alternative method, which uses the standard instructions found in all
computers, is to load the data into the registers and then store the registers back to
memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times as fast. A third version, which uses the
larger floating-point registers instead of the integer registers of the x86, copies at
about 2.0 times as fast as the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.
At one time compilers for programming languages produced naïve instruction

sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to understand
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory
hierarchy).

This battle between compilers and assembly language coders is another situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some old C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today’s C compilers
generally ignore these hints, because the compiler does a better job at allocation
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly
language are the protracted time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axioms
of software engineering is that coding takes longer if you write more lines, and it
clearly takes many more lines to write a program in assembly language than in C
or Java. Moreover, once it is coded, the next danger is that it will become a popular
program. Such programs always live longer than expected, meaning that someone
will have to update the code over several years and make it work with new releases
of operating systems and recent computers. Writing in higher-level language
instead of assembly language not only allows future compilers to tailor the code to
forthcoming machines; it also makes the software easier to maintain and allows the
program to run on more brands of computers.

Fallacy: The importance of commercial binary compatibility means successful
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.39 shows that the x86
architecture has grown dramatically. The average is more than one instruction per
month over its 35-year lifetime!

 2.20 Concluding Remarks 159

Pitfall: Forgetting that sequential word or doubleword addresses in machines with
byte addressing do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word or doubleword can be found by incrementing
the address in a register by one instead of by the word or doubleword size in bytes.
Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure
that includes a pointer to an array that is local to that procedure. Following the
stack discipline in Figure 2.12, the memory that contains the local array will be
reused as soon as the procedure returns. Pointers to automatic variables can lead
to chaos.

 2.20 Concluding Remarks

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for programs.
These principles allow a single machine to aid cancer researchers, financial
advisers, and novelists in their specialties. The selection of a set of instructions that

Less is more.
Robert Browning,
Andrea del Sarto, 1855

FIGURE 2.39 Growth of x86 instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also increases the difficulty for other companies to try to build
compatible processors.

0

100

200

300

400

500

600

700

800

900

1000

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

Year

N
um

be
r

of
 In

st
ru

ct
io

ns

160 Chapter 2 Instructions: Language of the Computer

the machine can understand demands a delicate balance among the number of
instructions needed to execute a program, the number of clock cycles needed by an
instruction, and the speed of the clock. As illustrated in this chapter, three design
principles guide the authors of instruction sets in making that tricky tradeoff:

1. Simplicity favors regularity. Regularity motivates many features of the RISC-V
instruction set: keeping all instructions a single size, always requiring register
operands in arithmetic instructions, and keeping the register fields in the
same place in all instruction formats.

2. Smaller is faster. The desire for speed is the reason that RISC-V has 32
registers rather than many more.

3. Good design demands good compromises. One RISC-V example is the
compromise between providing for larger addresses and constants in
instructions and keeping all instructions the same length.

We also saw the great idea from Chapter 1 of making the common cast fast
applied to instruction sets as well as computer architecture. Examples of making
the common RISC-V case fast include PC-relative addressing for conditional
branches and immediate addressing for larger constant operands.

Above this machine level is assembly language, a language that humans can read.
The assembler translates it into the binary numbers that machines can understand,
and it even “extends” the instruction set by creating symbolic instructions that aren’t
in the hardware. For instance, constants or addresses that are too big are broken
into properly sized pieces, common variations of instructions are given their own
name, and so on. Figure 2.40 lists the RISC-V instructions we have covered so far,
both real and pseudoinstructions. Hiding details from the higher level is another
example of the great idea of abstraction.

Each category of RISC-V instructions is associated with constructs that appear
in programming languages:

n	 Arithmetic instructions correspond to the operations found in assignment
statements.

n	 Transfer instructions are most likely to occur when dealing with data
structures like arrays or structures.

n	 Conditional branches are used in if statements and in loops.

n	 Unconditional branches are used in procedure calls and returns and for case/
switch statements.

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.41 shows the popularity of each class of instructions
for SPEC CPU2006. The varying popularity of instructions plays an important role
in the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter 3, we reveal more of the
RISC-V instruction set architecture.

 2.20 Concluding Remarks 161

Format Pseudo RISC-V

Add

Subtract

Add immediate

Load doubleword

Store doubleword

Load word

Load word, unsigned

Store word

R Move

R

I

I

Load immediate

Jump

Load address

mv

li

j

la

addi

addi

jal

lui+addi

S

I

I

S
Load halfword I

Load halfword, unsigned I

Store halfword

Load byte

Load byte, unsigned

S

I

I

Store byte

add

sub

addi

ld

sd

lw

lwu
sw
lh

lhu

sh

lb

lbu

sb S

Name Name Real InstructionRISC-V Instructions

Load reserved lr.d R

Store conditional sc.d R

Load upper immediate lui U

And and R

Inclusive or or R

Exclusive or xor R

And immediate andi I

Inclusive or immediate ori I

Exclusive or immediate xori I

Shift left logical sll R

Shift right logical srl R

Shift right arithmetic sra R

Shift left logical immediate slli I

Shift right logical immediate srli I

Shift right arithmetic immediate srai I

Branch if equal beq SB

Branch if not equal bne SB

Branch if less than blt SB

Branch if greater or equal bge SB

Branch if less, unsigned bltu SB

Branch if greatr/eq, unsigned bgeu SB

Jump and link jal UJ

Jump and link register jalr I

FIGURE 2.40 The RISC-V instruction set covered so far, with the real RISC-V instructions on the left
and the pseudoinstructions on the right. Figure 2.1 shows more details of the RISC-V architecture revealed in
this chapter. The information given here is also found in Columns 1 and 2 of the RISC-V Reference Data Card at the front
of the book.

162 Chapter 2 Instructions: Language of the Computer

 2.21 Historical Perspective and Further
Reading

This section surveys the history of instruction set architectures (ISAs) over
time, and we give a short history of programming languages and compilers.
ISAs include accumulator architectures, general-purpose register architectures,
stack architectures, and a brief history of the x86 and ARM’s 32-bit architecture,
ARMv7. We also review the controversial subjects of high-level-language
computer architectures and reduced instruction set computer architectures. The
history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal,
Simula, Smalltalk, C++, and Java, and the history of compilers includes the key
milestones and the pioneers who achieved them. The rest of Section 2.21 is
found online.

 2.22 Exercises

2.1 [5] <§2.2> For the following C statement, write the corresponding RISC-V
assembly code. Assume that the C variables f, g, and h, have already been placed
in registers x5, x6, and x7 respectively. Use a minimal number of RISC-V assembly
instructions.

f = g + (h − 5);

2.21

HLL correspondence Integer Fl. Pt.

Frequency

Arithmetic 16%

Data transfer 35%

Logical 12%

Branch 34%

Jump 2%

48%

36%

4%

8%

0%

Operations in assignment statements

References to data structures in memory

Operations in assignment statements

If statements; loops

Procedure calls & returns; switch statements

add, sub, addi

ld, sd, lw, sw, lh,
sh, lb, sb, lui

and, or, xor, sll,
srl, sra

beq, bne, blt, bge,
bltu, bgeu

jal, jalr

RISC-V examplesInstruction class

FIGURE 2.41 RISC-V instruction classes, examples, correspondence to high-level program language
constructs, and percentage of RISC-V instructions executed by category for the average integer and
floating point SPEC CPU2006 benchmarks. Figure 3.24 in Chapter 3 shows average percentage of the individual
RISC-V instructions executed.

 2.21 Historical Perspective and Further Reading 162.e1

Historical Perspective and Further
Reading

This section surveys the history of instruction set architectures over time,
and we give a short history of programming languages and compilers. ISAs
include accumulator architectures, general-purpose register architectures, stack
architectures, and a brief history of ARMv7 and the x86. We also review the
controversial subjects of high-level-language computer architectures and reduced
instruction set computer architectures. The history of programming languages
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java,
and the history of compilers includes the key milestones and the pioneers who
achieved them.

Accumulator Architectures
Hardware was precious in the earliest stored-program computers. Consequently,
computer pioneers could not afford the number of registers found in today’s
architectures. In fact, these architectures had a single register for arithmetic
instructions. Since all operations would accumulate in one register, it was called the
accumulator, and this style of instruction set is given the same name. For example,
EDSAC in 1949 had a single accumulator.

The three-operand format of RISC-V suggests that a single register is at least two
registers shy of our needs. Having the accumulator as both a source operand and
the destination of the operation fills part of the shortfall, but it still leaves us one
operand short. That final operand is found in memory. Accumulator architectures
have the memory-based operand-addressing mode suggested earlier. It follows that
the add instruction of an accumulator instruction set would look like this:

ADD 200

This instruction means add the accumulator to the word in memory at address
200 and place the sum back into the accumulator. No registers are specified because
the accumulator is known to be both a source and a destination of the operation.

The next step in the evolution of instruction sets was the addition of registers
dedicated to specific operations. Hence, registers might be included to act
as indices for array references in data transfer instructions, to act as separate
accumulators for multiply or divide instructions, and to serve as the top-of-stack
pointer. Perhaps the best-known example of this style of instruction set is found
in the Intel 80x86. This style of instruction set is labeled extended accumulator,
dedicated register, or special-purpose register. Like the single-register accumulator
architectures, one operand may be in memory for arithmetic instructions. Like the
RISC-V architecture, however, there are also instructions where all the operands
are registers.

accumulator Archaic
term for register. On-line
use of it as a synonym for
“register” is a fairly reliable
indication that the user
has been around quite a
while.

Eric Raymond, The New
Hacker’s Dictionary, 1991

2.21

162.e2 2.21 Historical Perspective and Further Reading

General-Purpose Register Architectures
The generalization of the dedicated-register architecture allows all the registers
to be used for any purpose, hence the name general-purpose register. RISC-V is
an example of a general-purpose register architecture. This style of instruction set
may be further divided into those that allow one operand to be in memory (as
found in accumulator architectures), called a register-memory architecture, and
those that demand that operands always be in registers, called either a load-store
or a register-register architecture. Figure e2.22.1 shows a history of the number of
registers in some popular computers.

The first load-store architecture was the CDC 6600 in 1963, considered by many
to be the first supercomputer. RISC-V, ARMv7, ARMv8, and MIPS are more recent
examples of a load-store architecture.

load-store
architecture Also
called register-
register architecture.
An instruction set
architecture in which
all operations are
between registers and
data memory may only
be accessed via loads or
stores. Machine Architectural style Year

EDSAC 1949Accumulator1
IBM 701 1953Accumulator1
CDC 6600 1963Load-store8

1964Register-memory16063MBI
DEC PDP-8 1965Accumulator1
DEC PDP-11 1970Register-memory8
Intel 8008 1972Accumulator1
Motorola 6800 1974Accumulator2

1977Register-memory, memory-memory16DEC VAX
Intel 8086 1 Extended accumulator 1978

1980Register-memory16Motorola 68000
Intel 80386 1985Register-memory8

1985Load-store16MRA
1985Load-store32SPIM
1986Load-store32CSIR-APPH
1987Load-store32CRAPS
1992Load-store32PowerPC
1992Load-store32DEC Alpha
2001Load-store128HP/Intel IA-64
2003

2010

Register-memory16

32

AMD64 (EMT64)

RISC-V Load-store

Number of
general-purpose registers

FIGURE e2.22.1 The number of general-purpose registers in popular architectures over
the years.

The 80386 was Intel’s attempt to transform the 8086 into a general-purpose
register-memory instruction set. Perhaps the best-known register-memory
instruction set is the IBM 360 architecture, first announced in 1964. This instruction
set is still at the core of IBM’s mainframe computers—responsible for a large part

 2.21 Historical Perspective and Further Reading 162.e3

of the business of the largest computer company in the world. Register-memory
architectures were the most popular in the 1960s and the first half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one
step further in 1977. It allowed an instruction to use any combination of registers
and memory operands. A style of architecture in which all operands can be in
memory is called memory-memory. (In truth the VAX instruction set, like almost
all other instruction sets since the IBM 360, is a hybrid, since it also has general-
purpose registers.)

The Intel x86 has many versions of a 64-bit add to specify whether an operand
is in memory or is in a register. In addition, the memory operand can be accessed
with more than seven addressing modes. This combination of address modes and
register-memory operands means that there are dozens of variants of an x86 add
instruction. Clearly, this variability makes x86 implementations more challenging.

Compact Code and Stack Architectures
When memory is scarce, it is also important to keep programs small, so architectures
like the Intel x86, IBM 360, and VAX had variable-length instructions, both to
match the varying operand specifications and to minimize code size. Intel x86
instructions are from 1 to 15 bytes long; IBM 360 instructions are 2, 4, or 6 bytes
long; and VAX instruction lengths are anywhere from 1 to 54 bytes.

One place where code size is still important is embedded applications.
In recognition of this need, ARM, MIPS, and RISC-V all made versions of
their instructions sets that offer both 16-bit instruction formats and 32-bit
instruction formats: Thumb and Thumb-2 for ARM, MIPS-16, and RISC-V
Compressed. Despite being limited to just two sizes, Thumb, Thumb-2, MIPS-
16, and RISC-V Compressed programs are about 25% to 30% smaller, which
makes their code sizes smaller than those of the 80x86. Smaller code sizes have
the added benefit of improving instruction cache hit rates (see Chapter 5).

In the 1960s, a few companies followed a radical approach to instruction sets.
In the belief that it was too hard for compilers to utilize registers effectively, these
companies abandoned registers altogether! Instruction sets were based on a
stack model of execution, like that found in the older Hewlett-Packard handheld
calculators. Operands are pushed on the stack from memory or popped off the
stack into memory. Operations take their operands from the stack and then place
the result back onto the stack. In addition to simplifying compilers by eliminating
register allocation, stack architectures lent themselves to compact instruction
encoding, thereby removing memory size as an excuse not to program in high-
level languages.

Memory space was perceived to be precious again for Java, both because
memory space is limited to keep costs low in embedded applications and because
programs may be downloaded over the Internet or phone lines as Java applets, and
smaller programs take less time to transmit. Hence, compact instruction encoding
was desirable for Java bytecodes.

162.e4 2.21 Historical Perspective and Further Reading

High-Level-Language Computer Architectures
In the 1960s, systems software was rarely written in high-level languages. For example,
virtually every commercial operating system before UNIX was programmed in
assembly language, and more recently even OS/2 was originally programmed at that
same low level. Some people blamed the code density of the instruction sets, rather
than the programming languages and the compiler technology.

Hence, an architecture design philosophy called high-level-language computer
architecture was advocated, with the goal of making the hardware more like the
programming languages. More efficient programming languages and compilers,
plus expanding memory, doomed this movement to a historical footnote. The
Burroughs B5000 was the commercial fountainhead of this philosophy, but today
there is no significant commercial descendant of this 1960s radical.

Reduced Instruction Set Computer Architectures
This language-oriented design philosophy was replaced in the 1980s by RISC
(reduced instruction set computer). Improvements in programming languages,
compiler technology, and memory cost meant that less programming was being
done at the assembly level, so instruction sets could be measured by how well
compilers used them, in contrast to how skillfully assembly language programmers
used them.

Virtually all new instruction sets since 1982 have followed this RISC philosophy
of fixed instruction lengths, load-store instruction sets, limited addressing modes,
and limited operations. ARMv7, ARMv8 Hitachi SH, IBM PowerPC, MIPS, Sun
SPARC, and, of course, RISC-V, are all examples of RISC architectures.

A Brief History of the ARMv7
ARM started as the processor for the Acorn computer, hence its original name of
Acorn RISC Machine. The Berkeley RISC papers influenced its architecture.

One of the most important early applications was emulation of the AM 6502,
a 16-bit microprocessor. This emulation was to provide most of the software for
the Acorn computer. As the 6502 had a variable-length instruction set that was
a multiple of bytes, 6502 emulation helps explain the emphasis on shifting and
masking in the ARMv7 instruction set.

Its popularity as a low-power embedded computer began with its selection as
the processor for the ill-fated Apple Newton personal digital assistant. Although
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility
to the earlier ARM instruction sets, and they subsequently caught on in several
markets, including cell phones. Unlike the Newton experience, the extraordinary
success of cell phones explains why 12 billion ARM processors were shipped in
2014.

One of the major events in ARM’s history is the 64-bit address extension called
version 8. ARM took the opportunity to redesign the instruction set to make it look
much more like MIPS than like earlier ARM versions.

 2.21 Historical Perspective and Further Reading 162.e5

A Brief History of the x86
The ancestors of the x86 were the first microprocessors, produced starting in 1972.
The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator-style
architectures. Morse et al. [1980] describe the evolution of the 8086 from the
8080 in the late 1970s as an attempt to provide a 16-bit architecture with better
throughput. At that time, almost all programming for microprocessors was done
in assembly language—both memory and compilers were in short supply. Intel
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible”
with the 8080. The 8086 was never object-code compatible with the 8080, but the
architectures were close enough that translation of assembly language programs
could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the
cost of the architecture. This choice, together with the tremendous success of the
IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM PC was
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to flourish. As discussed in Section 2.18, the 80286, 80386, 80486,
Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and AMD64 have
extended the architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as
pervasive as the PC, partly because Apple did not allow Mac clones based on the
68000, and the 68000 did not acquire the same software following that which
the 8086 enjoys. The Motorola 68000 may have been more significant technically
than the 8086, but the impact of IBM’s selection and open architecture strategy
dominated the technical advantages of the 68000 in the market.

Some argue that the inelegance of the x86 instruction set is unavoidable, the
price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were
added in previous implementations, and over time, some features may be seen as
undesirable. The awkwardness of the x86 begins at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions found in the
8087, 80286, 80386, MMX, SSE, SSE2, SSE3, SSE4, AMD64 (EM64T), and AVX.

A counterexample is the IBM 360/370 architecture, which is much older than
the x86. It dominated the mainframe market just as the x86 dominated the PC
market. Due undoubtedly to a better base and more compatible enhancements,
this instruction set makes much more sense than the x86 50 years after its first
implementation.

Extending the x86 to 64-bit addressing means the architecture may last for
several more decades. Instruction set anthropologists of the future will peel off
layer after layer from such architectures until they uncover artifacts from the
first microprocessor. Given such a find, how will they judge today’s computer
architecture?

162.e6 2.21 Historical Perspective and Further Reading

A Brief History of Programming Languages
In 1954, John Backus led a team at IBM to create a more natural notation for scientific
programming. The goal of Fortran, for “FORmula TRANslator,” was to reduce the
time to develop programs. Fortran included many ideas found in programming
languages today, including assignment statements, expressions, typed variables,
loops, and arrays. The development of the language and the compiler went hand
in hand. This language became a standard that has evolved over time to improve
programmer productivity and program portability. The evolutionary steps are
Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial computer, the 704, which
was also the cradle of another important programming language: Lisp. John
McCarthy invented the “LISt Processing” language in 1958. Its mantra is that
programming can be considered as manipulating lists, so the language contains
operations to follow links and to compose new lists from old ones. This list notation
is used for the code as well as the data, so modifying or composing Lisp programs is
common. The big contribution was dynamic data structures and, hence, pointers.
Given that its inventor was a pioneer in artificial intelligence, Lisp became popular
in the AI community. Lisp has no type declarations, and Lisp traditionally reclaims
storage automatically via built-in garbage collection. Lisp was originally interpreted,
although compilers were later developed for it.

Fortran inspired the international community to invent a programming language
that was more natural to express algorithms than Fortran, with less emphasis on
coding. This language became Algol, for “ALGOrithmic Language.” Like Fortran,
it included type declarations, but it added recursive procedure calls, nested if-then-
else statements, while loops, begin-end statements to structure code, and call-by-
name. Algol-60 became the classic language for academics to teach programming
in the 1960s.

Although engineers, AI researchers, and computer scientists had their own
programming languages, the same could not be said for business data processing.
Cobol, for “COmmon Business-Oriented Language,” was developed as a standard
for this purpose contemporary with Algol-60. Cobol was created to be easy to read,
so it follows English vocabulary and punctuation. It added records to programming
languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed
to update Algol-60. He was bothered by the complexity of the result, and so he
wrote a minority report to show that a programming language could combine
the algorithmic power of Algol-60 with the record structure from Cobol and be
simple to understand, easy to implement, yet still powerful. This minority report
became Pascal. It was first implemented with an interpreter and a set of Pascal
bytecodes. The ease of implementation led to its being widely deployed, much
more than Algol-68, and it soon replaced Algol-60 as the most popular language
for academics to teach programming.

 2.21 Historical Perspective and Further Reading 162.e7

In the same period, Dennis Ritchie invented the C programming language to
use in building UNIX. Its inventors say it is not a “very high level” programming
language or a big one, and it is not aimed at a particular application. Given its
birthplace, it was very good at systems programming, and the UNIX operating
system and C compiler were written in C. UNIX’s popularity helped spur C’s
popularity.

The concept of object orientation is first captured in Simula-67, a simulation
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen Nygaard
at the University of Oslo in 1967, it introduced objects, classes, and inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at
Xerox Palo Alto Research Center to invent Smalltalk in the 1970s. Smalltalk-80
married the typeless variables and garbage collection from Lisp and the object
orientation of Simula-67. It relied on interpretation that was defined by a Smalltalk
virtual machine with a Smalltalk bytecode instruction set. Kay and his colleagues
argued that processors were getting faster, and that we must eventually be willing
to sacrifice some performance to improve program development. Another example
was CLU, which demonstrated that an object-oriented language could be defined
that allowed compile-time type checking. Simula-67 also inspired Bjarne Stroustrup
of Bell Labs to develop an object-oriented version of C called C++ in the 1980s.
C++ became widely used in industry.

Dissatisfied with C++, a group at Sun led by James Gosling invented Oak in the
early 1990s. It was invented as an object-oriented C dialect for embedded devices
as part of a major Sun project. To make it portable, it was interpreted and had its
own virtual machine and bytecode instruction set. Since it was a new language,
it had a more elegant object-oriented design than C++ and was much easier to
learn and compile than Smalltalk-80. Since Sun’s embedded project failed, we
might never have heard of it had someone not made the connection between Oak
and programmable browsers for the World Wide Web. It was rechristened Java,
and in 1995, Netscape announced that it would be shipping with its browser. It
soon became extraordinarily popular. Java had the rare distinction of becoming the
standard language for new business data processing applications and the favored
language for academics to teach programming. Java and languages like it encourage
reuse of code, and hence programmers make heavy use of libraries, whereas in the
past they were more likely to write everything from scratch.

A Brief History of Compilers
Backus and his group were very concerned that Fortran would be unsuccessful
if skeptics found examples where the Fortran version ran at half the speed of the
equivalent assembly language program. Their success with one of the first compilers
created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described in
Section 2.15 online. These ad hoc approaches were replaced with a solid theoretical
foundation for each of these steps. Each time the theory was established, a tool was
built based on that theory that automated the creation of that step.

162.e8 2.21 Historical Perspective and Further Reading

The theoretical roots underlying scanning and parsing derive from automata
theory, and the relationship between languages and automata was known early.
The scanning task corresponds to recognition of a language accepted by a finite-
state automata, and parsing corresponds to recognition of a language by a push-
down automata (basically an automata with a stack). Languages are described by
grammars, which are a set of rules that tell how any legal program can be generated.

The scanning pass of a compiler was well understood early, but parsing is harder.
The earliest parsers use precedence techniques, which derived from the structure
of arithmetic statements, and were then generalized. The great breakthrough in
modern parsing was made by Donald Knuth in the invention of LR-parsing, which
codified the two key steps in the parsing technique, pushing a token on the stack
or reducing a set of tokens on the stack using a grammar rule. The strong theory
formulation for scanning and parsing led to the development of automated tools
for compiler constructions, such as lex and yacc, the tools developed as part of
UNIX.

Optimizations occurred in many compilers, and it is harder to determine the
first examples in most cases. However, Victor Vyssotsky did the first papers on data
flow analysis in 1963, and William McKeeman is generally credited with the first
peephole optimizer in 1965. The group at IBM, including John Cocke and Fran
Allan, developed many of the early optimization concepts, as well as defining and
extending the concepts of flow analysis. Important contributions were also made
by Al Aho and Jeff Ullman.

One of the biggest challenges for optimization was register allocation. It was so
difficult that some architects used stack architectures just to avoid the problem.
The breakthrough came when researchers working on compilers for the 801, an
early RISC architecture, recognized that coloring a graph with a minimum number
of colors was equivalent to allocating a fixed number of registers to the unlimited
number of virtual registers used in intermediate forms.

Compilers also played an important role in the open-source movement. Richard
Stallman’s self-appointed mission was to make a public domain version of UNIX.
He built the GNU C Compiler (gcc) as an open-source compiler in 1987. It soon
was ported to many architectures, and is used in many systems today.

Further Reading

Bayko, J. [1996]. “Great microprocessors of the past and present,” search for it on the http://www.cpushack.
com/CPU/cpu.html.

A personal view of the history of both representative and unusual microprocessors, from the Intel 4004 to the
Patriot Scientific ShBoom!

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture, The VAX, Digital Press, Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 8086, IBM 360, and CDC 6600.

http://www.cpushack.com/CPU/cpu.html
http://www.cpushack.com/CPU/cpu.html
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref2

 2.21 Historical Perspective and Further Reading 162.e9

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080 to 8086”, Computer
13 10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in the
designs.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.

The Motorola 6800 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, TI 9900, and Zilog
Z8000.

http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref4

 2.22 Exercises 163

2.2 [5] <§2.2> Write a single C statement that corresponds to the two RISC-V
assembly instructions below.

add f, g, h
add f, i, f

2.3 [5] <§§2.2, 2.3> For the following C statement, write the corresponding
RISC-V assembly code. Assume that the variables f, g, h, i, and j are assigned to
registers x5, x6, x7, x28, and x29, respectively. Assume that the base address
of the arrays A and B are in registers x10 and x11, respectively.

B[8] = A[i−j];

2.4 [10] <§§2.2, 2.3> For the RISC-V assembly instructions below, what is the
corresponding C statement? Assume that the variables f, g, h, i, and j are assigned
to registers x5, x6, x7, x28, and x29, respectively. Assume that the base
address of the arrays A and B are in registers x10 and x11, respectively.

slli x30, x5, 3 // x30 = f*8
add x30, x10, x30 // x30 = &A[f]
slli x31, x6, 3 // x31 = g*8
add x31, x11, x31 // x31 = &B[g]
ld x5, 0(x30) // f = A[f]

addi x12, x30, 8
ld x30, 0(x12)
add x30, x30, x5
sd x30, 0(x31)

2.5 [5] <§2.3> Show how the value 0xabcdef12 would be arranged in memory
of a little-endian and a big-endian machine. Assume the data are stored starting at
address 0 and that the word size is 4 bytes.

2.6 [5] <§2.4> Translate 0xabcdef12 into decimal.

2.7 [5] <§§2.2, 2.3> Translate the following C code to RISC-V. Assume that the
variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29,
respectively. Assume that the base address of the arrays A and B are in registers x10
and x11, respectively. Assume that the elements of the arrays A and B are 8-byte
words:

B[8] = A[i] + A[j];

2.8 [10] <§§2.2, 2.3> Translate the following RISC-V code to C. Assume that the
variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29,

马德

马德

164 Chapter 2 Instructions: Language of the Computer

respectively. Assume that the base address of the arrays A and B are in registers x10
and x11, respectively.

addi x30, x10, 8
addi x31, x10, 0
sd x31, 0(x30)
ld x30, 0(x30)
add x5, x30, x31

2.9 [20] <§§2.2, 2.5> For each RISC-V instruction in Exercise 2.8, show the value
of the opcode (op), source register (rs1), and destination register (rd) fields. For
the I-type instructions, show the value of the immediate field, and for the R-type
instructions, show the value of the second source register (rs2). For non U- and
UJ-type instructions, show the funct3 field, and for R-type and S-type instructions,
also show the funct7 field.

2.10 Assume that registers x5 and x6 hold the values 0x8000000000000000
and 0xD000000000000000, respectively.

2.10.1 [5] <§2.4> What is the value of x30 for the following assembly code?

add x30, x5, x6

2.10.2 [5] <§2.4> Is the result in x30 the desired result, or has there been
overflow?

2.10.3 [5] <§2.4> For the contents of registers x5 and x6 as specified above,
what is the value of x30 for the following assembly code?

sub x30, x5, x6

2.10.4 [5] <§2.4> Is the result in x30 the desired result, or has there been
overflow?

2.10.5 [5] <§2.4> For the contents of registers x5 and x6 as specified above,
what is the value of x30 for the following assembly code?

add x30, x5, x6
add x30, x30, x5

2.10.6 [5] <§2.4> Is the result in x30 the desired result, or has there been
overflow?

2.11 Assume that x5 holds the value 128ten.

2.11.1 [5] <§2.4> For the instruction add x30, x5, x6, what is the range(s)
of values for x6 that would result in overflow?

2.11.2 [5] <§2.4> For the instruction sub x30, x5, x6, what is the range(s)
of values for x6 that would result in overflow?

 2.22 Exercises 165

2.11.3 [5] <§2.4> For the instruction sub x30, x6, x5, what is the range(s)
of values for x6 that would result in overflow?

2.12 [5] <§§2.2, 2.5> Provide the instruction type and assembly language
instruction for the following binary value:

0000 0000 0001 0000 1000 0000 1011 0011two

Hint: Figure 2.20 may be helpful.

2.13 [5] <§§2.2, 2.5> Provide the instruction type and hexadecimal representation
of the following instruction:

sd x5, 32(x30)

2.14 [5] <§2.5> Provide the instruction type, assembly language instruction, and
binary representation of instruction described by the following RISC-V fields:

opcode=0x33, funct3=0x0, funct7=0x20, rs2=5, rs1=7, rd=6

2.15 [5] <§2.5> Provide the instruction type, assembly language instruction, and
binary representation of instruction described by the following RISC-V fields:

opcode=0x3, funct3=0x3, rs1=27, rd=3, imm=0x4

2.16 Assume that we would like to expand the RISC-V register file to 128 registers
and expand the instruction set to contain four times as many instructions.

2.16.1 [5] <§2.5> How would this affect the size of each of the bit fields in the
R-type instructions?

2.16.2 [5] <§2.5> How would this affect the size of each of the bit fields in the
I-type instructions?

2.16.3 [5] <§§2.5, 2.8, 2.10> How could each of the two proposed changes
decrease the size of a RISC-V assembly program? On the other hand, how could
the proposed change increase the size of an RISC-V assembly program?

2.17 Assume the following register contents:

x5 = 0x00000000AAAAAAAA, x6 = 0x1234567812345678

2.17.1 [5] <§2.6> For the register values shown above, what is the value of x7 for
the following sequence of instructions?

slli x7, x5, 4
or x7, x7, x6

马德

马德

马德

166 Chapter 2 Instructions: Language of the Computer

2.17.2 [5] <§2.6> For the register values shown above, what is the value of x7 for
the following sequence of instructions?

slli x7, x6, 4

2.17.3 [5] <§2.6> For the register values shown above, what is the value of x7 for
the following sequence of instructions?

srli x7, x5, 3
andi x7, x7, 0xFEF

2.18 [10] <§2.6> Find the shortest sequence of RISC-V instructions that extracts
bits 16 down to 11 from register x5 and uses the value of this field to replace bits 31
down to 26 in register x6 without changing the other bits of registers x5 or x6. (Be
sure to test your code using x5 = 0 and x6 = 0xffffffffffffffff. Doing so
may reveal a common oversight.)

2.19 [5] <§2.6> Provide a minimal set of RISC-V instructions that may be used
to implement the following pseudoinstruction:

not x5, x6 // bit-wise invert

2.20 [5] <§2.6> For the following C statement, write a minimal sequence of
RISC-V assembly instructions that performs the identical operation. Assume x6 =
A, and x17 is the base address of C.

A = C[0] << 4;

2.21 [5] <§2.7> Assume x5 holds the value 0x00000000001010000. What is
the value of x6 after the following instructions?

 bge x5, x0, ELSE
 jal x0, DONE
ELSE: ori x6, x0, 2
DONE:

2.22 Suppose the program counter (PC) is set to 0x20000000.

2.22.1 [5] <§2.10> What range of addresses can be reached using the RISC-V
jump-and-link (jal) instruction? (In other words, what is the set of possible values
for the PC after the jump instruction executes?)

2.22.2 [5] <§2.10> What range of addresses can be reached using the RISC-V
branch if equal (beq) instruction? (In other words, what is the set of possible values
for the PC after the branch instruction executes?)

马德

 2.22 Exercises 167

2.23 Consider a proposed new instruction named rpt. This instruction combines
a loop’s condition check and counter decrement into a single instruction. For
example rpt x29, loop would do the following:

if (x29 > 0) {
x29 = x29 −1;
goto loop

}

2.23.1 [5] <§2.7, 2.10> If this instruction were to be added to the RISC-V
instruction set, what is the most appropriate instruction format?

2.23.2 [5] <§2.7> What is the shortest sequence of RISC-V instructions that
performs the same operation?

2.24 Consider the following RISC-V loop:

LOOP: beq x6, x0, DONE
 addi x6, x6, -1
 addi x5, x5, 2
 jal x0, LOOP
DONE:

2.24.1 [5] <§2.7> Assume that the register x6 is initialized to the value 10. What
is the final value in register x5 assuming the x5 is initially zero?

2.24.2 [5] <§2.7> For the loop above, write the equivalent C code. Assume that
the registers x5 and x6 are integers acc and i, respectively.

2.24.3 [5] <§2.7> For the loop written in RISC-V assembly above, assume that
the register x6 is initialized to the value N. How many RISC-V instructions are
executed?

2.24.4 [5] <§2.7> For the loop written in RISC-V assembly above, replace the
instruction “beq x6, x0, DONE” with the instruction “blt x6, x0, DONE”
and write the equivalent C code.

2.25 [10] <§2.7> Translate the following C code to RISC-V assembly code. Use
a minimum number of instructions. Assume that the values of a, b, i, and j are in
registers x5, x6, x7, and x29, respectively. Also, assume that register x10 holds
the base address of the array D.

for(i=0; i<a; i++)
 for(j=0; j<b; j++)
 D[4*j] = i + j;

马德

168 Chapter 2 Instructions: Language of the Computer

2.26 [5] <§2.7> How many RISC-V instructions does it take to implement the
C code from Exercise 2.25? If the variables a and b are initialized to 10 and 1 and
all elements of D are initially 0, what is the total number of RISC-V instructions
executed to complete the loop?

2.27 [5] <§2.7> Translate the following loop into C. Assume that the C-level
integer i is held in register x5,x6 holds the C-level integer called result, and
x10 holds the base address of the integer MemArray.

 addi x6, x0, 0
 addi x29, x0, 100
LOOP: ld x7, 0(x10)
 add x5, x5, x7
 addi x10, x10, 8
 addi x6, x6, 1
 blt x6, x29, LOOP

2.28 [10] <§2.7> Rewrite the loop from Exercise 2.27 to reduce the number of
RISC-V instructions executed. Hint: Notice that variable i is used only for loop
control.

2.29 [30] <§2.8> Implement the following C code in RISC-V assembly. Hint:
Remember that the stack pointer must remain aligned on a multiple of 16.

int fib(int n){
 if (n==0)
 return 0;
 else if (n == 1)
 return 1;
 else
 return fib(n−1) + fib(n−2);
}

2.30 [20] <§2.8> For each function call in Exercise 2.29, show the contents of the
stack after the function call is made. Assume the stack pointer is originally at address
0x7ffffffc, and follow the register conventions as specified in Figure 2.11.

2.31 [20] <§2.8> Translate function f into RISC-V assembly language. Assume
the function declaration for g is int g(int a, int b). The code for function
f is as follows:

int f(int a, int b, int c, int d){

 return g(g(a,b), c+d);
}

马德

 2.22 Exercises 169

2.32 [5] <§2.8> Can we use the tail-call optimization in this function? If no,
explain why not. If yes, what is the difference in the number of executed instructions
in f with and without the optimization?

2.33 [5] <§2.8> Right before your function f from Exercise 2.31 returns, what do
we know about contents of registers x10-x14, x8, x1, and sp? Keep in mind that
we know what the entire function f looks like, but for function g we only know its
declaration.

2.34 [30] <§2.9> Write a program in RISC-V assembly to convert an ASCII
string containing a positive or negative integer decimal string to an integer. Your
program should expect register x10 to hold the address of a null-terminated
string containing an optional “+” or “−” followed by some combination of the
digits 0 through 9. Your program should compute the integer value equivalent
to this string of digits, then place the number in register x10. If a non-digit
character appears anywhere in the string, your program should stop with the
value −1 in register x10. For example, if register x10 points to a sequence of three
bytes 50ten, 52ten, 0ten (the null-terminated string “24”), then when the program
stops, register x10 should contain the value 24ten. The RISC-V mul instruction
takes two registers as input. There is no “muli” instruction. Thus, just store the
constant 10 in a register.

2.35 Consider the following code:

lb x6, 0(x7)

sd x6, 8(x7)

Assume that the register x7 contains the address 0×10000000 and the data at
address is 0×1122334455667788.

2.35.1 [5] <§2.3, 2.9> What value is stored in 0×10000008 on a big-endian
machine?

2.35.2 [5] <§2.3, 2.9> What value is stored in 0×10000008 on a little-endian
machine?

2.36 [5] <§2.10> Write the RISC-V assembly code that creates the 64-bit constant
0x1122334455667788two and stores that value to register x10.

2.37 [10] <§2.11> Write the RISC-V assembly code to implement the following
C code as an atomic “set max” operation using the lr.d/sc.d instructions. Here,
the argument shvar contains the address of a shared variable which should be
replaced by x if x is greater than the value it points to:

170 Chapter 2 Instructions: Language of the Computer

void setmax(int* shvar, int x) {
// Begin critical section
if (x > *shvar)

*shvar = x;
// End critical section}

}

2.38 [5] <§2.11> Using your code from Exercise 2.37 as an example, explain what
happens when two processors begin to execute this critical section at the same
time, assuming that each processor executes exactly one instruction per cycle.

2.39 Assume for a given processor the CPI of arithmetic instructions is 1, the CPI
of load/store instructions is 10, and the CPI of branch instructions is 3. Assume
a program has the following instruction breakdowns: 500 million arithmetic
instructions, 300 million load/store instructions, 100 million branch instructions.

2.39.1 [5] <§§1.6, 2.13> Suppose that new, more powerful arithmetic
instructions are added to the instruction set. On average, through the use of these
more powerful arithmetic instructions, we can reduce the number of arithmetic
instructions needed to execute a program by 25%, while increasing the clock cycle
time by only 10%. Is this a good design choice? Why?

2.39.2 [5] <§§1.6, 2.13> Suppose that we find a way to double the performance
of arithmetic instructions. What is the overall speedup of our machine? What if
we find a way to improve the performance of arithmetic instructions by 10 times?

2.40 Assume that for a given program 70% of the executed instructions are
arithmetic, 10% are load/store, and 20% are branch.

2.40.1 [5] <§§1.6, 2.13> Given this instruction mix and the assumption that an
arithmetic instruction requires two cycles, a load/store instruction takes six cycles,
and a branch instruction takes three cycles, find the average CPI.

2.40.2 [5] <§§1.6, 2.13> For a 25% improvement in performance, how many
cycles, on average, may an arithmetic instruction take if load/store and branch
instructions are not improved at all?

2.40.3 [5] <§§1.6, 2.13> For a 50% improvement in performance, how many
cycles, on average, may an arithmetic instruction take if load/store and branch
instructions are not improved at all?

2.41 [10] <§2.19> Suppose the RISC-V ISA included a scaled offset addressing
mode similar to the x86 one described in Section 2.17 (Figure 2.35). Describe
how you would use scaled offset loads to further reduce the number of assembly
instructions needed to carry out the function given in Exercise 2.4.

 2.22 Exercises 171

2.42 [10] <§2.19> Suppose the RISC-V ISA included a scaled offset addressing
mode similar to the x86 one described in Section 2.17 (Figure 2.35). Describe
how you would use scaled offset loads to further reduce the number of assembly
instructions needed to implement the C code given in Exercise 2.7.

Answers to
Check Yourself

§2.2, page 66: RISC-V, C, Java.
§2.3, page 73: 2) Very slow.
§2.4, page 80: 2) −8ten
§2.5, page 89: 3) sub x11, x10, x9
§2.6, page 92: Both. AND with a mask pattern of 1s will leaves 0s everywhere but
the desired field. Shifting left by the correct amount removes the bits from the left
of the field. Shifting right by the appropriate amount puts the field into the right-
most bits of the doubleword, with 0s in the rest of the doubleword. Note that AND
leaves the field where it was originally, and the shift pair moves the field into the
rightmost part of the doubleword.
§2.7, page 97: I. All are true. II. 1).
§2.8, page 108: Both are true.
§2.9, page 113: I. 1) and 2) II. 3).
§2.10, page 121: I. 4) ±4 K. II. 4) ± 1 M.
§2.11, page 124: Both are true.
§2.12, page 133: 4) Machine independence.

Arithmetic for
Computers
3.1 Introduction 174
3.2 Addition and Subtraction 174
3.3 Multiplication 177
3.4 Division 183
3.5 Floating Point 191
3.6 Parallelism and Computer Arithmetic:

Subword Parallelism 216
3.7 Real Stuff: Streaming SIMD Extensions and

Advanced Vector Extensions in x86 217

3
Numerical precision
is the very soul of
science.

Sir D’arcy Wentworth Thompson,
On Growth and Form, 1917

Computer Organization and Design. DOI:
© 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00003-8
2018

3.8 Going Faster: Subword Parallelism and Matrix Multiply 218
3.9 Fallacies and Pitfalls 222
3.10 Concluding Remarks 225
3.11 Historical Perspective and Further Reading 227
3.12 Exercises 227

The Five Classic Components of a Computer

174 Chapter 3 Arithmetic for Computers

 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal or
binary form, but what about the other numbers that commonly occur? For example:

n	 What about fractions and other real numbers?

n	 What happens if an operation creates a number bigger than can be represented?

n	 And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries—including representation
of real numbers, arithmetic algorithms, hardware that follows these algorithms—
and the implications of all this for instruction sets. These insights may explain
quirks that you have already encountered with computers. Moreover, we show how
to use this knowledge to make arithmetic-intensive programs go much faster.

 3.2 Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in binary.
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000111two = 7ten

+ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000110two = 6ten

= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001101two = 13ten

The 4 bits to the right have all the action; Figure 3.1 shows the sums and
carries. Parentheses identify the carries, with the arrows illustrating how they
are passed.

Subtraction: Addition’s
Tricky Pal
No. 10, Top Ten
Courses for Athletes at a
Football Factory, David
Letterman et al., Book of
Top Ten Lists, 1990

EXAMPLE

 3.2 Addition and Subtraction 175

Subtracting 6ten from 7ten can be done directly:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000111two = 7ten

– 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000110two = 6ten

= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

or via addition using the two’s complement representation of −6:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000111two = 7ten

+ 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111010two =
_6ten

= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

Recall that overflow occurs when the result from an operation cannot be
represented with the available hardware, in this case a 64-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example, −10 + 4 = −6. Since the operands fit in 64 bits and the sum is no
larger than an operand, the sum must fit in 64 bits as well. Therefore, no overflow
can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it’s just the opposite principle: when the signs of the operands are the same, overflow
cannot occur. To see this, remember that c − a = c + (−a) because we subtract by
negating the second operand and then add. Therefore, when we subtract operands
of the same sign we end up adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Knowing when an overflow cannot occur in addition and subtraction is all well
and good, but how do we detect it when it does occur? Clearly, adding or subtracting
two 64-bit numbers can yield a result that needs 65 bits to be fully expressed.

ANSWER

(0)

0

0

0 (0)

(0)

0

0

0 (0)

(1)

0

0

1 (1)

(1)

1

1

1 (1)

(0)

1

1

0 (0)

(Carries)

1

0

1(0)

. . .

. . .

. . .

FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds
1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the
operation for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out
of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth
bit is 1 + 0 + 0, yielding a 1 sum and no carry.

176 Chapter 3 Arithmetic for Computers

The lack of a 65th bit means that when an overflow occurs, the sign bit is set with
the value of the result instead of the proper sign of the result. Since we need just one
extra bit, only the sign bit can be wrong. Hence, overflow occurs when adding two
positive numbers and the sum is negative, or vice versa. This spurious sum means
a carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. Such a ridiculous result means a
borrow occurred from the sign bit. Figure 3.2 shows the combination of operations,
operands, and results that indicate an overflow.

We have just seen how to detect overflow for two’s complement numbers in a
computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

Fortunately, the compiler can easily check for unsigned overflow using a branch
instruction. Addition has overflowed if the sum is less than either of the addends,
whereas subtraction has overflowed if the difference is greater than the minuend.

Appendix A describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.

Arithmetic Logic
Unit (ALU) Hardware
that performs addition,
subtraction, and usually
logical operations such as
AND and OR.

Operation Operand A Operand B
Result

indicating overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0
A – B ≥ 0 < 0 < 0

A – B < 0 ≥ 0 ≥ 0

FIGURE 3.2 Overflow conditions for addition and subtraction.

Hardware/
Software
Interface

The computer designer must decide how to handle arithmetic overflows. Although
some languages like C and Java ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the programming
environment must then decide what to do when an overflow occurs.

Summary
A major point of this section is that, independent of the representation, the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don’t want to
detect overflow for address arithmetic, the most common use of natural numbers.
Two’s complement presents a greater challenge, yet some software systems require
recognizing overflow, so today all computers have a way to detect it.

 3.3 Multiplication 177

Check
Yourself

Some programming languages allow two’s complement integer arithmetic on
variables declared byte and half, whereas RISC-V only has integer arithmetic
operations on full words. As we recall from Chapter 2, RISC-V does have data
transfer operations for bytes and halfwords. What RISC-V instructions should be
generated for byte and halfword arithmetic operations?

1.	 Load with lb, lh; arithmetic with add, sub, mul, div, using and to mask
result to 8 or 16 bits after each operation; then store using sb, sh.

2.	 Load with lb, lh; arithmetic with add, sub, mul, div; then store using
sb, sh.

Elaboration: One feature not generally found in general-purpose microprocessors is
saturating operations. Saturation means that when a calculation overflows, the result is
set to the largest positive number or the most negative number, rather than a modulo
calculation as in two’s complement arithmetic. Saturation is likely what you want for
media operations. For example, the volume knob on a radio set would be frustrating
if, as you turned it, the volume would get continuously louder for a while and then
immediately very soft. A knob with saturation would stop at the highest volume no
matter how far you turned it. Multimedia extensions to standard instruction sets often
offer saturating arithmetic.

Elaboration: The speed of addition depends on how quickly the carry into the high-
order bits is computed. There are a variety of schemes to anticipate the carry so that
the worst-case scenario is a function of the log2 of the number of bits in the adder.
These anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. The most popular is carry
lookahead, which Section A.6 in Appendix A describes.

 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons
that will become clear shortly, we limit this decimal example to using only the
digits 0 and 1. Multiplying 1000ten by 1001ten:

Multiplication is
vexation, Division is
as bad; The rule of
three doth puzzle me,
And practice drives me
mad.
Anonymous,
Elizabethan manuscript,
1570

178 Chapter 3 Arithmetic for Computers

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned
in grammar school is to take the digits of the multiplier one at a time from right
to left, multiplying the multiplicand by the single digit of the multiplier, and
shifting the intermediate product one digit to the left of the earlier intermediate
products.

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplicand or the multiplier. In fact, if we
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and an
m-bit multiplier is a product that is n + m bits long. That is, n + m bits are required
to represent all possible products. Hence, like add, multiply must cope with
overflow because we frequently want a 64-bit product as the result of multiplying
two 64-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 × multiplicand) in the proper place
if the multiplier digit is a 1, or

2. Place 0 (0 × multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication
of binary numbers must always use 0 and 1, and thus always offers only these two
choices.

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tradition
in the belief that you will gain a better understanding by seeing the evolution of
the multiply hardware and algorithm through multiple generations. For now, let’s
assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm
and Hardware
This design mimics the algorithm we learned in grammar school; Figure 3.3 shows
the hardware. We have drawn the hardware so that data flow from top to bottom to
resemble more closely the paper-and-pencil method.

Let’s assume that the multiplier is in the 64-bit Multiplier register and that the
128-bit Product register is initialized to 0. From the paper-and-pencil example
above, it’s clear that we will need to move the multiplicand left one digit each step, as
it may be added to the intermediate products. Over 64 steps, a 64-bit multiplicand
would move 64 bits to the left. Hence, we need a 128-bit Multiplicand register,
initialized with the 64-bit multiplicand in the right half and zero in the left half.
This register is then shifted left 1 bit each step to align the multiplicand with the
sum being accumulated in the 128-bit Product register.

 3.3 Multiplication 179

Multiplicand
Shift left

128 bits

128-bit ALU

Product
Write

128 bits

Control test

Multiplier
Shift right

64 bits

FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register, ALU, and
Product register are all 128 bits wide, with only the Multiplier register containing 64 bits. (Appendix A
describes ALUs.) The 64-bit multiplicand starts in the right half of the Multiplicand register and is shifted left
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with
the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when
to write new values into the Product register.

Figure 3.4 shows the three basic steps needed for each bit. The least significant
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to
the Product register. The left shift in step 2 has the effect of moving the intermediate
operands to the left, just as when multiplying with paper and pencil. The shift right
in step 3 gives us the next bit of the multiplier to examine in the following iteration.
These three steps are repeated 64 times to obtain the product. If each step took a
clock cycle, this algorithm would require almost 200 clock cycles to multiply two
64-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program, but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Accordingly, in many applications, multiply
can take several clock cycles without significantly affecting performance. However,
Amdahl’s Law (see Section 1.10) reminds us that even a moderate frequency for a
slow operation can limit performance.

This algorithm and hardware are easily refined to take one clock cycle per step.
The speed up comes from performing the operations in parallel: the multiplier
and multiplicand are shifted while the multiplicand is added to the product if the
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.5 shows the
revised hardware.

180 Chapter 3 Arithmetic for Computers

64th repetition?

1a. Add multiplicand to product and

place the result in Product register

Multiplier0 = 01. Test

Multiplier0

Start

Multiplier0 = 1

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

No: <64 repetitions

Yes: 64 repetitions

Done

FIGURE 3.4 The first multiplication algorithm, using the hardware shown in Figure 3.3. If the
least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. Shift the
multiplicand left and the multiplier right in the next two steps. These three steps are repeated 64 times.

Hardware/
Software
Interface

Replacing arithmetic by shifts can also occur when multiplying by constants. Some
compilers replace multiplies by short constants with a series of shifts and adds.
Because one bit to the left represents a number twice as large in base 2, shifting
the bits left has the same effect as multiplying by a power of 2. As mentioned in
Chapter 2, almost every compiler will perform the strength reduction optimization
of substituting a left shift for a multiply by a power of 2.

 3.3 Multiplication 181

Multiplicand

64 bits

64-bit ALU

Product
Write

129 bits

Control
test

Shift right

FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version
in Figure 3.3. The Multiplicand register and ALU have been reduced to 64 bits. Now the product is shifted
right. The separate Multiplier register also disappeared. The multiplier is placed instead in the right half of
the Product register, which has grown by one bit to 129 bits to hold the carry-out of the adder. These changes
are highlighted in color.

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten × 3ten, or 0010two × 0011two.

Figure 3.6 shows the value of each register for each of the steps labeled
according to Figure 3.4, with the final value of 0000 0110two or 6ten. Color is
used to indicate the register values that change on that step, and the bit circled
is the one examined to determine the operation of the next step.

EXAMPLE

ANSWER

Iteration Step Multiplier Multiplicand Product

0 Initial values 0011 0000 0010 0000 0000
1 1a: 1 ⇒ Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010

2 1a: 1 ⇒ Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110

3 1: 0 ⇒ No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110

4 1: 0 ⇒ No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.6 Multiply example using algorithm in Figure 3.4. The bit examined to determine the
next step is circled in color.

182 Chapter 3 Arithmetic for Computers

Signed Multiplication
So far, we have dealt with positive numbers. The easiest way to understand how
to deal with signed numbers is to first convert the multiplier and multiplicand to
positive numbers and then remember their original signs. The algorithms should
next be run for 31 iterations, leaving the signs out of the calculation. As we learned
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, if we
remember that we are dealing with numbers that have infinite digits, and we are
only representing them with 64 bits. Hence, the shifting steps would need to extend
the sign of the product for signed numbers. When the algorithm completes, the
lower doubleword would have the 64-bit product.

Faster Multiplication
Moore’s Law has provided so much more in resources that hardware designers can
now build much faster multiplication hardware. Whether the multiplicand is to be
added or not is known at the beginning of the multiplication by looking at each of
the 64 multiplier bits. Faster multiplications are possible by essentially providing
one 64-bit adder for each bit of the multiplier: one input is the multiplicand ANDed
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the
right to the inputs of adders on the left, making a stack of adders 64 high. An
alternative way to organize these 64 additions is in a parallel tree, as Figure 3.7
shows. Instead of waiting for 64 add times, we wait just the log2 (64) or six 64-bit
add times.

Product1 Product0Product127 Product126 Product95..32

1 bit 1 bit 1 bit 1 bit

. . .

. . .

.

.

64 bits

64 bits

64 bits 64 bits 64 bits

64 bits 64 bits

Mplier63 • Mcand Mplier62 • Mcand Mplier61 • Mcand Mplier60 • Mcand Mplier3 • Mcand Mplier2 • Mcand Mplier1 • Mcand Mplier0 • Mcand

FIGURE 3.7 Fast multiplication hardware. Rather than use a single 64-bit adder 63 times, this hardware “unrolls the loop” to use 63
adders and then organizes them to minimize delay.

 3.4 Division 183

In fact, multiply can go even faster than six add times because of the use of carry
save adders (see Section A.6 in Appendix A), and because it is easy to pipeline such
a design to be able to support many multiplies simultaneously (see Chapter 4).

Multiply in RISC-V
To produce a properly signed or unsigned 128-bit product, RISC-V has four
instructions: multiply (mul), multiply high (mulh), multiply high unsigned (mulhu),
and multiply high signed-unsigned (mulhsu). To get the integer 64-bit product,
the programmer uses mul. To get the upper 64 bits of the 128-bit product, the
programmer uses (mulh) if both operands are signed, (mulhu) if both operands
are unsigned, or (mulhsu) if one operand is signed and the other is unsigned.

Summary
Multiplication hardware simply shifts and adds, as derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions
for multiplications by powers of 2. With much more hardware we can do the adds
in parallel, and do them much faster.

Hardware/
Software
Interface

Software can use the multiply-high instructions to check for overflow from 64-bit
multiplication. There is no overflow for 64-bit unsigned multiplication if mulhu’s
result is zero. There is no overflow for 64-bit signed multiplication if all of the bits
in mulh’s result are copies of the sign bit of mul’s result.

 3.4 Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even quirkier. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall
the names of the operands and the division algorithm from grammar school. For
reasons similar to those in the previous section, we limit the decimal digits to just
0 or 1. The example is dividing 1,001,010ten by 1000ten:

Divide et impera.
Latin for “Divide and
rule,” ancient political
maxim cited by
Machiavelli, 1532

184 Chapter 3 Arithmetic for Computers

Divide’s two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend Quotient Divisor Remainder= × +

where the remainder is smaller than the divisor. Infrequently, programs use the
divide instruction just to get the remainder, ignoring the quotient.

The basic division algorithm from grammar school tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our carefully
selected decimal example uses just the numbers 0 and 1, so it’s easy to figure out
how many times the divisor goes into the portion of the dividend: it’s either 0 times
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the
quotient and the remainder are nonnegative. The division operands and both
results are 64-bit values, and we will ignore the sign for now.

A Division Algorithm and Hardware
Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with
the 64-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 128-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.

Figure 3.9 shows three steps of the first division algorithm. Unlike a human, the
computer isn’t smart enough to know in advance whether the divisor is smaller

dividend A number
being divided.

divisor A number that
the dividend is divided by.

quotient The primary
result of a division;
a number that when
multiplied by the
divisor and added to the
remainder produces the
dividend.

remainder The
secondary result of
a division; a number
that when added to the
product of the quotient
and the divisor produces
the dividend.

Divisor
Shift right

128 bits

128-bit ALU

Remainder
Write

128 bits

Control
test

Quotient
Shift left

64 bits

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 128 bits wide, with only the Quotient register being 62 bits. The 64-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with
the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new
value into the Remainder register.

 3.4 Division 185

65th repetition?

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

Remainder < 0Remainder ≥ 0
Test Remainder

Start

3. Shift the Divisor register right 1 bit

No: <65 repetitions

Yes: 65 repetitions

Done

1. Subtract the Divisor register from the

Remainder register and place the

result in the Remainder register

2b. Restore the original value by adding

the Divisor register to the Remainder

register and placing the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive,
the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder after
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds
the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the
divisor properly, relative to the dividend for the next iteration. These steps are repeated 65 times.

186 Chapter 3 Arithmetic for Computers

than the dividend. It must first subtract the divisor in step 1; remember that this
is how we performed comparison. If the result is positive, the divisor was smaller
or equal to the dividend, so we generate a 1 in the quotient (step 2a). If the result
is negative, the next step is to restore the original value by adding the divisor back
to the remainder and generate a 0 in the quotient (step 2b). The divisor is shifted
right, and then we iterate again. The remainder and quotient will be found in their
namesake registers after the iterations complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten,
or 0000 0111two by 0010two.

Figure 3.10 shows the value of each register for each of the steps, with the
quotient being 3ten and the remainder 1ten. Notice that the test in step 2 of
whether the remainder is positive or negative simply checks whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes n + 1 steps to get the proper quotient and remainder.

This algorithm and hardware can be refined to be faster and cheaper. The speed-
up comes from shifting the operands and the quotient simultaneously with the

EXAMPLE

ANSWER

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem – Div 0000 0010 0000 1110 0111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem – Div 0000 0001 0000 1111 0111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem – Div 0000 0000 1000 1111 1111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem – Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 ⇒ SLL Q, Q0 = 1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem – Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 ⇒ SLL Q, Q0 = 1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to
determine the next step is circled in color.

 3.4 Division 187

Divisor

64 bits

64-bit ALU

Remainder
Write

129 bits

Control
test

Shift left
Shift right

FIGURE 3.11 An improved version of the division hardware. The Divisor register, ALU, and
Quotient register are all 64 bits wide. Compared to Figure 3.8, the ALU and Divisor registers are halved
and the remainder is shifted left. This version also combines the Quotient register with the right half of the
Remainder register. As in Figure 3.5, the Remainder register has grown to 129 bits to make sure the carry out
of the adder is not lost.

subtraction. This refinement halves the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.11 shows the
revised hardware.

Signed Division
So far, we have ignored signed numbers in division. The simplest solution is to
remember the signs of the divisor and dividend and then negate the quotient if the
signs disagree.

Elaboration: The one complication of signed division is that we must also set the
sign of the remainder. Remember that the following equation must always hold:

Dividend Quotient Divisor Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing
all the combinations of ±7ten by ±2ten. The first case is easy:

7 2 Quotient 3 Remainder 1: ,

Checking the results:

7 3 2 1 6 1()

188 Chapter 3 Arithmetic for Computers

If we change the sign of the dividend, the quotient must change as well:

7 2 Quotient 3:

Rewriting our basic formula to calculate the remainder:

Remainder Dividend Quotient Divisor 7 3 2
7 6

)(()
()

x
= 11

So,

7 2 Quotient 3 Remainder 1: ,

Checking the results again:

7 3 2 1 6 1()

The reason the answer isn’t a quotient of −4 and a remainder of +1, which would also
fit this formula, is that the absolute value of the quotient would then change depending
on the sign of the dividend and the divisor! Clearly, if

() ()x y x y? ÷

programming would be an even greater challenge. This anomalous behavior is avoided
by following the rule that the dividend and remainder must have identical signs, no
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

7 2 Quotient 3 Remainder 1
7 2 Quotient 3 Remainde

: ,
: , rr 1

Thus, the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we would
like to be able to speed up division by throwing hardware at it. We used many
adders to speed up multiply, but we cannot do the same trick for divide. The reason
is that we need to know the sign of the difference before we can perform the next
step of the algorithm, whereas with multiply we could calculate the 64 partial
products immediately.

 3.4 Division 189

If we change the sign of the dividend, the quotient must change as well:

7 2 Quotient 3:

Rewriting our basic formula to calculate the remainder:

Remainder Dividend Quotient Divisor 7 3 2
7 6

)(()
()

x
= 11

So,

7 2 Quotient 3 Remainder 1: ,

Checking the results again:

7 3 2 1 6 1()

The reason the answer isn’t a quotient of −4 and a remainder of +1, which would also
fit this formula, is that the absolute value of the quotient would then change depending
on the sign of the dividend and the divisor! Clearly, if

() ()x y x y? ÷

programming would be an even greater challenge. This anomalous behavior is avoided
by following the rule that the dividend and remainder must have identical signs, no
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

7 2 Quotient 3 Remainder 1
7 2 Quotient 3 Remainde

: ,
: , rr 1

Thus, the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we would
like to be able to speed up division by throwing hardware at it. We used many
adders to speed up multiply, but we cannot do the same trick for divide. The reason
is that we need to know the sign of the difference before we can perform the next
step of the algorithm, whereas with multiply we could calculate the 64 partial
products immediately.

There are techniques to produce more than one bit of the quotient per step.
The SRT division technique tries to predict several quotient bits per step, using a
table lookup based on the upper bits of the dividend and remainder. It relies on
subsequent steps to correct wrong predictions. A typical value today is 4 bits. The
key is guessing the value to subtract. With binary division, there is only a single
choice. These algorithms use 6 bits from the remainder and 4 bits from the divisor
to index a table that determines the guess for each step.

The accuracy of this fast method depends on having proper values in the lookup
table. The Fallacy on page 224 in Section 3.8 shows what can happen if the table is
incorrect.

Divide in RISC-V
You may have already observed that the same sequential hardware can be used for
both multiply and divide in Figures 3.5 and 3.11. The only requirement is a 128-bit
register that can shift left or right and a 64-bit ALU that adds or subtracts.

To handle both signed integers and unsigned integers, RISC-V has two
instructions for division and two instructions for remainder: divide (div), divide
unsigned (divu), remainder (rem), and remainder unsigned (remu).

Summary
The common hardware support for multiply and divide allows RISC-V to

provide a single pair of 64-bit registers that are used both for multiply and divide.
We accelerate division by predicting multiple quotient bits and then correcting
mispredictions later. Figure 3.12 summarizes the enhancements to the RISC-V
architecture for the last two sections.

Hardware/
Software
Interface

RISC-V divide instructions ignore overflow, so software must determine whether
the quotient is too large. In addition to overflow, division can also result in an
improper calculation: division by 0. Some computers distinguish these two
anomalous events. RISC-V software must check the divisor to discover division by
0 as well as overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back
if the remainder is negative. It simply adds the dividend to the shifted remainder in
the following step, since (r + d) × 2 − d = r − 2 + d × 2 − d = r × 2 + d. This
nonrestoring division algorithm, which takes one clock cycle per step, is explored further
in the exercises; the algorithm above is called restoring division. A third algorithm that
doesn’t save the result of the subtract if it’s negative is called a nonperforming division
algorithm. It averages one-third fewer arithmetic operations.

RISC-V assembly language

Category ExampleInstruction Meaning Comments

Arithmetic Add add x5, x6, x7
sub x5, x6, x7

addi x5, x6, 20

slt x5, x6, x7

sltu x5, x6, x7

slti x5, x6, x7

sltiu x5, x6, x7

mul x5, x6, x7

rem x5, x6, x7

x5 = x6 + x7
x5 = x6 - x7

x5 = x6 + 20

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = x6 × x7 Lower 64 bits of 128-bit product

Three register operands

Subtract Three register operands

Add immediate Used to add constants

Set if less than Three register operands

Set if less than, unsigned Three register operands

Set if less than, immediate Comparison with immediate

Set if less than immediate,
uns.

Comparison with immediate

Multiply

Multiply high mulh x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit signed product

Multiply high, unsigned mulhu x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit unsigned
product

Multiply high, signed-
unsigned

mulhsu x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit signed-
unsigned product

Divide div x5, x6, x7 x5 = x6 / x7 Divide signed 64-bit numbers

Divide unsigned divu x5, x6, x7 x5 = x6 / x7 Divide unsigned 64-bit numbers

Data
transfer

Remainder Remainder of signed 64-bit division

Remainder unsigned remu x5, x6, x7

ld x5, 40(x6)

Remainder of unsigned 64-bit division

Load doubleword Doubleword from memory to register

Store doubleword sd x5, 40(x6)

lw x5, 40(x6)

Doubleword from register to memory

Load word Word from memory to register

Load word, unsigned lwu x5, 40(x6)

sw x5, 40(x6)

Unsigned word from memory to register

Store word Word from register to memory

Load halfword lh x5, 40(x6)

lhu x5, 40(x6)

sh x5, 40(x6)

Halfword from memory to register

Load halfword, unsigned Unsigned halfword from memory to register

Store halfword Halfword from register to memory
Load byte Byte from memory to registerlb x5, 40(x6)

x5 = x6 % x7

x5 = x6 % x7

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5
x5 = Memory[x6 + 40]

Logical

Shift

Conditional
branch

Store byte Byte from register to memory

Load reserved Load; 1st half of atomic swap

Store conditional Store; 2nd half of atomic swap

Load upper immediate Loads 20-bit constant shifted left 12 bits

Add upper immediate to PC Used for PC-relative data addressing

And Three reg. operands; bit-by-bit AND

Inclusive or Three reg. operands; bit-by-bit OR

And immediate x5 = x6 & 20 Bit-by-bit AND reg. with constant

Exclusive or immediate xori x5, x6, 20 x5 = x6 ^ 20 Bit-by-bit XOR reg. with constant

Shift left logical sll x5, x6, x7 x5 = x6 << x7 Shift left by register

Shift right logical srl x5, x6, x7 x5 = x6 >> x7 Shift right by register

Exclusive or

sb x5, 40(x6)

lr.d x5, (x6)

sc.d x7, x5, (x6)

lui x5, 0x12345

auipc x5, 0x12345

and x5, x6, x7

or x5, x6, x8

xor x5, x6, x9

andi x5, x6, 20
Inclusive or immediate x5 = x6 | 20 Bit-by-bit OR reg. with constantori x5, x6, 20

Memory[x6 + 40] = x5

x5 = Memory[x6]

Memory[x6] = x5; x7 = 0/1

x5 = 0x12345000

x5 = PC + 0x12345000

x5 = x6 & x7

x5 = x6 | x8

x5 = x6 ^ x9 Three reg. operands; bit-by-bit XOR

Load byte, unsigned Byte halfword from memory to registerlbu x5, 40(x6) x5 = Memory[x6 + 40]

Shift right arithmetic sra x5, x6, x7 x5 = x6 >> x7 Arithmetic shift right by register

Shift left logical immediate slli x5, x6, 3 x5 = x6 << 3 Shift left by immediate

Shift right logical
immediate

srli x5, x6, 3 x5 = x6 >> 3 Shift right by immediate

Shift right arithmetic
immediate

srai x5, x6, 3 x5 = x6 >> 3 Arithmetic shift right by immediate

Branch if equal beq x5, x6, 100 if (x5 == x6) go to PC+100 PC-relative branch if registers equal

Branch if not equal bne x5, x6, 100 if (x5 != x6) go to PC+100 PC-relative branch if registers not equal

Branch if less than blt x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less

Branch if greater or equal bge x5, x6, 100 if (x5 >= x6) go to PC+100 PC-relative branch if registers greater or equal

Branch if less, unsigned bltu x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less

Branch if greatr/eq,
unsigned

bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 PC-relative branch if registers greater or equal

Uncondit-
ional branch

Jump and link jal x1, 100 x1 = PC+4; go to PC+100 PC-relative procedure call

Jump and link register jalr x1, 100(x5) x1 = PC+4; go to x5+100 Procedure return; indirect call

FIGURE 3.12 RISC-V core architecture. RISC-V machine language is listed in the RISC-V Reference Data Card at the front of this
book.

 3.5 Floating Point 191

 3.5 Floating Point

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265… ten (pi)

2.71828… ten (e)

0.000000001ten or 1.0ten × 10−9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten × 109 (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it was
bigger than we could represent with a 32-bit signed integer. The alternative notation
for the last two numbers is called scientific notation, which has a single digit to
the left of the decimal point. A number in scientific notation that has no leading
0s is called a normalized number, which is the usual way to write it. For example,
1.0ten × 10−9 is in normalized scientific notation, but 0.1ten × 10−8 and 10.0ten × 10−10
are not.

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1 2two
1.0

To keep a binary number in the normalized form, we need a base that we can
increase or decrease by exactly the number of bits the number must be shifted to
have one nonzero digit to the left of the decimal point. Only a base of 2 fulfills our
need. Since the base is not 10, we also need a new name for decimal point; binary
point will do fine.

Computer arithmetic that supports such numbers is called floating point
because it represents numbers in which the binary point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation, numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

1 2two.xxxxxxxxx yyyy�

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in the normalized form offers three
advantages. It simplifies exchange of data that includes floating-point numbers;
it simplifies the floating-point arithmetic algorithms to know that numbers will

scientific notation A
notation that renders
numbers with a single
digit to the left of the
decimal point.

normalized A number
in floating-point notation
that has no leading 0s.

floating
point Computer
arithmetic that represents
numbers in which the
binary point is not fixed.

Speed gets you
nowhere if you’re
headed the wrong way.
American proverb

192 Chapter 3 Arithmetic for Computers

always be in this form; and it increases the accuracy of the numbers that can
be stored in a word, since real digits to the right of the binary point replace the
unnecessary leading 0s.

Floating-Point Representation
A designer of a floating-point representation must find a compromise between

the size of the fraction and the size of the exponent, because a fixed word size
means you must take a bit from one to add a bit to the other. This tradeoff is between
precision and range: increasing the size of the fraction enhances the precision of the
fraction, while increasing the size of the exponent increases the range of numbers
that can be represented. As our design guideline from Chapter 2 reminds us, good
design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a RISC-V floating-point number is shown below, where s is
the sign of the floating-point number (1 meaning negative), exponent is the value
of the 8-bit exponent field (including the sign of the exponent), and fraction is
the 23-bit number. As we recall from Chapter 2, this representation is sign and
magnitude, since the sign is a separate bit from the rest of the number.

In general, floating-point numbers are of the form

()1 F 2S E

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that RISC-V does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give RISC-V computer arithmetic
an extraordinary range. Fractions almost as small as 2.0ten × 10−38 and numbers
almost as large as 2.0ten × 1038 can be represented in a computer. Alas, extraordinary
differs from infinite, so it is still possible for numbers to be too large. Thus, overflow
interrupts can occur in floating-point arithmetic as well as in integer arithmetic.
Notice that overflow here means that the exponent is too large to be represented
in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as programmers
will want to know when they have calculated a number that is too large to be
represented, they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in a
program giving incorrect answers. To distinguish it from overflow, we call this
event underflow. This situation occurs when the negative exponent is too large to
fit in the exponent field.

fraction The value,
generally between 0 and
1, placed in the fraction
field. The fraction is also
called the mantissa.

exponent In the
numerical representation
system of floating-point
arithmetic, the value that
is placed in the exponent
field.

overflow (floating-
point) A situation in
which a positive exponent
becomes too large to fit in
the exponent field.

underflow (floating-
point) A situation
in which a negative
exponent becomes too
large to fit in the exponent
field.

 3.5 Floating Point 193

One way to reduce the chances of underflow or overflow is to offer another
format that has a larger exponent. In C, this number is called double, and operations
on doubles are called double precision floating-point arithmetic; single precision
floating point is the name of the earlier format.

The representation of a double precision floating-point number takes one RISC-V
doubleword, as shown below, where s is still the sign of the number, exponent is the
value of the 11-bit exponent field, and fraction is the 52-bit number in the fraction field.

RISC-V double precision allows numbers almost as small as 2.0ten × 10−308 and
almost as large as 2.0ten × 10308. Although double precision does increase the exponent
range, its primary advantage is its greater precision because of the much larger fraction.

Exceptions and Interrupts
What should happen on an overflow or underflow to let the user know that a problem
occurred? Some computers signal these events by raising an exception, sometimes
called an interrupt. An exception or interrupt is essentially an unscheduled procedure
call. The address of the instruction that overflowed is saved in a register, and the
computer jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
can continue after corrective code is executed. (Section 4.9 covers exceptions in more
detail; Chapter 5 describes other situations where exceptions and interrupts occur.)
RISC-V computers do not raise an exception on overflow or underflow; instead,
software can read the floating-point control and status register (fcsr) to check whether
overflow or underflow has occurred.

IEEE 754 Floating-Point Standard
These formats go beyond RISC-V. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard has
greatly improved both the ease of porting floating-point programs and the quality
of computer arithmetic.

To pack even more bits into the number, IEEE 754 makes the leading 1 bit of
normalized binary numbers implicit. Hence, the number is actually 24 bits long
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double
precision (1 + 52). To be precise, we use the term significand to represent the 24- or

double precision
A floating-point value
represented in a 64-bit
doubleword.

single precision
A floating-point value
represented in a 32-bit
word.

exception Also
called interrupt. An
unscheduled event
that disrupts program
execution; used to detect
overflow.

interrupt An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all
exceptions.)

194 Chapter 3 Arithmetic for Computers

53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so
that the hardware won’t attach a leading 1 to it.

Thus 00 … 00two represents 0; the representation of the rest of the numbers uses
the form from before with the hidden 1 added:

() ()1 1 Fraction 2ES

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s1, s2, s3, …, then the value is

() (() () () ())1 1 s1 2 s2 2 s3 2 s4 2 2S 1 2 3 4 E…

Figure 3.13 shows the encodings of IEEE 754 floating-point numbers. Other
features of IEEE 754 are special symbols to represent unusual events. For example,
instead of interrupting on a divide by 0, software can set the result to a bit pattern
representing +∞ or −∞; the largest exponent is reserved for these special
symbols. When the programmer prints the results, the program will output an
infinity symbol. (For the mathematically trained, the purpose of infinity is to form
topological closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0
or subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNs is to allow programmers to postpone some tests and decisions to
a later time in the program when they are convenient.

The designers of IEEE 754 also wanted a floating-point representation that
could be easily processed by integer comparisons, especially for sorting. This
desire is why the sign is in the most significant bit, allowing a quick test of less
than, greater than, or equal to 0. (It’s a little more complicated than a simple
integer sort, since this notation is essentially sign and magnitude rather than
two’s complement.)

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 Nonzero 0 Nonzero ± denormalized number

1–254 Anything 1–2046 Anything ± floating-point number

255 0 2047 0 ± infinity

255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.13 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the
sign. Denormalized numbers are described in the Elaboration on page 216. This information is also found in
Column 4 of the RISC-V Reference Data Card at the front of this book.

 3.5 Floating Point 195

Placing the exponent before the significand also simplifies the sorting of
floating-point numbers using integer comparison instructions, since numbers with
bigger exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two’s
complement or any other notation in which negative exponents have a 1 in the
most significant bit of the exponent field, a negative exponent will look like a big
number. For example, 1.0two × 2−1 would be represented in a single precision as

(Remember that the leading 1 is implicit in the significand.) The value 1.0two × 2+1
would look like the smaller binary number

The desirable notation must therefore represent the most negative exponent as
00 … 00two and the most positive as 11 … 11two. This convention is called biased
notation, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of −1 is
represented by the bit pattern of the value −1 + 127ten, or 126ten = 0111 1110two,
and +1 is represented by 1 + 127, or 128ten = 1000 0000two. The exponent bias for
double precision is 1023. Biased exponent means that the value represented by a
floating-point number is really

() () ()1 1 Fraction 2 ES xponent Bias−

The range of single precision numbers is then from as small as

21 two
126.00000000000000000000000

to as large as

1 11111111111111111111111 2two
127 ..

Let’s demonstrate.

196 Chapter 3 Arithmetic for Computers

Show the IEEE 754 binary representation of the number −0.75ten in single and
double precision.

The number −0.75ten is also

� �3/4 or 3/2ten ten
2

It is also represented by the binary fraction

� �11 /2 or 11two ten two
2 0.

In scientific notation, the value is

0 0.11 2two

and in normalized scientific notation, it is

1 1 2two
1.

The general representation for a single precision number is

() () ()1 1 Fraction 2 ES xponent 127

Subtracting the bias 127 from the exponent of −1.1two × 2−1 yields

() (.) ()1 1 211
two

126 127000 0000 0000 0000 0000 000

The single precision binary representation of −0.75ten is then

The double precision representation is

() (.1 1 11 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0 0
two

1 22 1 232) ()

Now let’s try going the other direction.

EXAMPLE

ANSWER

 3.5 Floating Point 197

Converting Binary to Decimal Floating Point

What decimal number does this single precision float represent?

The sign bit is 1, the exponent field contains 129, and the fraction field contains
1 × 2−2 = 1/4, or 0.25. Using the basic equation,

() () () (.)() (1 1 Fraction 2 1 1 25 2Exponent Bias 1 129 1S 0 227

21 1 25 2
1 25 4
5

)

.
.
.0

In the next few subsections, we will give the algorithms for floating-point
addition and multiplication. At their core, they use the corresponding integer
operations on the significands, but extra bookkeeping is necessary to handle
the exponents and normalize the result. We first give an intuitive derivation of
the algorithms in decimal and then give a more detailed, binary version in the
figures.

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20
years after the standard to see what changes, if any, should be made. The revised
standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format
(“half precision”) and a 128-bit format (“quadruple precision”). The revised standard
also adds decimal floating point arithmetic.

Elaboration: In an attempt to increase range without removing bits from the
significand, some computers before the IEEE 754 standard used a base other than 2.
For example, the IBM 360 and 370 mainframe computers use base 16. Since changing
the IBM exponent by one means shifting the significand by 4 bits, “normalized” base
16 numbers can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that
up to 3 bits must be dropped from the significand, which leads to surprising problems
in the accuracy of floating-point arithmetic. IBM mainframes now support IEEE 754 as
well as the old hex format.

EXAMPLE

ANSWER

198 Chapter 3 Arithmetic for Computers

Floating-Point Addition
Let’s add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999ten × 101 + 1.610ten × 10−1. Assume that we can store
only four decimal digits of the significand and two decimal digits of the exponent.

 Step 1. To be able to add these numbers properly, we must align the decimal point
of the number that has the smaller exponent. Hence, we need a form of
the smaller number, 1.610ten × 10−1, that matches the larger exponent.
We obtain this by observing that there are multiple representations of
an unnormalized floating-point number in scientific notation:

1 61 1 161 1 161 1ten
1

te tn en
1. . .0 0 0 0 0 0 0 0 00

 The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999ten × 101. Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is really

0 0 0. 16 1 1�

 Step 2. Next comes the addition of the significands:

�

9 999
0 016

10 015

.

.
.

ten

ten

ten

 The sum is 10.015ten × 101.
 Step 3. This sum is not in normalized scientific notation, so we need to

adjust it:

1 15 1 1 15 1ten
1

ten
20 0 0 00 0. .

 Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative, it would be possible for the sum to have many
leading 0s, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow—that is, we
must make sure that the exponent still fits in its field.

 Step 4. Since we assumed that the significand could be only four digits long
(excluding the sign), we must round the number. In our grammar
school algorithm, the rules truncate the number if the digit to the
right of the desired point is between 0 and 4 and add 1 to the digit if
the number to the right is between 5 and 9. The number

1 15 1ten
2.00 0�

 3.5 Floating Point 199

 is rounded to four digits in the significand to

1 2 1ten
2.00 0�

 since the fourth digit to the right of the decimal point was between 5
and 9. Notice that if we have bad luck on rounding, such as adding 1
to a string of 9s, the sum may no longer be normalized and we would
need to perform step 3 again.

Figure 3.14 shows the algorithm for binary floating-point addition that follows this
decimal example. Steps 1 and 2 are similar to the example just discussed: adjust the
significand of the number with the smaller exponent and then add the two significands.
Step 3 normalizes the results, forcing a check for overflow or underflow. The test for
overflow and underflow in step 3 depends on the precision of the operands. Recall
that the pattern of all 0 bits in the exponent is reserved and used for the floating-point
representation of zero. Moreover, the pattern of all 1 bits in the exponent is reserved for
indicating values and situations outside the scope of normal floating-point numbers
(see the Elaboration on page 216). For the example below, remember that for single
precision, the maximum exponent is 127, and the minimum exponent is −126.

Binary Floating-Point Addition

Try adding the numbers 0.5ten and −0.4375ten in binary using the algorithm in
Figure 3.14.

Let’s first look at the binary version of the two numbers in normalized scientific
notation, assuming that we keep 4 bits of precision:

0

0 0 000

0

1

0

.

. .

.

5 1/2 1/2

1 1 2 1. 2

4375

ten ten ten

two two two
1

tten ten ten

two two two

7/16 7/2

111 111 2 1 11

4

00 0 0 0 0. . . 22 2

Now we follow the algorithm:

 Step 1. The significand of the number with the lesser exponent (−1.11two × 2−2)
is shifted right until its exponent matches the larger number:

1 11 2 111 2two
2

two
1. .0 0

 Step 2. Add the significands:

1 2 111 2 1 2two
1

two
1

two
1. (.) .000 0 0 00

EXAMPLE

ANSWER

200 Chapter 3 Arithmetic for Computers

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1. Compare the exponents of the two numbers;

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

No Exception

FIGURE 3.14 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

 3.5 Floating Point 201

 Step 3. Normalize the sum, checking for overflow or underflow:

0 00 0 0 0 0 00
000

31. . .
.

1 2 1 2 1 2
1 2

two two
2

two

two
4

 Since 127 ≥ −4 ≥ −126, there is no overflow or underflow. (The biased
exponent would be −4 + 127, or 123, which is between 1 and 254, the
smallest and largest unreserved biased exponents.)

 Step 4. Round the sum:

1 2two
4.000

 The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding.

 This sum is then

1 2 1 1

1/2 1/16 625
two

4
two two

ten ten

. . .

.

000 0 000 000 0 000

0 04
tten

 This sum is what we would expect from adding 0.5ten to −0.4375ten.

Many computers dedicate hardware to run floating-point operations as fast as possible.
Figure 3.15 sketches the basic organization of hardware for floating-point addition.

Floating-Point Multiplication
Now that we have explained floating-point addition, let’s try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110ten × 1010 × 9.200ten × 10−5. Assume that we can store only four digits of
the significand and two digits of the exponent.

 Step 1. Unlike addition, we calculate the exponent of the product by simply
adding the exponents of the operands together:

New exponent 1 5 50 ()

 Let’s do this with the biased exponents as well to make sure we obtain
the same result: 10 + 127 = 137, and −5 + 127 = 122, so

New exponent 137 122 259

 This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases as
well as the exponents:

New exponent 1 127 5 127 5 2 127 259() () ()0

202 Chapter 3 Arithmetic for Computers

Compare

exponents
Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Shift smaller

number right

Add

Normalize

Round

FIGURE 3.15 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.14 correspond
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is
larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the
smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together
using the big ALU. The normalization step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates
the final result, which may require normalizing again to produce the actual final result.

 3.5 Floating Point 203

 Accordingly, to get the correct biased sum when we add biased numbers,
we must subtract the bias from the sum:

New exponent 137 122 127 259 127 132 5 127()

 and 5 is indeed the exponent we calculated initially.
 Step 2. Next comes the multiplication of the significands:

 There are three digits to the right of the decimal point for each operand,
so the decimal point is placed six digits from the right in the product
significand:

1 212 ten0 000.

 If we can keep only three digits to the right of the decimal point, the
product is 10.212 × 105.

 Step 3. This product is unnormalized, so we need to normalize it:

1 212 1 1 212 1ten
5

ten
60 0 0 0. .

 Thus, after the multiplication, the product can be shifted right one digit
to put it in normalized form, adding 1 to the exponent. At this point,
we can check for overflow and underflow. Underflow may occur if both
operands are small—that is, if both have large negative exponents.

 Step 4. We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

1 212 1ten
6.0 0�

 is rounded to four digits in the significand to

1 21 1ten
6.0 0�

 Step 5. The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise, it’s negative.
Hence, the product is

1 21 1ten
6.0 0

 The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication, the signs of the
operands determine the sign of the product.

204 Chapter 3 Arithmetic for Computers

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

No Exception

FIGURE 3.16 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

 3.5 Floating Point 205

 Once again, as Figure 3.16 shows, multiplication of binary floating-
point numbers is quite similar to the steps we have just completed.
We start with calculating the new exponent of the product by adding
the biased exponents, being sure to subtract one bias to get the proper
result. Next is multiplication of significands, followed by an optional
normalization step. The size of the exponent is checked for overflow
or underflow, and then the product is rounded. If rounding leads to
further normalization, we once again check for exponent size. Finally,
set the sign bit to 1 if the signs of the operands were different (negative
product) or to 0 if they were the same (positive product).

Binary Floating-Point Multiplication

Let’s try multiplying the numbers 0.5ten and −0.4375ten, using the steps in
Figure 3.16.

In binary, the task is multiplying 1.000two × 2−1 by −1.110two × 2−2.

 Step 1. Adding the exponents without bias:

1 2 3()

 or, using the biased representation:
() () () ()1 127 2 127 127 1 2 127 127 127

3 127 124

 Step 2. Multiplying the significands:

 The product is 1.110000two × 2−3, but we need to keep it to 4 bits, so it is
1.110two × 2−3.

 Step 3. Now we check the product to make sure it is normalized, and then check
the exponent for overflow or underflow. The product is already normalized
and, since 127 ≥ −3 ≥ −126, there is no overflow or underflow. (Using
the biased representation, 254 ≥ 124 ≥ 1, so the exponent fits.)

 Step 4. Rounding the product makes no change:

1 110 2 3. two

EXAMPLE

ANSWER

206 Chapter 3 Arithmetic for Computers

 Step 5. Since the signs of the original operands differ, make the sign of the
product negative. Hence, the product is

1 110 2 3. two

 Converting to decimal to check our results:

 The product of 0.5ten and −0.4375ten is indeed −0.21875ten.

Floating-Point Instructions in RISC-V
RISC-V supports the IEEE 754 single-precision and double-precision formats with
these instructions:

n	 Floating-point addition, single (fadd.s) and addition, double (fadd.d)

n	 Floating-point subtraction, single (fsub.s) and subtraction, double (fsub.d)

n	 Floating-point multiplication, single (fmul.s) and multiplication, double (fmul.d)

n	 Floating-point division, single (fdiv.s) and division, double (fdiv.d)

n	 Floating-point square root, single (fsqrt.s) and square root, double (fsqrt.d)

n	 Floating-point equals, single (feq.s) and equals, double (feq.d)

n	 Floating-point less-than, single (flt.s) and less-than, double (flt.d)

n	 Floating-point less-than-or-equals, single (fle.s) and less-than-or-equals,
double (fle.d)

The comparison instructions, feq, flt, and fle, set an integer register to 0 if the
comparison is false and 1 if it is true. Software can thus branch on the result of a
floating-point comparison using the integer branch instructions beq and bne.

The RISC-V designers decided to add separate floating-point registers. They
are called f0, f1, …, f31. Hence, they included separate loads and stores for
floating-point registers: fld and fsd for double-precision and flw and fsw for
single-precision. The base registers for floating-point data transfers which are
used for addresses remain integer registers. The RISC-V code to load two single
precision numbers from memory, add them, and then store the sum might look
like this:

flw f0, 0(x10) // Load 32-bit F.P. number into f0
flw f1, 4(x10) // Load 32-bit F.P. number into f1
fadd.s f2, f0, f1 // f2 = f0 + f1, single precision
fsw f2, 8(x10) // Store 32-bit F.P. number from f2

1 110 2 0 001110 0 00111

7 2 7 32

3

5

. . .

/ /
tw to wo two

ten ten 00 21875. ten

 3.5 Floating Point 207

RISC-V floating-point operands

Name Example Comments

32 floating-point
registers

f0-f31 An f-register can hold either a single-precision floating-point number or a
double-precision floating-point number.

261

memory double
words

Memory[0], Memory[8], …,
Memory[18,446,744,073,709,551,608]

Accessed only by data transfer instructions. RISC-V uses byte addresses,
so sequential doubleword accesses differ by 8. Memory holds data
structures, arrays, and spilled registers.

RISC-V floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single fadd.s f0, f1, f2 f0 = f1 + f2 FP add (single precision)

FP subtract single fsub.s f0, f1, f2 f0 = f1 - f2 FP subtract (single precision)

FP multiply single fmul.s f0, f1, f2 f0 = f1 * f2 FP multiply (single precision)

FP divide single fdiv.s f0, f1, f2 f0 = f1 / f2 FP divide (single precision)

FP square root single fsqrt.s f0, f1 f0 = √f1 FP square root (single precision)

FP add double fadd.d f0, f1, f2 f0 = f1 + f2 FP add (double precision)

FP subtract double fsub.d f0, f1, f2 f0 = f1 - f2 FP subtract (double precision)

FP multiply double fmul.d f0, f1, f2 f0 = f1 * f2 FP multiply (double precision)

FP divide double fdiv.d f0, f1, f2 f0 = f1 / f2 FP divide (double precision)

FP square root double fsqrt.d f0, f1 f0 = √f1 FP square root (double precision)

FP load word flw f0, 4(x5) f0 = Memory[x5 + 4] Load single-precision from memory

FP load doubleword fld f0, 8(x5) f0 = Memory[x5 + 8] Load double-precision from memory

Comparison

Data transfer

FP equality single feq.s x5, f0, f1 x5 = 1 if f0 == f1, else 0 FP comparison (single precision)

FP less than single flt.s x5, f0, f1 x5 = 1 if f0 < f1, else 0 FP comparison (single precision)

FP less than or
equals single

fle.s x5, f0, f1 x5 = 1 if f0 <= f1, else 0 FP comparison (single precision)

FP equality double feq.d x5, f0, f1 x5 = 1 if f0 == f1, else 0 FP comparison (double precision)

FP less than double flt.d x5, f0, f1 x5 = 1 if f0 < f1, else 0 FP comparison (double precision)
FP less than or
equals double

fle.d x5, f0, f1 x5 = 1 if f0 <= f1, else 0 FP comparison (double precision)

FP store word fsw f0, 4(x5) Memory[x5 + 4] = f0 Store single-precision from memory

FP store doubleword fsd f0, 8(x5) Memory[x5 + 8] = f0 Store double-precision from memory

FIGURE 3.17 RISC-V floating-point architecture revealed thus far. This information is also found in column 2 of the RISC-V
Reference Data Card at the front of this book.

A single precision register is just the lower half of a double-precision register. Note
that, unlike integer register x0, floating-point register f0 is not hard-wired to the
constant 0.

Figure 3.17 summarizes the floating-point portion of the RISC-V architecture revealed
in this chapter, with the new pieces to support floating point shown in color. The floating-
point instructions use the same format as their integer counterparts: loads use the I-type
format, stores use the S-type format, and arithmetic instructions use the R-type format.

208 Chapter 3 Arithmetic for Computers

Hardware/
Software
Interface

One issue that architects face in supporting floating-point arithmetic is whether
to select the same registers used by the integer instructions or to add a special
set for floating point. Because programs normally perform integer operations
and floating-point operations on different data, separating the registers will only
slightly increase the number of instructions needed to execute a program. The
major impact is to create a distinct set of data transfer instructions to move data
between floating-point registers and memory.

The benefits of separate floating-point registers are having twice as many
registers without using up more bits in the instruction format, having twice the
register bandwidth by having separate integer and floating-point register sets, and
being able to customize registers to floating point; for example, some computers
convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into RISC-V Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)
{
 return ((5.0f/9.0f) *(fahr – 32.0f));
}

Assume that the floating-point argument fahr is passed in f10 and the result
should also go in f10. What is the RISC-V assembly code?

We assume that the compiler places the three floating-point constants in
memory within easy reach of register x3. The first two instructions load the
constants 5.0 and 9.0 into floating-point registers:

f2c:
 flw f0, const5(x3) // f0 = 5.0f
 flw f1, const9(x3) // f1 = 9.0f

They are then divided to get the fraction 5.0/9.0:

fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f

EXAMPLE

ANSWER

 3.5 Floating Point 209

(Many compilers would divide 5.0 by 9.0 at compile time and save the single
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we
load the constant 32.0 and then subtract it from fahr (f10):

flw f1, const32(x3) // f1 = 32.0f
fsub.s f10, f10, f1 // f10 = fahr – 32.0f

Finally, we multiply the two intermediate results, placing the product in f10
 as the return result, and then return

fmul.s f10, f0, f10 // f10 = (5.0f / 9.0f)*(fahr – 32.0f)
jalr x0, 0(x1) // return

Now let’s perform floating-point operations on matrices, code commonly
found in scientific programs.

Compiling Floating-Point C Procedure with Two-Dimensional
Matrices into RISC-V

Most floating-point calculations are performed in double precision. Let’s per-
form matrix multiply of C = C + A * B. It is commonly called DGEMM, for
Double precision, General Matrix Multiply. We’ll see versions of DGEMM
again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C,
A, and B are all square matrices with 32 elements in each dimension.

void mm (double c[][], double a[][], double b[][])
{
 size_t i, j, k;
 for (i = 0; i < 32; i = i + 1)
 for (j = 0; j < 32; j = j + 1)
 for (k = 0; k < 32; k = k + 1)
 c[i][j] = c[i][j] + a[i][k] *b[k][j];
}

The array starting addresses are parameters, so they are in x10, x11, and x12.
Assume that the integer variables are in x5, x6, and x7, respectively. What is
the RISC-V assembly code for the body of the procedure?

Note that c[i][j] is used in the innermost loop above. Since the loop index
is k, the index does not affect c[i][j], so we can avoid loading and storing

EXAMPLE

ANSWER

210 Chapter 3 Arithmetic for Computers

c[i][j] each iteration. Instead, the compiler loads c[i][j] into a register
outside the loop, accumulates the sum of the products of a[i][k] and
b[k][j] in that same register, and then stores the sum into c[i][j] upon
termination of the innermost loop. We keep the code simpler by using the
assembly language pseudoinstruction li, which loads a constant into a register.

The body of the procedure starts with saving the loop termination value of
32 in a temporary register and then initializing the three for loop variables:

 mm:...
li x28, 32 // x28 = 32 (row size/loop end)
li x5, 0 // i = 0; initialize 1st for loop

L1: li x6, 0 // j = 0; initialize 2nd for loop
L2: li x7, 0 // k = 0; initialize 3rd for loop

To calculate the address of c[i][j], we need to know how a 32 × 32, two-
dimensional array is stored in memory. As you might expect, its layout is the
same as if there were 32 single-dimensional arrays, each with 32 elements. So
the first step is to skip over the i “single-dimensional arrays,” or rows, to get
the one we want. Thus, we multiply the index in the first dimension by the size
of the row, 32. Since 32 is a power of 2, we can use a shift instead:

slli x30, x5, 5 // x30 = i * 25(size of row of c)

Now we add the second index to select the jth element of the desired row:

add x30, x30, x6 // x30 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element
in bytes. Since each element is 8 bytes for double precision, we can instead shift
left by three:

slli x30, x30, 3 // x30 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of c[i][j],
and then load the double precision number c[i][j] into f0:

add x30, x10, x30 // x30 = byte address of c[i][j]
fld f0, 0(x30) // f0 = 8 bytes of c[i][j]

The following five instructions are virtually identical to the last five: calculate
the address and then load the double precision number b[k][j].

L3: slli x29, x7, 5 // x29 = k * 25(size of row of b)
 add x29, x29, x6 // x29 = k * size(row) + j
 slli x29, x29, 3 // x29 = byte offset of [k][j]
 add x29, x12, x29 // x29 = byte address of b[k][j]
 fld f1, 0(x29) // f1 = 8 bytes of b[k][j]

 3.5 Floating Point 211

Similarly, the next five instructions are like the last five: calculate the address
and then load the double precision number a[i][k].

slli x29, x5, 5 // x29 = i * 25(size of row of a)
add x29, x29, x7 // x29 = i * size(row) + k
slli x29, x29, 3 // x29 = byte offset of [i][k]
add x29, x11, x29 // x29 = byte address of a[i][k]
fld f2, 0(x29) // f2 = a[i][k]

Now that we have loaded all the data, we are finally ready to do some floating-
point operations! We multiply elements of a and b located in registers f2 and
f1, and then accumulate the sum in f0.

fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]

The final block increments the index k and loops back if the index is not 32.
If it is 32, and thus the end of the innermost loop, we need to store the sum
accumulated in f0 into c[i][j].

addi x7, x7, 1 // k = k + 1
bltu x7, x28, L3 // if (k < 32) go to L3
fsd f0, 0(x30) // c[i][j] = f0

Similarly, these final six instructions increment the index variable of the
middle and outermost loops, looping back if the index is not 32 and exiting if
the index is 32.

addi x6, x6, 1 // j = j + 1
bltu x6, x28, L2 // if (j < 32) go to L2
addi x5, x5, 1 // i = i + 1
bltu x5, x28, L1 // if (i < 32) go to L1
. . .

Looking ahead, Figure 3.20 below shows the x86 assembly language code for a
slightly different version of DGEMM in Figure 3.19.

Elaboration: C and many other programming languages use the array layout
discussed in the example, called row-major order. Fortran instead uses column-major
order, whereby the array is stored column by column.

212 Chapter 3 Arithmetic for Computers

Elaboration: Another reason for separate integers and floating-point registers is
that microprocessors in the 1980s didn’t have enough transistors to put the floating-
point unit on the same chip as the integer unit. Hence, the floating-point unit, including
the floating-point registers, was optionally available as a second chip. Such optional
accelerator chips are called coprocessor chips. Since the early 1990s, microprocessors
have integrated floating point (and just about everything else) on chip, and thus the
term coprocessor chip joins accumulator and core memory as quaint terms that date
the speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging
than multiplication. In addition to SRT, another technique to leverage a fast multiplier is
Newton’s iteration, where division is recast as finding the zero of a function to produce
the reciprocal 1/c, which is then multiplied by the other operand. Iteration techniques
cannot be rounded properly without calculating many extra bits. A TI chip solved this
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations. Thus, the code in the first example could have well been
generated for a class method that converted Fahrenheit to Celsius.

The second example above uses multiple dimensional arrays, which are not explicitly
supported in Java. Java allows arrays of arrays, but each array may have its own length,
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version
of this second example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row accesses. It would also need to
check that the object reference is not null.

Accurate Arithmetic
Unlike integers, which can represent exactly every number between the smallest and
largest number, floating-point numbers are normally approximations for a number
they can’t really represent. The reason is that an infinite variety of real numbers
exists between, say, 1 and 2, but no more than 253 can be represented exactly in
double precision floating point. The best we can do is getting the floating-point
representation close to the actual number. Thus, IEEE 754 offers several modes of
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware
to include extra bits in the calculation. In the preceding examples, we were vague
on the number of bits that an intermediate representation can occupy, but clearly,
if every intermediate result had to be truncated to the exact number of digits, there
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits
on the right during intervening additions, called guard and round, respectively.
Let’s do a decimal example to illustrate their value.

guard The first of two
extra bits kept on the
right during intermediate
calculations of floating-
point numbers; used
to improve rounding
accuracy.

round Method to
make the intermediate
floating-point result fit
the floating-point format;
the goal is typically to
find the nearest number
that can be represented
in the format. It is also
the name of the second
of two extra bits kept
on the right during
intermediate floating-
point calculations, which
improves rounding
accuracy.

 3.5 Floating Point 213

Rounding with Guard Digits

Add 2.56ten × 100 to 2.34ten × 102, assuming that we have three significant
decimal digits. Round to the nearest decimal number with three significant
decimal digits, first with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so
2.56ten × 100 becomes 0.0256ten × 102. Since we have guard and round digits, we
are able to represent the two least significant digits when we align exponents.
The guard digit holds 5 and the round digit holds 6. The sum is

2 3400
0 0256

2 3656

.
.

.

ten

ten

ten

�

Thus the sum is 2.3656ten × 102. Since we have two digits to round, we want values
0 to 49 to round down and 51 to 99 to round up, with 50 being the tiebreaker.
Rounding the sum up with three significant digits yields 2.37ten × 102.

Doing this without guard and round digits drops two digits from the
calculation. The new sum is then

2 34
0 02

2 36

.
.

.

ten

ten

ten

�

The answer is 2.36ten × 102, off by 1 in the last digit from the sum above.

Since the worst case for rounding would be when the actual number is halfway
between two floating-point representations, accuracy in floating point is normally
measured in terms of the number of bits in error in the least significant bits of the
significand; the measure is called the number of units in the last place, or ulp. If
a number were off by 2 in the least significant bits, it would be called off by 2 ulps.
Provided there are no overflow, underflow, or invalid operation exceptions, IEEE
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply
can require two. A binary product may have one leading 0 bit; hence, the normalizing step
must shift the product one bit left. This shifts the guard digit into the least significant bit
of the product, leaving the round bit to help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward +∞), always round down
(toward −∞), truncate, and round to nearest even. The final mode determines what to
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS)
always rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way
would be to round up this case half the time and round down the other half. IEEE 754

units in the last place
(ulp) The number of
bits in error in the least
significant bits of the
significand between
the actual number and
the number that can be
represented.

EXAMPLE

ANSWER

214 Chapter 3 Arithmetic for Computers

says that if the least significant bit retained in a halfway case would be odd, add one;
if it’s even, truncate. This method always creates a 0 in the least significant bit in the
tie-breaking case, giving the rounding mode its name. This mode is the most commonly
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results
as if the intermediate results were calculated to infinite precision and then rounded. To
support this goal and round to the nearest even, the standard has a third bit in addition
to guard and round; it is set whenever there are nonzero bits to the right of the round
bit. This sticky bit allows the computer to see the difference between 0.50 … 00ten and
0.50 … 01ten when rounding.

The sticky bit may be set, for example, during addition, when the smaller number is
shifted to the right. Suppose we added 5.01ten × 10−1 to 2.34ten × 102 in the example
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the
sticky bit to remember whether any 1s were shifted off, we would assume the number
is equal to 2.345000 … 00 and round to the nearest even of 2.34. With the sticky bit
to remember that the number is larger than 2.345000 … 00, we round instead to 2.35.

Elaboration: RISC-V, MIPS-64, PowerPC, SPARC64, AMD SSE5, and Intel AVX
architectures all provide a single instruction that does a multiply and add on three
registers: a = a + (b × c). Obviously, this instruction allows potentially higher floating-point
performance for this common operation. Equally important is that instead of performing
two roundings—after the multiply and then after the add—which would happen with
separate instructions, the multiply add instruction can perform a single rounding after the
add. A single rounding step increases the precision of multiply add. Such operations with a
single rounding are called fused multiply add. It was added to the revised IEEE 754-2008
standard (see Section 3.11).

Summary
The Big Picture that follows reinforces the stored-program concept from Chapter 2;
the meaning of the information cannot be determined just by looking at the bits, for
the same bits can represent a variety of objects. This section shows that computer
arithmetic is finite and thus can disagree with natural arithmetic. For example, the
IEEE 754 standard floating-point representation

() () ()1 1 25 Fraction Exponent Bias

is almost always an approximation of the real number. Computer systems must
take care to minimize this gap between computer arithmetic and arithmetic in the
real world, and programmers at times need to be aware of the implications of this
approximation.

sticky bit A bit used in
rounding in addition to
guard and round that is
set whenever there are
nonzero bits to the right
of the round bit.

fused multiply add A
floating-point instruction
that performs both a
multiply and an add, but
rounds only once after
the add.

The BIG
Picture

Bit patterns have no inherent meaning. They may represent signed integers,
unsigned integers, floating-point numbers, instructions, character strings,
and so on. What is represented depends on the instruction that operates
on the bits in the word.

 3.5 Floating Point 215

C type Java type Data transfers Operations

long
long int

long ld, sd add, sub, addi, mul, mulh,
mulhu, mulhsu, div, divu,
rem, remu, and, andi, or,
ori, xor, xori

unsigned
long
long int

— ld, sd add, sub, addi, mul, mulh,
mulhu, mulhsu, div, divu,
rem, remu, and, andi, or,
ori, xor, xori

char — lb, sb add, sub, addi, mul, div,
divu, rem, remu, and, andi,
or, ori, xor, xori

short char lh, sh add, sub, addi, mul, div,
divu, rem, remu, and, andi,
or, ori, xor, xori

float float flw, fsw fadd.s, fsub.s, fmul.s,
fdiv.s, feq.s, flt.s, fle.s

double double fld, fsd fadd.d, fsub.d, fmul.d,
fdiv.d, feq.d, flt.d, fle.d

Hardware/
Software
Interface

Check
Yourself

The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size and hence limited
precision; it’s possible to calculate a number too big or too small to be
represented in a computer word. Programmers must remember these
limits and write programs accordingly.

The revised IEEE 754-2008 standard added a 16-bit floating-point format with five
exponent bits. What do you think is the likely range of numbers it could represent?

1. 1.0000 00 × 20 to 1.1111 1111 11 × 231, 0

2. ±1.0000 0000 0 × 2−14 to ± 1.1111 1111 1 × 215, ± 0, ± ∞, NaN

3. ±1.0000 0000 00 × 2−14 to ± 1.1111 1111 11 × 215, ± 0, ± ∞, NaN

4. ±1.0000 0000 00 × 2−15 to ± 1.1111 1111 11 × 214, ± 0, ± ∞, NaN

In the last chapter, we presented the storage classes of the programming language C
(see the Hardware/Software Interface section in Section 2.7). The table above shows
some of the C and Java data types, the data transfer instructions, and instructions
that operate on those types that appear in Chapter 2 and this chapter. Note that Java
omits unsigned integers.

216 Chapter 3 Arithmetic for Computers

Elaboration: To accommodate comparisons that may include NaNs, the standard
includes ordered and unordered as options for compares. RISC-V does not provide
instructions for unordered comparisons, but a careful sequence of ordered comparisons
has the same effect. (Java does not support unordered compares.)

In an attempt to squeeze every bit of precision from a floating-point operation, the
standard allows some numbers to be represented in unnormalized form. Rather than having
a gap between 0 and the smallest normalized number, IEEE allows denormalized numbers
(also known as denorms or subnormals). They have the same exponent as zero but a nonzero
fraction. They allow a number to degrade in significance until it becomes 0, called gradual
underflow. For example, the smallest positive single precision normalized number is

1 00000000000000000000000 2 126. two

but the smallest single precision denormalized number is

0 00000000000000000000001 2 1 0 2126 149,. .tw to wo or

For double precision, the denorm gap goes from 1.0 × 2−1022 to 1.0 × 2−1074.
The possibility of an occasional unnormalized operand has given headaches to

floating-point designers who are trying to build fast floating-point units. Hence, many
computers cause an exception if an operand is denormalized, letting software complete
the operation. Although software implementations are perfectly valid, their lower
performance has lessened the popularity of denorms in portable floating-point software.
Moreover, if programmers do not expect denorms, their programs may surprise them.

 3.6 Parallelism and Computer Arithmetic:
Subword Parallelism

Since every microprocessor in a phone, tablet, or laptop by definition has its own
graphical display, as transistor budgets increased it was inevitable that support
would be added for graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9), but due to the infrequency of
arithmetic operations on these data sizes in typical integer programs, there was
little support beyond data transfers. Architects recognized that many graphics and
audio applications would perform the same operation on vectors of these data.
By partitioning the carry chains within a 128-bit adder, a processor could use
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands.

 3.7 Real Stuff: Streaming SIMD Extensions and Advanced Vector Extensions in x86 217

The cost of such partitioned adders was small yet the speedups could be large.
Given that the parallelism occurs within a wide word, the extensions are

classified as subword parallelism. It is also classified under the more general name
of data level parallelism. They are known as well as vector or SIMD, for single
instruction, multiple data (see Section 6.6). The rising popularity of multimedia
applications led to arithmetic instructions that support narrower operations that
can easily compute in parallel. As of this writing, RISC-V does not have additional
instructions to exploit subword parallelism, but the next section presents a real-
world example of such an architecture.

 3.7 Real Stuff: Streaming SIMD Extensions
and Advanced Vector Extensions in x86

The original MMX (MultiMedia eXtension) for the x86 included instructions
that operate on short vectors of integers. Later, SSE (Streaming SIMD Extension)
provided instructions that operate on short vectors of single-precision floating-point
numbers. Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture
as part of SSE2, including double precision floating-point registers and operations.
It included eight 64-bit registers that can be used for floating-point operands. AMD
expanded the number to 16 registers, called XMM, as part of AMD64, which Intel
relabeled EM64T for its use. Figure 3.18 summarizes the SSE and SSE2 instructions.

Data transfer Arithmetic Compare

MOV[AU]{SS|PS|SD|PD}
xmm, {mem|xmm}

ADD{SS|PS|SD|PD} xmm,{mem|xmm} CMP{SS|PS|SD|PD}

SUB{SS|PS|SD|PD} xmm,{mem|xmm}

MOV[HL]{PS|PD} xmm,
{mem|xmm}

MUL{SS|PS|SD|PD} xmm,{mem|xmm}

DIV{SS|PS|SD|PD} xmm,{mem|xmm}

SQRT{SS|PS|SD|PD} {mem|xmm}

MAX{SS|PS|SD|PD} {mem|xmm}

MIN{SS|PS|SD|PD} {mem|xmm}

FIGURE 3.18 The SSE/SSE2 floating-point instructions of the x86. xmm means one operand is
a 128-bit SSE2 register, and {mem|xmm} means the other operand is either in memory or it is an SSE2 register.
The table uses regular expressions to show the variations of instructions. Thus, MOV[AU]{SS|PS|SD|PD}
represents the eight instructions MOVASS,MOVAPS,MOVASD,MOVAPD,MOVUSS,MOVUPS,MOVUSD,
and MOVUPD. We use square brackets [] to show single-letter alternatives: A means the 128-bit operand is
aligned in memory; U means the 128-bit operand is unaligned in memory; H means move the high half of the
128-bit operand; and L means move the low half of the 128-bit operand. We use the curly brackets {} with a
vertical bar | to show multiple letter variations of the basic operations: SS stands for Scalar Single precision
floating point, or one 32-bit operand in a 128-bit register; PS stands for Packed Single precision floating
point, or four 32-bit operands in a 128-bit register; SD stands for Scalar Double precision floating point, or
one 64-bit operand in a 128-bit register; PD stands for Packed Double precision floating point, or two 64-bit
operands in a 128-bit register.

218 Chapter 3 Arithmetic for Computers

In addition to holding a single precision or double precision number in a register,
Intel allows multiple floating-point operands to be packed into a single 128-bit SSE2
register: four single precision or two double precision. Thus, the 16 floating-point
registers for SSE2 are actually 128 bits wide. If the operands can be arranged in
memory as 128-bit aligned data, then 128-bit data transfers can load and store multiple
operands per instruction. This packed floating-point format is supported by arithmetic
operations that can compute simultaneously on four singles (PS) or two doubles (PD).

In 2011, Intel doubled the width of the registers again, now called YMM, with
Advanced Vector Extensions (AVX). Thus, a single operation can now specify eight
32-bit floating-point operations or four 64-bit floating-point operations. The
legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM
registers. Thus, to go from 128-bit and 256-bit operations, you prepend the letter
“v” (for vector) in front of the SSE2 assembly language operations and then use the
YMM register names instead of the XMM register name. For example, the SSE2
instruction to perform two 64-bit floating-point additions

addpd %xmm0, %xmm4

becomes

vaddpd %ymm0, %ymm4

which now produces four 64-bit floating-point multiplies. Intel has announced
plans to widen the AVX registers to first 512 bits and later 1024 bits in later editions
of the x86 architecture.

Elaboration: AVX also added three address instructions to x86. For example, vaddpd
can now specify

vaddpd %ymm0, %ymm1, %ymm4 // %ymm4 = %ymm0 + %ymm1

instead of the standard, two address version

addpd %xmm0, %xmm4 // %xmm4 = %xmm4 + %xmm0

(Unlike RISC-V, the destination is on the right in x86.) Three addresses can reduce the
number of registers and instructions needed for a computation.

 3.8 Going Faster: Subword Parallelism
and Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same
code on the Intel Core i7 first without AVX and then with it. Figure 3.19 shows an
unoptimized version of a matrix-matrix multiply written in C. As we saw in Section 3.5,
this program is commonly called DGEMM, which stands for Double precision
GEneral Matrix Multiply. Starting with this edition, we have added a new section
entitled “Going Faster” to demonstrate the performance benefit of adapting software

 3.8 Going Faster: Subword Parallelism and Matrix Multiply 219

to the underlying hardware, in this case the Sandy Bridge version of the Intel Core
i7 microprocessor. This new section in Chapters 3, 4, 5, and 6 will incrementally
improve DGEMM performance using the ideas that each chapter introduces.

Figure 3.20 shows the x86 assembly language output for the inner loop of Figure
3.19. The five floating point-instructions start with a v like the AVX instructions,
but note that they use the XMM registers instead of YMM, and they include sd
in the name, which stands for scalar double precision. We’ll define the subword
parallel instructions shortly.

While compiler writers may eventually be able to produce high-quality code
routinely that uses the AVX instructions of the x86, for now we must “cheat” by
using C intrinsics that more or less tell the compiler exactly how to produce good
code. Figure 3.21 shows the enhanced version of Figure 3.19 for which the Gnu C
compiler produces AVX code. Figure 3.22 shows annotated x86 code that is the
output of compiling using gcc with the –O3 level of optimization.

The declaration on line 6 of Figure 3.21 uses the __m256d data type, which
tells the compiler the variable will hold four double-precision floating-point values.
The intrinsic _mm256_load_pd() also on line 6 uses AVX instructions to load
four double-precision floating-point numbers in parallel (_pd) from the matrix C
into c0. The address calculation C+i+j*n on line 6 represents element C[i+j*n].
Symmetrically, the final step on line 11 uses the intrinsic _mm256_store_pd()
to store four double-precision floating-point numbers from c0 into the matrix C.
As we’re going through four elements each iteration, the outer for loop on line 4
increments i by 4 instead of by 1 as on line 3 of Figure 3.19.

1. void dgemm (size_t n, double* A, double* B, double* C)

2. {

3. for (size_t i = 0; i < n; ++i)

4. for (size_t j = 0; j < n; ++j)

5. {

6. double cij = C[i+j*n]; /* cij = C[i][j] */

7. for(size_t k = 0; k < n; k++)

8. cij += A[i+k*n] * B[k+j*n]; /*cij+=A[i][k]*B[k][j]*/

9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

FIGURE 3.19 Unoptimized C version of a double precision matrix multiply, widely known
as DGEMM for Double-precision GEneral Matrix Multiply. Because we are passing the matrix
dimension as the parameter n, this version of DGEMM uses single-dimensional versions of matrices C, A,
and B and address arithmetic to get better performance instead of using the more intuitive two-dimensional
arrays that we saw in Section 3.5. The comments remind us of this more intuitive notation.

220 Chapter 3 Arithmetic for Computers

1. vmovsd (%r10),%xmm0 // Load 1 element of C into %xmm0
2. mov %rsi,%rcx // register %rcx = %rsi
3. xor %eax,%eax // register %eax = 0
4. vmovsd (%rcx),%xmm1 // Load 1 element of B into %xmm1
5. add %r9,%rcx // register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 // Multiply %xmm1,element of A
7. add $0x1,%rax // register %rax = %rax + 1
8. cmp %eax,%edi // compare %eax to %edi
9. vaddsd %xmm1,%xmm0,%xmm0 // Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> // jump if %eax > %edi
11. add $0x1,%r11 // register %r11 = %r11 + 1
12. vmovsd %xmm0,(%r10) // Store %xmm0 into C element

FIGURE 3.20 The x86 assembly language for the body of the nested loops generated by compiling the unoptimized C
code in Figure 3.19. Although it is dealing with just 64 bits of data, the compiler uses the AVX version of the instructions instead of SSE2
presumably so that it can use three address per instruction instead of two (see the Elaboration in Section 3.7).

1. //include <x86intrin.h>

2. void dgemm (size_t n, double* A, double* B, double* C)

3. {

4. for (size_t i = 0; i < n; i+=4)

5. for (size_t j = 0; j < n; j++) {

6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7. for(size_t k = 0; k < n; k++)

8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12. }

13. }

FIGURE 3.21 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions for
the x86. Figure 3.22 shows the assembly language produced by the compiler for the inner loop.

 3.8 Going Faster: Subword Parallelism and Matrix Multiply 221

Inside the loops, on line 9 we first load four elements of A again using _mm256_
load_pd(). To multiply these elements by one element of B, on line 10 we first use
the intrinsic _mm256_broadcast_sd(), which makes four identical copies of the
scalar double precision number—in this case an element of B—in one of the YMM
registers. We then use _mm256_mul_pd() on line 9 to multiply the four double-
precision results in parallel. Finally, _mm256_add_pd() on line 8 adds the four
products to the four sums in c0.

Figure 3.22 shows resulting x86 code for the body of the inner loops produced by the
compiler. You can see the five AVX instructions—they all start with v and four of the
five use pd for packed double precision—that correspond to the C intrinsics mentioned
above. The code is very similar to that in Figure 3.20 above: both use 12 instructions, the
integer instructions are nearly identical (but different registers), and the floating-point
instruction differences are generally just going from scalar double (sd) using XMM
registers to packed double (pd) with YMM registers. The one exception is line 4 of
Figure 3.22. Every element of A must be multiplied by one element of B. One solution is
to place four identical copies of the 64-bit B element side-by-side into the 256-bit YMM
register, which is just what the instruction vbroadcastsd does.

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure
3.19 runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of
a 2.6 GHz Intel Core i7 (Sandy Bridge). The optimized code in Figure 3.21 performs
at 6.4 GigaFLOPS. The AVX version is 3.85 times as fast, which is very close to the
factor of 4.0 increase that you might hope for from performing four times as many
operations at a time by using subword parallelism.

1. vmovapd (%r11),%ymm0 // Load 4 elements of C into %ymm0

2. mov %rbx,%rcx // register %rcx = %rbx

3. xor %eax,%eax // register %eax = 0

4. vbroadcastsd (%rax,%r8,1),%ymm1 // Make 4 copies of B element

5. add $0x8,%rax // register %rax = %rax + 8

6. vmulpd (%rcx),%ymm1,%ymm1 // Parallel mul %ymm1,4 A elements

7. add %r9,%rcx // register %rcx = %rcx + %r9

8. cmp %r10,%rax // compare %r10 to %rax

9. vaddpd %ymm1,%ymm0,%ymm0 // Parallel add %ymm1, %ymm0

10. jne 50 <dgemm+0x50> // jump if not %r10 != %rax

11. add $0x1,%esi // register % esi = % esi + 1

12. vmovapd %ymm0,(%r11) // Store %ymm0 into 4 C elements

FIGURE 3.22 The x86 assembly language for the body of the nested loops generated by compiling the optimized C
code in Figure 3.21. Note the similarities to Figure 3.20, with the primary difference being that the five floating-point operations are now
using YMM registers and using the pd versions of the instructions for packed double precision instead of the sd version for scalar double
precision.

222 Chapter 3 Arithmetic for Computers

Elaboration: As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode
that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7
(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above
are with Turbo mode turned off. If we turn it on, we improve all the results by the increase
in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized DGEMM and 8.1
GFLOPS with AVX. Turbo mode works particularly well when using only a single core of
an eight-core chip, as in this case, as it lets that single core use much more than its fair
share of power since the other cores are idle.

 3.9 Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the
limited precision of computer arithmetic and the unlimited precision of natural
arithmetic.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power
of 2, a right shift is the same as an integer division by a power of 2.
Recall that a binary number x, where xi means the ith bit, represents the number

… () () () ()x x x x3 3 2 2 1 1 0 02 2 2 2

Shifting the bits of c right by n bits would seem to be the same as dividing by
2n. And this is true for unsigned integers. The problem is with signed integers. For
example, suppose we want to divide −5ten by 4ten; the quotient should be −1ten. The
two’s complement representation of −5ten is

11111111 11111111 11111111 11111111 11111111 11111111 111111111 11111011two

According to this fallacy, shifting right by two should divide by 4ten (22):

00111111 11111111 11111111 11111111 11111111 11111111 111111111 11111110two

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift
right is actually 4,611,686,018,427,387,902ten instead of −1ten.

A solution would be to have an arithmetic right shift that extends the sign bit
instead of shifting in 0s. A 2-bit arithmetic shift right of −5ten produces

11111111 11111111 11111111 11111111 11111111 11111111 111111111 11111110two

The result is −2ten instead of −1ten; close, but no cigar.

Thus mathematics
may be defined as the
subject in which we
never know what we
are talking about, nor
whether what we are
saying is true.
Bertrand Russell, Recent
Words on the Principles
of Mathematics, 1901

 3.9 Fallacies and Pitfalls 223

Pitfall: Floating-point addition is not associative.
Associativity holds for a sequence of two’s complement integer additions, even if the
computation overflows. Alas, because floating-point numbers are approximations
of real numbers and because computer arithmetic has limited precision, it does
not hold for floating-point numbers. Given the great range of numbers that can be
represented in floating point, problems occur when adding two large numbers of
opposite signs plus a small number. For example, let’s see if c + (a + b) = (c + a) + b.
Assume c = −1.5ten × 1038, a = 1.5ten × 1038, and b = 1.0, and that these are all single
precision numbers.

c a b() . (. .)

. (.

1 5 10 1 5 10 1 0

1 5 10 1 5

38 38

38
ten ten

ten tenn

ten ten

ten

10
0 0

1 5 10 1 5 10 1 0
0 0

38

38 38

)
.

() (. .) .
(.

c a b
)) .

.
1 0

1 0

Since floating-point numbers have limited precision and result in approximations
of real results, 1.5ten × 1038 is so much larger than 1.0ten that 1.5ten × 1038 + 1.0 is still
1.5ten × 1038. That is why the sum of c, a, and b is 0.0 or 1.0, depending on the order
of the floating-point additions, so c + (a + b) ≠ (c + a) + b. Therefore, floating-
point addition is not associative.

Fallacy: Parallel execution strategies that work for integer data types also work for
floating-point data types.

Programs have typically been written first to run sequentially before being rewritten
to run concurrently, so a natural question is, “Do the two versions get the same
answer?” If the answer is no, you presume there is a bug in the parallel version that
you need to track down.

This approach assumes that computer arithmetic does not affect the results when
going from sequential to parallel. That is, if you were to add a million numbers
together, you would get the same results whether you used one processor or 1000
processors. This assumption holds for two’s complement integers, since integer
addition is associative. Alas, since floating-point addition is not associative, the
assumption does not hold.

A more vexing version of this fallacy occurs on a parallel computer where the
operating system scheduler may use a different number of processors depending on
what other programs are running on a parallel computer. As the varying number
of processors from each run would cause the floating-point sums to be calculated
in different orders, getting slightly different answers each time despite running
identical code with identical input may flummox unaware parallel programmers.

Given this quandary, programmers who write parallel code with floating-point
numbers need to verify whether the results are credible, even if they don’t give the

224 Chapter 3 Arithmetic for Computers

exact same answer as the sequential code. The field that deals with such issues is called
numerical analysis, which is the subject of textbooks in its own right. Such concerns are
one reason for the popularity of numerical libraries such as LAPACK and ScaLAPAK,
which have been validated in both their sequential and parallel forms.

Fallacy: Only theoretical mathematicians care about floating-point accuracy.
Newspaper headlines of November 1994 prove this statement is a fallacy (see
Figure 3.23). The following is the inside story behind the headlines.

The Pentium uses a standard floating-point divide algorithm that generates
multiple quotient bits per step, using the most significant bits of divisor and
dividend to guess the next 2 bits of the quotient. The guess is taken from a lookup
table containing −2, −1, 0, +1, or +2. The guess is multiplied by the divisor and
subtracted from the remainder to generate a new remainder. Like nonrestoring
division, if a previous guess gets too large a remainder, the partial remainder is
adjusted in a subsequent pass.

Evidently, there were five elements of the table from the 80486 that Intel
engineers thought could never be accessed, and they optimized the PLA to return
0 instead of 2 in these situations on the Pentium. Intel was wrong: while the first 11

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994,
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and
Infoworld. The Pentium floating-point divide bug even made the “Top 10 List” of the David Letterman Late
Show on television. Intel eventually took a $300 million write-off to replace the buggy chips.

 3.10 Concluding Remarks 225

bits were always correct, errors would show up occasionally in bits 12 to 52, or the
4th to 15th decimal digits.

A math professor at Lynchburg College in Virginia, Thomas Nicely, discovered the
bug in September 1994. After calling Intel technical support and getting no official
reaction, he posted his discovery on the Internet. This post led to a story in a trade
magazine, which in turn caused Intel to issue a press release. It called the bug a glitch
that would affect only theoretical mathematicians, with the average spreadsheet
user seeing an error every 27,000 years. IBM Research soon counterclaimed that the
average spreadsheet user would see an error every 24 days. Intel soon threw in the
towel by making the following announcement on December 21:

We at Intel wish to sincerely apologize for our handling of the recently publicized
Pentium processor flaw. The Intel Inside symbol means that your computer has
a microprocessor second to none in quality and performance. Thousands of Intel
employees work very hard to ensure that this is true. But no microprocessor is
ever perfect. What Intel continues to believe is technically an extremely minor
problem has taken on a life of its own. Although Intel firmly stands behind the
quality of the current version of the Pentium processor, we recognize that many
users have concerns. We want to resolve these concerns. Intel will exchange the
current version of the Pentium processor for an updated version, in which this
floating-point divide flaw is corrected, for any owner who requests it, free of
charge anytime during the life of their computer.

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did
not get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fix the bug in July 1994? What was the cost to repair the
damage to Intel’s reputation? And what is the corporate responsibility in disclosing
bugs in a product so widely used and relied upon as a microprocessor?

 3.10 Concluding Remarks

Over the decades, computer arithmetic has become largely standardized, greatly
enhancing the portability of programs. Two’s complement binary integer arithmetic
is found in every computer sold today, and if it includes floating point support, it
offers the IEEE 754 binary floating-point arithmetic.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the
constraints of limited precision. This limit may result in invalid operations through
calculating numbers larger or smaller than the predefined limits. Such anomalies,
called “overflow” or “underflow,” may result in exceptions or interrupts, emergency
events similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions
in more detail.

226 Chapter 3 Arithmetic for Computers

Floating-point arithmetic has the added challenge of being an approximation
of real numbers, and care needs to be taken to ensure that the computer number
selected is the representation closest to the actual number. The challenges of
imprecision and limited representation of floating point are part of the inspiration
for the field of numerical analysis. The switch to parallelism will shine the
searchlight on numerical analysis again, as solutions that were long considered
safe on sequential computers must be reconsidered when trying to find the fastest
algorithm for parallel computers that still achieves a correct result.

Data-level parallelism, specifically subword parallelism, offers a simple path to
higher performance for programs that are intensive in arithmetic operations for
either integer or floating-point data. We showed that we could speed up matrix
multiply nearly fourfold by using instructions that could execute four floating-
point operations at a time.

With the explanation of computer arithmetic in this chapter comes a description
of much more of the RISC-V instruction set.

Figure 3.24 ranks the popularity of the twenty most common RISC-V
instructions the for SPEC CPU2006 integer and floating-point benchmarks. As you
can see, a relatively small number of instructions dominate these rankings. This

RISC-V Instruction Name Frequency Cumulative

Add immediate addi
Load doubleword ld
Load fl. pt. double fld
Add registers add
Load word lw
Store doubleword sd
Branch if not equal bne

Shift left immediate slli
Fused mul-add double fmadd.d
Branch if equal beq
Add immediate word addiw
Store fl. pt. double fsd
Multiply fl. pt. double fmul.d
Load upper immediate lui
Store word sw
Jump and link jal
Branch if less than blt
Add word addw
Subtract fl. pt. double fsub.d

Branch if greater/equal bge

14.36%
8.27%
6.83%
6.23%
4.38%
4.29%
4.14%

3.65%
3.49%
3.27%
2.86%
2.24%
2.02%
1.56%
1.52%
1.38%
1.37%
1.34%
1.28%

1.27%

14.36%
22.63%
29.46%
35.69%
40.07%
44.36%
48.50%

52.15%
55.64%
58.91%
61.77%
64.00%
66.02%
67.59%
69.10%
70.49%
71.86%
73.19%
74.47%

75.75%

FIGURE 3.24 The frequency of the RISC-V instructions for the SPEC CPU2006 benchmarks.
The 20 most popular instructions, which collectively account for 76% of all instructions executed, are
included in the table. Pseudoinstructions are converted into RISC-V before execution, and hence do not
appear here, explaining in part the popularity of addi.

 3.12 Exercises 227

Gresham’s Law (“Bad
money drives out
Good”) for computers
would say, “The Fast
drives out the Slow
even if the Fast is
wrong.”
W. Kahan, 1992

observation has significant implications for the design of the processor, as we will
see in Chapter 4.

No matter what the instruction set or its size—RISC-V, MIPS, x86—never forget
that bit patterns have no inherent meaning. The same bit pattern may represent a
signed integer, unsigned integer, floating-point number, string, instruction, and
so on. In stored-program computers, it is the operation on the bit pattern that
determines its meaning.

 3.12 Historical Perspective and Further
Reading

This section surveys the history of the floating point going back to von
Neumann, including the surprisingly controversial IEEE standards effort, plus
the rationale for the 80-bit stack architecture for floating point in the x86. See
the rest of Section 3.11 online.

 3.12 Exercises

3.1 [5] <§3.2> What is 5ED4 − 07A4 when these values represent unsigned 16-
bit hexadecimal numbers? The result should be written in hexadecimal. Show your
work.

3.2 [5] <§3.2> What is 5ED4 − 07A4 when these values represent signed 16-
bit hexadecimal numbers stored in sign-magnitude format? The result should be
written in hexadecimal. Show your work.

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base
16 (hexadecimal) an attractive numbering system for representing values in
computers?

3.4 [5] <§3.2> What is 4365 − 3412 when these values represent unsigned 12-bit
octal numbers? The result should be written in octal. Show your work.

3.5 [5] <§3.2> What is 4365 − 3412 when these values represent signed 12-bit
octal numbers stored in sign-magnitude format? The result should be written in
octal. Show your work.

3.6 [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate
185–122. Is there overflow, underflow, or neither?

3.11

Never give in, never
give in, never, never,
never—in nothing,
great or small, large or
petty—never give in.
Winston Churchill,
address at Harrow
School, 1941

 3.11 Historical Perspective and Further Reading 227.e1

3.11 Historical Perspective and Further
Reading

This section surveys the history of the floating point going back to von Neumann,
including the surprisingly controversial IEEE standards effort, the rationale for
the 80-bit stack architecture for floating point in the IA-32, and an update on the
next round of the standard.

At first it may be hard to imagine a subject of less interest than the correctness
of computer arithmetic or its accuracy, and harder still to understand why a subject
so old and mathematical should be so contentious. Computer arithmetic is as old
as computing itself, and some of the subject’s earliest notions, like the economical
reuse of registers during serial multiplication and division, still command respect
today. Maurice Wilkes [1985] recalled a conversation about that notion during his
visit to the United States in 1946, before the earliest stored-program computer had
been built:

… a project under von Neumann was to be set up at the Institute of Advanced
Studies in Princeton.… Goldstine explained to me the principal features of the
design, including the device whereby the digits of the multiplier were put into the
tail of the accumulator and shifted out as the least significant part of the product
was shifted in. I expressed some admiration at the way registers and shifting
circuits were arranged … and Goldstine remarked that things of that nature came
very easily to von Neumann.
There is no controversy here; it can hardly arise in the context of exact integer

arithmetic, so long as there is general agreement on what integer the correct result
should be. However, as soon as approximate arithmetic enters the picture, so does
controversy, as if one person’s “negligible” must be another’s “everything.”

The First Dispute
Floating-point arithmetic kindled disagreement before it was ever built. John von
Neumann was aware of Konrad Zuse’s proposal for a computer in Germany in
1939 that was never built, probably because the floating point made it appear too
complicated to finish before the Germans expected World War II to end. Hence,
von Neumann refused to include it in the computer he built at Princeton. In an
influential report coauthored in 1946 with H. H. Goldstine and A. W. Burks, he
gave the arguments for and against floating point. In favor:

… to retain in a sum or product as many significant digits as possible and … to free
the human operator from the burden of estimating and inserting into a problem
“scale factors”—multiplication constants which serve to keep numbers within the
limits of the machine.

Gresham’s Law (“Bad
money drives out
Good”) for computers
would say, “The Fast
drives out the Slow
even if the Fast is
wrong.”
W. Kahan, 1992

227.e2 3.11 Historical Perspective and Further Reading

Floating point was excluded for several reasons:
There is, of course, no denying the fact that human time is consumed in arranging
for the introduction of suitable scale factors. We only argue that the time consumed
is a very small percentage of the total time we will spend in preparing an interesting
problem for our machine. The first advantage of the floating point is, we feel,
somewhat illusory. In order to have such a floating point, one must waste memory
capacity which could otherwise be used for carrying more digits per word. It would
therefore seem to us not at all clear whether the modest advantages of a floating
binary point offset the loss of memory capacity and the increased complexity of the
arithmetic and control circuits.

The argument seems to be that most bits devoted to exponent fields would be bits
wasted. Experience has proven otherwise.

One software approach to accommodate reals without floating-point hardware
was called floating vectors; the idea was to compute at runtime one scale factor
for a whole array of numbers, choosing the scale factor so that the array’s biggest
number would barely fill its field. By 1951, James H. Wilkinson had used this scheme
extensively for matrix computations. The problem proved to be that a program
might encounter a very large value, and hence the scale factor must accommodate
these rare sizeable numbers. The common numbers would thus have many leading
0s, since all numbers had to use a single scale factor. Accuracy was sacrificed,
because the least significant bits had to be lost on the right to accommodate leading
0s. This wastage became obvious to practitioners on early computers that displayed
all their memory bits as dots on cathode ray tubes (like TV screens) because the
loss of precision was visible. Where floating point deserved to be used, no practical
alternative existed.

Thus, true floating-point hardware became popular because it was useful. By
1957, floating-point hardware was almost ubiquitous. A decimal floating-point
unit was available for the IBM 650, and soon the IBM 704, 709, 7090, 7094 … series
would offer binary floating-point hardware for double as well as single precision.

As a result, everybody had floating point, but every implementation was
different.

Diversity versus Portability
Since roundoff introduces some error into almost all floating-point operations,
to complain about another bit of error seems picayune. So for 20 years, nobody
complained much that those operations behaved a little differently on different
computers. If software required clever tricks to circumvent those idiosyncrasies and
finally deliver results correct in all but the last several bits, such tricks were deemed
part of the programmer’s art. For a long time, matrix computations mystified most
people who had no notion of error analysis; perhaps this continues to be true. That

 3.11 Historical Perspective and Further Reading 227.e3

may be why people are still surprised that numerically stable matrix computations
depend upon the quality of arithmetic in so few places, far fewer than are generally
supposed. Books by Wilkinson and widely used software packages like Linpack
and Eispack sustained a false impression, widespread in the early 1970s, that a
modicum of skill sufficed to produce portable numerical software.

“Portable” here means that the software is distributed as source code in some
standard language to be compiled and executed on practically any commercially
significant computer, and that it will then perform its task as well as any other
program performs that task on that computer. Insofar as numerical software has
often been thought to consist entirely of computer-independent mathematical
formulas, its portability has commonly been taken for granted; the mistake in that
presumption will become clear shortly.

Packages like Linpack and Eispack cost so much to develop—over a hundred
dollars per line of Fortran delivered—that they could not have been developed
without U.S. government subsidy; their portability was a precondition for that
subsidy. But nobody thought to distinguish how various components contributed
to their cost. One component was algorithmic—devise an algorithm that deserves
to work on at least one computer despite its roundoff and over-/underflow
limitations. Another component was the software engineering effort required to
achieve and confirm portability to the diverse computers commercially significant
at the time; this component grew more onerous as ever more diverse floating-point
arithmetics blossomed in the 1970s. And yet scarcely anybody realized how much
that diversity inflated the cost of such software packages.

A Backward Step
Early evidence that somewhat different arithmetics could engender grossly different
software development costs was presented in 1964. It happened at a meeting of
SHARE, the IBM mainframe users’ group, at which IBM announced System/360,
the successor to the 7094 series. One of the speakers described the tricks he had
been forced to devise to achieve a level of quality for the S/360 library that was not
quite so high as he had previously achieved for the 7094.

Von Neumann could have foretold part of the trouble, had he still been alive.
In 1948, he and Goldstine had published a lengthy error analysis so difficult and
so pessimistic that hardly anybody paid attention to it. It did predict correctly,
however, that computations with larger arrays of data would probably fall prey
to roundoff more often. IBM S/360s had bigger memories than 7094s, so data
arrays could grow larger, and they did. To make matters worse, the S/360s had
narrower single precision words (32 bits versus 36) and used a cruder arithmetic
(hexadecimal or base 16 versus binary or base 2) with consequently poorer worst-
case precision (21 significant bits versus 27) than the old 7094s. Consequently,

227.e4 3.11 Historical Perspective and Further Reading

software that had almost always provided (barely) satisfactory accuracy on 7094s
too often produced inaccurate results when run on S/360s. The quickest way to
recover adequate accuracy was to replace old codes’ single precision declarations
with double precision before recompilation for the S/360. This practice exercised
S/360 double precision far more than had been expected.

The early S/360’s worst troubles were caused by lack of a guard digit in double
precision. This lack showed up in multiplication as a failure of identities like 1.0*
x = x because multiplying x by 1.0 dropped x’s last hexadecimal digit (4 bits).
Similarly, if x and y were very close but had different exponents, subtraction
dropped off the last digit of the smaller operand before computing x − y. This
final aberration in double precision undermined a precious theorem that single
precision then (and now) honored: If 1/2 ≤x/y ≤2, then no rounding error can
occur when x − y is computed; it must be computed exactly.

Innumerable computations had benefited from this minor theorem, most often
unwittingly, for several decades before its first formal announcement and proof.
We had been taking all this stuff for granted.

The identities and theorems about exact relationships that persisted, despite
roundoff, with reasonable implementations of approximate arithmetic were not
appreciated until they were lost. Previously, it had been thought that the things to
matter were precision (how many significant digits were carried) and range (the
spread between over-/underflow thresholds). Since the S/360’s double precision
had more precision and wider range than the 7094’s, software was expected to
continue to work at least as well as before. But it didn’t.

Programmers who had matured into program managers were appalled at
the cost of converting 7094 software to run on S/360s. A small subcommittee of
SHARE proposed improvements to the S/360 floating point. This committee was
surprised and grateful to get a fair part of what they asked for from IBM, including
all-important guard digits. By 1968, these had been retrofitted to S/360s in the
field at considerable expense; worse than that was customers’ loss of faith in IBM’s
infallibility (a lesson learned by Intel 30 years later). IBM employees who can
remember the incident still shudder.

The People Who Built the Bombs
Seymour Cray was associated for decades with the CDC and Cray computers that
were, when he built them, the world’s biggest and fastest. He always understood
what his customers wanted most: speed. And he gave it to them even if, in so doing,
he also gave them arithmetics more “interesting” than anyone else’s. Among his
customers have been the great government laboratories like those at Livermore and
Los Alamos, where nuclear weapons were designed. The challenges of “interesting”
arithmetics were pretty tame to people who had to overcome Mother Nature’s
challenges.

 3.11 Historical Perspective and Further Reading 227.e5

Perhaps all of us could learn to live with arithmetic idiosyncrasy if only one
computer’s idiosyncrasies had to be endured. Instead, when accumulating different
computers’ different anomalies, software dies the Death of a Thousand Cuts. Here
is an example from Cray’s computers:

if (x == 0.0) y = 17.0 else y = z/x

Could this statement be stopped by a divide-by-zero error? On a CDC 6600 it
could. The reason was a conflict between the 6600’s adder, where x was compared
with 0.0, and the multiplier and divider. The adder’s comparison examined x’s
leading 13 bits, which sufficed to distinguish zero from normal nonzero floating-
point numbers x. The multiplier and divider examined only 12 leading bits.
Consequently, tiny numbers existed that were nonzero to the adder but zero to the
multiplier and divider! To avoid disasters with these tiny numbers, programmers
learned to replace statements like the one above with

if (1.0 * x == 0.0) y = 17.0 else y = z/x

But this statement is unsafe to use in would-be portable software because it
malfunctions obscurely on other computers designed by Cray, the ones marketed
by Cray Research, Inc. If x was so huge that 2.0 * x would overflow, then 1.0 * x
might overflow too! Overflow happens because Cray computers check the product’s
exponent before the product’s exponent has been normalized, just to save the delay
of a single AND gate.

Rounding error anomalies that are far worse than the over-/underflow anomaly
just discussed also affect Cray computers. The worst error came from the lack of
a guard digit in add/subtract, an affliction of IBM S/360s. Further bad luck for
software is occasioned by the way Cray economized his multiplier; about one-
third of the bits that normal multiplier arrays generate have been left out of his
multipliers, because they would contribute less than a unit to the last place of the
final Cray-rounded product. Consequently, a Cray multiplier errs by almost a bit
more than might have been expected. This error is compounded when division
takes three multiplications to improve an approximate reciprocal of the divisor
and then multiply the numerator by it. Square root compounds a few more
multiplication errors.

The fast way drove out the slow, even though the fast was occasionally slightly
wrong.

Making the World Safe for Floating Point, or Vice Versa
William Kahan was an undergraduate at the University of Toronto in 1953 when he
learned to program its Ferranti-Manchester Mark-I computer. Because he entered
the field early, Kahan became acquainted with a wide range of devices and a large
proportion of the personalities active in computing; the numbers of both were
small at that time. He has performed computations on slide rules, desktop

227.e6 3.11 Historical Perspective and Further Reading

mechanical calculators, tabletop analog differential analyzers, and so on; he has
used all but the earliest electronic computers and calculators mentioned in this
book.

Kahan’s desire to deliver reliable software led to an interest in error analysis that
intensified during two years of postdoctoral study in England, where he became
acquainted with Wilkinson. In 1960, he resumed teaching at Toronto, where an
IBM 7090 had been acquired, and was granted free rein to tinker with its operating
system, Fortran compiler, and runtime library. (He denies that he ever came near
the 7090 hardware with a soldering iron but admits asking to do so.) One story from
that time illuminates how misconceptions and numerical anomalies in computer
systems can incur awesome hidden costs.

A graduate student in aeronautical engineering used the 7090 to simulate the
wings he was designing for short takeoffs and landings. He knew such a wing would
be difficult to control if its characteristics included an abrupt onset of stall, but he
thought he could avoid that. His simulations were telling him otherwise. Just to be
sure that roundoff was not interfering, he had repeated many of his calculations in
double precision and gotten results much like those in single; his wings had stalled
abruptly in both precisions. Disheartened, the student gave up.

Meanwhile Kahan replaced IBM’s logarithm program (ALOG) with one of
his own, which he hoped would provide better accuracy. While testing it, Kahan
reran programs using the new version of ALOG. The student’s results changed
significantly; Kahan approached him to find out what had happened.

The student was puzzled. Much as the student preferred the results produced
with the new ALOG—they predicted a gradual stall—he knew they must be wrong
because they disagreed with his double precision results. The discrepancy between
single and double precision results disappeared a few days later when a new release
of IBM’s double precision arithmetic software for the 7090 arrived. (The 7090 had
no double precision hardware.) He went on to write a thesis about it and to build
the wings; they performed as predicted. But that is not the end of the story.

In 1963, the 7090 was replaced by a faster 7094 with double precision floating-
point hardware but with otherwise practically the same instruction set as the 7090.
Only in double precision and only when using the new hardware did the wing stall
abruptly again. A lot of time was spent to find out why. The 7094 hardware turned
out, like the superseded 7090 software and the subsequent early S/360s, to lack a
guard bit in double precision. Like so many programmers on those computers and
on Cray’s, the student discovered a trick to compensate for the lack of a guard digit;
he wrote the expression (0.5 — x) + 0.5 in place of 1.0 — x. Nowadays we
would blush if we had to explain why such a trick might be necessary, but it solved
the student’s problem.

Meanwhile the lure of California was working on Kahan and his family; they
came to Berkeley and he to the University of California. An opportunity presented
itself in 1974 when accuracy questions induced Hewlett-Packard’s calculator
designers to call in a consultant. The consultant was Kahan, and his work

 3.11 Historical Perspective and Further Reading 227.e7

dramatically improved the accuracy of HP calculators, but that is another story.
Fruitful collaboration with congenial coworkers, however, fortified him for the
next and crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered to specify the
“best possible” floating-point arithmetic for all of Intel’s product line, as Moore’s
Law made it now possible to create a whole floating-point unit on a single chip. The
floating-point standard was originally started for the iAPX-432, but when it was
late, Intel started the 8086 as a short-term emergency stand-in until the iAPX-432
was ready. The iAPX-432 never became popular, so the emergency stand-in became
the standard-bearer for Intel. The 8087 floating-point coprocessor for the 8086 was
contemplated. (A coprocessor is simply an additional chip that accelerates a portion
of the work of a processor; in this case, it accelerated floating-point computation.)

Palmer had obtained his Ph.D. at Stanford a few years before and knew whom
to call for counsel of perfection—Kahan. They put together a design that obviously
would have been impossible only a few years earlier and looked not quite possible at
the time. But a new Israeli team of Intel employees led by Rafi Navé felt challenged
to prove their prowess to Americans and leaped at an opportunity to put something
impossible on a chip—the 8087.

By now, floating-point arithmetics that had been merely diverse among
mainframes had become chaotic among microprocessors, one of which might be
host to a dozen varieties of arithmetic in ROM firmware or software. Robert G.
Stewart, an engineer prominent in IEEE activities, got fed up with this anarchy
and proposed that the IEEE draft a decent floating-point standard. Simultaneously,
word leaked out in Silicon Valley that Intel was going to put on one chip some
awesome floating point well beyond anything its competitors had in mind. The
competition had to find a way to slow Intel down, so they formed a committee to
do what Stewart requested.

Meetings of this committee began in late 1977 with a plethora of competing
drafts from innumerable sources and dragged on into 1985, when IEEE Standard
754 for Binary Floating Point was made official. The winning draft was very close
to one submitted by Kahan, his student Jerome T. Coonen, and Harold S. Stone, a
professor visiting Berkeley at the time. Their draft was based on the Intel design,
with Intel’s permission, of course, as simplified by Coonen. Their harmonious
combination of features, almost none of them new, had at the outset attracted more
support within the committee and from outside experts like Wilkinson than any
other draft, but they had to win nearly unanimous support within the committee
to win official IEEE endorsement, and that took time.

The First IEEE 754 Chips
In 1980, Intel became tired of waiting and released the 8087 for use in the IBM
PC. The floating-point architecture of the companion 8087 had to be retrofitted
into the 8086 opcode space, making it inconvenient to offer two operands per

227.e8 3.11 Historical Perspective and Further Reading

instruction as found in the rest of the 8086. Hence the decision for one operand
per instruction using a stack: “The designer’s task was to make a Virtue of this
Necessity.” (Kahan’s [1990] history of the stack architecture selection for the 8087
is entertaining reading.)

Rather than the classical stack architecture, which has no provision for avoiding
common subexpressions from being pushed and popped from memory into the
top of the stack found in registers, Intel tried to combine a flat register file with
a stack. The reasoning was that the restriction of the top of stack as one operand
was not so bad since it only required the execution of an FXCH instruction (which
swapped registers) to get the same result as a two-operand instruction, and FXCH
was much faster than the floating-point operations of the 8087.

Since floating-point expressions are not that complex, Kahan reasoned that eight
registers meant that the stack would rarely overflow. Hence, he urged that the 8087
use this hybrid scheme with the provision that stack overflow or stack underflow
would interrupt the 8086 so that interrupt software could give the illusion to the
compiler writer of an unlimited stack for floating-point data.

The Intel 8087 was implemented in Israel, and 7500 miles and 10 time zones
made communication from California difficult. According to Palmer and Morse
(The 8087 Primer, J. Wiley, New York, 1984, p. 93):

Unfortunately, nobody tried to write a software stack manager until after the 8087
was built, and by then it was too late; what was too complicated to perform in
hardware turned out to be even worse in software. One thing found lacking is the
ability to conveniently determine if an invalid operation is indeed due to a stack
overflow.… Also lacking is the ability to restart the instruction that caused the
stack overflow …

The result is that the stack exceptions are too slow to handle in software. As Kahan
[1990] says:

Consequently, almost all higher-level languages’ compilers emit inefficient code for
the 80x87 family, degrading the chip’s performance by typically 50% with spurious
stores and loads necessary simply to preclude stack over/under-flow.…

I still regret that the 8087’s stack implementation was not quite so neat as my
original intention.… If the original design had been realized, compilers today
would use the 80x87 and its descendents more efficiently, and Intel’s competitors
could more easily market faster but compatible 80x87 imitations.
In 1982, Motorola announced its 68881, which found a place in Sun 3s and

Macintosh IIs; Apple had been a supporter of the proposal from the beginning.
Another Berkeley graduate student, George S. Taylor, had soon designed a high-
speed implementation of the proposed standard for an early superminicomputer
(ELXSI 6400). The standard was becoming de facto before its final draft’s ink was dry.

 3.11 Historical Perspective and Further Reading 227.e9

An early rush of adoptions gave the computing industry the false impression
that IEEE 754, like so many other standards, could be implemented easily by
following a standard recipe. Not true. Only the enthusiasm and ingenuity of its
early implementors made it look easy.

In fact, to implement IEEE 754 correctly demands extraordinarily diligent
attention to detail; to make it run fast demands extraordinarily competent
ingenuity of design. Had the industry’s engineering managers realized this, they
might not have been so quick to affirm that, as a matter of policy, “We conform to
all applicable standards.”

IEEE 754 Today
Unfortunately, the compiler-writing community was not represented adequately in
the wrangling, and some of the features didn’t balance language and compiler issues
against other points. That community has been slow to make IEEE 754’s unusual
features available to the applications programmer. Humane exception handling is
one such unusual feature; directed rounding another. Without compiler support,
these features have atrophied.

The successful parts of IEEE 754 are that it is a widely implemented standard
with a common floating-point format, that it requires minimum accuracy to one-
half ulp in the least significant bit, and that operations must be commutative.

The IEEE 754/854 has been implemented to a considerable degree of fidelity in
at least part of the product line of every North American computer manufacturer.
The only significant exceptions were the DEC VAX, IBM S/370 descendants,
and Cray Research vector supercomputers, and all three have been replaced by
compliant computers.

IEEE rules ask that a standard be revisited periodically for updating. A
committee started in 2000, and drafts of the revised standards were circulated for
voting, and these were approved in 2008. The revised standard, IEEE Std 754-2008
[2008], includes several new types: 16-bit floating point, called half precision; 128-
bit floating point, called quad precision; and three decimal types, matching the
length of the 32-bit, 64-bit, and 128-bit binary formats. In 1989, the Association for
Computing Machinery, acknowledging the benefits conferred upon the computing
industry by IEEE 754, honored Kahan with the Turing Award. On accepting it, he
thanked his many associates for their diligent support, and his adversaries for their
blunders. So . . . not all errors are bad.

227.e10 3.11 Historical Perspective and Further Reading

Further Reading
If you are interested in learning more about floating point, two publications by
David Goldberg [1991, 2002] are good starting points; they abound with pointers to
further reading. Several of the stories told in this section come from Kahan [1972,
1983]. The latest word on the state of the art in computer arithmetic is often found
in the Proceedings of the most recent IEEE-sponsored Symposium on Computer
Arithmetic, held every two years; the 23rd was held in 2016.
Burks, A.W., H.H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of the logical design of
an electronic computing instrument,” Report to the U.S. Army Ordnance Dept., p. 1; also in Papers of John von
Neumann, W. Aspray and A. Burks (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers, Los Angeles,
1987, 97–146.

This classic paper includes arguments against floating-point hardware.

Goldberg, D. [2002]. “Computer arithmetic”. Appendix A of Computer Architecture: A Quantitative Approach,
third edition, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San Francisco.

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It covers
Sections 3.4–3.6 of this book in just 10 pages, leaving another 45 pages for advanced topics.

Goldberg, D. [1991]. “What every computer scientist should know about floating-point arithmetic”, ACM
Computing Surveys 23(1), 5–48.

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on software.

Kahan, W. [1972]. “A survey of error-analysis,” in Info. Processing 71 (Proc. IFIP Congress 71 in Ljubljana),
Vol. 2, North-Holland Publishing, Amsterdam, 1214–1239.

This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand,” Proc. Amer. Stat. Assoc. Joint Summer Meetings of 1983,
Statistical Computing Section, 12–26.

The title refers to silicon and is another source of stories illustrating the importance of accurate arithmetic.

Kahan, W. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Computer Science
Division, University of California, Berkeley.

What the 8087 floating-point architecture could have been.

Kahan, W. [1997]. Available at http://www.cims.nyu.edu/~dbindel/class/cs279/87stack.pdf.

A collection of memos related to floating point, including “Beastly numbers” (another less famous Pentium bug),
“Notes on the IEEE floating point arithmetic” (including comments on how some features are atrophying), and
“The baleful effects of computing benchmarks” (on the unhealthy preoccupation on speed versus correctness,
accuracy, ease of use, flexibility, …).

Koren, I. [2002]. Computer Arithmetic Algorithms, second edition, A. K. Peters, Natick, MA.

A textbook aimed at seniors and first-year graduate students that explains fundamental principles of basic
arithmetic, as well as complex operations such as logarithmic and trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.

This computer pioneer’s recollections include the derivation of the standard hardware for multiply and divide
developed by von Neumann.

http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref2
http://www.cims.nyu.edu/%7edbindel/class/cs279/87stack.pdf
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref4

228 Chapter 3 Arithmetic for Computers

3.7 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored
in sign-magnitude format. Calculate 185 + 122. Is there overflow, underflow, or
neither?

3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored
in sign-magnitude format. Calculate 185 − 122. Is there overflow, underflow, or
neither?

3.9 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in
two’s complement format. Calculate 151 + 214 using saturating arithmetic. The
result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored
in two’s complement format. Calculate 151 − 214 using saturating arithmetic. The
result should be written in decimal. Show your work.

3.11 [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate
151+ 214 using saturating arithmetic. The result should be written in decimal.
Show your work.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the octal unsigned 6-bit integers 62 and 12 using the hardware described
in Figure 3.3. You should show the contents of each register on each step.

3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware
described in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <§3.3> Calculate the time necessary to perform a multiply using the
approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step of
the operation takes four time units. Assume that in step 1a an addition is always
performed—either the multiplicand will be added, or a zero will be. Also assume
that the registers have already been initialized (you are just counting how long it
takes to do the multiplication loop itself). If this is being done in hardware, the
shifts of the multiplicand and multiplier can be done simultaneously. If this is being
done in software, they will have to be done one after the other. Solve for each case.

3.15 [10] <§3.3> Calculate the time necessary to perform a multiply using the
approach described in the text (31 adders stacked vertically) if an integer is 8 bits
wide and an adder takes four time units.

3.16 [20] <§3.3> Calculate the time necessary to perform a multiply using the
approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes four
time units.

3.17 [20] <§3.3> As discussed in the text, one possible performance enhancement is
to do a shift and add instead of an actual multiplication. Since 9 × 6, for example, can
be written (2 × 2 × 2 + 1) × 6, we can calculate 9 × 6 by shifting 6 to the left three times
and then adding 6 to that result. Show the best way to calculate 0 × 33 × 0 × 55 using
shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

马德

 3.12 Exercises 229

3.18 [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate
74 divided by 21 using the hardware described in Figure 3.8. You should show
the contents of each register on each step. Assume both inputs are unsigned 6-bit
integers.

3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate
74 divided by 21 using the hardware described in Figure 3.11. You should show
the contents of each register on each step. Assume A and B are unsigned 6-bit
integers. This algorithm requires a slightly different approach than that shown in
Figure 3.9. You will want to think hard about this, do an experiment or two, or else
go to the web to figure out how to make this work correctly. (Hint: one possible
solution involves using the fact that Figure 3.11 implies the remainder register can
be shifted either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0 × 0C000000
represent if it is a two’s complement integer? An unsigned integer?

3.21 [10] <§3.5> If the bit pattern 0 × 0C000000 is placed into the Instruction
Register, what MIPS instruction will be executed?

3.22 [10] <§3.5> What decimal number does the bit pattern 0 × 0C000000
represent if it is a floating point number? Use the IEEE 754 standard.

3.23 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 double precision format.

3.25 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming it was stored using the single precision IBM format (base 16,
instead of base 2, with 7 bits of exponent).

3.26 [20] <§3.5> Write down the binary bit pattern to represent −1.5625 × 10−1
assuming a format similar to that employed by the DEC PDP-8 (the leftmost 12
bits are the exponent stored as a two’s complement number, and the rightmost 24
bits are the fraction stored as a two’s complement number). No hidden 1 is used.
Comment on how the range and accuracy of this 36-bit pattern compares to the
single and double precision IEEE 754 standards.

3.27 [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits wide.
The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias of 15,
and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the bit pattern to
represent −1.5625 × 10−1 assuming a version of this format, which uses an excess-16
format to store the exponent. Comment on how the range and accuracy of this 16-bit
floating point format compares to the single precision IEEE 754 standard.

3.28 [20] <§3.5> The Hewlett-Packard 2114, 2115, and 2116 used a format
with the leftmost 16 bits being the fraction stored in two’s complement format,

马德

马德

马德

230 Chapter 3 Arithmetic for Computers

followed by another 16-bit field which had the leftmost 8 bits as an extension of the
fraction (making the fraction 24 bits long), and the rightmost 8 bits representing
the exponent. However, in an interesting twist, the exponent was stored in sign-
magnitude format with the sign bit on the far right! Write down the bit pattern to
represent −1.5625 × 10−1 assuming this format. No hidden 1 is used. Comment on
how the range and accuracy of this 32-bit pattern compares to the single precision
IEEE 754 standard.

3.29 [20] <§3.5> Calculate the sum of 2.6125 × 101 and 4.150390625 × 10−1
by hand, assuming A and B are stored in the 16-bit half precision described in
Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the
nearest even. Show all the steps.

3.30 [30] <§3.5> Calculate the product of –8.0546875 × 100 and −1.79931640625 ×
10–1 by hand, assuming A and B are stored in the 16-bit half precision format described
in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the
nearest even. Show all the steps; however, as is done in the example in the text, you
can do the multiplication in human-readable format instead of using the techniques
described in Exercises 3.12 through 3.14. Indicate if there is overflow or underflow.
Write your answer in both the 16-bit floating point format described in Exercise 3.27
and also as a decimal number. How accurate is your result? How does it compare to
the number you get if you do the multiplication on a calculator?

3.31 [30] <§3.5> Calculate by hand 8.625 × 101 divided by −4.875 × 100. Show
all the steps necessary to achieve your answer. Assume there is a guard, a round bit,
and a sticky bit, and use them if necessary. Write the final answer in both the 16-bit
floating point format described in Exercise 3.27 and in decimal and compare the
decimal result to that which you get if you use a calculator.

3.32 [20] <§3.10> Calculate (3.984375 × 10−1 + 3.4375 × 10−1) + 1.771 × 103
by hand, assuming each of the values is stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.33 [20] <§3.10> Calculate 3.984375 × 10−1 + (3.4375 × 10−1 + 1.771 × 103)
by hand, assuming each of the values is stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.34 [10] <§3.10> Based on your answers to Exercises 3.32 and 3.33, does
(3.984375 × 10−1 + 3.4375 × 10−1) + 1.771 × 103 = 3.984375 × 10−1 + (3.4375 ×
10−1 + 1.771 × 103)?

3.35 [30] <§3.10> Calculate (3.41796875 × 10−3 × 6.34765625 × 10−3) × 1.05625 ×
102 by hand, assuming each of the values is stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 round

马德

 3.12 Exercises 231

bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and write your
answer in both the 16-bit floating point format and in decimal.

3.36 [30] <§3.10> Calculate 3.41796875 × 10−3 × (6.34765625 × 10−3 × 1.05625 ×
102) by hand, assuming each of the values is stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 round
bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and write your
answer in both the 16-bit floating point format and in decimal.

3.37 [10] <§3.10> Based on your answers to Exercises 3.35 and 3.36, does
(3.41796875 × 10−3 × 6.34765625 × 10−3) × 1.05625 × 102 = 3.41796875 × 10−3 ×
(6.34765625 × 10−3 × 1.05625 × 102)?

3.38 [30] <§3.10> Calculate 1.666015625 × 100 × (1.9760 × 104 + −1.9744 ×
104) by hand, assuming each of the values is stored in the 16-bit half precision
format described in Exercise 3.27 (and also described in the text). Assume 1 guard,
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.39 [30] <§3.10> Calculate (1.666015625 × 100 × 1.9760 × 104) + (1.666015625 ×
100 × −1.9744 × 104) by hand, assuming each of the values is stored in the 16-bit half
precision format described in Exercise 3.27 (and also described in the text). Assume 1
guard, 1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps,
and write your answer in both the 16-bit floating point format and in decimal.

3.40 [10] <§3.10> Based on your answers to Exercises 3.38 and 3.39, does
(1.666015625 × 100 × 1.9760 × 104) + (1.666015625 × 100 × −1.9744 × 104) =
1.666015625 × 100 × (1.9760 × 104 + −1.9744 × 104)?

3.41 [10] <§3.5> Using the IEEE 754 floating point format, write down the bit
pattern that would represent −1/4. Can you represent −1/4 exactly?

3.42 [10] <§3.5> What do you get if you add −1/4 to itself four times? What is
−1/4 × 4? Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming
a floating point format that uses binary numbers in the fraction. Assume there are
24 bits, and you do not need to normalize. Is this representation exact?

3.44 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming
a floating point format that uses Binary Coded Decimal (base 10) numbers in
the fraction instead of base 2. Assume there are 24 bits, and you do not need to
normalize. Is this representation exact?

3.45 [10] <§3.5> Write down the bit pattern assuming that we are using base 15
numbers in the fraction of value 1/3 instead of base 2. (Base 16 numbers use the
symbols 0–9 and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are
24 bits, and you do not need to normalize. Is this representation exact?

232 Chapter 3 Arithmetic for Computers

3.46 [20] <§3.5> Write down the bit pattern assuming that we are using base 30
numbers in the fraction of value 1/3 instead of base 2. (Base 16 numbers use the
symbols 0–9 and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are
20 bits, and you do not need to normalize. Is this representation exact?

3.47 [45] <§§3.6, 3.7> The following C code implements a four-tap FIR filter on
input array sig_in. Assume that all arrays are 16-bit fixed-point values.

for (i = 3;i< 128;i+ +)
sig_out[i] = sig_in[i − 3] * f[0] + sig_in[i − 2] * f[1]
 + sig_in[i − 1] * f[2] + sig_in[i] * f[3];

Assume you are to write an optimized implementation of this code in assembly
language on a processor that has SIMD instructions and 128-bit registers. Without
knowing the details of the instruction set, briefly describe how you would
implement this code, maximizing the use of sub-word operations and minimizing
the amount of data that is transferred between registers and memory. State all your
assumptions about the instructions you use.

§3.2, page 177: 2.
§3.5, page 215: 3.

Answers to
Check Yourself

This page intentionally left blank

The Processor
4.1 Introduction 236
4.2 Logic Design Conventions 240
4.3 Building a Datapath 243
4.4 A Simple Implementation Scheme 251
4.5 An Overview of Pipelining 262
4.6 Pipelined Datapath and Control 276
4.7 Data Hazards: Forwarding versus

Stalling 294
4.8 Control Hazards 307
4.9 Exceptions 315
4.10 Parallelism via Instructions 321

4
In a major matter, no
details are small.

French Proverb

Computer Organization and Design. DOI:
© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00004-X
2018

4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 334
4.12 Going Faster: Instruction-Level Parallelism and Matrix

Multiply 342
4.13 Advanced Topic: An Introduction to Digital Design Using a

Hardware Design Language to Describe and Model a Pipeline

and More Pipelining Illustrations 345
4.14 Fallacies and Pitfalls 345
4.15 Concluding Remarks 346
4.16 Historical Perspective and Further Reading 347
4.17 Exercises 347

The Five Classic Components of a Computer

236 Chapter 4 The Processor

 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).
Chapter 2 explains that the compiler and the instruction set architecture determine
the instruction count required for a given program. However, the implementation
of the processor determines both the clock cycle time and the number of clock
cycles per instruction. In this chapter, we construct the datapath and control unit
for two different implementations of the RISC-V instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section. It is followed by a section that builds up a datapath and constructs a
simple version of a processor sufficient to implement an instruction set like RISC-V.
The bulk of the chapter covers a more realistic pipelined RISC-V implementation,
followed by a section that develops the concepts necessary to implement more
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section and Section
4.5 present the basic concepts of pipelining. Current trends are covered in Section
4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A53
architectures. Section 4.12 shows how to use instruction-level parallelism to more
than double the performance of the matrix multiply from Section 3.9. These sections
provide enough background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance in
more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learning how
to build a processor should also cover Sections 4.2, 4.7–4.9. For readers with an interest
in modern hardware design, Section 4.13 describes how hardware design languages
and CAD tools are used to implement hardware, and then how to use a hardware design
language to describe a pipelined implementation. It also gives several more illustrations
of how pipelining hardware executes.

A Basic RISC-V Implementation
We will be examining an implementation that includes a subset of the core RISC-V
instruction set:

■	 The memory-reference instructions load doubleword (ld) and store
doubleword (sd)

■	 The arithmetic-logical instructions add, sub, and, and or

■	 The conditional branch instruction branch if equal (beq)

This subset does not include all the integer instructions (for example, shift,
multiply, and divide are missing), nor does it include any floating-point instructions.

 4.1 Introduction 237

However, it illustrates the key principles used in creating a datapath and designing
the control. The implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and how
the choice of various implementation strategies affects the clock rate and CPI for the
computer. Many of the key design principles introduced in Chapter 1 can be illustrated
by looking at the implementation, such as Simplicity favors regularity. In addition, most
concepts used to implement the RISC-V subset in this chapter are the same basic ideas
that are used to construct a broad spectrum of computers, from high-performance
servers to general-purpose microprocessors to embedded processors.

An Overview of the Implementation

In Chapter 2, we looked at the core RISC-V instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the ld instruction, we need to read only one register, but most
other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
RISC-V instruction set simplify the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes use the arithmetic-logical unit (ALU) after
reading the registers. The memory-reference instructions use the ALU for an address
calculation, the arithmetic-logical instructions for the operation execution, and
conditional branches for the equality test. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction will
need to access the memory either to read data for a load or write data for a store.
An arithmetic-logical or load instruction must write the data from the ALU or
memory back into a register. Lastly, for a conditional branch instruction, we may
need to change the next instruction address based on the comparison; otherwise, the
PC should be incremented by four to get the address of the subsequent instruction.

Figure 4.1 shows the high-level view of a RISC-V implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.

First, in several places, Figure 4.1 shows data going to a particular unit as coming
from two different sources. For example, the value written into the PC can come

238 Chapter 4 The Processor

from one of two adders, the data written into the register file can come from either
the ALU or the data memory, and the second input to the ALU can come from
a register or the immediate field of the instruction. In practice, these data lines
cannot simply be wired together; we must add a logic element that chooses from
among the multiple sources and steers one of those sources to its destination. This
selection is commonly done with a device called a multiplexor, although this device
might better be called a data selector. Appendix A describes the multiplexor, which
selects from among several inputs based on the setting of its control lines. The
control lines are set based primarily on information taken from the instruction
being executed.

The second omission in Figure 4.1 is that several of the units must be controlled
depending on the type of instruction. For example, the data memory must read
on a load and write on a store. The register file must be written only on a load or

FIGURE 4.1 An abstract view of the implementation of the RISC-V subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or an equality check
(for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written
to a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the adder (where the PC and branch offset are summed) or from an adder
that increments the current PC by four. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.

Data

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

Register #

Register #

Register #

 4.1 Introduction 239

an arithmetic-logical instruction. And, of course, the ALU must perform one of
several operations. (Appendix A describes the detailed design of the ALU.) Like
the multiplexors, control lines that are set based on various fields in the instruction
direct these operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors
added, as well as control lines for the major functional units. A control unit, which
has the instruction as an input, is used to determine how to set the control lines
for the functional units and two of the multiplexors. The top multiplexor, which

FIGURE 4.2 The basic implementation of the RISC-V subset, including the necessary multiplexors and control lines. The
top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate
that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle multiplexor, whose
output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data
memory (in the case of a load) for writing into the register file. Finally, the bottom-most multiplexor is used to determine whether the second ALU
input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction (for a load or store). The
added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.

Data

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

MemWrite

MemRead

M
u
x

M
u
x

M
u
x

Control

RegWrite

Zero

Branch

ALU operation

Register #

Register #

Register #

240 Chapter 4 The Processor

determines whether PC + 4 or the branch destination address is written into the
PC, is set based on the Zero output of the ALU, which is used to perform the
comparison of a beq instruction. The regularity and simplicity of the RISC-V
instruction set mean that a simple decoding process can be used to determine how
to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, enhance a control unit to control what actions
are taken for different instruction classes. Sections 4.3 and 4.4 describe a simple
implementation that uses a single long clock cycle for every instruction and follows
the general form of Figures 4.1 and 4.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle
must be severely stretched to accommodate the longest instruction. After designing
the control for this simple computer, we will look at pipelined implementation with
all its complexities, including exceptions.

How many of the five classic components of a computer—shown on page 235—do
Figures 4.1 and 4.2 include?

Check
Yourself

 4.2 Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic
implementing the computer will operate and how the computer is clocked. This
section reviews a few key ideas in digital logic that we will use extensively in this
chapter. If you have little or no background in digital logic, you will find it helpful
to read Appendix A before continuing.

The datapath elements in the RISC-V implementation consist of two different
types of logic elements: elements that operate on data values and elements that
contain state. The elements that operate on data values are all combinational, which
means that their outputs depend only on the current inputs. Given the same input, a
combinational element always produces the same output. The ALU shown in Figure
4.1 and discussed in Appendix A is an example of a combinational element. Given a
set of inputs, it always produces the same output because it has no internal storage.

Other elements in the design are not combinational, but instead contain state. An
element contains state if it has some internal storage. We call these elements state
elements because, if we pulled the power plug on the computer, we could restart it
accurately by loading the state elements with the values they contained before we
pulled the plug. Furthermore, if we saved and restored the state elements, it would
be as if the computer had never lost power. Thus, these state elements completely
characterize the computer. In Figure 4.1, the instruction and data memories, as
well as the registers, are all examples of state elements.

combinational
element An operational
element, such as an AND
gate or an ALU

state element A memory
element, such as a register
or a memory.

 4.2 Logic Design Conventions 241

A state element has at least two inputs and one output. The required inputs are
the data value to be written into the element and the clock, which determines when
the data value is written. The output from a state element provides the value that
was written in an earlier clock cycle. For example, one of the logically simplest
state elements is a D-type flip-flop (see Appendix A), which has exactly these two
inputs (a value and a clock) and one output. In addition to flip-flops, our RISC-V
implementation uses two other types of state elements: memories and registers,
both of which appear in Figure 4.1. The clock is used to determine when the state
element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. Appendix A discusses the operation of both the combinational and
sequential elements and their construction in more detail.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes, because if a signal
is written at the same time that it is read, the value of the read could correspond
to the old value, the newly written value, or even some mix of the two! Computer
designs cannot tolerate such unpredictability. A clocking methodology is designed
to make hardware predictable.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge, which is a quick transition from
low to high or vice versa (see Figure 4.3). Because only state elements can store a
data value, any collection of combinational logic must have its inputs come from a
set of state elements and its outputs written into a set of state elements. The inputs
are values that were written in a previous clock cycle, while the outputs are values
that can be used in a following clock cycle.

clocking
methodology The
approach used to
determine when data are
valid and stable relative to
the clock.

edge-triggered
clocking A clocking
scheme in which all state
changes occur on a clock
edge.

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which
they will not change until after the clock edge) before the active clock edge causes the state to be updated. All
state elements in this chapter, including memory, are assumed positive edge-triggered; that is, they change
on the rising clock edge.

State
element

1

State
element

2
Combinational logic

Clock cycle

242 Chapter 4 The Processor

Figure 4.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: all signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only when
the write control signal is asserted and a clock edge occurs.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deasserted
to represent logically low. We use the terms assert and deassert because when
we implement hardware, at times 1 represents logically high and at times it can
represent logically low.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we
assume that all writes take place on the rising clock edge (from low to high) or on
the falling clock edge (from high to low), since the inputs to the combinational
logic block cannot change except on the chosen clock edge. In this book, we use
the rising clock edge. With an edge-triggered timing methodology, there is no
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly.
In Appendix A, we briefly discuss additional timing constraints (such as setup and
hold times) as well as other timing methodologies.

For the 64-bit RISC-V architecture, nearly all of these state and logic elements
will have inputs and outputs that are 64 bits wide, since that is the width of most
of the data handled by the processor. We will make it clear whenever a unit has an
input or output that is other than 64 bits in width. The figures will indicate buses,
which are signals wider than 1 bit, with thicker lines. At times, we will want to
combine several buses to form a wider bus; for example, we may want to obtain
a 64-bit bus by combining two 32-bit buses. In such cases, labels on the bus lines

control signal A signal
used for multiplexor
selection or for directing
the operation of a
functional unit; contrasts
with a data signal, which
contains information
that is operated on by a
functional unit.

asserted The signal is
logically high or true.

deasserted The signal is
logically low or false.

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to indeterminate
data values. Of course, the clock cycle still must be long enough so that the input values are stable when
the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered
update of the state element. If feedback were possible, this design could not work properly. Our designs
in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one
shown in this figure.

State
element

Combinational logic

 4.3 Building a Datapath 243

will make it clear that we are concatenating buses to form a wider bus. Arrows
are also added to help clarify the direction of the flow of data between elements.
Finally, color indicates a control signal contrary to a signal that carries data; this
distinction will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock
cycle, any RISC-V datapath using edge-triggered writes must have more than one
copy of the register file.

Check
Yourself

Elaboration: There is also a 32-bit version of the RISC-V architecture, and, naturally
enough, most paths in its implementation would be 32 bits wide.

 4.3 Building a Datapath

A reasonable way to start a datapath design is to examine the major components
required to execute each class of RISC-V instructions. Let’s start at the top by
looking at which datapath elements each instruction needs, and then work our
way down through the levels of abstraction. When we show the datapath elements,
we will also show their control signals. We use abstraction in this explanation,
starting from the bottom up.

Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure 4.5b
also shows the program counter (PC), which as we saw in Chapter 2 is a register
that holds the address of the current instruction. Lastly, we will need an adder
to increment the PC to the address of the next instruction. This adder, which is
combinational, can be built from the ALU described in detail in Appendix A simply
by wiring the control lines so that the control always specifies an add operation. We
will draw such an ALU with the label Add, as in Figure 4.5c, to indicate that it has
been permanently made an adder and cannot perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment the
program counter so that it points at the next instruction, 4 bytes later. Figure 4.6
shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.19 on page 120).
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result to a register. We call these instructions either R-type
instructions or arithmetic-logical instructions (since they perform arithmetic or
logical operations). This instruction class includes add, sub, and, and or, which

datapath element A
unit used to operate on
or hold data within a
processor. In the RISC-V
implementation, the
datapath elements include
the instruction and data
memories, the register
file, the ALU, and adders.

program counter
(PC) The register
containing the address
of the instruction in the
program being executed.

244 Chapter 4 The Processor

were introduced in Chapter 2. Recall that a typical instance of such an instruction
is add x1, x2, x3, which reads x2 and x3 and writes the sum into x1.

The processor’s 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be
read or written by specifying the number of the register in the file. The register file
contains the register state of the computer. In addition, we will need an ALU to
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read two
data words from the register file and write one data word into the register file for
each instruction. For each data word to be read from the registers, we need an input
to the register file that specifies the register number to be read and an output from
the register file that will carry the value that has been read from the registers. To
write a data word, we will need two inputs: one to specify the register number to be
written and one to supply the data to be written into the register. The register file
always outputs the contents of whatever register numbers are on the Read register
inputs. Writes, however, are controlled by the write control signal, which must be
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we need
a total of three inputs (two for register numbers and one for data) and two outputs
(both for data). The register number inputs are 5 bits wide to specify one of 32
registers (32 = 25), whereas the data input and two data output buses are each 64
bits wide.

Figure 4.7b shows the ALU, which takes two 64-bit inputs and produces a 64-bit
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU
is described in detail in Appendix A; we will review the ALU control shortly when
we need to know how to set it.

register file A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 64-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 64-bit inputs and place the sum on its output.

Instruction
address

Instruction

Instruction
memory

a. Instruction memory

PC

b. Program counter

Add Sum

c. Adder

 4.3 Building a Datapath 245

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one
write port. The design of multiported register files is discussed in Section A.8 of Appendix A. The register
file always outputs the contents of the registers corresponding to the Read register inputs on the outputs;
no other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available to
a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits
wide, whereas the lines carrying data values are 64 bits wide. The operation to be performed by the ALU is
controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in Appendix A.
We will use the Zero detection output of the ALU shortly to implement conditional branches.

PC Read
address

Instruction

Instruction
memory

Add

4

Read
register 1

Registers ALUData

Data

Zero

ALU
result

RegWrite

a. Registers b. ALU

5

5

5

Register
numbers

Read
data 1

Read
data 2

ALU operation
4

Read
register 2

Write
register

Write
Data

246 Chapter 4 The Processor

Next, consider the RISC-V load register and store register instructions, which
have the general form ld x1, offset(x2) or sd x1, offset(x2). These
instructions compute a memory address by adding the base register, which is x2,
to the 12-bit signed offset field contained in the instruction. If the instruction is a
store, the value to be stored must also be read from the register file where it resides
in x1. If the instruction is a load, the value read from memory must be written into
the register file in the specified register, which is x1. Thus, we will need both the
register file and the ALU from Figure 4.7.

In addition, we will need a unit to sign-extend the 12-bit offset field in the
instruction to a 64-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, data memory
has read and write control signals, an address input, and an input for the data to be
written into memory. Figure 4.8 shows these two elements.

The beq instruction has three operands, two registers that are compared for
equality, and a 12-bit offset used to compute the branch target address relative to
the branch instruction address. Its form is beq x1, x2, offset. To implement
this instruction, we must compute the branch target address by adding the sign-
extended offset field of the instruction to the PC. There are two details in the
definition of branch instructions (see Chapter 2) to which we must pay attention:

■	 The instruction set architecture specifies that the base for the branch address
calculation is the address of the branch instruction.

■	 The architecture also states that the offset field is shifted left 1 bit so that it is
a half word offset; this shift increases the effective range of the offset field by
a factor of 2.

To deal with the latter complication, we will need to shift the offset field by 1.
As well as computing the branch target address, we must also determine whether

the next instruction is the instruction that follows sequentially or the instruction at the
branch target address. When the condition is true (i.e., two operands are equal), the
branch target address becomes the new PC, and we say that the branch is taken. If
the operand is not zero, the incremented PC should replace the current PC (just as for
any other normal instruction); in this case, we say that the branch is not taken.

Thus, the branch datapath must do two operations: compute the branch target
address and test the register contents. (Branches also affect the instruction fetch
portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the structure
of the datapath segment that handles branches. To compute the branch target
address, the branch datapath includes an immediate generation unit, from Figure
4.8 and an adder. To perform the compare, we need to use the register file shown
in Figure 4.7a to supply two register operands (although we will not need to write
into the register file). In addition, the equality comparison can be done using the
ALU we designed in Appendix A. Since that ALU provides an output signal that
indicates whether the result was 0, we can send both register operands to the ALU

sign-extend To increase
the size of a data item by
replicating the high-order
sign bit of the original
data item in the high-
order bits of the larger,
destination data item.

branch target
address The address
specified in a branch,
which becomes the new
program counter (PC) if
the branch is taken. In the
RISC-V architecture, the
branch target is given by
the sum of the offset field
of the instruction and the
address of the branch.

branch taken
A branch where the
branch condition is
satisfied and the program
counter (PC) becomes
the branch target. All
unconditional branches
are taken branches.

branch not taken or
(untaken branch)
A branch where the
branch condition is false
and the program counter
(PC) becomes the address
of the instruction that
sequentially follows the
branch.

 4.3 Building a Datapath 247

with the control set to subtract two values. If the Zero signal out of the ALU unit
is asserted, we know that the register values are equal. Although the Zero output
always signals if the result is 0, we will be using it only to implement the equality
test of conditional branches. Later, we will show exactly how to connect the control
signals of the ALU for use in the datapath.

The branch instruction operates by adding the PC with the 12 bits of the
instruction shifted left by 1 bit. Simply concatenating 0 to the branch offset
accomplishes this shift, as described in Chapter 2.

Creating a Single Datapath
Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the control
to complete the implementation. This simplest datapath will attempt to execute all
instructions in one clock cycle. This design means that no datapath resource can be
used more than once per instruction, so any element needed more than once must
be duplicated. We therefore need a memory for instructions separate from one for
data. Although some of the functional units will need to be duplicated, many of the
elements can be shared by different instruction flows.

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the immediate generation
unit. The memory unit is a state element with inputs for the address and the write data, and a single output
for the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 5. The immediate generation unit (ImmGen) has
a 32-bit instruction as input that selects a 12-bit field for load, store, and branch if equal that is sign-extended
into a 64-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-triggered for
writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write
enable is not edge-triggered, our edge-triggered design could easily be adapted to work with real memory
chips. See Section A.8 of Appendix A for further discussion of how real memory chips work.

Address Read
data

Data
memory

a. Data memory unit

Write
data

MemRead

MemWrite

b. Immediate generation unit

Imm
Gen

32 64

248 Chapter 4 The Processor

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multiplexor
and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

■	 The arithmetic-logical instructions use the ALU, with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-
extended 12-bit offset field from the instruction.

EXAMPLE

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition
and a separate adder to compute the branch target as the sum of the PC and the sign-
extended 12 bits of the instruction (the branch displacement), shifted left 1 bit. The unit
labeled Shift left 1 is simply a routing of the signals between input and output that adds 0two to the low-order
end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the “shift” is
constant. Since we know that the offset was sign-extended from 12 bits, the shift will throw away only “sign
bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC,
based on the Zero output of the ALU.

Read
register 1

Registers ALU Zero

RegWrite

Read
data 1

Read
data 2

ALU operation4

To branch
control logic

Add Sum Branch
target

PC from instruction datapath

Imm
Gen

32 64

Instruction

Shift
left 1

Read
register 2

Write
register

Write
data

 4.3 Building a Datapath 249

■	 The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register file
and a single ALU to handle both types of instructions, adding any necessary
multiplexors.

To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two different
sources for the data stored into the register file. Thus, one multiplexor is placed
at the ALU input and another at the data input to the register file. Figure 4.10
shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the core
RISC-V architecture by adding the datapath for instruction fetch (Figure 4.6), the
datapath from R-type and memory instructions (Figure 4.10), and the datapath for
branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the
separate pieces. The branch instruction uses the main ALU to compare two register
operands for equality, so we must keep the adder from Figure 4.9 for computing
the branch target address. An additional multiplexor is required to select either the
sequentially following instruction address (PC + 4) or the branch target address to
be written into the PC.

ANSWER

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows
how a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors
are needed, as described in the example.

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU
Zero

RegWrite

MemRead

MemWrite

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Imm
Gen

32 64

Instruction
ALU

resultM
u
x

0

1

M
u
x

1

0

ALUSrc
Address

Data
memory

Read
data

250 Chapter 4 The Processor

I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be sent to the
register file.

b. MemtoReg should be set to cause the correct register destination to be
sent to the register file.

c. We do not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have
separate instruction and data memories, because

a. the formats of data and instructions are different in RISC-V, and hence
different memories are needed;

b. having separate memories is less expensive;
c. the processor operates in one cycle and cannot use a (single-ported)

memory for two different accesses within that cycle.

Check
Yourself

FIGURE 4.11 The simple datapath for the core RISC-V architecture combines the elements
required by different instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This
datapath can execute the basic instructions (load-store register, ALU operations, and branches) in a single
clock cycle. Just one additional multiplexor is needed to integrate branches.

Read
register 1

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Imm
Gen

32 64

Instruction ALU
result

Add

Sum

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

Read
register 2

Write
register

Write
data

 4.4 A Simple Implementation Scheme 251

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The
ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

Elaboration: The immediate generation logic must choose between sign-extending
a 12-bit field in instruction bits 31:20 for load instructions, bits 31:25 and 11:7 for
store instructions, or bits 31, 7, 30:25, and 11:8 for the conditional branch. Since
the input is all 32 bits of the instruction, it can use the opcode bits of the instruction
to select the proper field. RISC-V opcode bit 6 happens to be 0 for data transfer
instructions and 1 for conditional branches, and RISC-V opcode bit 5 happens to be 0
for load instructions and 1 for store instructions. Thus, bits 5 and 6 can control a 3:1
multiplexor inside the immediate generation logic that selects the appropriate 12-bit
field for load, store, and conditional branch instructions.

 4.4 A Simple Implementation Scheme

In this section, we look at what might be thought of as a simple implementation
of our RISC-V subset. We build this simple implementation using the datapath of
the last section and adding a simple control function. This simple implementation
covers load doubleword (ld), store doubleword (sd), branch if equal (beq), and the
arithmetic-logical instructions add, sub, and, and or.

The ALU Control
The RISC-V ALU in Appendix A defines the four following combinations of four
control inputs:

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

Depending on the instruction class, the ALU will need to perform one of
these four functions. For load and store instructions, we use the ALU to compute
the memory address by addition. For the R-type instructions, the ALU needs to
perform one of the four actions (AND, OR, add, or subtract), depending on
the value of the 7-bit funct7 field (bits 31:25) and 3-bit funct3 field (bits 14:12) in
the instruction (see Chapter 2). For the conditional branch if equal instruction, the
ALU subtracts two operands and tests to see if the result is 0.

252 Chapter 4 The Processor

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the funct7 and funct3 fields of the instruction and a 2-bit control field,
which we call ALUOp. ALUOp indicates whether the operation to be performed
should be add (00) for loads and stores, subtract and test if zero (01) for beq, or
be determined by the operation encoded in the funct7 and funct3 fields (10). The
output of the ALU control unit is a 4-bit signal that directly controls the ALU by
generating one of the 4-bit combinations shown previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control, funct7, and funct3 fields. Later in this chapter, we will see how the
ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementation
technique. Using multiple levels of control can reduce the size of the main control
unit. Using several smaller control units may also potentially reduce the latency of
the control unit. Such optimizations are important, since the latency of the control
unit is often a critical factor in determining the clock cycle time.

There are several different ways to implement the mapping from the 2-bit ALUOp
field and the funct fields to the four ALU operation control bits. Because only a small
number of the possible funct field values are of interest and funct fields are used only
when the ALUOp bits equal 10, we can use a small piece of logic that recognizes the
subset of possible values and generates the appropriate ALU control signals.

truth table From logic, a
representation of a logical
operation by listing all the
values of the inputs and
then in each case showing
what the resulting outputs
should be.

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and the
different opcodes for the R-type instruction. The instruction, listed in the first column, determines
the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the ALUOp code is
00 or 01, the desired ALU action does not depend on the funct7 or funct3 fields; in this case, we say that we
“don’t care” about the value of the opcode, and the bits are shown as Xs. When the ALUOp value is 10, then
the funct7 and funct3 fields are used to set the ALU control input. See Appendix A.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

Instruction
opcode ALUOp Operation

Funct7
fi eld

Funct3
fi eld

Desired
ALU action

ALU control
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110

R-type 10 add 0000000 000 add 0010

R-type 10 sub 0100000 000 subtract 0110

R-type 10 and 0000000 111 AND 0000

R-type 10 or 0000000 110 OR 0001

 4.4 A Simple Implementation Scheme 253

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the funct7 and funct3 fields of the instruction and a 2-bit control field,
which we call ALUOp. ALUOp indicates whether the operation to be performed
should be add (00) for loads and stores, subtract and test if zero (01) for beq, or
be determined by the operation encoded in the funct7 and funct3 fields (10). The
output of the ALU control unit is a 4-bit signal that directly controls the ALU by
generating one of the 4-bit combinations shown previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control, funct7, and funct3 fields. Later in this chapter, we will see how the
ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementation
technique. Using multiple levels of control can reduce the size of the main control
unit. Using several smaller control units may also potentially reduce the latency of
the control unit. Such optimizations are important, since the latency of the control
unit is often a critical factor in determining the clock cycle time.

There are several different ways to implement the mapping from the 2-bit ALUOp
field and the funct fields to the four ALU operation control bits. Because only a small
number of the possible funct field values are of interest and funct fields are used only
when the ALUOp bits equal 10, we can use a small piece of logic that recognizes the
subset of possible values and generates the appropriate ALU control signals.

truth table From logic, a
representation of a logical
operation by listing all the
values of the inputs and
then in each case showing
what the resulting outputs
should be.

As a step in designing this logic, it is useful to create a truth table for the interesting
combinations of funct fields and the ALUOp signals, as we’ve done in Figure 4.13; this
truth table shows how the 4-bit ALU control is set depending on these input fields.
Since the full truth table is very large, and we don’t care about the value of the ALU
control for many of these input combinations, we show only the truth table entries
for which the ALU control must have a specific value. Throughout this chapter, we
will use this practice of showing only the truth table entries for outputs that must be
asserted and not showing those that are all deasserted or don’t care. (This practice
has a disadvantage, which we discuss in Section C.2 of Appendix C.)

Because in many instances we do not care about the values of some of the inputs,
and because we wish to keep the tables compact, we also include don’t-care terms.
A don’t-care term in this truth table (represented by an X in an input column)
indicates that the output does not depend on the value of the input corresponding
to that column. For example, when the ALUOp bits are 00, as in the first row of
Figure 4.13, we always set the ALU control to 0010, independent of the funct fields.
In this case, then, the funct inputs will be don’t cares in this line of the truth table.
Later, we will see examples of another type of don’t-care term. If you are unfamiliar
with the concept of don’t-care terms, see Appendix A for more information.

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section C.2 of Appendix C.

Designing the Main Control Unit
Now that we have described how to design an ALU that uses the opcode and a
2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let’s identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review

don’t-care term An
element of a logical
function in which the
output does not depend
on the values of all the
inputs. Don’t-care terms
may be specified in
different ways.

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and funct fields. Only the
entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does not use the
encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. While we show all 10 bits of funct fields, note that the only
bits with different values for the four R-format instructions are bits 30, 14, 13, and 12. Thus, we only need these four funct field bits as input for
ALU control instead of all 10.

ALUOp Funct7 fi eld Funct3 fi eld

OperationALUOp1 ALUOp0 I[31] I[30] I[29] I[28] I[27] I[26] I[25] I[14] I[13] I[12]

0 0 X X X X X X X X X X 0010

X 1 X X X X X X X X X X 0110

1 X 0 0 0 0 0 0 0 0 0 0 0010

1 X 0 1 0 0 0 0 0 0 0 0 0110

1 X 0 0 0 0 0 0 0 1 1 1 0000

1 X 0 0 0 0 0 0 0 1 1 0 0001

254 Chapter 4 The Processor

the formats of the four instruction classes: arithmetic, load, store, and conditional
branch instructions. Figure 4.14 shows these formats.

There are several major observations about this instruction format that we will
rely on:

■	 The opcode field, which as we saw in Chapter 2, is always in bits 6:0.
Depending on the opcode, the funct3 field (bits 14:12) and funct7 field (bits
31:25) serve as an extended opcode field.

■	 The first register operand is always in bit positions 19:15 (rs1) for R-type
instructions and branch instructions. This field also specifies the base register
for load and store instructions.

■	 The second register operand is always in bit positions 24:20 (rs2) for R-type
instructions and branch instructions. This field also specifies the register
operand that gets copied to memory for store instructions.

■	 Another operand can also be a 12-bit offset for branch or load-store
instructions.

■	 The destination register is always in bit positions 11:7 (rd) for R-type
instructions and load instructions.

The first design principle from Chapter 2—simplicity favors regularity—pays off
here in specifying control.

opcode The field that
denotes the operation and
format of an instruction.

FIGURE 4.14 The four instruction classes (arithmetic, load, store, and conditional branch) use four different
instruction formats. (a) Instruction format for R-type arithmetic instructions (opcode = 51ten), which have three register operands: rs1, rs2,
and rd. Fields rs1 and rd are sources, and rd is the destination. The ALU function is in the funct3 and funct7 fields and is decoded by the ALU
control design in the previous section. The R-type instructions that we implement are add, sub, and, and or. (b) Instruction format for I-type
load instructions (opcode = 3ten). The register rs1 is the base register that is added to the 12-bit immediate field to form the memory address.
Field rd is the destination register for the loaded value. (c) Instruction format for S-type store instructions (opcode = 35ten). The register rs1 is
the base register that is added to the 12-bit immediate field to form the memory address. (The immediate field is split into a 7-bit piece and a
5-bit piece.) Field rs2 is the source register whose value should be stored into memory. (d) Instruction format for SB-type conditional branch
instructions (opcode = 99ten). The registers rs1 and rs2 compared. The 12-bit immediate address field is sign-extended, shifted left 1 bit, and
added to the PC to compute the branch target address.

Name
(Bit position) 31:25 24:20 19:15 14:12 11:7 6:0

(a) R-type funct7 rs2 rs1 funct3 rd opcode

(b) I-type rs1 funct3 rd opcode

(c) S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode

(d) SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode

immediate[11:0]

Fields

 4.4 A Simple Implementation Scheme 255

Using this information, we can add the instruction labels to the simple datapath.
Figure 4.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line.

Figure 4.15 shows six single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the six other control signals do informally before we determine
how to set these control signals during instruction execution. Figure 4.16 describes
the function of these six control lines.

Now that we have looked at the function of each of the control signals, we
can look at how to set them. The control unit can set all but one of the control
signals based solely on the opcode and funct fields of the instruction. The PCSrc
control line is the exception. That control line should be asserted if the instruction
is branch if equal (a decision that the control unit can make) and the Zero
output of the ALU, which is used for the equality test, is asserted. To generate the
PCSrc signal, we will need to AND together a signal from the control unit, which
we call Branch, with the Zero signal out of the ALU.

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control
lines identified. The control lines are shown in color. The ALU control block has also been added, which
depends on the funct3 field and part of the funct7 field. The PC does not require a write control, since it is
written once at the end of every clock cycle; the branch control logic determines whether it is written with
the incremented PC or the branch target address.

Read
register 1

Write
data

Registers

ALU

Add

Zero

MemRead

MemWrite

RegWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

Imm
Gen

32 64

Instruction
[31-0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

ALUOp
Instruction [30,14-12]

Instruction [19-15]

Instruction [11-7]

Instruction [24-20]

Instruction [31-0]

Read
register 2

Write
register

Write
data

256 Chapter 4 The Processor

These eight control signals (six from Figure 4.16 and two for ALUOp) can now
be set based on the input signals to the control unit, which are the opcode bits 6:0.
Figure 4.17 shows the datapath with the control unit and the control signals.

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath
With the information contained in Figures 4.16 and 4.18, we can design the control
unit logic, but before we do that, let’s look at how each instruction uses the datapath.
In the next few figures, we show the flow of three different instruction classes
through the datapath. The asserted control signals and active datapath elements
are highlighted in each of these. Note that a multiplexor whose control is 0 has
a definite action, even if its control line is not highlighted. Multiple-bit control
signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such
as add x1, x2, x3. Although everything occurs in one clock cycle, we can think

FIGURE 4.16 The effect of each of the six control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element
can create timing problems. (See Appendix A for further discussion of this problem.)

Signal name Effect when deasserted Effect when asserted

situpniretsigeretirWehtnoretsigerehT.enoNetirWgeR
written with the value on the Write data input.

ALUSrc The second ALU operand comes
 le output

(Read data 2).

The second ALU operand is the sign-extended,
12 bits of the instruction.

PCSrc The PC is replaced by the output of
the adder that computes the value
of PC + 4.

The PC is replaced by the output of the adder
that computes the branch target.

ehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
address input are put on the Read data
output.

ehtybdetangisedstnetnocyromemataD.enoNetirWmeM
address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write
data input comes from the ALU.

The value fed to the register Write data input
comes from the data memory.

 4.4 A Simple Implementation Scheme 257

of four steps to execute the instruction; these steps are ordered by the flow of
information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, x2 and x3, are read from the register file; also, the main
control unit computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using portions of
the opcode to generate the ALU function.

4. The result from the ALU is written into the destination register (x1) in the
register file.

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 7-bit opcode field from the instruction.
The outputs of the control unit consist of two 1-bit signals that are used to control multiplexors (ALUSrc and MemtoReg), three signals for
controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining
whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control
signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal,
rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Instruction
[31-0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

Instruction [6-0]

Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Imm
Gen

32 64

Instruction [19-15]

Instruction [11-7]

Instruction [24-20]

Instruction [31-0]

Instruction [30,14-12]

258 Chapter 4 The Processor

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add x1, x2, x3. The control lines, datapath
units, and connections that are active are highlighted.

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first
row of the table corresponds to the R-format instructions (add, sub, and, and or). For all these instructions, the source register fields are rs1
and rs2, and the destination register field is rd; this defines how the signals ALUSrc is set. Furthermore, an R-type instruction writes a register
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC +
4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set
to 10 to indicate that the ALU control should be generated from the funct fields. The second and third rows of this table give the control signal
settings for ld and sd. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to
perform the memory access. Finally, RegWrite is set for a load to cause the result to be stored in the rd register. The ALUOp field for branch is
set for subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is
0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last
two rows of the table is replaced with X for don’t care. This type of don’t care must be added by the designer, since it depends on knowledge of
how the datapath works.

Instruction ALUSrc
Memto-

Reg
Reg-
Write

Mem-
Read

Mem -
Write Branch ALUOp1 ALUOp0

R-format 0 0 1 0 0 0 1 0

ld 1 1 1 1 0 0 0 0

sd 1 X 0 0 1 0 0 0

beq 0 X 0 0 0 1 0 1

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Instruction
[31–0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

Instruction [6–0]

Instruction [31–0]

Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Imm
Gen

32 64

Instruction [19–15]

Instruction [11–7]

Instruction [24–20]

Instruction [30,14–12]

 4.4 A Simple Implementation Scheme 259

Similarly, we can illustrate the execution of a load register, such as

ld x1, offset(x2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and
asserted control lines for a load. We can think of a load instruction as operating in
five steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. A register (x2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the
sign-extended 12 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file (x1).

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active
are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to
the register file would not occur.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Instruction
[31–0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

Instruction [6–0]

Instruction [31–0]

Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Imm
Gen

32 64

Instruction [19–15]

Instruction [11–7]

Instruction [24–20]

Instruction [30,14-12]

260 Chapter 4 The Processor

Finally, we can show the operation of the branch-if-equal instruction, such as
beq x1, x2, offset, in the same fashion. It operates much like an R-format
instruction, but the ALU output is used to determine whether the PC is written with
PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. Two registers, x1 and x2, are read from the register file.

3. The ALU subtracts one data value from the other data value, both read from
the register file. The value of PC is added to the sign-extended, 12 bits of
the instruction (offset) left shifted by one; the result is the branch target
address.

4. The Zero status information from the ALU is used to decide which adder
result to store in the PC.

FIGURE 4.21 The datapath in operation for a branch-if-equal instruction. The control lines, datapath units, and connections
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program
counter from between the two candidates.

Read
register 1

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Instruction
[31–0] ALU

result

Add

Sum

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 1

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

ALU
control

Instruction [6–0]

Instruction [31–0]

Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

Read
register 2

Write
register

Write
data

Imm
Gen

32 64

Instruction [19–15]

Instruction [11–7]

Instruction [24–20]

Instruction [30,14-12]

 4.4 A Simple Implementation Scheme 261

Finalizing Control
Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 4.18. The outputs are the control lines, and the inputs are the
opcode bits. Thus, we can create a truth table for each of the outputs based on the
binary encoding of the opcodes.

Figure 4.22 defines the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section C.2 in Appendix C.

Why a Single-Cycle Implementation is not Used Today
Although the single-cycle design will work correctly, it is too inefficient to be used
in modern designs. To see why this is so, notice that the clock cycle must have the
same length for every instruction in this single-cycle design. Of course, the longest
possible path in the processor determines the clock cycle. This path is most likely a
load instruction, which uses five functional units in series: the instruction memory,

FIGURE 4.22 The control function for the simple single-cycle implementation is
completely specified by this truth table. The top half of the table gives the combinations of input
signals that correspond to the four instruction classes, one per column, that determine the control output
settings. The bottom portion of the table gives the outputs for each of the four opcodes. Thus, the output
RegWrite is asserted for two different combinations of the inputs. If we consider only the four opcodes shown
in this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we
can detect an R-format instruction with the expression Op4 ∙ Op5, since this is sufficient to distinguish the
R-format instructions from ld, sd, and beq. We do not take advantage of this simplification, since the rest
of the RISC-V opcodes are used in a full implementation.

Input or
output Signal name R-format ld sd beq

1000]6[IstupnI

I[5] 1 0 1 1

I[4] 1 0 0 0

I[3] 0 0 0 0

I[2] 0 0 0 0

I[1] 1 1 1 1

I[0] 1 1 1 1

Outputs ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

262 Chapter 4 The Processor

Check
Yourself

Never waste time.
American proverb

the register file, the ALU, the data memory, and the register file. Although the CPI
is 1 (see Chapter 1), the overall performance of a single-cycle implementation is
likely to be poor, since the clock cycle is too long.

The penalty for using the single-cycle design with a fixed clock cycle is significant,
but might be considered acceptable for this small instruction set. Historically, early
computers with very simple instruction sets did use this implementation technique.
However, if we tried to implement the floating-point unit or an instruction set with
more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay
for all instructions, it’s useless to try implementation techniques that reduce the
delay of the common case but do not improve the worst-case cycle time. A single-
cycle implementation thus violates the great idea from Chapter 1 of making the
common case fast.

In next section, we’ll look at another implementation technique, called
pipelining, that uses a datapath very similar to the single-cycle datapath but is
much more efficient by having a much higher throughput. Pipelining improves
efficiency by executing multiple instructions simultaneously.

 4.5 An Overview of Pipelining

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is nearly universal.

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concentrate
on this section and then skip to Sections 4.10 and 4.11 to see an introduction
to the advanced pipelining techniques used in recent processors such as the
Intel Core i7 and ARM Cortex-A53. If you are curious about exploring the
anatomy of a pipelined computer, this section is a good introduction to Sections 4.6
through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

Look at the control signals in Figure 4.22. Can you combine any together? Can
any control signal output in the figure be replaced by the inverse of another?
(Hint: take into account the don’t cares.) If so, can you use one signal for the other
without adding an inverter?

pipelining An
implementation technique
in which multiple
instructions are overlapped
in execution, much like an
assembly line.

 4.5 An Overview of Pipelining 263

When your roommate is done, start over with the next dirty load.
The pipelined approach takes much less time, as Figure 4.23 shows. As soon as the

washer is finished with the first load and placed in the dryer, you load the washer
with the second dirty load. When the first load is dry, you place it on the table to start
folding, move the wet load to the dryer, and put the next dirty load into the washer.
Next, you have your roommate put the first load away, you start folding the second
load, the dryer has the third load, and you put the fourth load into the washer. At this
point all steps—called stages in pipelining—are operating concurrently. As long as we
have separate resources for each stage, we can pipeline the tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the reason
pipelining is faster for many loads is that everything is working in parallel, so more
loads are finished per hour. Pipelining improves throughput of our laundry system.
Hence, pipelining would not decrease the time to complete one load of laundry,

FIGURE 4.23 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty
clothes to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30
minutes for their task. Sequential laundry takes 8 hours for four loads of washing, while pipelined laundry
takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four
resources on this two-dimensional time line, but we really have just one of each resource.

Time

Task
order

A

B

C

D

���� � � � � � � � � � � ��A�

Time

Task
order

A

B

C

D

���� � � � � � � � � � � ��A�

264 Chapter 4 The Processor

but when we have many loads of laundry to do, the improvement in throughput
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work
to do, then the speed-up due to pipelining is equal to the number of stages in the
pipeline, in this case four: washing, drying, folding, and putting away. Therefore,
pipelined laundry is potentially four times faster than nonpipelined: 20 loads would
take about five times as long as one load, while 20 loads of sequential laundry takes
20 times as long as one load. It’s only 2.3 times faster in Figure 4.23, because we
only show four loads. Notice that at the beginning and end of the workload in the
pipelined version in Figure 4.23, the pipeline is not completely full; this start-up and
wind-down affects performance when the number of tasks is not large compared
to the number of stages in the pipeline. If the number of loads is much larger than
four, then the stages will be full most of the time and the increase in throughput
will be very close to four.

The same principles apply to processors where we pipeline instruction
execution. RISC-V instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers and decode the instruction.

3. Execute the operation or calculate an address.

4. Access an operand in data memory (if necessary).

5. Write the result into a register (if necessary).

Hence, the RISC-V pipeline we explore in this chapter has five stages. The
following example shows that pipelining speeds up instruction execution just as it
speeds up the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to seven instructions: load
doubleword (ld), store doubleword (sd), add (add), subtract (sub), AND
(and), OR (or), and branch if equal (beq).

Contrast the average time between instructions of a single-cycle
implementation, in which all instructions take one clock cycle, to a pipelined
implementation. Assume that the operation times for the major functional
units in this example are 200 ps for memory access for instructions or data,
200 ps for ALU operation, and 100 ps for register file read or write. In the

EXAMPLE

 4.5 An Overview of Pipelining 265

single-cycle model, every instruction takes exactly one clock cycle, so the clock
cycle must be stretched to accommodate the slowest instruction.

Figure 4.24 shows the time required for each of the seven instructions. The
single-cycle design must allow for the slowest instruction—in Figure 4.24 it
is ld—so the time required for every instruction is 800 ps. Similarly to Figure
4.23, Figure 4.25 compares nonpipelined and pipelined execution of three load
register instructions. Thus, the time between the first and fourth instructions
in the nonpipelined design is 3 × 800 ps or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation. Just as the single-cycle
design must take the worst-case clock cycle of 800 ps, even though some
instructions can be as fast as 500 ps, the pipelined execution clock cycle must
have the worst-case clock cycle of 200 ps, even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 × 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Time betweeninstructions
Time betweeninstructions

pipelined
no= nnpipelined

Number of pipestages

Under ideal conditions and with a large number of instructions, the speed-up
from pipelining is approximately equal to the number of pipe stages; a five-stage
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The

FIGURE 4.24 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.

ANSWER

Instruction class
Instruction

fetch
Register

read
ALU

operation
Data

access
Register

write
Total
time

Load doubleword (ld) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store doubleword (sd) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub,
and, or)

200 ps 100 ps 200 ps 100 ps 600 ps

sp005sp002sp001sp002)qeb(hcnarB

266 Chapter 4 The Processor

example shows, however, that the stages may be imperfectly balanced. Moreover,
pipelining involves some overhead, the source of which will be clearer shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

However, even our claim of fourfold improvement for our example is not reflected
in the total execution time for the three instructions: it’s 1400 ps versus 2400 ps. Of
course, this is because the number of instructions is not large. What would happen
if we increased the number of instructions? We could extend the previous figures
to 1,000,003 instructions. We would add 1,000,000 instructions in the pipelined
example; each instruction adds 200 ps to the total execution time. The total execution
time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400 ps. In the nonpipelined
example, we would add 1,000,000 instructions, each taking 800 ps, so total execution
time would be 1,000,000 × 800 ps + 2400 ps, or 800,002,400 ps. Under these

FIGURE 4.25 Single-cycle, nonpipelined execution (top) versus pipelined execution
(bottom). Both use the same hardware components, whose time is listed in Figure 4.24. In this case, we see
a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure
to Figure 4.23. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource,
either the ALU operation or the memory access. We assume the write to the register file occurs in the first
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption
throughout this chapter.

Program
execution
order
(in instructions)

ld x1, 100(x4)

ld x2, 200(x4)

ld x3, 400(x4)

Time
1000 1200 1400200 400 600 800

1000 1200 1400200 400 600 800

1600 1800

Instruction
fetch

Data
access

Reg

Instruction
fetch

Data
access Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

ld x1, 100(x4)

ld x2, 200(x4)

ld x3, 400(x4)

Time

Instruction
fetch

Data
access Reg

Instruction
fetch

Instruction
fetch

Data
access Reg

Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

ALUReg

ALUReg

ALU

ALU

ALU

Reg

Reg

Reg

 4.5 An Overview of Pipelining 267

conditions, the ratio of total execution times for real programs on nonpipelined to
pipelined processors is close to the ratio of times between instructions:

800 002 400
200 001 400

800
200

4 00, ,
, ,

. ps
 ps

 ps
 ps

� �

Pipelining improves performance by increasing instruction throughput, in
contrast to decreasing the execution time of an individual instruction, but instruction
throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining
Even with this simple explanation of pipelining, we can get insight into the design
of the RISC-V instruction set, which was designed for pipelined execution.

First, all RISC-V instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 15 bytes, pipelining is considerably more challenging. Modern implementations
of the x86 architecture actually translate x86 instructions into simple operations
that look like RISC-V instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, RISC-V has just a few instruction formats, with the source and
destination register fields being located in the same place in each instruction.

Third, memory operands only appear in loads or stores in RISC-V. This
restriction means we can use the execute stage to calculate the memory address and
then access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage. We will shortly see the downside of longer pipelines.

Pipeline Hazards
There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different
types.

Structural Hazard

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn’t put clothes away. Our carefully scheduled
pipeline plans would then be foiled.

structural hazard When
a planned instruction
cannot execute in the
proper clock cycle because
the hardware does not
support the combination
of instructions that are set
to execute.

268 Chapter 4 The Processor

As we said above, the RISC-V instruction set was designed to be pipelined,
making it fairly easy for designers to avoid structural hazards when designing a
pipeline. Suppose, however, that we had a single memory instead of two memories.
If the pipeline in Figure 4.25 had a fourth instruction, we would see that in the
same clock cycle, the first instruction is accessing data from memory while the
fourth instruction is fetching an instruction from that same memory. Without two
memories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads that have completed drying are ready to fold and those
that have finished washing are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that does not
really exist when doing laundry). For example, suppose we have an add instruction
followed immediately by a subtract instruction that uses that sum (x19):

add x19, x0, x1
sub x2, x19, x3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is far too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

data hazard Also
called a pipeline data
hazard. When a planned
instruction cannot
execute in the proper
clock cycle because data
that are needed to execute
the instruction are not yet
available.

forwarding Also called
bypassing. A method of
resolving a data hazard
by retrieving the missing
data element from
internal buffers rather
than waiting for it to
arrive from programmer-
visible registers or
memory.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected
by forwarding. Use the drawing in Figure 4.26 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.23.

EXAMPLE

 4.5 An Overview of Pipelining 269

Figure 4.27 shows the connection to forward the value in x1 after the
execution stage of the add instruction as input to the execution stage of the
sub instruction.

In this graphical representation of events, forwarding paths are valid only if the
destination stage is later in time than the source stage. For example, there cannot
be a valid forwarding path from the output of the memory access stage in the first
instruction to the input of the execution stage of the following, since that would
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot
prevent all pipeline stalls, however. For example, suppose the first instruction was
a load of x1 instead of an add. As we can imagine from looking at Figure 4.27, the

ANSWER

FIGURE 4.26 Graphical representation of the instruction pipeline, similar in spirit to
the laundry pipeline in Figure 4.23. Here we use symbols representing the physical resources with
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage,
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data
memory; and WB for the write-back stage, with the drawing showing the register file being written. The
shading indicates the element is used by the instruction. Hence, MEM has a white background because add
does not access the data memory. Shading on the right half of the register file or memory means the element
is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage
because the register file is written.

Time

add x1, x2, x3 IF MEMID WBEX

200 400 600 800 1000

FIGURE 4.27 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register
x1 read in the second stage of sub.

Time

add x1, x2, x3

sub x4, x1, x5

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

200 400 600 800 1000

270 Chapter 4 The Processor

desired data would be available only after the fourth stage of the first instruction
in the dependence, which is too late for the input of the third stage of sub. Hence,
even with forwarding, we would have to stall one stage for a load-use data hazard,
as Figure 4.28 shows. This figure shows an important pipeline concept, officially
called a pipeline stall, but often given the nickname bubble. We shall see stalls
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like
these, using either hardware detection and stalls or software that reorders code to
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

a = b + e;
c = b + f;

Here is the generated RISC-V code for this segment, assuming all variables
are in memory and are addressable as offsets from x31:

ld x1, 0(x31) // Load b
ld x2, 8(x31) // Load e
add x3, x1, x2 // b + e
sd x3, 24(x31) // Store a
ld x4, 16(x31) // Load f
add x5, x1, x4 // b + f
sd x5, 32(x31) // Store c

FIGURE 4.28 We need a stall even with forwarding when an R-format instruction following
a load tries to use the data. Without the stall, the path from memory access stage output to execution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

EXAMPLE

200 400 600 800 1000 1200 1400
Time

ld x1, 0(x2)

sub x4, x1, x5

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

bubble bubble bubble bubble bubble

load-use data hazard
A specific form of data
hazard in which the
data being loaded by a
load instruction have
not yet become available
when they are needed by
another instruction.

pipeline stall Also called
bubble. A stall initiated
in order to resolve a
hazard.

 4.5 An Overview of Pipelining 271

Find the hazards in the preceding code segment and reorder the instructions
to avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence
on the previous ld instruction. Notice that forwarding eliminates several
other potential hazards, including the dependence of the first add on the first
ld and any hazards for store instructions. Moving up the third ld instruction
to become the third instruction eliminates both hazards:

ld x1, 0(x31)
ld x2, 8(x31)
ld x4, 16(x31)
add x3, x1, x2
sd x3, 24(x31)
add x5, x1, x4
sd x5, 32(x31)

On a pipelined processor with forwarding, the reordered sequence will
complete in two fewer cycles than the original version.

Forwarding yields another insight into the RISC-V architecture, in addition
to the three mentioned on page 267. Each RISC-V instruction writes at most
one result and does this in the last stage of the pipeline. Forwarding is harder if
there are multiple results to forward per instruction or if there is a need to write
a result early on in instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. “Bypassing” comes from
passing the result around the register file to the desired unit.

Control Hazards
The third type of hazard is called a control hazard, arising from the need to make a
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms
of a football team. Given how filthy the laundry is, we need to determine whether
the detergent and water temperature setting we select are strong enough to get the
uniforms clean but not so strong that the uniforms wear out sooner. In our laundry
pipeline, we have to wait until the second stage to examine the dry uniform to see
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula.

This conservative option certainly works, but it is slow.

control hazard Also
called branch hazard.
When the proper
instruction cannot
execute in the proper
pipeline clock cycle
because the instruction
that was fetched is not the
one that is needed; that
is, the flow of instruction
addresses is not what the
pipeline expected.

ANSWER

272 Chapter 4 The Processor

The equivalent decision task in a computer is the conditional branch instruction.
Notice that we must begin fetching the instruction following the branch on the
following clock cycle. Nevertheless, the pipeline cannot possibly know what the
next instruction should be, since it only just received the branch instruction from
memory! Just as with laundry, one possible solution is to stall immediately after we
fetch a branch, waiting until the pipeline determines the outcome of the branch
and knows what instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test a register,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 4.8 for details). Even with this added hardware, the pipeline
involving conditional branches would look like Figure 4.29. The instruction to be
executed if the branch fails is stalled one extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1.

Figure 3.28 in Chapter 3 shows that conditional branches are 17% of the
instructions executed in SPECint2006. Since the other instructions run have a
CPI of 1, and conditional branches took one extra clock cycle for the stall, then
we would see a CPI of 1.17 and hence a slowdown of 1.17 versus the ideal case.

FIGURE 4.29 Pipeline showing stalling on every conditional branch as solution to control
hazards. This example assumes the conditional branch is taken, and the instruction at the destination of
the branch is the or instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance,
however, is the same as would occur if a bubble were inserted.

EXAMPLE

ANSWER

add x4, x5, x6

beq x1, x0, 40

or x7, x8, x9

Time

Instruction
fetch

Data
access

Data
access

Data
access

Reg

Instruction
fetch

Instruction
fetch

Reg

Reg

200 ps

400 ps

bubble bubble bubble bubble bubble

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

Reg ALU

Reg ALU

Reg ALU

 4.5 An Overview of Pipelining 273

If we cannot resolve the branch in the second stage, as is often the case for longer
pipelines, then we’d see an even larger slowdown if we stall on conditional branches.
The cost of this option is too high for most computers to use and motivates a second
solution to the control hazard using one of our great ideas from Chapter 1:

Predict: If you’re sure you have the right formula to wash uniforms, then just
predict that it will work and wash the second load while waiting for the first load
to dry.

This option does not slow down the pipeline when you are correct. When you
are wrong, however, you need to redo the load that was washed while guessing the
decision.

Computers do indeed use prediction to handle conditional branches. One
simple approach is to predict always that conditional branches will be untaken.
When you’re right, the pipeline proceeds at full speed. Only when conditional
branches are taken does the pipeline stall. Figure 4.30 shows such an example.

FIGURE 4.30 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.29, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details.

add x4, x5, x6

beq x1, x0, 40

ld x3, 400(x0)

Time

Instruction
fetch

Instruction
fetch

Data
access

Reg

Instruction
fetch

Data
access

Data
access

Reg

Reg

Reg ALU

Reg ALU

Reg ALU

Reg ALU

Reg ALU

Reg ALU

200 ps

200 ps

add x4, x5, x6

beq x1, x0, 40

or x7, x8, x9

Time

Instruction
fetch

Data
access

Reg

Instruction
fetch

Instruction
fetch

Data
access

Reg

Data
access

Reg

200 ps

400 ps

bubble bubble bubble bubble bubble

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

200 400 600 800 1000 1200 1400
Program
execution
order
(in instructions)

274 Chapter 4 The Processor

A more sophisticated version of branch prediction would have some conditional
branches predicted as taken and some as untaken. In our analogy, the dark or
home uniforms might take one formula while the light or road uniforms might
take another. In the case of programming, at the bottom of loops are conditional
branches that branch back to the top of the loop. Since they are likely to be taken
and they branch backward, we could always predict taken for conditional branches
that branch to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior
and don’t account for the individuality of a specific branch instruction. Dynamic
hardware predictors, in stark contrast, make their guesses depending on the
behavior of each conditional branch and may change predictions for a conditional
branch over the life of a program. Following our analogy, in dynamic prediction a
person would look at how dirty the uniform was and guess at the formula, adjusting
the next prediction depending on the success of recent guesses.

One popular approach to dynamic prediction of conditional branches is keeping
a history for each conditional branch as taken or untaken, and then using the
recent past behavior to predict the future. As we will see later, the amount and
type of history kept have become extensive, with the result being that dynamic
branch predictors can correctly predict conditional branches with more than 90%
accuracy (see Section 4.8). When the guess is wrong, the pipeline control must
ensure that the instructions following the wrongly guessed conditional branch
have no effect and must restart the pipeline from the proper branch address. In our
laundry analogy, we must stop taking new loads so that we can restart the load that
we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacerbate
the problem, in this case by raising the cost of misprediction. Solutions to control
hazards are described in more detail in Section 4.8.

Elaboration: There is a third approach to the control hazard, called a delayed decision.
In our analogy, whenever you are going to make such a decision about laundry, just place
a load of non-football clothes in the washer while waiting for football uniforms to dry.
As long as you have enough dirty clothes that are not affected by the test, this solution
works fine.

Called the delayed branch in computers, this is the solution actually used by the
MIPS architecture. The delayed branch always executes the next sequential instruction,
with the branch taking place after that one instruction delay. It is hidden from the MIPS
assembly language programmer because the assembler can automatically arrange the
instructions to get the branch behavior desired by the programmer. MIPS software will
place an instruction immediately after the delayed branch instruction that is not affected
by the branch, and a taken branch changes the address of the instruction that follows
this safe instruction. In our example, the add instruction before the branch in Figure
4.29 does not affect the branch and can be moved after the branch to hide the branch
delay fully. Since delayed branches are useful when the branches are short, it is rare to
see a processor with a delayed branch of more than one cycle. For longer branch delays,
hardware-based branch prediction is usually used.

branch prediction
A method of resolving
a branch hazard that
assumes a given outcome
for the conditional branch
and proceeds from that
assumption rather than
waiting to ascertain the
actual outcome.

 4.5 An Overview of Pipelining 275

Pipeline Overview Summary
Pipelining is a technique that exploits parallelism between the instructions in
a sequential instruction stream. It has the substantial advantage that, unlike
programming a multiprocessor (see Chapter 6), it is fundamentally invisible to the
programmer.

In the next few sections of this chapter, we cover the concept of pipelining using
the RISC-V instruction subset from the single-cycle implementation in Section
4.4 and show a simplified version of its pipeline. We then look at the problems that
pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the software and the performance implications of
pipelining, you now have sufficient background to skip to Section 4.10. Section
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is implemented
and the challenges of dealing with hazards, you can proceed to examine the design
of a pipelined datapath and the basic control, explained in Section 4.6. You can then
use this understanding to explore the implementation of forwarding and stalls in
Section 4.7. You can next read Section 4.8 to learn more about solutions to branch
hazards, and finally see how exceptions are handled in Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using
only forwarding, or can execute without stalling or forwarding.

Sequence 1 Sequence 2 Sequence 3

ld x10, 0(x10) add x11, x10, x10 addi x11, x10, 1

add x11, x10, x10 addi x12, x10, 5 addi x12, x10, 2

addi x14, x11, 5 addi x13, x10, 3

addi x14, x10, 4

addi x15, x10, 5

Check
Yourself

Outside the memory system, the effective operation of the pipeline is usually
the most important factor in determining the CPI of the processor and hence its
performance. As we will see in Section 4.10, understanding the performance of a
modern multiple-issue pipelined processor is complex and requires understanding
more than just the issues that arise in a simple pipelined processor. Nonetheless,
structural, data, and control hazards remain important in both simple pipelines
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually
more of a problem in integer programs, which tend to have higher conditional
branch frequencies as well as less predictable branches. Data hazards can be

Understanding
Program
Performance

276 Chapter 4 The Processor

 4.6 Pipelined Datapath and Control

Figure 4.31 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage
pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.31, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the

latency (pipeline) The
number of stages in a
pipeline or the number
of stages between two
instructions during
execution.

performance bottlenecks in both integer and floating-point programs. Often it
is easier to deal with data hazards in floating-point programs because the lower
conditional branch frequency and more regular memory access patterns allow the
compiler to try to schedule instructions to avoid hazards. It is more difficult to
perform such optimizations in integer programs that have less regular memory
accesses, involving more use of pointers. As we will see in Section 4.10, there are
more ambitious compiler and hardware techniques for reducing data dependences
through scheduling.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction,
also called the latency. For example, the five-stage pipeline still takes five
clock cycles for the instruction to complete. In the terms used in Chapter 1,
pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either make life harder or simpler for pipeline
designers, who must already cope with structural, control, and data
hazards. Branch prediction and forwarding help make a computer fast
while still getting the right answers.

The BIG
Picture

There is less in this
than meets the eye.
Tallulah
Bankhead, remark
to Alexander
Woollcott, 1922

 4.6 Pipelined Datapath and Control 277

five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they
never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

■	 The write-back stage, which places the result back into the register file in the
middle of the datapath

■	 The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left do not affect the current instruction; these reverse
data movements influence only later instructions in the pipeline. Note that the first

WB: Write backMEM: Memory accessIF: Instruction fetch EX: Execute/
address calculation

1
M
u
x

0

0
M
u
x

1 Address

Write
data

Read
data

Data
memory

Read
register 1

Read
register 2

Write
register

Write
data

Registers

Read
data 1

Read
data 2

ALU

Zero

ALU
result

ADD Sum

Shift
left 1

Address

Instruction

Instruction
memory

Add

4

PC

Imm
Gen

0
M
u
x

1

64

ID: Instruction decode/
register file read

32

FIGURE 4.31 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped
onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are
data lines.)

278 Chapter 4 The Processor

right-to-left flow of data can lead to data hazards and the second leads to control
hazards.

One way to show what happens in pipelined execution is to pretend that each
instruction has its own datapath, and then to place these datapaths on a timeline to
show their relationship. Figure 4.32 shows the execution of the instructions in Figure
4.25 by displaying their private datapaths on a common timeline. We use a stylized
version of the datapath in Figure 4.31 to show the relationships in Figure 4.32.

Figure 4.32 seems to suggest that three instructions need three datapaths.
Instead, we add registers to hold data so that portions of a single datapath can be
shared during instruction execution.

For example, as Figure 4.32 shows, the instruction memory is used during
only one of the five stages of an instruction, allowing it to be shared by following
instructions during the other four stages. To retain the value of an individual
instruction for its other four stages, the value read from instruction memory must
be saved in a register. Similar arguments apply to every pipeline stage, so we must
place registers wherever there are dividing lines between stages in Figure 4.31.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step.

FIGURE 4.32 Instructions being executed using the single-cycle datapath in Figure 4.31,
assuming pipelined execution. Similar to Figures 4.26 through 4.28, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure
4.31. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the
register file and sign extender in the instruction decode/register file read stage (ID), and so on. To maintain
proper time order, this stylized datapath breaks the register file into two logical parts: registers read during
register fetch (ID) and registers written during write back (WB). This dual use is represented by drawing
the unshaded left half of the register file using dashed lines in the ID stage, when it is not being written, and
the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the
register file is written in the first half of the clock cycle and the register file is read during the second half.

Program
execution
order
(in instructions)

ld x, 100(x4)

ld x2, 200(x4)

ld x3, 400(x4)

Time (in clock cycles)

IM DMReg RegALU

IM DMReg RegALU

IM DMReg RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

 4.6 Pipelined Datapath and Control 279

Figure 4.33 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline register
to the next. The registers are named for the two stages separated by that register.
For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor—the register file, memory,
or the PC—so a separate pipeline register is redundant to the state that is updated.
For example, a load instruction will place its result in one of the 32 registers, and
any later instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline
registers in Figure 4.33, however, the PC is part of the visible architectural state;
its contents must be saved when an exception occurs, while the contents of the
pipeline registers can be discarded. In the laundry analogy, you could think of
the PC as corresponding to the basket that holds the load of dirty clothes before
the wash step.

To show how the pipelining works, throughout this chapter we show sequences
of figures to demonstrate operation over time. These extra pages would seem to
require much more time for you to understand. Fear not; the sequences take much

FIGURE 4.33 The pipelined version of the datapath in Figure 4.31. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID
register must be 96 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 64-bit PC address.
We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 256, 193, and 128 bits,
respectively.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

280 Chapter 4 The Processor

less time than it might appear, because you can compare them to see what changes
occur in each clock cycle. Section 4.7 describes what happens when there are data
hazards between pipelined instructions; ignore them for now.

Figures 4.34 through 4.37, our first sequence, show the active portions of the
datapath highlighted as a load instruction goes through the five stages of pipelined
execution. We show a load first because it is active in all five stages. As in Figures
4.26 through 4.28, we highlight the right half of registers or memory when they are
being read and highlight the left half when they are being written.

We show the instruction ld with the name of the pipe stage that is active in each
figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.34 shows the instruction being
read from memory using the address in the PC and then being placed in the
IF/ID pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This PC is also saved
in the IF/ID pipeline register in case it is needed later for an instruction,
such as beq. The computer cannot know which type of instruction is being
fetched, so it must prepare for any instruction, passing potentially needed
information down the pipeline.

2. Instruction decode and register file read: The bottom portion of Figure 4.34
shows the instruction portion of the IF/ID pipeline register supplying the
immediate field, which is sign-extended to 64 bits, and the register numbers
to read the two registers. All three values are stored in the ID/EX pipeline
register, along with the PC address. We again transfer everything that might
be needed by any instruction during a later clock cycle.

3. Execute or address calculation: Figure 4.35 shows that the load instruction
reads the contents of a register and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.36 shows the load instruction
reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.36 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Walking
through a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:

 4.6 Pipelined Datapath and Control 281

FIGURE 4.34 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in
Figure 4.33 highlighted. The highlighting convention is the same as that used in Figure 4.26. As in Section 4.2, there is no confusion when
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, it
doesn’t hurt to do potentially extra work, so it sign-extends the constant and reads both registers into the ID/EX pipeline register. We don’t need
all three operands, but it simplifies control to keep all three.

Instruction decode

ld

Instruction fetch

ld

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

282 Chapter 4 The Processor

1. Instruction fetch: The instruction is read from memory using the address in
the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figure 4.34 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipeline
register supplies the register numbers for reading two registers and extends
the sign of the immediate operand. These three 64-bit values are all stored
in the ID/EX pipeline register. The bottom portion of Figure 4.34 for load
instructions also shows the operations of the second stage for stores. These
first two stages are executed by all instructions, since it is too early to know
the type of the instruction. (While the store instruction uses the rs2 field to
read the second register in this pipe stage, that detail is not shown in this
pipeline diagram, so we can use the same figure for both.)

3. Execute and address calculation: Figure 4.37 shows the third step; the effective
address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the data being written
to memory. Note that the register containing the data to be stored was read in
an earlier stage and stored in ID/EX. The only way to make the data available
during the MEM stage is to place the data into the EX/MEM pipeline register
in the EX stage, just as we stored the effective address into EX/MEM.

FIGURE 4.35 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.33
used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.

Execution

ld

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddSum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 283

FIGURE 4.36 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the
datapath in Figure 4.33 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the
data are placed in the MEM/WB pipeline register. Next, data are read from the MEM/WB pipeline register and written into the register file in
the middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.39.

Memory

ld

Write-back

ld

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

284 Chapter 4 The Processor

5. Write-back: The bottom portion of Figure 4.38 shows the final step of the
store. For this instruction, nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way
to accelerate those instructions. Hence, an instruction passes through a
stage even if there is nothing to do, because later instructions are already
progressing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction, we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data were first placed
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the
datapath—such as instruction memory, register read ports, ALU, data memory,
and register write port—can be used only within a single pipeline stage. Otherwise,
we would have a structural hazard (see page 267). Hence, these components, and
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see
it? Which register is changed in the final stage of the load? More specifically,

FIGURE 4.37 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.35, the
second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to
understand.

Execution

sd

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddSum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 285

FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data are written
into data memory for the store. Note that the data come from the EX/MEM pipeline register and that nothing is changed in the MEM/WB
pipeline register. Once the data are written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.

Memory

sd

Write-back

sd

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

MEM/WB

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

286 Chapter 4 The Processor

which instruction supplies the write register number? The instruction in the IF/
ID pipeline register supplies the write register number, yet this instruction occurs
considerably after the load instruction!

Hence, we need to preserve the destination register number in the load
instruction. Just as store passed the register value from the ID/EX to the EX/MEM
pipeline registers for use in the MEM stage, load must pass the register number
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in the
WB stage. Another way to think about the passing of the register number is that to
share the pipelined datapath, we need to preserve the instruction read during the
IF stage, so each pipeline register contains a portion of the instruction needed for
that stage and later stages.

Figure 4.39 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify
the register to be written. Figure 4.40 is a single drawing of the corrected datapath,
highlighting the hardware used in all five stages of the load register instruction in
Figures 4.34 through 4.36. See Section 4.8 for an explanation of how to make the
branch instruction work as expected.

Graphically Representing Pipelines
Pipelining can be difficult to master, since many instructions are simultaneously
executing in a single datapath in every clock cycle. To aid understanding, there are

FIGURE 4.39 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the MEM/
WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

 4.6 Pipelined Datapath and Control 287

two basic styles of pipeline figures: multiple-clock-cycle pipeline diagrams, such as
Figure 4.32 on page 278, and single-clock-cycle pipeline diagrams, such as Figures
4.34 through 4.38. The multiple-clock-cycle diagrams are simpler but do not contain
all the details. For example, consider the following five-instruction sequence:

ld x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
ld x13, 48(x1)
add x14, x5, x6

Figure 4.41 shows the multiple-clock-cycle pipeline diagram for these
instructions. Time advances from left to right across the page in these diagrams,
and instructions advance from the top to the bottom of the page, similar to the
laundry pipeline in Figure 4.23. A representation of the pipeline stages is placed
in each portion along the instruction axis, occupying the proper clock cycles.
These stylized datapaths represent the five stages of our pipeline graphically, but
a rectangle naming each pipe stage works just as well. Figure 4.42 shows the more
traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure
4.41 shows the physical resources used at each stage, while Figure 4.42 uses the
name of each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath
during a single clock cycle, and usually all five instructions in the pipeline are
identified by labels above their respective pipeline stages. We use this type of figure
to show the details of what is happening within the pipeline during each clock

FIGURE 4.40 The portion of the datapath in Figure 4.39 that is used in all five stages of a load instruction.

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

MEM/WB

288 Chapter 4 The Processor

cycle; typically, the drawings appear in groups to show pipeline operation over a
sequence of clock cycles. We use multiple-clock-cycle diagrams to give overviews
of pipelining situations. (Section 4.13 gives more illustrations of single-clock
diagrams if you would like to see more details about Figure 4.41.) A single-clock-
cycle diagram represents a vertical slice of one clock cycle through a set of multiple-
clock-cycle diagrams, showing the usage of the datapath by each of the instructions
in the pipeline at the designated clock cycle. For example, Figure 4.43 shows the
single-clock-cycle diagram corresponding to clock cycle 5 of Figures 4.41 and 4.42.
Obviously, the single-clock-cycle diagrams have more detail and take significantly
more space to show the same number of clock cycles. The exercises ask you to
create such diagrams for other code sequences.

Check
Yourself

A group of students were debating the efficiency of the five-stage pipeline when
one student pointed out that not all instructions are active in every stage of the
pipeline. After deciding to ignore the effects of hazards, they made the following
four statements. Which ones are correct?

FIGURE 4.41 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete
execution of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move
from left to right. Unlike Figure 4.26, here we show the pipeline registers between each stage. Figure 4.42 shows the traditional way to draw
this diagram.

Program
execution
order
(in instructions)

ld x10, 40(x1)

sub x11, x2, x3

add x12, x3, x4

ld x13, 48(x1)

add x14, x5, x6

Time (in clock cycles)

IM Reg Reg

IM DMReg Reg

IM Reg Reg

Reg Reg

Reg Reg

ALU

ALU

ALU

ALU

ALU

DM

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

DM

IM

IM

 4.6 Pipelined Datapath and Control 289

1. Allowing branches and ALU instructions to take fewer stages than the five
required by the load instruction will increase pipeline performance under all
circumstances.

FIGURE 4.42 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.41.

Program
execution
order
(in instructions)

ld x10, 40(x1)

sub x11, x2, x3

add x12, x3, x4

ld x13, 48(x1)

add x14, x5, x6

Time (in clock cycles)

Instruction
fetch

Instruction
decode

Execution Data
access

Data
access

Data
access

Data
access

Data
access

Write-back

CC 9CC 8CC 7CC 6CC 5CC 4CC 3CC 2CC 1

Instruction
fetch

Instruction
fetch

Instruction
fetch

Instruction
fetch

Instruction
decode

Instruction
decode

Instruction
decode

Instruction
decode

Execution Write-back

Execution Write-back

Execution Write-back

Execution Write-back

FIGURE 4.43 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.41 and 4.42.
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Sum

ALU ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

Memory

sub x11, x2, x3

Write-back

ld x10, 40(x1)

Execution

add x12, x3, x4

Instruction decode

ld x13, 48(x1)

Instruction fetch

add x14, x5, x6

32 64

In
st

ru
ct

io
n

MEM/WB

0
M
u
x

1

0
M
u
x

1

1
M
u
x

0

290 Chapter 4 The Processor

Pipelined Control
Just as we added control to the single-cycle datapath in Section 4.4, we now add
control to the pipelined datapath. We start with a simple design that views the
problem through rose-colored glasses.

The first step is to label the control lines on the existing datapath. Figure 4.44
shows those lines. We borrow as much as we can from the control for the simple

2. Trying to allow some instructions to take fewer cycles does not help, since
the throughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches can take fewer cycles, so there is some
opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance.

In the 6600 Computer,
perhaps even more
than in any previous
computer, the control
system is the difference.
James Thornton, Design
of a Computer: The
Control Data 6600, 1970

FIGURE 4.44 The pipelined datapath of Figure 4.39 with the control signals identified. This datapath borrows the control
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need funct fields of the instruction in
the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register.

MemWrite

PCSrc

MemtoReg

MemRead

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Instruction
[31–0]

Instruction
[11-7]

Instruction
[30, 14-12]

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

AddSum

Add ALU
result

Zero

Shift
left 1

Imm
Gen

PC

4

ID/EXIF/ID EX/MEM

32 64

ALU
control

ALUOp

ALUSrc

RegWrite

Branch

MEM/WB

0
M
u
x

1

0
M
u
x

1 0

M
u
x

1

 4.6 Pipelined Datapath and Control 291

datapath in Figure 4.17. In particular, we use the same ALU control logic, branch
logic, and control lines. These functions are defined in Figures 4.12, 4.16, and 4.18.
We reproduce the key information in Figures 4.45 through 4.47 on a single page to
make the following discussion easier to absorb.

As was the case for the single-cycle implementation, we assume that the PC is
written on each clock cycle, so there is no separate write signal for the PC. By the
same argument, there are no separate write signals for the pipeline registers (IF/
ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written
during each clock cycle.

To specify control for the pipeline, we need only set the control values during
each pipeline stage. Because each control line is associated with a component active
in only a single pipeline stage, we can divide the control lines into five groups
according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and to
write the PC are always asserted, so there is nothing special to control in this
pipeline stage.

2. Instruction decode/register file read: The two source registers are always in the
same location in the RISC-V instruction formats, so there is nothing special
to control in this pipeline stage.

3. Execution/address calculation: The signals to be set are ALUOp and ALUSrc
(see Figures 4.45 and 4.46). The signals select the ALU operation and either
Read data 2 or a sign-extended immediate as inputs to the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead,
and MemWrite. The branch if equal, load, and store instructions set these
signals, respectively. Recall that PCSrc in Figure 4.46 selects the next
sequential address unless control asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the register file, and
RegWrite, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged,
we can use the same control values. Figure 4.47 has the same values as in Section
4.4, but now the seven control lines are grouped by pipeline stage.

292 Chapter 4 The Processor

FIGURE 4.45 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on
the ALUOp control bits and the different opcodes for the R-type instruction.

Instruction ALUOp operation
Funct7
fi eld

Funct3
fi eld

Desired
ALU action

ALU control
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110

R-type 10 add 0000000 000 add 0010

R-type 10 sub 0100000 000 subtract 0110

R-type 10 and 0000000 111 AND 0000

R-type 10 or 0000000 110 OR 0001

FIGURE 4.46 A copy of Figure 4.16. The function of each of six control signals is defined. The ALU control lines (ALUOp) are defined
in the second column of Figure 4.45. When a 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corresponding
to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.44.
If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq
instruction; otherwise, PCSrc is set to 0.

Signal name Effect when deasserted Effect when asserted

eulavehthtiwnettirwsitupniretsigeretirWehtnoretsigerehT.enoNetirWgeR
on the Write data input.

ALUSrc The second ALU operand comes from the second
 le output (Read data 2).

The second ALU operand is the sign-extended, 12 bits of the
instruction.

PCSrc The PC is replaced by the output of the adder that
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes
the branch target.

eratupnisserddaehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
put on the Read data output.

eratupnisserddaehtybdetangisedstnetnocyromemataD.enoNetirWmeM
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input
comes from the ALU.

The value fed to the register Write data input comes from the
data memory.

FIGURE 4.47 The values of the control lines are the same as in Figure 4.18, but they have
been shuffled into three groups corresponding to the last three pipeline stages.

Instruction

Execution/address
calculation stage

control lines
Memory access stage

control lines
Write-back stage

control lines

ALUOp ALUSrc Branch
Mem-
Read

Mem-
Write

Reg-
Write

Memto-
Reg

R-format 10 0 0 0 0 1 0

ld 00 1 0 1 0 1 1

sd 00 1 0 0 1 0 X

beq 01 0 1 0 0 0 X

 4.6 Pipelined Datapath and Control 293

Implementing control means setting the seven control lines to these values in
each stage for each instruction.

Since the rest of the control lines starts with the EX stage, we can create the
control information during instruction decode for the later stages. The simplest
way to pass these control signals is to extend the pipeline registers to include
control information. Figure 4.48 above shows that these control signals are then
used in the appropriate pipeline stage as the instruction moves down the pipeline,
just as the destination register number for loads moves down the pipeline in Figure
4.39. Figure 4.49 shows the full datapath with the extended pipeline registers and
with the control lines connected to the proper stage. (Section 4.13 gives more
examples of RISC-V code executing on pipelined hardware using single-clock
diagrams, if you would like to see more details.)

FIGURE 4.48 The seven control lines for the final three stages. Note that two of the seven
control lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM
pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are
passed to MEM/WB for use in the WB stage.

WB

M

EX

WB

M WB

Control

IF/ID ID/EX EX/MEM MEM/WB

Instruction

294 Chapter 4 The Processor

What do you mean,
why’s it got to be built?
It’s a bypass. You’ve got
to build bypasses.
Douglas Adams, The
Hitchhiker’s Guide to the
Galaxy, 1979

FIGURE 4.49 The pipelined datapath of Figure 4.44, with the control signals connected to the control portions of the
pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX
pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

WB

M

EX

WB

M WB

M
em

W
rit

e

PCSrc

M
em

to
R

eg

MemRead

Add

Address

Instruction
memory Address

Write
data

Read
data

Data
memory

AddSum

ALU ALU
result

Zero

Shift
left 1

PC

4

ID/EX

IF/ID

EX/MEM

MEM/WB

ALUOp

ALUSrc
R

eg
W

rit
e Branch

Control

0

1

0

1

1

0

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Instruction
[31–0]

Instruction
[11-7]

Instruction
[30, 14-12]

Read
data 1

Read
data 2

Registers

Imm
Gen

32 64

ALU
control

 4.7 Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution
and how the hardware performs the task. It’s now time to take off the rose-colored
glasses and look at what happens with real programs. The RISC-V instructions
in Figures 4.41 through 4.43 were independent; none of them used the results
calculated by any of the others. Yet, in Section 4.5, we saw that data hazards are
obstacles to pipelined execution.

 4.7 Data Hazards: Forwarding versus Stalling 295

Let’s look at a sequence with many dependences, shown in color:

sub x2, x1, x3 // Register z2 written by sub
and x12, x2, x5 // 1st operand(x2) depends on sub
or x13, x6, x2 // 2nd operand(x2) depends on sub
add x14, x2, x2 // 1st(x2) & 2nd(x2) depend on sub
sd x15, 100(x2) // Base (x2) depends on sub

The last four instructions are all dependent on the result in register x2 of the
first instruction. If register x2 had the value 10 before the subtract instruction and
−20 afterwards, the programmer intends that −20 will be used in the following
instructions that refer to register x2.

How would this sequence perform with our pipeline? Figure 4.50 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representation.
To demonstrate the execution of this instruction sequence in our current pipeline,
the top of Figure 4.50 shows the value of register x2, which changes during the
middle of clock cycle 5, when the sub instruction writes its result.

The last potential hazard can be resolved by the design of the register file
hardware: What happens when a register is read and written in the same clock
cycle? We assume that the write is in the first half of the clock cycle and the read
is in the second half, so the read delivers what is written. As is the case for many
implementations of register files, we have no data hazard in this case.

Figure 4.50 shows that the values read for register x2 would not be the result of
the sub instruction unless the read occurred during clock cycle 5 or later. Thus, the
instructions that would get the correct value of −20 are add and sd; the and and
or instructions would get the incorrect value 10! Using this style of drawing, such
problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the EX
stage of the sub instruction or clock cycle 3. When are the data actually needed by
the and and or instructions? The answer is at the beginning of the EX stage of the
and and or instructions, or clock cycles 4 and 5, respectively. Thus, we can execute
this segment without stalls if we simply forward the data as soon as it is available to
any units that need it before it is ready to read from the register file.

How does forwarding work? For simplicity in the rest of this section, we consider
only the challenge of forwarding to an operation in the EX stage, which may
be either an ALU operation or an effective address calculation. This means
that when an instruction tries to use a register in its EX stage that an earlier
instruction intends to write in its WB stage, we actually need the values as inputs
to the ALU.

A notation that names the fields of the pipeline registers allows for a more
precise notation of dependences. For example, “ID/EX.RegisterRs1” refers to the
number of one register whose value is found in the pipeline register ID/EX; that
is, the one from the first read port of the register file. The first part of the name,

296 Chapter 4 The Processor

to the left of the period, is the name of the pipeline register; the second part is
the name of the field in that register. Using this notation, the two pairs of hazard
conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1

1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1

2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

The first hazard in the sequence on page 295 is on register x2, between the result
of sub x2, x1, x3 and the first read operand of and x12, x2, x5. This hazard can

FIGURE 4.50 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction
writes into x2, and all the following instructions read x2. This register is written in clock cycle 5, so the proper value is unavailable before clock
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.

Program
execution
order
(in instructions)

sub x2, x1, x3

and x12, x2, x5

or x13, x6, x2

add x14, x2, x2

sd x15, 100(x2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10
Value of
register x2: 10/–20 –20 –20 –20 –20

 4.7 Data Hazards: Forwarding versus Stalling 297

be detected when the and instruction is in the EX stage and the prior instruction is
in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs1 = x2

Dependence Detection

Classify the dependences in this sequence from page 295:

sub x2, x1, x3 // Register x2 set by sub
and x12, x2, x5 // 1st operand(z2) set by sub
or x13, x6, x2 // 2nd operand(x2) set by sub
add x14, x2, x2 // 1st(x2) & 2nd(x2) set by sub
sd x15, 100(x2) // Index(x2) set by sub

As mentioned above, the sub–and is a type 1a hazard. The remaining hazards
are as follows:

■	 The sub–or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRs2 = x2

■	 The two dependences on sub–add are not hazards because the register
file supplies the proper data during the ID stage of add.

■	 There is no data hazard between sub and sd because sd reads x2 the
clock cycle after sub writes x2.

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forward when it shouldn’t. One solution is simply to check
to see if the RegWrite signal will be active: examining the WB control field of the
pipeline register during the EX and MEM stages determines whether RegWrite is
asserted. Recall that RISC-V requires that every use of x0 as an operand must yield
an operand value of 0. If an instruction in the pipeline has x0 as its destination (for
example, addi x0, x1, 2), we want to avoid forwarding its possibly nonzero result
value. Not forwarding results destined for x0 frees the assembly programmer and
the compiler of any requirement to avoid using x0 as a destination. The conditions
above thus work properly as long as we add EX/MEM.RegisterRd ≠ 0 to the first
hazard condition and MEM/WB.RegisterRd ≠ 0 to the second.

Now that we can detect hazards, half of the problem is resolved—but we must
still forward the proper data.

Figure 4.51 shows the dependences between the pipeline registers and the inputs
to the ALU for the same code sequence as in Figure 4.50. The change is that the

EXAMPLE

ANSWER

298 Chapter 4 The Processor

dependence begins from a pipeline register, rather than waiting for the WB stage
to write the register file. Thus, the required data exist in time for later instructions,
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just
ID/EX, then we can forward the correct data. By adding multiplexors to the input
of the ALU, and with the proper controls, we can run the pipeline at full speed in
the presence of these data hazards.

For now, we will assume the only instructions we need to forward are the four
R-format instructions: add, sub, and, and or. Figure 4.52 shows a close-up of
the ALU and pipeline register before and after adding forwarding. Figure 4.53

FIGURE 4.51 The dependences between the pipeline registers move forward in time, so it is possible to supply the
inputs to the ALU needed by the and instruction and or instruction by forwarding the results found in the pipeline
registers. The values in the pipeline registers show that the desired value is available before it is written into the register file. We assume that
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the
register file instead of a pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock
cycle 5 shows register x2 having the value 10 at the beginning and −20 at the end of the clock cycle.

Program
execution
order
(in instructions)

sub x2, x1, x3

and x12, x2, x5

or x13, x6, x2

add x14, x2, x2

sd x15, 100(x2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM Reg Reg

IM Reg Reg

IM Reg Reg

IM Reg Reg

IM DM

DM

DM

DM

DM

Reg Reg

10 10 10 10 10/–20 –20 –20 –20 –20value of register x2:

 4.7 Data Hazards: Forwarding versus Stalling 299

FIGURE 4.52 On the top are the ALU and pipeline registers before adding forwarding. On
the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding
unit. The new hardware is shown in color. This figure is a stylized drawing, however, leaving out details from
the full datapath such as the sign extension hardware.

Data
memory

Registers ALU

ALU

ID/EX

a. No forwarding

b. With forwarding

EX/MEM MEM/WB

Data
memory

Registers

ID/EX EX/MEM MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs1
Rs2
Rd

ForwardB

ForwardA

300 Chapter 4 The Processor

FIGURE 4.53 The control values for the forwarding multiplexors in Figure 4.52. The signed
immediate that is another input to the ALU is described in the Elaboration at the end of this section.

noitanalpxEecruoSlortnocxuM

ALU result.

 le.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

shows the values of the control lines for the ALU multiplexors that select either the
register file values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/EX pipeline register to determine whether to
forward values. Before forwarding, the ID/EX register had no need to include space
to hold the rs1 and rs2 fields. Hence, they were added to ID/EX.

Let’s now write both the conditions for detecting hazards, and the control signals
to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 10

This case forwards the result from the previous instruction to either input
of the ALU. If the previous instruction is going to write to the register file,
and the write register number matches the read register number of ALU
inputs A or B, provided it is not register 0, then steer the multiplexor to pick
the value instead from the pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

 4.7 Data Hazards: Forwarding versus Stalling 301

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that
the register file supplies the correct result if the instruction in the ID stage reads
the same register written by the instruction in the WB stage. Such a register file
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruction
in the WB stage, the result of the instruction in the MEM stage, and the source
operand of the instruction in the ALU stage. For example, when summing a vector
of numbers in a single register, a sequence of instructions will all read and write to
the same register:

add x1, x1, x2
add x1, x1, x3
add x1, x1, x4
. . .

In this case, the result should be forwarded from the MEM stage because the
result in the MEM stage is the more recent result. Thus, the control for the MEM
hazard would be (with the additions highlighted):

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

Figure 4.54 shows the hardware necessary to support forwarding for operations
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the
register destination for either an ALU instruction or a load.

If you would like to see more illustrated examples using single-cycle pipeline
drawings, Section 4.13 has figures that show two pieces of RISC-V code with
hazards that cause forwarding.

302 Chapter 4 The Processor

Elaboration: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. However, consider loads immediately followed by stores,
useful when performing memory-to-memory copies in the RISC-V architecture. Since
copies are frequent, we need to add more forwarding hardware to make them run faster.
If we were to redraw Figure 4.51, replacing the sub and and instructions with ld and
sd, we would see that it is possible to avoid a stall, since the data exist in the MEM/WB
register of a load instruction in time for its use in the MEM stage of a store instruction.
We would need to add forwarding into the memory access stage for this option. We leave
this modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is
missing from the datapath in Figure 4.54. Since central control decides between register
and immediate, and since the forwarding unit chooses the pipeline register for a register
input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between
the ForwardB multiplexor output and the signed immediate. Figure 4.55 shows this
addition.

FIGURE 4.54 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.49, the additions
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such
as the branch hardware and the sign extension hardware.

M

WB

WB

Registers

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs1
Rs2
Rd

PC

Control

EX

M

WB

IF/ID.RegisterRs1
IF/ID.RegisterRs2
IF/ID.RegisterRd

In
st

ru
ct

io
n

IF/ID

Data
memory

 4.7 Data Hazards: Forwarding versus Stalling 303

Data Hazards and Stalls
As we said in Section 4.5, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes
the same register. Figure 4.56 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for the
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and
the instruction dependent on it. Checking for load instructions, the control for the
hazard detection unit is this single condition:

if (ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or

(ID/EX.RegisterRd = IF/ID.RegisterRs2)))
stall the pipeline

Data
memory

Registers

ALU

ID/EX EX/MEM MEM/WB

Forwarding
unit

ALUSrc

FIGURE 4.55 A close-up of the datapath in Figure 4.52 shows a 2:1 multiplexor, which has been added to select the
signed immediate as an ALU input.

If at first you don’t
succeed, redefine
success.
Anonymous

304 Chapter 4 The Processor

Recall that we are using the RegisterRd to refer the register specified in instruction
bits 11:7 for both load and R-type instructions. The first line tests to see if the
instruction is a load: the only instruction that reads data memory is a load. The next
two lines check to see if the destination register field of the load in the EX stage
matches either source register of the instruction in the ID stage. If the condition holds,
the instruction stalls one clock cycle. After this one-cycle stall, the forwarding logic
can handle the dependence and execution proceeds. (If there were no forwarding,
then the instructions in Figure 4.56 would need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by preventing
the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be read
using the same PC, and the registers in the ID stage will continue to be read using

FIGURE 4.56 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

Program
execution
order
(in instructions)

ld x2, 20(x1)

and x4, x2, x5

or x8, x2, x6

add x9, x4, x2

sub x1, x6, x7

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

 4.7 Data Hazards: Forwarding versus Stalling 305

the same instruction fields in the IF/ID pipeline register. Returning to our favorite
analogy, it’s as if you restart the washer with the same clothes and let the dryer
continue tumbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
instructions that have no effect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In Figure
4.47, we see that deasserting all seven control signals (setting them to 0) in the EX,
MEM, and WB stages will create a “do nothing” or nop instruction. By identifying
the hazard in the ID stage, we can insert a bubble into the pipeline by changing the
EX, MEM, and WB control fields of the ID/EX pipeline register to 0. These benign
control values are percolated forward at each clock cycle with the proper effect: no
registers or memories are written if the control values are all 0.

Figure 4.57 shows what really happens in the hardware: the pipeline execution
slot associated with the and instruction is turned into a nop and all instructions
beginning with the and instruction are delayed one cycle. Like an air bubble in

nops An instruction
that does no operation to
change state.

FIGURE 4.57 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing
the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed
until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise, the or instruction is fetched in clock cycle 3, but its ID stage is
delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time
and no further hazards occur.

bubble

Program
execution
order
(in instructions)

ld x2, 20(x1)

and becomes nop

and x4, x2, x5

or x8, x2, x6

add x9, x4, x2

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

306 Chapter 4 The Processor

a water pipe, a stall bubble delays everything behind it and proceeds down the
instruction pipe one stage each clock cycle until it exits at the end. In this example,
the hazard forces the and and or instructions to repeat in clock cycle 4 what they
did in clock cycle 3: and reads registers and decodes, and or is refetched from
instruction memory. Such repeated work is what a stall looks like, but its effect is
to stretch the time of the and and or instructions and delay the fetch of the add
instruction.

Figure 4.58 highlights the pipeline connections for both the hazard detection
unit and the forwarding unit. As before, the forwarding unit controls the ALU
multiplexors to replace the value from a general-purpose register with the value
from the proper pipeline register. The hazard detection unit controls the writing
of the PC and IF/ID registers plus the multiplexor that chooses between the real
control values and all 0s. The hazard detection unit stalls and deasserts the control
fields if the load-use hazard test above is true. If you would like to see more details,

 Section 4.13 gives an example illustrated using single-clock pipeline diagrams
of RISC-V code with hazards that cause stalling.

FIGURE 4.58 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.

0 M

WB

WB

Data
memory

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs1

In
st

ru
ct

io
n

IF/ID.RegisterRs2

IF/ID.RegisterRd

P
C

W
rit

e

IF
/D

W
rit

e

Registers

Rd

Rs1
Rs2

ForwardA

ForwardB

 4.8 Control Hazards 307

Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while
the other control signals can be don’t cares.

 4.8 Control Hazards

Thus far, we have limited our concern to hazards involving arithmetic operations
and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards
involving conditional branches. Figure 4.59 shows a sequence of instructions and
indicates when the branch would occur in this pipeline. An instruction must be
fetched at every clock cycle to sustain the pipeline, yet in our design the decision
about whether to branch doesn’t occur until the MEM pipeline stage. As mentioned
in Section 4.5, this delay in determining the proper instruction to fetch is called
a control hazard or branch hazard, in contrast to the data hazards we have just
examined.

This section on control hazards is shorter than the previous sections on data
hazards. The reasons are that control hazards are relatively simple to understand,
they occur less frequently than data hazards, and there is nothing as effective
against control hazards as forwarding is against data hazards. Hence, we use
simpler schemes. We look at two schemes for resolving control hazards and one
optimization to improve these schemes.

Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. One
improvement over branch stalling is to predict that the conditional branch will
not be taken and thus continue execution down the sequential instruction stream.
If the conditional branch is taken, the instructions that are being fetched and
decoded must be discarded. Execution continues at the branch target. If conditional
branches are untaken half the time, and if it costs little to discard the instructions,
this optimization halves the cost of control hazards.

Although the compiler generally relies upon the hardware to resolve hazards
and thereby ensure correct execution, the compiler must understand the
pipeline to achieve the best performance. Otherwise, unexpected stalls
will reduce the performance of the compiled code.

The BIG
Picture

There are a thousand
hacking at the
branches of evil to one
who is striking at the
root.
Henry David Thoreau,
Walden, 1854

308 Chapter 4 The Processor

To discard instructions, we merely change the original control values to 0s,
much as we did to stall for a load-use data hazard. The difference is that we must
also change the three instructions in the IF, ID, and EX stages when the branch
reaches the MEM stage; for load-use stalls, we just change control to 0 in the ID
stage and let them percolate through the pipeline. Discarding instructions, then,
means we must be able to flush instructions in the IF, ID, and EX stages of the
pipeline.

Reducing the Delay of Branches
One way to improve conditional branch performance is to reduce the cost of the
taken branch. Thus far, we have assumed the next PC for a branch is selected in the

flush To discard
instructions in a pipeline,
usually due to an
unexpected event.

FIGURE 4.59 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, …)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before beq branches to ld at location 72. (Figure 4.29 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

Reg

Program
execution
order
(in instructions)

40 beq x1, x0, 16

44 and x12, x2, x5

48 or x13, x6, x2

52 add x14, x2, x2

72 ld x4, 100(x7)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DM Reg

IM DMReg Reg

IM DMReg Reg

 4.8 Control Hazards 309

MEM stage, but if we move the conditional branch execution earlier in the pipeline,
then fewer instructions need be flushed. Moving the branch decision up requires
two actions to occur earlier: computing the branch target address and evaluating
the branch decision. The easy part of this change is to move up the branch address
calculation. We already have the PC value and the immediate field in the IF/ID
pipeline register, so we just move the branch adder from the EX stage to the ID
stage; of course, the address calculation for branch targets will be performed for all
instructions, but only used when needed.

The harder part is the branch decision itself. For branch if equal, we would
compare two register reads during the ID stage to see if they are equal. Equality can
be tested by XORing individual bit positions of two registers and ORing the XORed
result. Moving the branch test to the ID stage implies additional forwarding and
hazard detection hardware, since a branch dependent on a result still in the pipeline
must still work properly with this optimization. For example, to implement branch
if equal (and its inverse), we will need to forward results to the equality test logic
that operates during ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to
the equality test unit is needed, and complete the equality test so that if
the instruction is a branch, we can set the PC to the branch target address.
Forwarding for the operand of branches was formerly handled by the
ALU forwarding logic, but the introduction of the equality test unit in ID
will require new forwarding logic. Note that the bypassed source operands
of a branch can come from either the EX/MEM or MEM/WB pipeline
registers.

2. Because the value in a branch comparison is needed during ID but may be
produced later in time, it is possible that a data hazard can occur and a stall
will be needed. For example, if an ALU instruction immediately preceding
a branch produces the operand for the test in the conditional branch, a stall
will be required, since the EX stage for the ALU instruction will occur after
the ID cycle of the branch. By extension, if a load is immediately followed by
a conditional branch that depends on the load result, two stall cycles will be
needed, as the result from the load appears at the end of the MEM cycle but
is needed at the beginning of ID for the branch.

Despite these difficulties, moving the conditional branch execution to the ID
stage is an improvement, because it reduces the penalty of a branch to only one
instruction if the branch is taken, namely, the one currently being fetched. The
exercises explore the details of implementing the forwarding path and detecting
the hazard.

To flush instructions in the IF stage, we add a control line, called IF.Flush,
that zeros the instruction field of the IF/ID pipeline register. Clearing the register
transforms the fetched instruction into a nop, an instruction that has no action and
changes no state.

310 Chapter 4 The Processor

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches that are not taken, and that we
moved the branch execution to the ID stage:

36 sub x10, x4, x8
40 beq x1, x3, 16 // PC-relative branch to 40+16*2=72
44 and x12, x2, x5
48 or x13, x2, x6
52 add x14, x4, x2
56 sub x15, x6, x7
. . .
72 ld x4, 50(x7)

Figure 4.60 shows what happens when a conditional branch is taken. Unlike
Figure 4.59, there is only one pipeline bubble on a taken branch.

Dynamic Branch Prediction
Assuming a conditional branch is not taken is one simple form of branch prediction.
In that case, we predict that conditional branches are untaken, flushing the
pipeline when we are wrong. For the simple five-stage pipeline, such an approach,
possibly coupled with compiler-based prediction, is probably adequate. With
deeper pipelines, the branch penalty increases when measured in clock cycles.
Similarly, with multiple issue (see Section 4.10), the branch penalty increases in
terms of instructions lost. This combination means that in an aggressive pipeline,
a simple static prediction scheme will probably waste too much performance. As
we mentioned in Section 4.5, with more hardware it is possible to try to predict
branch behavior during program execution.

One approach is to look up the address of the instruction to see if the conditional
branch was taken the last time this instruction was executed, and, if so, to begin
fetching new instructions from the same place as the last time. This technique is
called dynamic branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This prediction uses the simplest sort of buffer; we don’t know, in fact, if the
prediction is the right one—it may have been put there by another conditional
branch that has the same low-order address bits. However, this doesn’t affect
correctness. Prediction is just a hint that we hope is correct, so fetching begins in
the predicted direction. If the hint turns out to be wrong, the incorrectly predicted

dynamic branch
prediction Prediction of
branches at runtime using
runtime information.

branch prediction
buffer Also called
branch history table.
A small memory that
is indexed by the lower
portion of the address of
the branch instruction
and that contains one
or more bits indicating
whether the branch was
recently taken or not.

EXAMPLE

ANSWER

 4.8 Control Hazards 311

FIGURE 4.60 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being
fetched and the single bubble or nop instruction in the pipeline because of the taken branch.

M

WB

WB

Data
memory

Registers

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID 0

Hazard
detection

unit

+

+

Imm
Gen

Shift
left 1

=

IF.Flush

4

72

44

48

44

32

40

x3 x8

x4

16

10

and x12, x2, x5 beq x1, x3, 16 sub x10, x4, x8 before<1> before<2>

M

WB

WB

Data
memory

Registers

Instruction
memory

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID 0

Hazard
detection

unit

+

+

Imm
Gen

Shift
left 1

=

IF.Flush

4

76

72

72
76

72

10

ld x4, 50(x7)

Clock 3

Clock 4

Bubble (nop) beq x1, x3, 16 sub x10, . . . before<1>

x1

312 Chapter 4 The Processor

instructions are deleted, the prediction bit is inverted and stored back, and the
proper sequence is fetched and executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
conditional branch is almost always taken, we can predict incorrectly twice, rather
than once, when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, and then is not taken
once. What is the prediction accuracy for this branch, assuming the prediction
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and last loop
iterations. Mispredicting the last iteration is inevitable since the prediction
bit will indicate taken, as the branch has been taken nine times in a row at
that point. The misprediction on the first iteration happens because the bit is
flipped on prior execution of the last iteration of the loop, since the branch
was not taken on that exiting iteration. Thus, the prediction accuracy for this
branch that is taken 90% of the time is only 80% (two incorrect predictions and
eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch frequency for
these highly regular branches. To remedy this weakness, 2-bit prediction schemes
are often used. In a 2-bit scheme, a prediction must be wrong twice before it is
changed. Figure 4.61 shows the finite-state machine for a 2-bit prediction scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed
with the instruction address during the IF pipe stage. If the instruction is predicted
as taken, fetching begins from the target as soon as the PC is known; as mentioned
on page 308, it can be as early as the ID stage. Otherwise, sequential fetching and
executing continue. If the prediction turns out to be wrong, the prediction bits are
changed as shown in Figure 4.61.

Elaboration: A branch predictor tells us whether a conditional branch is taken,
but still requires the calculation of the branch target. In the five-stage pipeline, this
calculation takes one cycle, meaning that taken branches will have a one-cycle penalty.
One approach is to use a cache to hold the destination program counter or destination
instruction using a branch target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular
branch. Researchers noticed that using information about both a local branch
and the global behavior of recently executed branches together yields greater
prediction accuracy for the same number of prediction bits. Such predictors are
called correlating predictors. A typical correlating predictor might have two 2-bit

branch target buffer
A structure that caches
the destination PC or
destination instruction
for a branch. It is usually
organized as a cache with
tags, making it more
costly than a simple
prediction buffer.

correlating predictor
A branch predictor that
combines local behavior
of a particular branch
and global information
about the behavior of
some recent number of
executed branches.

EXAMPLE

ANSWER

 4.8 Control Hazards 313

predictors for each branch, with the choice between predictors made based on
whether the last executed branch was taken or not taken. Thus, the global branch
behavior can be thought of as adding additional index bits for the prediction
lookup.

Another approach to branch prediction is the use of tournament predictors. A
tournament branch predictor uses multiple predictors, tracking, for each branch,
which predictor yields the best results. A typical tournament predictor might
contain two predictions for each branch index: one based on local information and
one based on global branch behavior. A selector would choose which predictor
to use for any given prediction. The selector can operate similarly to a 1- or 2-bit
predictor, favoring whichever of the two predictors has been more accurate. Some
recent microprocessors use such ensemble predictors.

Elaboration: One way to reduce the number of conditional branches is to add conditional
move instructions. Instead of changing the PC with a conditional branch, the instruction
conditionally changes the destination register of the move. For example, the ARMv8
instruction set architecture has a conditional select instruction called CSEL. It specifies a
destination register, two source registers, and a condition. The destination register gets a
value of the first operand if the condition is true and the second operand otherwise. Thus,
CSEL X8, X11, X4, NE copies the contents of register 11 into register 8 if the condition
codes say the result of the operation was not equal zero or a copy of register 4 into register
11 if it was zero. Hence, programs using the ARMv8 instruction set could have fewer
conditional branches than programs written in RISC-V.

tournament branch
predictor A branch
predictor with multiple
predictions for each
branch and a selection
mechanism that chooses
which predictor to enable
for a given branch.

FIGURE 4.61 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of
its range as the division between taken and not taken.

Predict taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

Predict not takenPredict not taken

Predict taken

314 Chapter 4 The Processor

Pipeline Summary
We started in the laundry room, showing principles of pipelining in an everyday
setting. Using that analogy as a guide, we explained instruction pipelining
step-by-step, starting with the single-cycle datapath and then adding pipeline
registers, forwarding paths, data hazard detection, branch prediction, and flushing
instructions on mispredicted branches or load-use data hazards. Figure 4.62 shows
the final evolved datapath and control. We now are ready for yet another control
hazard: the sticky issue of exceptions.

Check
Yourself

Consider three branch prediction schemes: predict not taken, predict taken, and
dynamic prediction. Assume that they all have zero penalty when they predict
correctly and two cycles when they are wrong. Assume that the average predict
accuracy of the dynamic predictor is 90%. Which predictor is the best choice for
the following branches?

FIGURE 4.62 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so
it’s missing the ALUsrc Mux from Figure 4.55 and the multiplexor controls from Figure 4.49.

Control

Hazard
detection

unit

+

4

PC
Instruction

memory

Imm
Gen

Registers =

+

Fowarding
unit

ALU

ID/EX

MEM/WB

EX/MEM

WB

M

EX

Shift
left 1

IF.Flush

IF/ID

Data
memory

WB

WBM

0

 4.9 Exceptions 315

 4.9 Exceptions

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the toughest part to make fast. One of the demanding tasks of
control is implementing exceptions and interrupts—events other than branches
that change the normal flow of instruction execution. They were initially created to
handle unexpected events from within the processor, like an undefined instruction.
The same basic mechanism was extended for I/O devices to communicate with the
processor, as we will see in Chapter 5.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using either name to refer to both types of events. For example,
the Intel x86 uses interrupt. We use the term exception to refer to any unexpected
change in control flow without distinguishing whether the cause is internal or
external; we use the term interrupt only when the event is externally caused. Here
are examples showing whether the situation is internally generated by the processor
or externally generated and the name that RISC-V uses:

Type of event From where? RISC-V terminology

System reset External Exception

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Either

Many of the requirements to support exceptions come from the specific
situation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 5, when we will better understand the motivation for additional
capabilities in the exception mechanism. In this section, we deal with the control
implementation for detecting types of exceptions that arise from the portions of
the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often
on the critical timing path of a processor, which determines the clock cycle time
and thus performance. Without proper attention to exceptions during design of
the control unit, attempts to add exceptions to an intricate implementation can
significantly reduce performance, as well as complicate the task of getting the
design correct.

exception Also
called interrupt. An
unscheduled event
that disrupts program
execution; used to detect
undefined instructions.

interrupt An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all
exceptions.)

1. A conditional branch that is taken with 5% frequency

2. A conditional branch that is taken with 95% frequency

3. A conditional branch that is taken with 70% frequency

To make a computer
with automatic
program-interruption
facilities behave
[sequentially] was
not an easy matter,
because the number of
instructions in various
stages of processing
when an interrupt
signal occurs may be
large.
Fred Brooks, Jr.,
Planning a Computer
System: Project Stretch,
1962

316 Chapter 4 The Processor

How Exceptions are Handled in the RISC-V Architecture
The only types of exceptions that our current implementation can generate are
execution of an undefined instruction or a hardware malfunction. We’ll assume
a hardware malfunction occurs during the instruction add x11, x12, x11 as
the example exception in the next few pages. The basic action that the processor
must perform when an exception occurs is to save the address of the unfortunate
instruction in the supervisor exception cause register (SEPC) and then transfer
control to the operating system at some specified address.

The operating system can then take the appropriate action, which may involve
providing some service to the user program, taking some predefined action in
response to a malfunction, or stopping the execution of the program and reporting
an error. After performing whatever action is required because of the exception,
the operating system can terminate the program or may continue its execution,
using the SEPC to determine where to restart the execution of the program. In
Chapter 5, we will look more closely at the issue of restarting the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main
methods used to communicate the reason for an exception. The method used in
the RISC-V architecture is to include a register (called the Supervisor Exception
Cause Register or SCAUSE), which holds a field that indicates the reason for the
exception.

A second method is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the exception,
possibly added to a base register that points to memory range for vectored
interrupts. For example, we might define the following exception vector addresses
to accommodate these exception types:

Exception type
Exception vector address to be added

to a Vector Table Base Register

Undefined instruction 00 0100 0000two

System Error (hardware malfunction) 01 1000 0000two

The operating system knows the reason for the exception by the address at which it
is initiated. When the exception is not vectored, as in RISC-V, a single entry point for all
exceptions can be used, and the operating system decodes the status register to find the
cause. For architectures with vectored exceptions, the addresses might be separated by,
say, 32 bytes or eight instructions, and the operating system must record the reason for
the exception and may perform some limited processing in this sequence.

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extending
control. Let’s assume that we are implementing the exception system with the single
interrupt entry point being the address 0000 0000 1C09 0000hex. (Implementing

vectored interrupt An
interrupt for which
the address to which
control is transferred is
determined by the cause
of the exception.

 4.9 Exceptions 317

vectored exceptions is no more difficult.) We will need to add two additional
registers to our current RISC-V implementation:

■	 SEPC: A 64-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

■	 SCAUSE: A register used to record the cause of the exception. In the RISC-V
architecture, this register is 64 bits, although most bits are currently unused.
Assume there is a field that encodes the two possible exception sources
mentioned above, with 2 representing an undefined instruction and 12
representing hardware malfunction.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control hazard.
For example, suppose there is a hardware malfunction in an add instruction. Just as
we did for the taken branch in the previous section, we must flush the instructions
that follow the add instruction from the pipeline and begin fetching instructions
from the new address. We will use the same mechanism we used for taken branches,
but this time the exception causes the deasserting of control lines.

When we dealt with branch misprediction, we saw how to flush the instruction
in the IF stage by turning it into a nop. To flush instructions in the ID stage, we
use the multiplexor already in the ID stage that zeros control signals for stalls. A
new control signal, called ID.Flush, is ORed with the stall signal from the hazard
detection unit to flush during ID. To flush the instruction in the EX phase, we use
a new signal called EX.Flush to cause new multiplexors to zero the control lines.
To start fetching instructions from location 0000 0000 1C09 0000hex, which we are
using as the RISC-V exception address, we simply add an additional input to the
PC multiplexor that sends 0000 0000 1C09 0000hex to the PC. Figure 4.63 shows
these changes.

This example points out a problem with exceptions: if we do not stop execution
in the middle of the instruction, the programmer will not be able to see the original
value of register x1 because it will be clobbered as the destination register of the
add instruction. If we assume the exception is detected during the EX stage, we
can use the EX.Flush signal to prevent the instruction in the EX stage from writing
its result in the WB stage. Many exceptions require that we eventually complete
the instruction that caused the exception as if it executed normally. The easiest
way to do this is to flush the instruction and restart it from the beginning after the
exception is handled.

The final step is to save the address of the offending instruction in the supervisor
exception program counter (SEPC). Figure 4.63 shows a stylized version of the
datapath, including the branch hardware and necessary accommodations to handle
exceptions.

318 Chapter 4 The Processor

Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub x11, x2, x4
44hex and x12, x2, x5
48hex or x13, x2, x6
4Chex add x1, x2, x1
50hex sub x15, x6, x7
54hex ld x16, 100(x7)
. . .

assume the instructions to be invoked on an exception begin like this:

1C090000hex sd x26, 1000(x10)
1C090004hex sd x27, 1008(x10)
. . .

EXAMPLE

FIGURE 4.63 The datapath with controls to handle exceptions. The key additions include a new input with the value 0000 0000
1C09 0000hex in the multiplexor that supplies the new PC value; an SCAUSE register to record the cause of the exception; and an SEPC register
to save the address of the instruction that caused the exception. The 0000 0000 1C09 0000hex input to the multiplexor is the initial address to
begin fetching instructions in the event of an exception.

0

0

0 M

WB

WB

Data
memory

Instruction
memory

ALU

=

ID/EX

EX/MEM

SCAUSE
SEPC

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

Hazard
detection

unit

Shift
left 1

IF.Flush

ID.Flush

EX.Flush

4

Imm
Gen

1C090000

Registers

+

+

 4.9 Exceptions 319

Show what happens in the pipeline if a hardware malfunction exception
occurs in the add instruction.

Figure 4.64 shows the events, starting with the add instruction in the EX stage.
Assume the hardware malfunction is detected during that phase, and 0000
0000 1C09 0000hex is forced into the PC. Clock cycle 7 shows that the add and
following instructions are flushed, and the first instruction of the exception-
handling code is fetched. Note that the address of the add instruction is saved:
4Chex.

We mentioned several examples of exceptions on page 315, and we will see
others in Chapter 5. With five instructions active in any clock cycle, the challenge
is to associate an exception with the appropriate instruction. Moreover, multiple
exceptions can occur simultaneously in a single clock cycle. The solution is to
prioritize the exceptions so that it is easy to determine which is serviced first.
In RISC-V implementations, the hardware sorts exceptions so that the earliest
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specific
instruction, so the implementation has some flexibility as to when to interrupt the
pipeline. Hence, the mechanism used for other exceptions works just fine.

The SEPC register captures the address of the interrupted instructions, and the
SCAUSE register records the highest priority exception in a clock cycle if more
than one exception occurs.

ANSWER

The hardware and the operating system must work in conjunction so that exceptions
behave as you would expect. The hardware contract is normally to stop the offending
instruction in midstream, let all prior instructions complete, flush all following
instructions, set a register to show the cause of the exception, save the address of
the offending instruction, and then branch to a prearranged address. The operating
system contract is to look at the cause of the exception and act appropriately. For
an undefined instruction or hardware failure, the operating system normally kills
the program and returns an indicator of the reason. For an I/O device request or an
operating system service call, the operating system saves the state of the program,
performs the desired task, and, at some point in the future, restores the program
to continue execution. In the case of I/O device requests, we may often choose to
run another task before resuming the task that requested the I/O, since that task
may often not be able to proceed until the I/O is complete. Exceptions are why the
ability to save and restore the state of any task is critical. One of the most important
and frequent uses of exceptions is handling page faults; Chapter 5 describes these
exceptions and their handling in more detail.

Hardware/
Software
Interface

320 Chapter 4 The Processor

FIGURE 4.64 The result of an exception due to hardware malfunction in the add instruction. The exception is detected
during the EX stage of clock 6, saving the address of the add instruction in the SEPC register (4Chex). It causes all the Flush signals to be
set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted
to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—sd x26, 1000(x0)—from instruction location
0000 0000 1C09 0000hex. Note that the and and or instructions, which are prior to the add, still complete.

ld x16, 100(x7) sub x15, x6, x7 add x1, x2, x1 or x13, . . . and x12, . . .

sd x26, 1000(x0)

Clock 6

Clock 7

bubble (nop) bubble bubble or x13, . . .

0

0

000

4C

0

10

10

10

0

0 0

00

000000

0

0

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

Hazard
detection

unit

+

+
Shift
left 1

=

IF.Flush
ID.Flush

EX.Flush

4

54

58

54

50

x115

Sign-
extend

1C09000

Registers

SCAUSE

SEPC

zzz

x6
x2

x1

x7

13 12

0 0 M

WB

WB

Data
memory

Instruction
memory

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

Hazard
detection

unit

+

+
Shift
left 1

IF.Flush
ID.Flush

EX.Flush

4

54

Imm
Gen

1C090000

1C090000

1C090000

1C090004

Registers

SCAUSE

SEPC

13

13

ALU=

 4.10 Parallelism via Instructions 321

Elaboration: The difficulty of always associating the proper exception with the correct
instruction in pipelined computers has led some computer designers to relax this
requirement in noncritical cases. Such processors are said to have imprecise interrupts
or imprecise exceptions. In the example above, PC would normally have 58hex at the start
of the clock cycle after the exception is detected, even though the offending instruction
is at address 4Chex. A processor with imprecise exceptions might put 58hex into SEPC and
leave it up to the operating system to determine which instruction caused the problem.
RISC-V and the vast majority of computers today support precise interrupts or precise
exceptions. One reason is designers of a deeper pipeline processor might be tempted
to record a different value in SEPC, which would create headaches for the OS. To prevent
them, the deeper pipeline would likely be required to record the same PC that would
have been recorded in the five-stage pipeline. It is simpler for everyone to just record
the PC of the faulting instruction instead. (Another reason is to support virtual memory,
which we shall see in Chapter 5.)

Elaboration: We show that RISC-V uses the exception entry address
0000 0000 1C09 0000hex, which is chosen somewhat arbitrarily. Many RISC-V computers
store the exception entry address in a special register named Supervisor Trap Vector
(STVEC), which the OS can load with a value of its choosing.

precise interrupt Also
called precise exception.
An interrupt or exception
that is always associated
with the correct
instruction in pipelined
computers.

imprecise
interrupt Also called
imprecise exception.
Interrupts or exceptions
in pipelined computers
that are not associated
with the exact instruction
that was the cause of the
interrupt or exception.

Check
Yourself

Which exception should be recognized first in this sequence?

1. xxx x11, x12, x11 // undefined instruction

2. sub x11, x12, x11 // hardware error

 4.10 Parallelism via Instructions

Be forewarned: this section is a brief overview of fascinating but complex topics.
If you want to learn more details, you should consult our more advanced book,
Computer Architecture: A Quantitative Approach, fifth edition, where the material
covered in these 13 pages is expanded to almost 200 pages (including appendices)!

Pipelining exploits the potential parallelism among instructions. This
parallelism is called, naturally enough, instruction-level parallelism (ILP). There
are two primary methods for increasing the potential amount of instruction-
level parallelism. The first is increasing the depth of the pipeline to overlap more
instructions. Using our laundry analogy and assuming that the washer cycle was
longer than the others were, we could divide our washer into three machines that
perform the wash, rinse, and spin steps of a traditional washer. We would then

322 Chapter 4 The Processor

move from a four-stage to a six-stage pipeline. To get the full speed-up, we need
to rebalance the remaining steps so they are the same length, in processors or in
laundry. The amount of parallelism being exploited is higher, since there are more
operations being overlapped. Performance is potentially greater since the clock
cycle can be shorter.

Another approach is to replicate the internal components of the computer so
that it can launch multiple instructions in every pipeline stage. The general name
for this technique is multiple issue. A multiple-issue laundry would replace our
household washer and dryer with, say, three washers and three dryers. You would
also have to recruit more assistants to fold and put away three times as much
laundry in the same amount of time. The downside is the extra work to keep all the
machines busy and transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction execution rate to
exceed the clock rate or, stated alternatively, the CPI to be less than 1. As mentioned
in Chapter 1, it is sometimes useful to flip the metric and use IPC, or instructions per
clock cycle. Hence, a 3-GHz four-way multiple-issue microprocessor can execute a
peak rate of 12 billion instructions per second and have a best-case CPI of 0.33,
or an IPC of 3. Assuming a five-stage pipeline, such a processor would have up to
20 instructions in execution at any given time. Today’s high-end microprocessors
attempt to issue from three to six instructions in every clock cycle. Even moderate
designs will aim at a peak IPC of 2. There are typically, however, many constraints
on what types of instructions may be executed simultaneously, and what happens
when dependences arise.

There are two main ways to implement a multiple-issue processor, with the
major difference being the division of work between the compiler and the hardware.
Because the division of work dictates whether decisions are being made statically
(that is, at compile time) or dynamically (that is, during execution), the approaches
are sometimes called static multiple issue and dynamic multiple issue. As we will
see, both approaches have other, more commonly used names, which may be less
precise or more restrictive.

Two primary and distinct responsibilities must be dealt with in a multiple-issue
pipeline:

1. Packaging instructions into issue slots: how does the processor determine
how many instructions and which instructions can be issued in a given
clock cycle? In most static issue processors, this process is at least partially
handled by the compiler; in dynamic issue designs, it is normally dealt with
at runtime by the processor, although the compiler will often have already
tried to help improve the issue rate by placing the instructions in a beneficial
order.

2. Dealing with data and control hazards: in static issue processors, the compiler
handles some or all the consequences of data and control hazards statically.
In contrast, most dynamic issue processors attempt to alleviate at least some
classes of hazards using hardware techniques operating at execution time.

instruction-level
parallelism The
parallelism among
instructions.

multiple issue A
scheme whereby multiple
instructions are launched
in one clock cycle.

static multiple issue An
approach to implementing
a multiple-issue processor
where many decisions
are made by the compiler
before execution.

dynamic multiple
issue An approach to
implementing a multiple-
issue processor where
many decisions are made
during execution by the
processor.

issue slots The positions
from which instructions
could issue in a given
clock cycle; by analogy,
these correspond to
positions at the starting
blocks for a sprint.

 4.10 Parallelism via Instructions 323

Although we describe these as distinct approaches, in reality, one approach
often borrows techniques from the other, and neither approach can claim to be
perfectly pure.

The Concept of Speculation
One of the most important methods for finding and exploiting more ILP is
speculation. Based on the great idea of prediction, speculation is an approach
that allows the compiler or the processor to “guess” about the properties of an
instruction, to enable execution to begin for other instructions that may depend
on the speculated instruction. For example, we might speculate on the outcome of
a branch, so that instructions after the branch could be executed earlier. Another
example is that we might speculate that a store that precedes a load does not refer to
the same address, which would allow the load to be executed before the store. The
difficulty with speculation is that it may be wrong. So, any speculation mechanism
must include both a method to check if the guess was right and a method to unroll
or back out the effects of the instructions that were executed speculatively. The
implementation of this back-out capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the
compiler can use speculation to reorder instructions, moving an instruction across
a branch or a load across a store. The processor hardware can perform the same
transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather different.
In the case of speculation in software, the compiler usually inserts additional
instructions that check the accuracy of the speculation and provide a fix-up
routine to use when the speculation is wrong. In hardware speculation, the
processor usually buffers the speculative results until it knows they are no longer
speculative. If the speculation is correct, the instructions are completed by
allowing the contents of the buffers to be written to the registers or memory. If
the speculation is incorrect, the hardware flushes the buffers and re-executes the
correct instruction sequence. Misspeculation typically requires the pipeline to be
flushed, or at least stalled, and thus further reduces performance.

Speculation introduces one other possible problem: speculating on certain
instructions may introduce exceptions that were formerly not present. For example,
suppose a load instruction is moved in a speculative manner, but the address it uses
is not within bounds when the speculation is incorrect. The result would be that an
exception that should not have occurred would occur. The problem is complicated
by the fact that if the load instruction were not speculative, then the exception
must occur! In compiler-based speculation, such problems are avoided by adding
special speculation support that allows such exceptions to be ignored until it is
clear that they really should occur. In hardware-based speculation, exceptions
are simply buffered until it is clear that the instruction causing them is no longer
speculative and is ready to complete; at that point, the exception is raised, and
normal exception handling proceeds.

speculation An
approach whereby the
compiler or processor
guesses the outcome of an
instruction to remove it as
a dependence in executing
other instructions.

324 Chapter 4 The Processor

Since speculation can improve performance when done properly and decrease
performance when done carelessly, significant effort goes into deciding when it
is appropriate to speculate. Later in this section, we will examine both static and
dynamic techniques for speculation.

Static Multiple Issue
Static multiple-issue processors all use the compiler to assist with packaging
instructions and handling hazards. In a static issue processor, you can think of the
set of instructions issued in a given clock cycle, which is called an issue packet, as
one large instruction with multiple operations. This view is more than an analogy.
Since a static multiple-issue processor usually restricts what mix of instructions can
be initiated in a given clock cycle, it is useful to think of the issue packet as a single
instruction allowing several operations in certain predefined fields. This view led to
the original name for this approach: Very Long Instruction Word (VLIW).

Most static issue processors also rely on the compiler to take on some
responsibility for handling data and control hazards. The compiler’s responsibilities
may include static branch prediction and code scheduling to reduce or prevent all
hazards. Let’s look at a simple static issue version of an RISC-V processor, before we
describe the use of these techniques in more aggressive processors.

An Example: Static Multiple Issue with the RISC-V ISA

To give a flavor of static multiple issue, we consider a simple two-issue RISC-V
processor, where one of the instructions can be an integer ALU operation or
branch and the other can be a load or store. Such a design is like that used in
some embedded processors. Issuing two instructions per cycle will require fetching
and decoding 64 bits of instructions. In many static multiple-issue processors, and
essentially all VLIW processors, the layout of simultaneously issuing instructions
is restricted to simplify the decoding and instruction issue. Hence, we will require
that the instructions be paired and aligned on a 64-bit boundary, with the ALU
or branch portion appearing first. Furthermore, if one instruction of the pair
cannot be used, we require that it be replaced with a nop. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 4.65 shows how the
instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for removing
all hazards, scheduling the code, and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others, the
hardware detects data hazards and generates stalls between two issue packets, while
requiring that the compiler avoid all dependences within an instruction packet.
Even so, a hazard generally forces the entire issue packet containing the dependent
instruction to stall. Whether the software must handle all hazards or only try to
reduce the fraction of hazards between separate issue packets, the appearance of

issue packet The set
of instructions that
issues together in one
clock cycle; the packet
may be determined
statically by the compiler
or dynamically by the
processor.

Very Long Instruction
Word (VLIW) A
style of instruction set
architecture that launches
many operations that are
defined to be independent
in a single-wide
instruction, typically with
many separate opcode
fields.

 4.10 Parallelism via Instructions 325

having a large single instruction with multiple operations is reinforced. We will
assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the first need for
additional hardware—beyond the usual hazard detection and stall logic—is extra
ports in the register file (see Figure 4.66). In one clock cycle, we may need to read
two registers for the ALU operation and two more for a store, and also one write
port for an ALU operation and one write port for a load. Since the ALU is tied
up for the ALU operation, we also need a separate adder to calculate the effective
address for data transfers. Without these extra resources, our two-issue pipeline
would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor of
two! Doing so, however, requires that twice as many instructions be overlapped
in execution, and this additional overlap increases the relative performance loss
from data and control hazards. For example, in our simple five-stage pipeline,
loads have a use latency of one clock cycle, which prevents one instruction from
using the result without stalling. In the two-issue, five-stage pipeline the result of
a load instruction cannot be used on the next clock cycle. This means that the next
two instructions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline now have a
one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and static
multiple issue requires that the compiler take on this role.

use latency Number
of clock cycles between
a load instruction and
an instruction that can
use the result of the
load without stalling the
pipeline.

FIGURE 4.65 Static two-issue pipeline in operation. The ALU and data transfer instructions
are issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the
register writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a
precise exception model, which become more difficult in multiple-issue processors.

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

BWMEMXEDIFInoitcurtsnihcnarbroULA

BWMEMXEDIFInoitcurtsnierotsrodaoL

BWMEMXEDIFInoitcurtsnihcnarbroULA

BWMEMXEDIFInoitcurtsnierotsrodaoL

326 Chapter 4 The Processor

Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for RISC-V?

Loop: ld x31, 0(x20) // x31=array element
 add x31, x31, x21 // add scalar in x21
 sd x31, 0(x20) // store result
 addi x20, x20, -8 // decrement pointer
 blt x22, x20, Loop // compare to loop limit,

// branch if x20 > x22

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

The first three instructions have data dependences, as do the next two. Figure
4.67 shows the best schedule for these instructions. Notice that just one pair
of instructions has both issue slots used. It takes five clocks per loop iteration;
at four clocks to execute five instructions, we get the disappointing CPI of 0.8
versus the best case of 0.5, or an IPC of 1.25 versus 2.0. Notice that in computing
CPI or IPC, we do not count any nops executed as useful instructions. Doing
so would improve CPI, but not performance!

EXAMPLE

ANSWER

FIGURE 4.66 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction
memory, two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address
calculations for data transfers and the top ALU handles everything else.

Data
memory

Instruction
memory

ALU

ALU

PC

+

+

Imm
Gen

Registers

4

1C090000

Write
data

Address

Imm
Gen

 4.10 Parallelism via Instructions 327

An important compiler technique to get more performance from loops is loop
unrolling, where multiple copies of the loop body are made. After unrolling, there
is more ILP available by overlapping instructions from different iterations.

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For
simplicity, assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make four
copies of the loop body. After unrolling and eliminating the unnecessary loop
overhead instructions, the loop will contain four copies each of ld, add, and
sd, plus one addi, and one blt. Figure 4.68 shows the unrolled and scheduled
code.

During the unrolling process, the compiler introduced additional registers
(x28, x29, x30). The goal of this process, called register renaming, is to
eliminate dependences that are not true data dependences, but could either
lead to potential hazards or prevent the compiler from flexibly scheduling the
code. Consider how the unrolled code would look using only x31. There would
be repeated instances of ld x31, 0(x20), add x31, x31, x21 followed by sd
x31, 8(x20), but these sequences, despite using x31, are actually completely
independent—no data values flow between one set of these instructions and the
next set. This case is what is called an antidependence or name dependence,
which is an ordering forced purely by the reuse of a name, rather than a real
data dependence that is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler to
move these independent instructions subsequently to better schedule the code.
The renaming process eliminates the name dependences, while preserving the
true dependences.

loop unrolling A
technique to get more
performance from loops
that access arrays, in
which multiple copies of
the loop body are made
and instructions from
different iterations are
scheduled together.

EXAMPLE

ANSWER

FIGURE 4.67 The scheduled code as it would look on a two-issue RISC-V pipeline. The
empty slots are no-ops. Note that since we moved the addi before the sd, we had to adjust sd’s offset by 8.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: ld x31, 0(x20) 1

addi x20, x20, -8 2

add x31, x31, x21 3

blt x22, x20, Loop 4sd x31, 8(x20)

antidependence
Also called name
dependence An
ordering forced by the
reuse of a name, typically
a register, rather than by
a true dependence that
carries a value between
two instructions.

register renaming The
renaming of registers
by the compiler or
hardware to remove
antidependences.

328 Chapter 4 The Processor

Notice now that 12 of the 14 instructions in the loop execute as pairs. It takes
eight clocks for four loop iterations, which yields an IPC of 14/8 = 1.75. Loop
unrolling and scheduling more than doubled performance—8 versus 20 clock
cycles for 4 iterations—partly from reducing the loop control instructions and
partly from dual issue execution. The cost of this performance improvement is
using four temporary registers rather than one, as well as more than doubling
the code size.

Dynamic Multiple-Issue Processors
Dynamic multiple-issue processors are also known as superscalar processors, or
simply superscalars. In the simplest superscalar processors, instructions issue in
order, and the processor decides whether zero, one, or more instructions can issue
in a given clock cycle. Obviously, achieving good performance on such a processor
still requires the compiler to try to schedule instructions to move dependences
apart and thereby improve the instruction issue rate. Even with such compiler
scheduling, there is an important difference between this simple superscalar
and a VLIW processor: the code, whether scheduled or not, is guaranteed by
the hardware to execute correctly. Furthermore, compiled code will always run
correctly independent of the issue rate or pipeline structure of the processor. In
some VLIW designs, this has not been the case, and recompilation was required
when moving across different processor models; in other static issue processors,
code would run correctly across different implementations, but often so poorly as
to make compilation effectively required.

Many superscalars extend the basic framework of dynamic issue decisions to
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses
which instructions to execute in a given clock cycle while trying to avoid hazards

superscalar An
advanced pipelining
technique that enables the
processor to execute more
than one instruction per
clock cycle by selecting
them during execution.

dynamic pipeline
scheduling Hardware
support for reordering
the order of instruction
execution to avoid stalls.

FIGURE 4.68 The unrolled and scheduled code of Figure 4.67 as it would look on a static
two-issue RISC-V pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements
x20 by 32, the addresses loaded are the original value of x20, then that address minus 8, minus 16, and
minus 24.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi x20, x20, -32 ld x28, 0(x20) 1

ld x29, 24(x20) 2

add x28, x28, x21 ld x30, 16(x20) 3

add x29, x29, x21 ld x31, 8(x20) 4

add x30, x30, x21 sd x28, 32(x20) 5

add x31, x31, x21 sd x29, 24(x20) 6

sd x30, 16(x20) 7

blt x22, x20, Loop sd x31, 8(x20) 8

 4.10 Parallelism via Instructions 329

and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the
following code sequence:

ld x31, 0(x21)
add x1, x31, x2
sub x23, x23, x3
andi x5, x23, 20

Even though the sub instruction is ready to execute, it must wait for the ld
and add to complete first, which might take many clock cycles if memory is slow.
(Chapter 5 explains cache misses, the reason that memory accesses are sometimes
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either
fully or partially.

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly
reordering them to avoid stalls. In such processors, the pipeline is divided into
three major units: an instruction fetch and issue unit, multiple functional units
(a dozen or more in high-end designs in 2015), and a commit unit. Figure 4.69
shows the model. The first unit fetches instructions, decodes them, and sends
each instruction to a corresponding functional unit for execution. Each functional
unit has buffers, called reservation stations, which hold the operands and the
operation. (In the next section, we will discuss an alternative to reservation stations
used by many recent processors.) As soon as the buffer contains all its operands
and the functional unit is ready to execute, the result is calculated. When the result
is completed, it is sent to any reservation stations waiting for this particular result
as well as to the commit unit, which buffers the result until it is safe to put the
result into the register file or, for a store, into memory. The buffer in the commit
unit, often called the reorder buffer, is also used to supply operands, in much the
same way as forwarding logic does in a statically scheduled pipeline. Once a result
is committed to the register file, it can be fetched directly from there, just as in a
normal pipeline.

The combination of buffering operands in the reservation stations and results
in the reorder buffer provides a form of register renaming, just like that used by
the compiler in our earlier loop-unrolling example on page 327. To see how this
conceptually works, consider the following steps:

1. When an instruction issues, it is copied to a reservation station for the
appropriate functional unit. Any operands that are available in the register
file or reorder buffer are also immediately copied into the reservation station.
The instruction is buffered in the reservation station until all the operands
and the functional unit are available. For the issuing instruction, the register
copy of the operand is no longer required, and if a write to that register
occurred, the value could be overwritten.

commit unit The unit in
a dynamic or out-of-order
execution pipeline that
decides when it is safe to
release the result of an
operation to programmer-
visible registers and
memory.

reorder buffer The
buffer that holds results in
a dynamically scheduled
processor until it is safe
to store the results to
memory or a register.

reservation station A
buffer within a functional
unit that holds the
operands and the
operation.

330 Chapter 4 The Processor

2. If an operand is not in the register file or reorder buffer, it must be waiting to
be produced by a functional unit. The name of the functional unit that will
produce the result is tracked. When that unit eventually produces the result,
it is copied directly into the waiting reservation station from the functional
unit bypassing the registers.

These steps effectively use the reorder buffer and the reservation stations to
implement register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing
the data flow structure of a program. The processor then executes the instructions
in some order that preserves the data flow order of the program. This style of
execution is called an out-of-order execution, since the instructions can be
executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipeline,
the instruction fetch and decode unit is required to issue instructions in order,
which allows dependences to be tracked, and the commit unit is required to write
results to registers and memory in program fetch order. This conservative mode is
called in-order commit. Hence, if an exception occurs, the computer can point to
the last instruction executed, and the only registers updated will be those written

out-of-order
execution A situation in
pipelined execution when
an instruction blocked
from executing does
not cause the following
instructions to wait.

in-order commit A
commit in which the
results of pipelined
execution are written to
the programmer visible
state in the same order
that instructions are
fetched.

FIGURE 4.69 The three primary units of a dynamically scheduled pipeline. The final step of
updating the state is also called retirement or graduation.

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Reservation
station

Reservation
station

Integer Integer
Floating

point
Load-
store

Commit
unit

In-order issue

Out-of-order executeFunctional
units

In-order commit

. . .

. . .

 4.10 Parallelism via Instructions 331

by instructions before the instruction causing the exception. Although the front
end (fetch and issue) and the back end (commit) of the pipeline run in order, the
functional units are free to initiate execution whenever the data they need are
available. Today, all dynamically scheduled pipelines use in-order commit.

Dynamic scheduling is often extended by including hardware-based
speculation, especially for branch outcomes. By predicting the direction of a
branch, a dynamically scheduled processor can continue to fetch and execute
instructions along the predicted path. Because the instructions are committed
in order, we know whether the branch was correctly predicted before any
instructions from the predicted path are committed. A speculative, dynamically
scheduled pipeline can also support speculation on load addresses, allowing load-
store reordering, and using the commit unit to avoid incorrect speculation. In the
next section, we will look at the use of dynamic scheduling with speculation in
the Intel Core i7 design.

Given that compilers can also schedule code around data dependences, you might
ask why a superscalar processor would use dynamic scheduling. There are three
major reasons. First, not all stalls are predictable. In particular, cache misses
(see Chapter 5) in the memory hierarchy cause unpredictable stalls. Dynamic
scheduling allows the processor to hide some of those stalls by continuing to
execute instructions while waiting for the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch
prediction, it cannot know the exact order of instructions at compile time, since
it depends on the predicted and actual behavior of branches. Incorporating
dynamic speculation to exploit more instruction-level parallelism (ILP) without
incorporating dynamic scheduling would significantly restrict the benefits of
speculation.

Third, as the pipeline latency and issue width change from one implementation
to another, the best way to compile a code sequence also changes. For example, how
to schedule a sequence of dependent instructions is affected by both issue width
and latency. The pipeline structure affects both the number of times a loop must be
unrolled to avoid stalls as well as the process of compiler-based register renaming.
Dynamic scheduling allows the hardware to hide most of these details. Thus, users
and software distributors do not need to worry about having multiple versions of
a program for different implementations of the same instruction set. Similarly, old
legacy code will get much of the benefit of a new implementation without the need
for recompilation.

Understanding
Program
Performance

332 Chapter 4 The Processor

Both pipelining and multiple-issue execution increase peak instruction
throughput and attempt to exploit instruction-level parallelism (ILP).
Data and control dependences in programs, however, offer an upper limit
on sustained performance because the processor must sometimes wait for
a dependence to be resolved. Software-centric approaches to exploiting
ILP rely on the ability of the compiler to find and reduce the effects of such
dependences, while hardware-centric approaches rely on extensions to the
pipeline and issue mechanisms. Speculation, performed by the compiler
or the hardware, can increase the amount of ILP that can be exploited via
prediction, although care must be taken since speculating incorrectly is
likely to reduce performance.

The BIG
Picture

Modern, high-performance microprocessors are capable of issuing several
instructions per clock; unfortunately, sustaining that issue rate is very difficult. For
example, despite the existence of processors with four to six issues per clock, very
few applications can sustain more than two instructions per clock. There are two
primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from
dependences that cannot be alleviated, thus reducing the parallelism among
instructions and the sustained issue rate. Although little can be done about true
data dependences, often the compiler or hardware does not know precisely whether
a dependence exists or not, and so must conservatively assume the dependence
exists. For example, code that makes use of pointers, particularly in ways that
may lead to aliasing, will lead to more implied potential dependences. In contrast,
the greater regularity of array accesses often allows a compiler to deduce that no

Hardware/
Software
Interface

 4.10 Parallelism via Instructions 333

Energy Efficiency and Advanced Pipelining
The downside to the increasing exploitation of instruction-level parallelism via
dynamic multiple issue and speculation is potential energy inefficiency. Each
innovation was able to turn more transistors into performance, but they often did
so very inefficiently. Now that we have collided with the power wall, we are seeing
designs with multiple processors per chip where the processors are not as deeply
pipelined or as aggressively speculative as its predecessors.

The belief is that while the simpler processors are not as fast as their sophisticated
brethren, they deliver better performance per Joule, so that they can deliver more
performance per chip when designs are constrained more by energy than they are
by the number of transistors.

Figure 4.70 shows the number of pipeline stages, the issue width, speculation
level, clock rate, cores per chip, and power of several past and recent Intel
microprocessors. Note the drop in pipeline stages and power as companies switch
to multicore designs.

dependences exist. Similarly, branches that cannot be accurately predicted whether
at runtime or compile time will limit the ability to exploit ILP. Often, additional
ILP is available, but the ability of the compiler or the hardware to find ILP that may
be widely separated (sometimes by the execution of thousands of instructions) is
limited.

Second, losses in the memory hierarchy (the topic of Chapter 5) also limit the
ability to keep the pipeline full. Some memory system stalls can be hidden, but
limited amounts of ILP also limit the extent to which such stalls can be hidden.

FIGURE 4.70 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power. The Pentium
4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.

Microprocessor Year Clock Rate
Pipeline
Stages

Issue
Width

Out-of-Order/
Speculation

Cores/
Chip Power

W51oN15zHM529891684letnI

W011oN25zHM663991muitnePletnI

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 W

W572seY441zHM03926002eroCletnI

Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 2–4 87 W

Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W

334 Chapter 4 The Processor

Elaboration: A commit unit controls updates to the register file and memory. Some
dynamically scheduled processors update the register file immediately during execution,
using extra registers to implement the renaming function and preserving the older copy
of a register until the instruction updating the register is no longer speculative. Other
processors buffer the result, which, as mentioned above, is typically in a structure called
a reorder buffer, and the actual update to the register file occurs later as part of the
commit. Stores to memory must be buffered until commit time either in a store buffer
(see Chapter 5) or in the reorder buffer. The commit unit allows the store to write to
memory from the buffer when the buffer has a valid address and valid data, and when
the store is no longer dependent on predicted branches.

Elaboration: Memory accesses benefit from nonblocking caches, which continue
servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution
processors need the cache to allow instructions to execute during a miss.

State whether the following techniques or components are associated primarily
with a software- or hardware-based approach to exploiting ILP. In some cases, the
answer may be both.

1. Branch prediction

2. Multiple issue

3. VLIW

4. Superscalar

5. Dynamic scheduling

6. Out-of-order execution

7. Speculation

8. Reorder buffer

9. Register renaming

Check
Yourself

 4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

Figure 4.71 describes the two microprocessors we examine in this section, whose
targets are the two endpoints of the post-PC era.

The ARM Cortex-A53
The ARM Corxtex-A53 runs at 1.5 GHz with an eight-stage pipeline and executes
the ARMv8 instruction set. It uses dynamic multiple issue, with two instructions
per clock cycle. It is a static in-order pipeline, in that instructions issue, execute,
and commit in order. The pipeline consists of three sections for instruction fetch,
instruction decode, and execute. Figure 4.72 shows the overall pipeline.

 4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 335

FIGURE 4.71 Specification of the ARM Cortex-A53 and the Intel Core i7 920.

Processor ARM A53 Intel Core i7 920

duolC ,revreSeciveD eliboM lanosrePtekraM

Thermal design power 100 milliWatts (1 core @ 1 GHz) 130 Watts

zHG 66.2zHG 5.1etar kcolC

4)elbarug

seYseY?tniop gnitaolF

cimanyDcimanyD?eussI elpitluM

42elcyc kcolc/snoitcurtsni kaeP

418segatS enilepiP

noitalucepS htiw redro-fo-tuO cimanyDredro-nI citatSeludehcs enilepiP

level-2dirbyHnoitciderp hcnarB

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level cache/core 128–2048 KiB (shared) 256 KiB (per core)

BiM 8–2)tnedneped mroftalp()derahs(ehcac level dr3

FIGURE 4.72 The Cortex-A53 pipeline. The first three stages fetch instructions into a 13-entry instruction queue. The Address
Generation Unit (AGU) uses a Hybrid Predictor, Indirect Predictor, and a Return Stack to predict branches to try to keep the instruction queue
full. Instruction decode is three stages and instruction execution is three stages. With two additional stages for floating point and SIMD
operations.

Floating Point execute

Integer execute and load-store
Instruction fetch & predict

Instruction Decode

AGU
+

TLB

Instruction
Cache

F1 F3F2

Writeback

D1

Iss Ex1 Ex2 Wr

ALU pipe 0

ALU pipe 1

MAC pipe

Divide pipe

Load pipe

MUL/DIV/SQRT pipe

ALU pipe

Hybrid
Predictor

Indirect
Predictor

Early
Decode

13-Entry
Instruction

Queue

F4

D2

Main
Decode

Late
Decode

D3

Issue

Integer
Register

file

Store pipe

NEON
Register

file

F1 F2 F3 F4 F5

336 Chapter 4 The Processor

The first three stages fetch two instructions at a time and try to keep a 13-entry
instruction queue full. It uses a 6k-bit hybrid conditional branch predictor, a
256-entry indirect branch predictor, and an 8-entry return address stack to predict
future function returns. The prediction of indirect branches takes an additional
pipeline stage. This design choice will incur extra latency if the instruction queue
cannot decouple the decode and execute stages from the fetch stage, primarily in
the case of a branch misprediction or an instruction cache miss. When the branch
prediction is wrong, it empties the pipeline, resulting in an eight-clock cycle
misprediction penalty.

The decode stages of the pipeline determine if there are dependences between a
pair of instructions, which would force sequential execution, and in which pipeline
of the execution stages to send the instructions.

The instruction execution section primarily occupies three pipeline stages and
provides one pipeline for load instructions, one pipeline for store instructions, two
pipelines for integer arithmetic operations, and separate pipelines for integer multiply
and divide operations. Either instruction from the pair can be issued to the load or
store pipelines. The execution stages have full forwarding between the pipelines.

Floating-point and SIMD operations add a two more pipeline stages to the
instruction execution section and feature one pipeline for multiply/divide/square
root operations and one pipeline for other arithmetic operations.

Figure 4.73 shows the CPI of the Cortex-A53 using the SPEC2006 benchmarks.
While the ideal CPI is 0.5, the best case achieved is 1.0, the median case is 1.3, and

FIGURE 4.73 CPI on ARM Cortex-A53 for the SPEC2006 integer benchmarks.

Memory hierarchy stalls
Pipeline stalls
Ideal CPI

0.97

hmmer h264ref libquantum perlbench sjeng bzip2 gobmk xalancbmk gcc astar omnetpp mcf

1.04 1.07 1.17 1.22 1.33 1.39

1.75 1.76
2.14

3.37

8.56

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

 4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 337

the worst case is 8.6. For the median case, 60% of the stalls are due to the pipelining
hazards and 40% are stalls due to the memory hierarchy. Pipeline stalls are caused
by branch mispredictions, structural hazards, and data dependencies between pairs
of instructions. Given the static pipeline of the Cortex-A53, it is up to the compiler
to try to avoid structural hazards and data dependences.

Elaboration: The Cortex-A53 is a configurable core that supports the ARMv8
instruction set architecture. It is delivered as an IP (Intellectual Property) core. IP cores
are the dominant form of technology delivery in the embedded, personal mobile device,
and related markets; billions of ARM and MIPS processors have been created from
these IP cores.

Note that IP cores are different than the cores in the Intel i7 multicore computers.
An IP core (which may itself be a multicore) is designed to be incorporated with other
logic (hence it is the “core” of a chip), including application-specific processors (such
as an encoder or decoder for video), I/O interfaces, and memory interfaces, and then
fabricated to yield a processor optimized for a particular application. Although the
processor core is almost identical logically, the resultant chips have many differences.
One parameter is the size of the L2 cache, which can vary by a factor of 16.

The Intel Core i7 920
x86 microprocessors employ sophisticated pipelining approaches, using both
dynamic multiple issue and dynamic pipeline scheduling with out-of-order
execution and speculation for their pipelines. These processors, however, are still
faced with the challenge of implementing the complex x86 instruction set, described
in Chapter 2. Intel fetches x86 instructions and translates them into internal
RISC-V-like instructions, which Intel calls micro-operations. The micro-operations
are then executed by a sophisticated, dynamically scheduled, speculative pipeline
capable of sustaining an execution rate of up to six micro-operations per clock
cycle. This section focuses on that micro-operation pipeline.

When we consider the design of such processors, the design of the functional
units, the cache and register file, instruction issue, and overall pipeline control
become intermingled, making it difficult to separate the datapath from the
pipeline. Because of this, many engineers and researchers have adopted the term
microarchitecture to refer to the detailed internal architecture of a processor.

The Intel Core i7 uses a scheme for resolving antidependences and incorrect
speculation that uses a reorder buffer together with register renaming. Register
renaming explicitly renames the architectural registers in a processor (16 in the
case of the 64-bit version of the x86 architecture) to a larger set of physical registers.
The Core i7 uses register renaming to remove antidependences. Register renaming
requires the processor to maintain a map between the architectural registers and
the physical registers, indicating which physical register is the most current copy
of an architectural register. By keeping track of the renamings that have occurred,
register renaming offers another approach to recovery in the event of incorrect
speculation: simply undo the mappings that have occurred since the first incorrectly

microarchitecture The
organization of the
processor, including the
major functional units,
their interconnection, and
control.

architectural
registers The instruction
set of visible registers of a
processor; for example, in
RISC-V, these are the 32
integer and 32 floating-
point registers.

338 Chapter 4 The Processor

speculated instruction. This undo will cause the state of the processor to return to
the last correctly executed instruction, keeping the correct mapping between the
architectural and physical registers.

Figure 4.74 shows the overall organization and pipeline of the Core i7. Below are
the eight steps an x86 instruction goes through for execution.

1. Instruction fetch—The processor uses a multilevel branch target buffer to
achieve a balance between speed and prediction accuracy. There is also a
return address stack to speed up function return. Mispredictions cause a
penalty of about 15 cycles. Using the predicted address, the instruction fetch
unit fetches 16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—The predecode
stage transforms the 16 bytes into individual x86 instructions. This predecode
is nontrivial since the length of an x86 instruction can be from 1 to 15 bytes

FIGURE 4.74 The Core i7 pipeline with memory components. The total pipeline depth is 14
stages, with branch mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The
six independent units can begin execution of a ready micro-operation each clock cycle.

256 KB unified L2
cache (eight-way)

Register alias table and allocator

128-Entry reorder buffer

36-Entry reservation station

Retirement
register file

ALU
shift

SSE
shuffle
ALU

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

SSE
shuffle
ALU

SSE
shuffle
ALU

Memory order buffer

ALU
shift

ALU
shift

Load
address

Store
address

Store
data

Store
& load

Micro
-code

Complex
macro-op
decoder

28-Entry micro-op loop stream detect buffer

Simple
macro-op
decoder

Simple
macro-op
decoder

Simple
macro-op
decoder

128-Entry
inst. TLB

(four-way)

Instruction
fetch

hardware

18-Entry instruction queue

32 KB Inst. cache (four-way associative)

16-Byte pre-decode + macro-op
fusion, fetch buffer

64-Entry data TLB
(4-way associative)

32-KB dual-ported data
cache (8-way associative)

512-Entry unified
L2 TLB (4-way)

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)

 4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 339

and the predecoder must look through a number of bytes before it knows the
instruction length. Individual x86 instructions are placed into the 18-entry
instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-
operations (micro-ops). Three of the decoders handle x86 instructions that
translate directly into one micro-op. For x86 instructions that have more
complex semantics, there is a microcode engine that is used to produce the
micro-op sequence; it can produce up to four micro-ops every cycle and
continues until the necessary micro-op sequence has been generated. The
micro-ops are placed according to the order of the x86 instructions in the
28-entry micro-op buffer.

4. The micro-op buffer performs loop stream detection—If there is a small
sequence of instructions (less than 28 instructions or 256 bytes in length)
that comprises a loop, the loop stream detector will find the loop and directly
issue the micro-ops from the buffer, eliminating the need for the instruction
fetch and instruction decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the
register tables, renaming the registers, allocating a reorder buffer entry, and
fetching any results from the registers or reorder buffer before sending the
micro-ops to the reservation stations.

6. The i7 uses a 36-entry centralized reservation station shared by six functional
units. Up to six micro-ops may be dispatched to the functional units every
clock cycle.

7. The individual function units execute micro-ops and then results are sent
back to any waiting reservation station as well as to the register retirement
unit, where they will update the register state, once it is known that the
instruction is no longer speculative. The entry corresponding to the
instruction in the reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been
marked as complete, the pending writes in the register retirement unit are
executed, and the instructions are removed from the reorder buffer.

Elaboration: Hardware in the second and fourth steps can combine or fuse operations
together to reduce the number of operations that must be performed. Macro-op fusion
in the second step takes x86 instruction combinations, such as compare followed by a
branch, and fuses them into a single operation. Microfusion in the fourth step combines
micro-operation pairs such as load/ALU operation and ALU operation/store and issues
them to a single reservation station (where they can still issue independently), thus
increasing the usage of the buffer. In a study of the Intel Core architecture, which also
incorporated microfusion and macrofusion, Bird et al. [2007] discovered that microfusion
had little impact on performance, while macrofusion appears to have a modest positive
impact on integer performance and little impact on floating-point performance.

340 Chapter 4 The Processor

Performance of the Intel Core i7 920
Figure 4.75 shows the CPI of the Intel Core i7 for each of the SPEC2006 benchmarks.
While the ideal CPI is 0.25, the best case achieved is 0.44, the median case is 0.79,
and the worst case is 2.67.

Although it is difficult to differentiate between pipeline stalls and memory stalls
in a dynamic out-of-order execution pipeline, we can show the effectiveness of
branch prediction and speculation. Figure 4.76 shows the percentage of branches
mispredicted and the percentage of the work (measured by the numbers of micro-
ops dispatched into the pipeline) that does not retire (that is, their results are
annulled) relative to all micro-op dispatches. The min, median, and max of branch
mispredictions are 0%, 2%, and 10%. For wasted work, they are 1%, 18%, and 39%.

The wasted work in some cases closely matches the branch misprediction rates,
such as for gobmk and astar. In several instances, such as mcf, the wasted work
seems relatively larger than the misprediction rate. This divergence is likely due
to the memory behavior. With very high data cache miss rates, mcf will dispatch
many instructions during an incorrect speculation as long as sufficient reservation
stations are available for the stalled memory references. When a branch among the
many speculated instructions is finally mispredicted, the micro-ops corresponding
to all these instructions will be flushed.

FIGURE 4.75 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.

3

2.5

2

1.5C
P

I

1

0.5 0.44
0.59 0.61 0.65

0.74 0.77
0.82

1.02 1.06

1.23

2.12

2.67

0

lib
qu

an
tu

m

h2
64

re
f

hm
m

er

pe
rlb

en
ch

bz
ip2

xa
lan

cb
m

k
sje

ng

go
bm

k
as

ta
r

gc
c

om
ne

tp
p

m
cf

Stalls, misspeculation

Ideal CPI

 4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 341

The Intel Core i7 combines a 14-stage pipeline and aggressive multiple issue to
achieve high performance. By keeping the latencies for back-to-back operations
low, the impact of data dependences is reduced. What are the most serious potential
performance bottlenecks for programs running on this processor? The following
list includes some possible performance problems, the last three of which can apply
in some form to any high-performance pipelined processor.

■	 The use of x86 instructions that do not map to a few simple micro-operations

■	 Branches that are difficult to predict, causing misprediction stalls and restarts
when speculation fails

■	 Long dependences—typically caused by long-running instructions or the
memory hierarchy—that lead to stalls

■	 Performance delays arising in accessing memory (see Chapter 5) that cause
the processor to stall

Understanding
Program
Performance

FIGURE 4.76 Percentage of branch mispredictions and wasted work due to unfruitful
speculation of Intel Core i7 920 running SPEC2006 integer benchmarks.

40%

35%

30%

25%

20%

15%

10%

5%

0%

lib
qu

an
tu

m

h2
64

re
f

hm
m

er

pe
rlb

en
ch

bz
ip2

xa
lan

cb
m

k
sje

ng

go
bm

k
as

ta
r

gc
c

om
ne

tp
p

m
cf

Branch misprediction % Wasted work %

0%
2% 2% 2%

5%

1%

5%

10%

2% 2%

6%

1%

5%
6%

11%

24%

7%

25%

32%

38%

15%

22%

39%

9%

342 Chapter 4 The Processor

 4.12 Going Faster: Instruction-Level
Parallelism and Matrix Multiply

Returning to the DGEMM example from Chapter 3, we can see the impact of
instruction-level parallelism by unrolling the loop so that the multiple-issue, out-
of-order execution processor has more instructions to work with. Figure 4.77 shows
the unrolled version of Figure 3.22, which contains the C intrinsics to produce the
AVX instructions.

Like the unrolling example in Figure 4.68 above, we are going to unroll the loop
four times. Rather than manually unrolling the loop in C by making four copies of
each of the intrinsics in Figure 3.22, we can rely on the gcc compiler to do the unrolling
at −O3 optimization. (We use the constant UNROLL in the C code to control the
amount of unrolling in case we want to try other values.) We surround each intrinsic
with a simple for loop with four iterations (lines 9, 15, and 20) and replace the scalar
C0 in Figure 3.22 with a four-element array c[] (lines 8, 10, 16, and 21).

FIGURE 4.77 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions
for the x86 (Figure 3.22) and loop unrolling to create more opportunities for instruction-level parallelism. Figure 4.78
shows the assembly language produced by the compiler for the inner loop, which unrolls the three for-loop bodies to expose instruction-level
parallelism.

1 //include <x86intrin.h>
2 //define UNROLL (4)
3
4 void dgemm (int n, double* A, double* B, double* C)
5 {
6 for (int i = 0; i < n; i+=UNROLL*4)
7 for (int j = 0; j < n; j++) {
8 __m256d c[4];
9 for (int x = 0; x < UNROLL; x++)
10 c[x] = _mm256_load_pd(C+i+x*4+j*n);
11
12 for(int k = 0; k < n; k++)
13 {
14 __m256d b = _mm256_broadcast_sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)
16 c[x] = _mm256_add_pd(c[x],
17 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
18 }
19
20 for (int x = 0; x < UNROLL; x++)
21 _mm256_store_pd(C+i+x*4+j*n, c[x]);
22 }
23 }

 4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply 343

Figure 4.78 shows the assembly language output of the unrolled code. As
expected, in Figure 4.78 there are four versions of each of the AVX instructions
in Figure 3.23, with one exception. We only need one copy of the vbroadcastsd
instruction, since we can use the four copies of the B element in register %ymm0
repeatedly throughout the loop. Thus, the five AVX instructions in Figure 3.23
become 17 in Figure 4.78, and the seven integer instructions appear in both,
although the constants and addressing changes to account for the unrolling. Hence,
despite unrolling four times, the number of instructions in the body of the loop
only doubles: from 12 to 24.

FIGURE 4.78 The x86 assembly language for the body of the nested loops generated by compiling the unrolled C code
in Figure 4.77.

vmovapd (%r11),%ymm4 // Load 4 elements of C into %ymm41

mov %rbx,%rax // register %rax = %rbx2

xor %ecx,%ecx // register %ecx = 03

vmovapd 0x20(%r11),%ymm3 // Load 4 elements of C into %ymm34

vmovapd 0x40(%r11),%ymm2 // Load 4 elements of C into %ymm25

vmovapd 0x60(%r11),%ymm1 // Load 4 elements of C into %ymm16

vbroadcastsd (%rcx,%r9,1),%ymm0 // Make 4 copies of B element7

add $0x8,%rcx // register %rcx = %rcx + 88

vmulpd (%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 9

mm4vaddpd %ymm5,%ymm4,%ymm4 // Parallel add %ymm5, %y10

vmulpd 0x20(%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 11

vaddpd %ymm5,%ymm3,%ymm3 // Parallel add %ymm5, %ymm312

vmulpd 0x40(%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 13

vmulpd 0x60(%rax),%ymm0,%ymm0 // Parallel mul %ymm1,4 A 14

add %r8,%rax // register %rax = %rax + %r815

cmp %r10,%rcx // compare %r8 to %rax16

vaddpd %ymm5,%ymm2,%ymm2 // Parallel add %ymm5, %ymm217

vaddpd %ymm0,%ymm1,%ymm1 // Parallel add %ymm0, %ymm118

jne 68 <dgemm+0x68> // branch if %r8 != %rax19

add $0x1,%esi // register % esi = % esi + 120

vmovapd %ymm4,(%r11) // Store %ymm4 into 4 C elements21

vmovapd %ymm3,0x20(%r11) // Store %ymm3 into 4 C elements22

vmovapd %ymm2,0x40(%r11) // Store %ymm2 into 4 C elements23

vmovapd %ymm1,0x60(%r11) // Store %ymm1 into 4 C elements24

344 Chapter 4 The Processor

Figure 4.79 shows the performance increase DGEMM for 32 × 32 matrices
in going from unoptimized to AVX and then to AVX with unrolling. Unrolling
more than doubles performance, going from 6.4 GFLOPS to 14.6 GFLOPS.
Optimizations for subword parallelism and instruction-level parallelism result
in an overall speedup of 8.59 versus the unoptimized DGEMM in Figure 3.21.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are with
Turbo mode turned off. If we turn it on, like in Chapter 3, we improve all the results by the
temporary increase in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized
DGEMM, 8.1 GFLOPS with AVX, and 18.6 GFLOPS with unrolling and AVX. As mentioned
in Section 3.8, Turbo mode works particularly well in this case because it is using only
a single core of an eight-core chip.

Elaboration: There are no pipeline stalls despite the reuse of register %ymm5 in lines
9 to 17 of Figure 4.78 because the Intel Core i7 pipeline renames the registers.

Are the following statements true or false?

1. The Intel Core i7 uses a multiple-issue pipeline to directly execute x86
instructions.

2. Both the Cortex-A53 and the Core i7 use dynamic multiple issue.

3. The Core i7 microarchitecture has many more registers than x86 requires.

4. The Intel Core i7 uses less than half the pipeline stages of the earlier Intel
Pentium 4 Prescott (see Figure 4.70).

Check
Yourself

FIGURE 4.79 Performance of three versions of DGEMM for 32 × 32 matrices. Subword
parallelism and instruction-level parallelism have led to speedup of almost a factor of 9 over the unoptimized
code in Figure 3.21.

–

4.0

unoptimized

1.7

6.4

14.6

AVX AVX+unroll

8.0
G

F
LO

P
S

12.0

16.0

 4.14 Fallacies and Pitfalls 345

4.13
 Advanced Topic: An Introduction to Digital
Design Using a Hardware Design Language
to Describe and Model a Pipeline and
More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears online,
gives a brief introduction and shows how a hardware design language, Verilog
in this case, can be used to describe the processor control both behaviorally and
in a form suitable for hardware synthesis. It then provides a series of behavioral
models in Verilog of the five-stage pipeline. The initial model ignores hazards, and
additions to the model highlight the changes for forwarding, data hazards, and
branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical
pipeline representation for readers who want to see more detail on how pipelines
work for a few sequences of RISC-V instructions.

 4.14 Fallacies and Pitfalls

Fallacy: Pipelining is easy.
Our books testify to the subtlety of correct pipeline execution. Our advanced

book had a pipeline bug in its first edition, despite its being reviewed by more than
100 people and being class-tested at 18 universities. The bug was uncovered only
when someone tried to build the computer in that book. The fact that the Verilog
to describe a pipeline like that in the Intel Core i7 will be hundreds of thousands of
lines is an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.
When the number of transistors on-chip and the speed of transistors made a

five-stage pipeline the best solution, then the delayed branch (see the Elaboration
on page 274) was a simple solution to control hazards. With longer pipelines,
superscalar execution, and dynamic branch prediction, it is now redundant. In
the early 1990s, dynamic pipeline scheduling took too many resources and was
not required for high performance, but as transistor budgets continued to double
due to Moore’s Law and logic became much faster than memory, then multiple
functional units and dynamic pipelining made more sense. Today, concerns about
power are leading to less aggressive and more efficient designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e1

Advanced Topic: An Introduction to
Digital Design Using a Hardware Design
Language to Describe and Model a
Pipeline and More Pipelining Illustrations

This online section covers hardware description languages and then gives a dozen
examples of pipeline diagrams, starting on page 366.e18.

As mentioned in Appendix A, Verilog can describe processors for simulation
or with the intention that the Verilog specification be synthesized. To achieve
acceptable synthesis results in size and speed, and a behavioral specification
intended for synthesis must carefully delineate the highly combinational portions
of the design, such as a datapath, from the control. The datapath can then be
synthesized using available libraries. A Verilog specification intended for synthesis
is usually longer and more complex.

We start with a behavioral model of the five-stage pipeline. To illustrate the
dichotomy between behavioral and synthesizable designs, we then give two Verilog
descriptions of a multiple-cycle-per-instruction RISC-V processor: one intended
solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specification with Simulation
for the Five-Stage Pipeline
Figure e4.13.1 shows a Verilog behavioral description of the pipeline that handles
ALU instructions as well as loads and stores. It does not accommodate branches
(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to define registers with named fields such as
structures in C, we use several independent registers for each pipeline register. We
name these registers with a prefix using the same convention; hence, IFIDIR is the
IR portion of the IFID pipeline register.

This version is a behavioral description not intended for synthesis. Instructions
take the same number of clock cycles as our hardware design, but the control
is done in a simpler fashion by repeatedly decoding fields of the instruction in
each pipe stage. Because of this difference, the instruction register (IR) is needed
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage.
As you read the Verilog descriptions in this chapter, remember that the actions
in the always block all occur in parallel on every clock cycle. Since there are no
blocking assignments, the order of the events within the always block is arbitrary.

4.13

345.e2 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP =

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;
reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrs1, IFIDrs2, MEMWBrd; // Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs

// These assignments define fields from the pipeline registers
assign IFIDrs1 = IFIDIR[19:15]; // rs1 field
assign IFIDrs2 = IFIDIR[24:20]; // rs2 field
assign IDEXop = IDEXIR[6:0]; // the opcode
assign EXMEMop = EXMEMIR[6:0]; // the opcode
assign MEMWBop = MEMWBIR[6:0]; // the opcode
assign MEMWBrd = MEMWBIR[11:7]; // rd field
// Inputs to the ALU come directly from the ID/EX pipeline registers
assign Ain = IDEXA;
assign Bin = IDEXB;

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR [30:25],

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin; // add operation

FIGURE e4.13.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring
branch and data hazards. As in the design earlier in Chapter 4, we use separate instruction and data
memories, which would be implemented using separate caches as we describe in Chapter 5.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e3

default: ; // other R-type operations: subtract, SLT, etc.
endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) //

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring
branch and data hazards. (Continued)

Implementing Forwarding in Verilog
To extend the Verilog model further, Figure e4.13.2 shows the addition of forwarding
logic for the case when the source and destination are ALU instructions. Neither
load stalls nor branches are handled; we will add these shortly. The changes from
the earlier Verilog description are highlighted.

Someone has proposed moving the write for a result from an ALU instruction
from the WB to the MEM stage, pointing out that this would reduce the maximum
length of forwards from an ALU instruction by one cycle. Which of the following
is accurate reasons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circumstance since the
write for the ALU result must stay in the same pipe stage as the write for a
load result.

3. Moving the write for ALU instructions would create the possibility of writes
occurring from two different instructions during the same clock cycle. Either
an extra write port would be required on the register file or a structural
hazard would be created.

4. The result of an ALU instruction is not available in time to do the write
during MEM.

Check
Yourself

The Behavioral Verilog with Stall Detection
If we ignore branches, stalls for data hazards in the RISC-V pipeline are confined
to one simple case: loads whose results are currently in the WB clock stage. Thus,
extending the Verilog to handle a load with a destination that is either an ALU
instruction or an effective address calculation is reasonably straightforward, and
Figure e4.13.3 shows the few additions needed.

345.e4 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP =

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;
reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; //

Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

assign IFIDrs1 = IFIDIR[19:15];
assign IFIDrs2 = IFIDIR[24:20];
assign IDEXop = IDEXIR[6:0];
assign IDEXrs1 = IDEXIR[19:15];
assign IDEXrs2 = IDEXIR[24:20];
assign EXMEMop = EXMEMIR[6:0];
assign EXMEMrd = EXMEMIR[11:7];
assign MEMWBop = MEMWBIR[6:0];
assign MEMWBrd = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) &&

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass

there,
// Otherwise from WB if there is a bypass there, and otherwise comes

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :
IDEXA;
// The B input to the ALU is bypassed from MEM if there is a bypass

there,
// Otherwise from WB if there is a bypass there, and otherwise comes

from the IDEX register

FIGURE e4.13.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing
to ALU operations and address calculations. The code added to Figure e4.13.1 to handle bypassing is
highlighted. Because these bypasses only require changing where the ALU inputs come from, the only changes
required are in the combinational logic responsible for selecting the ALU inputs. (continues on next page)

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e5

assign Bin = bypassBfromMEM ? EXMEMALUOut :
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:

IDEXB;

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25],

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin; // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) //

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing
to ALU operations and address calculations. (Continued)

module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP =

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;

reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers

wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; //
Access register fields

wire [6:0] IDEXop, EXMEMop, M EMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

wire stall; // stall signal

assign IFIDrs1 = IFIDIR[19:15];
assign IFIDrs2 = IFIDIR[24:20];
assign IDEXop = IDEXIR[6:0];
assign IDEXrs1 = IDEXIR[19:15];
assign IDEXrs2 = IDEXIR[24:20];
assign EXMEMop = EXMEMIR[6:0];
assign EXMEMrd = EXMEMIR[11:7];
assign MEMWBop = MEMWBIR[6:0];
assign MEMWBrd = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) &&

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass

there,
// Otherwise from WB if there is a bypass there, and otherwise comes

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :
IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass
there,
// Otherwise from WB if there is a bypass there, and otherwise comes

from the IDEX register
assign Bin = bypassBfromMEM ? EXMEMALUOut :

(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:
IDEXB;

FIGURE e4.13.3 A behavioral definition of the five-stage RISC-V pipeline with stalls for
loads when the destination is an ALU instruction or effective address calculation. The
changes from Figure e4.13.2 are highlighted. (continues on next page)

// The signal for detecting a stall based on the use of a result from
LW
assign stall = (MEMWBop == LD) && (// source instruction is a load

(((IDEXop == LD) || (IDEXop == SD)) && (IDEXrs1 ==
MEMWBrd)) || // stall for address calc

((IDEXop == ALUop) && ((IDEXrs1 == MEMWBrd) ||
(IDEXrs2 == MEMWBrd)))); // ALU use

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
if (~stall)
begin // the first three pipeline stages stall if there is a load

hazard
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two

registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25],

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin; // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B

register
end
else EXMEMIR <= NOP; // Freeze first three stages of pipeline; inject

a nop into the EX output

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) //

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.3 A behavioral definition of the five-stage RISC-V pipeline with stalls
for loads when the destination is an ALU instruction or effective address calculation.
(Continued)

345.e8 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches.
We add the code to model branch equal using a “predict not taken” strategy.
The Verilog code is shown in Figure e4.13.4. It implements the branch hazard by
detecting a taken branch in ID and using that signal to squash the instruction in IF
(by setting the IR to 0x00000013, which is an effective NOP in RISC-V); in addition,
the PC is assigned to the branch target. Note that to prevent an unexpected latch, it
is important that the PC is clearly assigned on every path through the always block;
hence, we assign the PC in a single if statement. Lastly, note that although Figure
e4.13.4 incorporates the basic logic for branches and control hazards, supporting
branches requires additional bypassing and data hazard detection, which we have
not included.

Using Verilog for Behavioral Specification with Synthesis
To demonstrate the contrasting types of Verilog, we show two descriptions of a
different, nonpipelined implementation style of RISC-V that uses multiple clock
cycles per instruction. (Since some instructors make a synthesizable description
of the RISC-V pipeline project for a class, we chose not to include it here. It would
also be long.)

Figure e4.13.5 gives a behavioral specification of a multicycle implementation
of the RISC-V processor. Because of the use of behavioral operations, it would be
difficult to synthesize a separate datapath and control unit with any reasonable
efficiency. This version demonstrates another approach to the control by using a
Mealy finite-state machine (see discussion in Section A.10 of Appendix A). The
use of a Mealy machine, which allows the output to depend both on inputs and the
current state, allows us to decrease the total number of states.

Check
Yourself

Someone has asked about the possibility of data hazards occurring through
memory, contrary to through a register. Which of the following statements about
such hazards is true?

1. Since memory accesses only occur in the MEM stage, all memory operations
are done in the same order as instruction execution, making such hazards
impossible in this pipeline.

2. Such hazards are possible in this pipeline; we just have not discussed them yet.
3. No pipeline can ever have a hazard involving memory, since it is the

programmer’s job to keep the order of memory references accurate.
4. Memory hazards may be possible in some pipelines, but they cannot occur

in this particular pipeline.
5. Although the pipeline control would be obligated to maintain ordering

among memory references to avoid hazards, it is impossible to design a
pipeline where the references could be out of order.

// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP =

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;

reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers

wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; //
Access register fields

wire [6:0] IFIDop, IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

wire stall; // stall signal
wire takebranch;

assign IFIDop = IFIDIR[6:0];
assign IFIDrs1 = IFIDIR[19:15];
assign IFIDrs2 = IFIDIR[24:20];
assign IDEXop = IDEXIR[6:0];
assign IDEXrs1 = IDEXIR[19:15];
assign IDEXrs2 = IDEXIR[24:20];
assign EXMEMop = EXMEMIR[6:0];
assign EXMEMrd = EXMEMIR[11:7];
assign MEMWBop = MEMWBIR[6:0];
assign MEMWBrd = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) &&

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypas sAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) &&

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEX rs2 != 0) &&

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass

there,
// Otherwise from WB if there is a bypass there, and otherwise comes

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :
IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register

assign Bin = bypassBfromMEM ? EXMEMALUOut :
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:

module RISCVCPU (clock);

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls for
loads when the destination is an ALU instruction or effective address calculation. The
changes from Figure e4.13.2 are highlighted. (continues on next page)

IDEXB;
// The signal for detecting a stall based on the use of a result from

LW
assign stall = (MEMWBop == LD) && (// source instruction is a load

(((IDEXop == LD) || (IDEXop == SD)) && (IDEXrs1 ==
MEMWBrd)) || // stall for address calc

((IDEXop == ALUop) && ((IDEXrs1 == MEMWBrd) ||
(IDEXrs2 == MEMWBrd)))); // ALU use

// Signal for a taken branch: instruction is BEQ and registers are
equal

assign takebranch = (IFIDop == BEQ) && (Regs[IFIDrs1] ==
Regs[IFIDrs2]);

integer i; // used to initialize registers
initial
begin

PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!

always @(posedge clock)
begin

if (~stall)
begin // the first three pipeline stages stall if there is a load

hazard
if (~takebranch)
begin // first instruction in the pipeline is being fetched

normally
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

end
else
begin // a taken branch is in ID; instruction in IF is wrong;

insert a NOP and reset the PC
IFIDIR <= NOP;
PC <= PC + {{52{IFIDIR[31]}}, IFIDIR[7], IFIDIR[30:25],

IFIDIR[11:8], 1'b0};
end

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two

registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this

affects next stage only!

// third instruction is doing addre ss calculation or ALU operation
if (IDEXop == LD)

EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};
else if (IDEXop == SD)

EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25],
IDEXIR[11:7]};

else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions

0: EXMEMALUOut <= Ain + Bin; // add operation

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls
for loads when the destination is an ALU instruction or effective address calculation.
(Continued)

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e11

endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B

register
end
else EXMEMIR <= NOP; // Freeze first three stages of pipeline; inject

a nop into the EX output

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEM WBrd != 0)) //

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

default: ; // other R-type operations: subtract, SLT, etc.

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls
for loads when the destination is an ALU instruction or effective address calculation.
(Continued)

Since a version of the RISC-V design intended for synthesis is considerably
more complex, we have relied on a number of Verilog modules that were specified
in Appendix A, including the following:

■	 The 4-to-1 multiplexor shown in Figure A.4.2, and the 2-to-1 multiplexor
that can be trivially derived based on the 4-to-1 multiplexor.

■	 The RISC-V ALU shown in Figure A.5.15.

■	 The RISC-V ALU control defined in Figure A.5.16.

■	 The RISC-V register file defined in Figure A.8.11.

Now, let’s look at a Verilog version of the RISC-V processor intended for
synthesis. Figure e4.13.6 shows the structural version of the RISC-V datapath.
Figure e4.13.7 uses the datapath module to specify the RISC-V CPU. This version
also demonstrates another approach to implementing the control unit, as well as
some optimizations that rely on relationships between various control signals.
Observe that the state machine specification only provides the sequencing actions.

The setting of the control lines is done with a series of assign statements that
depend on the state as well as the opcode field of the instruction register. If one
were to fold the setting of the control into the state specification, this would look
like a Mealy-style finite-state control unit. Because the setting of the control lines
is specified using assign statements outside of the always block, most logic
synthesis systems will generate a small implementation of a finite-state machine

345.e12 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

module RISCVCPU (clock);
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, ALUop

= 7'b001_0011;
input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for
implementation
reg [63:0] PC, Regs[0:31], ALUOut, MDR, A, B;
reg [31:0] Memory [0:1023], IR;
reg [2:0] state; // processor state
wire [6:0] opcode; // use to get opcode easily
wire [63:0] ImmGen; // used to generate immediate

assign opcode = IR[6:0]; // opcode is lower 7 bits
assign ImmGen = (opcode == LD) ? {{53{IR[31]}}, IR[30:20]} :

/* (opcode == SD) */{{53{IR[31]}}, IR[30:25], IR[11:7]};
assign PCOffset = {{52{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0};

// set the PC to 0 and start the control in state 1
initial begin PC = 0; state = 1; end

// The state machine--triggered on a rising clock
always @(posedge clock)
begin
Regs[0] <= 0; // shortcut way to make sure R0 is always 0
case (state) //action depends on the state
1: begin // first step: fetch the instruction, increment PC, go to

next state
IR <= Memory[PC >> 2];
PC <= PC + 4;
state <= 2; // next state

end
2: begin // second step: Instruction decode, register fetch, also

compute branch address
A <= Regs[IR[19:15]];
B <= Regs[IR[24:20]];
ALUOut <= PC + PCOffset; // compute PC-relative branch target
state <= 3;

end
3: begin // third step: Load-store execution, ALU execution, Branch

completion
if ((opcode == LD) || (opcode == SD))
begin
ALUOut <= A + ImmGen; // compute effective address
state <= 4;

end
else if (opcode == ALUop)
begin
case (IR[31:25]) // case for the various R-type instructions
0: ALUOut <= A + B; // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
state <= 4;

end
else if (opcode == BEQ)
begin
if (A == B) begin
PC <= ALUOut; // branch taken--update PC

end

FIGURE e4.13.5 A behavioral specification of the multicycle RISC-V design. This has the
same cycle behavior as the multicycle design, but is purely for simulation and specification. It cannot be used
for synthesis. (continues on next page)

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e13

state <= 1;
end
else ; // other opcodes or exception for undefined instruction

would go here
end
4: begin
if (opcode == ALUop)
begin // ALU Operation
Regs[IR[11:7]] <= ALUOut; // write the result
state <= 1;

end // R-type finishes
else if (opcode == LD)
begin // load instruction

MDR <= Memory[ALUOut >> 2]; // read the memory
state <= 5; // next state

end
else if (opcode == SD)
begin // store instruction
Memory[ALUOut >> 2] <= B; // write the memory
state <= 1; // return to state 1

end
else ; // other instructions go here

end
5: begin // LD is the only instruction still in execution
Regs[IR[11:7]] <= MDR; // write the MDR to the register
state <= 1;

end // complete an LD instruction
endcase

end
endmodule

FIGURE e4.13.5 A behavioral specification of the multicycle RISC-V design. (Continued)

that determines the setting of the state register and then uses external logic to
derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number
of insights about the relationship between various control signals as well as
situations where we don’t care about the control signal value; some examples of
these are given in the following elaboration.

More Illustrations of Instruction Execution on the
Hardware
To reduce the cost of this book, starting with the third edition, we moved sections
and figures that were used by a minority of instructors online. This subsection
recaptures those figures for readers who would like more supplemental material
to understand pipelining better. These are all single-clock-cycle pipeline diagrams,
which take many figures to illustrate the execution of a sequence of instructions.

The three examples are respectively for code with no hazards, an example of
forwarding on the pipelined implementation, and an example of bypassing on the
pipelined implementation.

module Datapath (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite,
IRWrite,

PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource,
opcode, clock); // the control inputs + clock
parameter LD = 7'b000_0011, SD = 7'b010_0011;
input [1:0] ALUOp, ALUSrcB; // 2-bit control signals
input MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite,

PCWriteCond,
ALUSrcA, PCSource, clock; // 1-bit control signals

output [6:0] opcode; // opcode is needed as an output by control
reg [63:0] PC, MDR, ALUOut; // CPU state + some temporaries
reg [31:0] Memory[0:1023], IR; // CPU state + some temporaries
wire [63:0] A, B, SignExtendOffset, PCOffset, ALUResultOut, PCValue,

JumpAddr, Writedata, ALUAin,
ALUBin, MemOut; // these are signals derived from registers

wire [3:0] ALUCtl; // the ALU control lines
wire Zero; // the Zero out signal from the ALU

initial PC = 0; //start the PC at 0
//Combinational signals used in the datapath
// Read using word address with either ALUOut or PC as the address

source
assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC) >> 2] : 0;
assign opcode = IR[6:0]; // opcode shortcut
// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUOut;
// Generate immediate
assign ImmGen = (opcode == LD) ? {{53{IR[31]}}, IR[30:20]} :

/* (opcode == SD) */{{53{IR[31]}}, IR[30:25], IR[11:7]};
// Generate pc offset for branches
assign PCOffset = {{52{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0};
// The A input to the ALU is either the rs register or the PC
assign ALUAin = ALUSrcA ? A : PC; // ALU input is PC or A

// Creates an instance of the ALU control unit (see the module defined
in Figure B.5.16

// Input ALUOp is control-unit set and used to describe the
instruction class as in Chapter 4

// Input IR[31:25] is the function code field for an ALU instruction
// Output ALUCtl are the actual ALU control bits as in Chapter 4
ALUControl alucontroller (ALUOp, IR[31:25], ALUCtl); // ALU control

unit

// Creates a 2-to-1 multiplexor used to select the source of the next
PC

// Inputs are ALUResultOut (the incremented PC), ALUOut (the branch
address)

// PCSource is the selector input and PCValue is the multiplexor
output

Mult2to1 PCdatasrc (ALUResultOut, ALUOut, PCSource, PCValue);

// Creates a 4-to-1 multiplexor used to select the B input of the ALU
// Inputs are register B, constant 4, generated immediate, PC offset

// ALUSrcB is the select or input
// ALUBin is the multiplexor output
Mult4to1 ALUBinput (B, 64'd4, ImmGen, PCOffset, ALUSrcB, ALUBin);

// Creates a RISC-V ALU

// Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin,
ALUBin)

// Outputs are ALUResultOut (the 64-bit output) and Zero (zero
detection output)

RISCVALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut, Zero); // the ALU

FIGURE e4.13.6 A Verilog version of the multicycle RISC-V datapath that is appropriate
for synthesis. This datapath relies on several units from Appendix A. Initial statements do not synthesize,
and a version used for synthesis would have to incorporate a reset signal that had this effect. Also note that
resetting R0 to 0 on every clock is not the best way to ensure that R0 stays at 0; instead, modifying the
register file module to produce 0 whenever R0 is read and to ignore writes to R0 would be a more efficient
solution. (continues on next page)

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e15

// Creates a RISC-V register file
// Inputs are the rs1 and rs2 fields of the IR used to specify which

registers to read,
// Writereg (the write register number), Writedata (the data to be

written),
// RegWrite (indicates a write), the clock
// Outputs are A and B, the registers read
registerfile regs (IR[19:15], IR[24:20], IR[11:7], Writedata,

RegWrite, A, B, clock); // Register file

// The clock-triggered actions of the datapath
always @(posedge clock)
begin
if (MemWrite) Memory[ALUOut >> 2] <= B; // Write memory--must be a

store
ALUOut <= ALUResultOut; // Save the ALU result for use on a later

clock cycle
if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch
MDR <= MemOut; // Always save the memory read value
// The PC is written both conditionally (controlled by PCWrite) and

unconditionally

end
endmodule

FIGURE e4.13.6 A Verilog version of the multicycle RISC-V datapath that is appropriate
for synthesis. (Continued)

No Hazard Illustrations

On page 285, we gave the example code sequence

ld x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
ld x13, 48(x1)
add x14, x5, x6

Figures e4.42 and e4.43 showed the multiple-clock-cycle pipeline diagrams for this
two-instruction sequence executing across six clock cycles. Figures e4.13.8 through
e4.13.10 show the corresponding single-clock-cycle pipeline diagrams for these two
instructions. Note that the order of the instructions differs between these two types of
diagrams: the newest instruction is at the bottom and to the right of the multiple-clock-
cycle pipeline diagram, and it is on the left in the single-clock-cycle pipeline diagram.

More Examples

To understand how pipeline control works, let’s consider these five instructions
going through the pipeline:

ld x10, 40(x1)
sub x11, x2, x3
and x12, x4, x5
or x13, x6, x7
add x14, x8, x9

345.e16 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

module RISCVCPU (clock);
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, ALUop

= 7'b001_0011;
input clock;

reg [2:0] state;
wire [1:0] ALUOp, ALUSrcB;
wire [6:0] opcode;
wire MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,

PCWrite, PCWriteCond, ALUSrcA, PCSource, MemoryOp;

// Create an instance of the RISC-V datapath, the inputs are the
control signals; opcode is only output
Datapath RISCVDP (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite,

IRWrite,
PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource,

opcode, clock);

initial begin state = 1; end // start the state machine in state 1
// These are the definitions of the control signals
assign MemoryOp = (opcode == LD) || (opcode == SD); // a memory

operation
assign ALUOp = ((state == 1) || (state == 2) || ((state == 3) &&

MemoryOp)) ? 2'b00 : // add
((state == 3) && (opcode == BEQ)) ? 2'b01 : 2'b10; //

subtract or use function code
assign MemtoReg = ((state == 4) && (opcode == ALUop)) ? 0 : 1;
assign MemRead = (state == 1) || ((state == 4) && (opcode == LD));
assign MemWrite = (state == 4) && (opcode == SD);
assign IorD = (state == 1) ? 0 : 1;
assign RegWrite = (state == 5) || ((state == 4) && (opcode == ALUop));
assign IRWrite = (state == 1);
assign PCWrite = (state == 1);
assign PCWriteCond = (state == 3) && (opcode == BEQ);
assign ALUSrcA = ((state == 1) || (state == 2)) ? 0 : 1;
assign ALUSrcB = ((state == 1) || ((state == 3) && (opcode == BEQ))) ?

2'b01 :
(state == 2) ? 2'b11 :
((state == 3) && MemoryOp) ? 2'b10 : 2'b00; // memory

operation or other
assign PCSource = (state == 1) ? 0 : 1;

// Here is the state machine, which only has to sequence states
always @(posedge clock)
begin // all state updates on a positive clock edge
case (state)
1: state <= 2; // unconditional next state
2: state <= 3; // unconditional next state
3: state <= (opcode == BEQ) ? 1 : 4; // branch go back else next

state
4: state <= (opcode == LD) ? 5 : 1; // R-type and SD finish
5: state <= 1; // go back

endcase
end

endmodule

FIGURE e4.13.7 The RISC-V CPU using the datapath from Figure e4.13.6.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e17

Instruction
memory

Address

4

64

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

Add

PC

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32 Imm
Gen

Write
register

Write
data

ID/EX

Instruction decode

ld x10, 40(x1)

Instruction fetch

sub x11, x2, x3

Instruction
memory

Address

4

64

Add Sum

Shift
left 1

Shift
left 1

In
st

ru
ct

io
n

IF/ID EX/MEM

PC

Write
data

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32

Write
register

Write
data

Read
data

ALU
result

ALU
Zero

Add Sum

ALU
result

ALU
Zero

ID/EX

Instruction fetch

ld x10, 40(x1)

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Clock 1

Clock 2

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

1

0

M
u
x

0

1

Imm
Gen

MEM/WB

FIGURE e4.13.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of
pipeline representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most
two stages are identified in each clock cycle; normally, all five stages are occupied. The highlighted portions of the datapath are active in that
clock cycle. The load is fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the
figures easier to understand, the other pipeline stages are empty, but normally there is an instruction in every pipeline stage.

345.e18 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Instruction
memory

Address

4

64

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

Add

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32

Imm
Gen

Imm
Gen

Write
register

Write
data

ID/EX

Memory

ld x10, x1(40)

Execution

sub x11, x2, x3

Instruction
memory

Address

4

64

Add Sum

Shift
left 1

Add Sum

Shift
left 1

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

PC

PC

Write
data

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32

Write
register

Write
data

Read
data

ALU
result

ALU
Zero

ALU
result

ALU
Zero

ID/EX

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Clock 3

Clock 4

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

1

0

M
u
x

0

1

Instruction decode

sub x11, x2, x3

Execution

ld x10, 40(x1)

FIGURE e4.13.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In the third clock
cycle in the top diagram, ld enters the EX stage. At the same time, sub enters ID. In the fourth clock cycle (bottom datapath), ld moves into
MEM stage, reading memory using the address found in EX/MEM at the beginning of clock cycle 4. At the same time, the ALU subtracts and
then places the difference into EX/MEM at the end of the clock cycle.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e19

Instruction
memory

Address

4

64

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

Add

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32

Imm
Gen

Write
register

Write
data

ID/EX

Instruction
memory

Address

4

64

Add Sum

Shift
left 1

Shift
left 1

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Write
data

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

32

Write
register

Write
data

Read
data

ALU
result

ALU
Zero

ALU
result

ALU
Zero

ID/EX

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Clock 5

Clock 6

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

Memory
sub x11, x2, x3

Write back
ld x10, 40(x1)

Write back
sub x11, x2, x3

Imm
Gen

Add Sum

PC

PC

FIGURE e4.13.10 Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In clock cycle
5, ld completes by writing the data in MEM/WB into register 10, and sub sends the difference in EX/MEM to MEM/WB. In the next clock
cycle, sub writes the value in MEM/WB to register 11.

345.e20 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Figures e4.13.11 through e4.13.15 show these instructions proceeding through
the nine clock cycles it takes them to complete execution, highlighting what is
active in a stage and identifying the instruction associated with each stage during a
clock cycle. If you examine them carefully, you may notice:

■	 In Figure e4.13.13 you can see the sequence of the destination register numbers
from left to right at the bottom of the pipeline registers. The numbers advance
to the right during each clock cycle, with the MEM/WB pipeline register
supplying the number of the register written during the WB stage.

■	 When a stage is inactive, the values of control lines that are deasserted are
shown as 0 or X (for don’t care).

■	 Sequencing of control is embedded in the pipeline structure itself. First, all
instructions take the same number of clock cycles, so there is no special
control for instruction duration. Second, all control information is computed
during instruction decode and then passed along by the pipeline registers.

Forwarding Illustrations

We can use the single-clock-cycle pipeline diagrams to show how forwarding
operates, as well as how the control activates the forwarding paths. Consider the
following code sequence in which the dependences have been highlighted:

sub x2, x1, x3
and x4, x2, x5
or x4, x4, x2
add x9, x4, x2

Figures e4.13.16 and e4.13.17 show the events in clock cycles 3–6 in the execution
of these instructions.

Thus, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register
for the upper input to the ALU and the MEM/WB pipeline register for the lower
input to the ALU. The following add instruction reads both register x4, the target of
the and instruction, and register x2, which the sub instruction has already written.
Notice that the prior two instructions both write register x4, so the forwarding unit
must pick the immediately preceding one (MEM stage).

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register,
containing the result of the or instruction, for the upper ALU input but uses the
non-forwarding register value for the lower input to the ALU.

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control for
stalls works. Figures e4.13.18 through e4.13.20 show the single-cycle diagram for
clocks 2 through 7 for the following code sequence (dependences highlighted):

ld x2, 40(x1)
and x4, x2, x5
or x4, x4, x2
add x9, x4, x2

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e21

Instruction
[30, 14–12]

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

Instruction
[31–0] ALU

control

R
eg

W
rit

e

MemRead

Control

Instruction
[11–7]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
before<1>

EX:
before<2>

MEM:
before<3>

WB:
before<4>

MEM/WB

IF: ld x10, 40(x1)

ld x10, 40(x1)

000

00

000

000

00

00
0

00

0
0

0

0
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

ALU
control

R
eg

W
rit

e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID: EX:
before<1>

MEM:
before<2>

WB:
before<3>

MEM/WB

IF:
sub x11, x2, x3

010

11

001

000

00

00
0

00

0
0

0

0
0

PC

ld
Control

X

1

Instruction
[30, 14–12]

Instruction
[31–0]

Instruction
[11–7]

40

X

x1

3

10

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 2

Clock 1

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Write
data

Write
data

Read
data

ALU
result

ALU
Zero

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Imm
Gen

Sign-
extend

EX/MEMID/EX

ALU
result

ALU
Zero

Shift
left 1

Add Sum

Shift
left 1

Add Sum

FIGURE e4.13.11 Clock cycles 1 and 2. The phrase “before <i>” means the ith instruction before ld. The ld instruction in the top
datapath is in the IF stage. At the end of the clock cycle, the ld instruction is in the IF/ID pipeline registers. In the second clock cycle, seen
in the bottom datapath, the ld moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction fields and the
selected source registers are shown in the ID stage. Hence, register x1 and the constant 40, the operands of ld, are written into the ID/EX
pipeline register. The number 10, representing the destination register number of ld, is also placed in ID/EX. The top of the ID/EX pipeline
register shows the control values for ld to be used in the remaining stages. These control values can be read from the ld row of the table in
Figure e4.18.

345.e22 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Instruction
[30, 14–12]

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

Instruction
[31–0]

Shift
left 1R

eg
W

rit
e

MemRead

Control

Instruction
[11–7]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
sub x11, x2, x3

EX:
ld x10, ...

MEM:
before<1>

WB:
before<2>

MEM/WB

IF:
and x12, x4, x5

000

10

100

010

11

00
1

00

0
0

0

0
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

ALU
control

ALU
control

Shift
left 1R
eg

W
rit

e

WB

WB

In
st

ru
ct

io
n

IF/ID

ID: and x12, x4, x5 EX: sub x11, ... MEM: ld x10, ... WB: before<1>

MEM/WB

IF: or x13, x6, x7

000

10

100

000

10

10
0

11

1
0

0

0
0

PC

and
Control

5

4

Instruction
[30, 14–12]

Instruction
[31–0]

Instruction
[11–7]

X

x5

x4

x3

x2

7

40

3

12 1011

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 4

Clock 3

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Add Sum

Write
data

Read
data

ALU
result

ALU
Zero

Add Sum

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Imm
Gen

Imm
Gen

EX/MEMID/EX

ALU
result

ALU
Zero

2

3
x3

x2 x1

X

8

11

M

sub

10

8

FIGURE e4.13.12 Clock cycles 3 and 4. In the top diagram, ld enters the EX stage in the third clock cycle, adding x1 and 40 to
form the address in the EX/MEM pipeline register. (The ld instruction is written ld x10, … upon reaching EX, because the identity of
instruction operands is not needed by EX or the subsequent stages. In this version of the pipeline, the actions of EX, MEM, and WB depend
only on the instruction and its destination register or its target address.) At the same time, sub enters ID, reading registers x2 and x3, and
the and instruction starts IF. In the fourth clock cycle (bottom datapath), ld moves into MEM stage, reading memory using the value in EX/
MEM as the address. In the same clock cycle, the ALU subtracts x3 from x2 and places the difference into EX/MEM, reads registers x4 and
x5 during ID, and the or instruction enters IF. The two diagrams show the control signals being created in the ID stage and peeled off as they
are used in subsequent pipe stages.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e23

Instruction
[30, 14–12]

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

Instruction
[31–0]

Shift
left 1R

eg
W

rit
e

MemRead

Control

Instruction
[11–7]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID

or

EX/MEMID/EX

ID:
or x13, x6, x7

EX:
and x12, ...

MEM:
sub x11, ...

WB:
ld x10, ...

MEM/WB

IF:
add x14, x8, x9

000

10

100

000

10

10
0

10

0
0

0

1
1

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

ALU
control

ALU
control

Shift
left 1R

eg
W

rit
e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID:
add x14, x8, x9

EX:
or x13, ...

MEM:
and x12, ...

WB:
sub x11, ...

MEM/WB

IF:
after<1>

000

10

100

000

10

10
0

10

0
0

0

1
0

PC

add
Control

9

11

8

Instruction
[30, 14–12]

Instruction
[31–0]

Instruction
[11–7]

X

x9

x8

x7

x6

0

11 10

14 112113

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 6

Clock 5

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Add Sum

Write
data

Read
data

ALU
result

ALU
Zero

Add Sum

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Imm
Gen

Imm
Gen

EX/MEMID/EX

ALU
result

ALU
Zero

6

7

10
x5

x4

x7

x6

X

6

13 12

7

6

FIGURE e4.13.13 Clock cycles 5 and 6. With add, the final instruction in this example, entering IF in the top datapath, all instructions
are engaged. By writing the data in MEM/WB into register 10, ld completes; both the data and the register number are in MEM/WB. In the
same clock cycle, sub sends the difference in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle,
sub selects the value in MEM/WB to write to register number 11, again found in MEM/WB. The remaining instructions play follow-the-
leader: the ALU calculates the OR of x6 and x7 for the or instruction in the EX stage, and registers x8 and x9 are read in the ID stage for
the add instruction. The instructions after add are shown as inactive just to emphasize what occurs for the five instructions in the example.
The phrase “after <i>” means the ith instruction after add.

345.e24 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Instruction
[30, 14–12]

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

Instruction
[31–0] ALU

control

Shift
left 1R

eg
W

rit
e

MemRead

Control

Instruction
[11–7]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID:
after<1>

EX:
add x14, ...

MEM:
or x13, ...

WB:
and x12, ...

MEM/WB

IF:
after<2>

000

00

000

000

10

10
0

10

0
0

0

1
0

1

PC

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

ALU
control

Shift
left 1R

eg
W

rit
e

M

WB

WB

In
st

ru
ct

io
n

IF/ID

ID:
after<2>

EX:
after<1>

MEM:
add x14, ...

WB:
or x13, ...

MEM/WB

IF:
after<3>

000

00

000

000

00

00
0

10

0
0

0

1
0

PC

Control

13

Instruction
[30, 14–12]

Instruction
[31–0]

Instruction
[11–7] 3141

M
em

W
rit

e

MemRead

M
em

W
rit

e

Clock 8

Clock 7

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x
0

Add

Add

Instruction
memory

Address

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Add Sum

Write
data

Read
data

ALU
result

ALU
Zero

Add Sum

Address

Data
memory

Write
data

Read
data

Address

Data
memory

Imm
Gen

Imm
Gen

EX/MEMID/EX

ALU
result

ALU
Zero

12

x8

x9

14 1213

Write
data

0

FIGURE e4.13.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear,
adding the values corresponding to registers x8 and x9 during the EX stage. The result of the or instruction
is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the result of the and
instruction in MEM/WB to register x12. Note that the control signals are deasserted (set to 0) in the ID
stage, since no instruction is being executed. In the following clock cycle (lower drawing), the WB stage
writes the result to register x13, thereby completing or, and the MEM stage passes the sum from the add
in EX/MEM to MEM/WB. The instructions after add are shown as inactive for pedagogical reasons.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e25

WB

EX

M

M
em

to
R

eg

ALUOp

Branch

ALUSrc

4

ALU
control

Shift
left 1R

eg
W

rit
e

M

WB

WB
In

st
ru

ct
io

n

IF/ID

ID:
after<3>

EX:
after<2>

MEM:
after<1>

WB:
add x14, ...

MEM/WB

IF:
after<4>

000

00

000

000

00

00
0

00

0
0

0

1
0

PC

Control

14

Instruction
[30, 14–12]

Instruction
[31–0]

Instruction
[11–7] 14

MemRead

M
em

W
rit

e

Clock 9

M
u
x

0

1

M
u
x

0

1

M
u
x

1

0

Add

Instruction
memory

Address

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2
Write
register

Write
data

Add Sum

Write
data

Read
data

Address

Data
memory

Imm
Gen

EX/MEMID/EX

ALU
result

ALU
Zero

FIGURE e4.13.15 Clock cycle 9. The WB stage writes the ALU result in MEM/WB into register x14, completing add and the five-
instruction sequence. The instructions after add are shown as inactive for pedagogical reasons.

345.e26 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

PC Instruction
memory

Registers

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and x4, x2, x5 sub x2, x1, x3

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or x4, x4, x2

Clock 3

2

5

10 10

x2

x5

5
2

4

x1

x3

3
1

2

Control

ALU

M

WB

PC Instruction
memory

Registers

M
u
x

M
u
x

EX

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

or x4, x4, x2 and x4, x2, x5

ID/EX

sub X2, ...

EX/MEM

before<1>

MEM/WB

add x9, x4, x2

Clock 4

4

2

10 10

10

x4

x2

2
4

4

x2

x5

5
2

2 4

Control

ALU

M

WB

WB

FIGURE e4.13.16 Clock cycles 3 and 4 of the instruction sequence on page 366.e26. The bold lines are those active in a
clock cycle, and the italicized register numbers in color indicate a hazard. The forwarding unit is highlighted by shading it when it is forwarding
data to the ALU. The instructions before sub are shown as inactive just to emphasize what occurs for the four instructions in the example.
Operand names are used in EX for control of forwarding; thus they are included in the instruction label for EX. Operand names are not needed
in MEM or WB, so … is used. Compare this with Figures e4.13.12 through e4.13.15, which show the datapath without forwarding where ID is
the last stage to need operand information.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e27

PC Instruction
memory

Registers

Control

M
u
x

Data
memory

M
u
x

M
u
x

ALUIn
st

ru
ct

io
n

IF/ID

add x9, x4, x2 or x4, x4, x2

ID/EX

and x4,...

EX/MEM

sub x2, ..

MEM/WB

after<1>

Clock 5

4

2

2

4
2

4
2

9 4

x2

x4

x2

x4

10 10

10

1

24

after<1>after<2> add x9, x4, x2 or x4, ...

EX/MEM

and x4, ..

MEM/WB

ID/EX

EX

WB

M WB

WBM

Forwarding
unit

PC Instruction
memory

Registers

Control

M
u
x

M
u
x

Data
memory

M
u

ALU

x

In
st

ru
ct

io
n

IF/ID

Clock 6

4

4
2

9

x2

x4

10

10

1

4 4

EX

WB

M WB

WBM

Forwarding
unit

FIGURE e4.13.17 Clock cycles 5 and 6 of the instruction sequence on page 366.e26. The forwarding unit is highlighted when
it is forwarding data to the ALU. The two instructions after add are shown as inactive just to emphasize what occurs for the four instructions
in the example. The bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a hazard.

345.e28 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Registers

In
st

ru
ct

io
n

ID/EX

2

5

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRd

before<3>

Registers

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

ld x2, 40(x1)

ID/EX

before<2>

EX/MEM

MEM/WB

Clock 2

1

1

X

X
11

x1

XX

X

2

1

Control

ALU

WB

ld x2, 40(x1) before<1> before<2>or x4, x4, x2 and x4, x2, x5

and x4, x2, x5

Clock 3

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

00 11

x1

XX

X

12

x5

x2

2
5

5

4 2

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRd

before<1>

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

FIGURE e4.13.18 Clock cycles 2 and 3 of the instruction sequence on page 366.e26 with a load replacing sub. The
bold lines are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the … in the place of operands means
that their identity is information not needed by that stage. The values of the significant control lines, registers, and register numbers are labeled
in the figures. The and instruction wants to read the value created by the ld instruction in clock cycle 3, so the hazard detection unit stalls the
and and or instructions. Hence, the hazard detection unit is highlighted.

 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e29

Registers

In
st

ru
ct

io
n

ID/EX

4

2

2

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRd

before<1>

Registers

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

and x4, x2, x5

ID/EX

ld x2,...

EX/MEM

MEM/WB

Clock 4

2

2

5

5
10 00

11

x2

x5

5
4

2

x2

x5

5

4

2

2

Control

ALU

WB

and x4, x2, x5 Bubble ld x2,... add x9, x4, x2 or x4, x4, x2

or x4, x4, x2

Clock 5

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

11

2

0

x2

x5

5

4

4

x2

x4

2

2

4

2

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRd

Bubble

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

4

FIGURE e4.13.19 Clock cycles 4 and 5 of the instruction sequence on page 366.e26 with a load replacing sub. The
bubble is inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit
is highlighted in clock cycle 5 because it is forwarding data from ld to the ALU. Note that in clock cycle 4, the forwarding unit forwards the
address of the ld as if it were the contents of register x2; this is rendered harmless by the insertion of the bubble. The bold lines are those active
in a clock cycle, and the italicized register numbers in color indicate a hazard.

345.e30 4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language

Registers

In
st

ru
ct

io
n

ID/EX

4

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
x

IF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRd

Bubble

Registers

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

add x9, x4, x2

ID/EX

and x4, ...

EX/MEM

MEM/WB

Clock 6

Clock 7

4

4

2

2
10 10

10

0

x4

x2

2

9

4

x4

x2

2

4

4

4

Control

ALU

WB

add x9, x4, x2 or x4, ... and x4, ...after<2> after<1>

after<1>

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

1

44

10

x4

x2

2

9

4

ALU

WB

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRd

or x4, x4, x2

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

FIGURE e4.13.20 Clock cycles 6 and 7 of the instruction sequence on page 366.e26 with a load replacing sub. Note
that unlike in Figure e4.13.17, the stall allows the ld to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register x4
for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. The bold lines
show ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The instructions after add are shown as
inactive for pedagogical reasons.

346 Chapter 4 The Processor

Many of the difficulties of pipelining arise because of instruction set
complications. Here are some examples:

■	 Widely variable instruction lengths and running times can lead to imbalance
among pipeline stages and severely complicate hazard detection in a design
pipelined at the instruction set level. This problem was overcome, initially
in the DEC VAX 8500 in the late 1980s, using the micro-operations and
micropipelined scheme that the Intel Core i7 employs today. Of course, the
overhead of translation and maintaining correspondence between the micro-
operations and the actual instructions remains.

■	 Sophisticated-addressing modes can lead to different sorts of problems.
Addressing modes that update registers complicate hazard detection. Other
addressing modes that require multiple memory accesses substantially
complicate pipeline control and make it difficult to keep the pipeline flowing
smoothly.

■	 Perhaps the best example is the DEC Alpha and the DEC NVAX. In
comparable technology, the newer instruction set architecture of the Alpha
allowed an implementation whose performance is more than twice as fast
as NVAX. In another example, Bhandarkar and Clark [1991] compared the
MIPS M/2000 and the DEC VAX 8700 by counting clock cycles of the SPEC
benchmarks; they concluded that although the MIPS M/2000 executes more
instructions, the VAX on average executes 2.7 times as many clock cycles, so
the MIPS is faster.

 4.15 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can
be designed starting with the instruction set architecture and an understanding
of the basic characteristics of the technology. In Section 4.3, we saw how the
datapath for an RISC-V processor could be constructed based on the architecture
and the decision to build a single-cycle implementation. Of course, the underlying
technology also affects many design decisions by dictating what components can
be used in the datapath, as well as whether a single-cycle implementation even
makes sense.

Pipelining improves throughput but not the inherent execution time, or
instruction latency, of instructions; for some instructions, the latency is similar
in length to the single-cycle approach. Multiple instruction issue adds additional
datapath hardware to allow multiple instructions to begin every clock cycle, but at
an increase in effective latency. Pipelining was presented as reducing the clock cycle
time of the simple single-cycle datapath. Multiple instruction issue, in comparison,
clearly focuses on reducing clock cycles per instruction (CPI).

instruction latency The
inherent execution time
for an instruction.

Nine-tenths of wisdom
consists of being wise
in time.
American proverb

 4.17 Exercises 347

Pipelining and multiple issue both attempt to exploit instruction-level
parallelism. The presence of data and control dependences, which can become
hazards, are the primary limitations on how much parallelism can be exploited.
Scheduling and speculation via prediction, both in hardware and in software, are
the primary techniques used to reduce the performance impact of dependences.

We showed that unrolling the DGEMM loop four times exposed more
instructions that could take advantage of the out-of-order execution engine of the
Core i7 to more than double performance.

The switch to longer pipelines, multiple instruction issue, and dynamic
scheduling in the mid-1990s helped sustain the 60% per year processor performance
increase that started in the early 1980s. As mentioned in Chapter 1, these
microprocessors preserved the sequential programming model, but they eventually
ran into the power wall. Thus, the industry was forced to switch to multiprocessors,
which exploit parallelism at much coarser levels (the subject of Chapter 6). This
trend has also caused designers to reassess the energy-performance implications
of some of the inventions since the mid-1990s, resulting in a simplification of
pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors,
Amdahl’s law suggests that another part of the system will become the bottleneck.
That bottleneck is the topic of the next chapter: the memory hierarchy.

 4.16 Historical Perspective and Further
Reading

This section, which appears online, discusses the history of the first pipelined
processors, the earliest superscalars, and the development of out-of-order and
speculative techniques, as well as important developments in the accompanying
compiler technology.

 4.17 Exercises

4.1 Consider the following instruction:

Instruction: and rd, rs1, rs2

Interpretation: Reg[rd] = Reg[rs1] AND Reg[rs2]

4.1.1 [5] <§4.3> What are the values of control signals generated by the control
in Figure 4.10 for this instruction?

 4.16 Historical Perspective and Further Reading 347.e1

 Historical Perspective and Further
Reading

This section discusses the history of the original pipelined processors, the earliest
superscalars, and the development of out-of-order and speculative techniques, as
well as important developments in the accompanying compiler technology.

It is generally agreed that one of the first general-purpose pipelined computers
was Stretch, the IBM 7030 (Figure e4.16.1). Stretch followed the IBM 704 and had a
goal of being 100 times faster than the 704. The goals were a “stretch” of the state of
the art at that time—hence the nickname. The plan was to obtain a factor of 1.6 from
overlapping fetch, decode, and execute by using a four-stage pipeline. Apparently,
the rest was to come from much more hardware and faster logic. Stretch was also
a training ground for both the architects of the IBM 360, Gerrit Blaauw and Fred
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke.

supercomputer: Any
machine still on the
drawing board.
Stan Kelly-Bootle, The
Devil’s DP Dictionary,
1981

FIGURE e4.16.1 The Stretch computer, one of the first pipelined computers.

4.16

347.e2 4.16 Historical Perspective and Further Reading

Control Data Corporation (CDC) delivered what is considered to be the first
supercomputer, the CDC 6600, in 1964 (Figure e4.16.2). The core instructions of
Cray’s subsequent computers have many similarities to those of the original CDC
6600. The CDC 6600 was unique in many ways. The interaction between pipelining
and instruction set design was understood, and the instruction set was kept
simple to promote pipelining. The CDC 6600 also used an advanced packaging
technology. James Thornton’s book [1970] provides an excellent description of
the entire computer, from technology to architecture, and includes a foreword
by Seymour Cray. (Unfortunately, this book is currently out of print.) Jim Smith,
then working at CDC, developed the original 2-bit branch prediction scheme and
explored several techniques for enhancing instruction issue for the CDC Cyber
180/990. Cray, Thornton, and Smith have each won the ACM Eckert-Mauchly
Award (in 1989, 1994, and 1999, respectively).

The IBM 360/91 introduced many new concepts, including dynamic detection of
memory hazards, generalized forwarding, and reservation stations (Figure e4.16.3).
The approach is normally named Tomasulo’s algorithm, after an engineer who
worked on the project. The team that created the 360/91 was led by Michael Flynn,
who was given the 1992 ACM Eckert-Mauchly Award, in part for his contributions
to the IBM 360/91; in 1997, the same award went to Robert Tomasulo for his
pioneering work on out-of-order processing.

The internal organization of the 360/91 shares many features with the Pentium
III and Pentium 4, as well as with several other microprocessors. One major

FIGURE e4.16.2 The CDC 6600, the first supercomputer.

 4.16 Historical Perspective and Further Reading 347.e3

difference was that there was no branch prediction in the 360/91 and hence no
speculation. Another major difference was that there was no commit unit, so
once the instructions finished execution, they updated the registers. Out-of-order
instruction commit led to imprecise interrupts, which proved to be unpopular and
led to the commit units in dynamically scheduled pipelined processors since that
time. Although the 360/91 was not a success, its key ideas were resurrected later
and exist in some form in the majority of microprocessors of the last decade.

Improving Pipelining Effectiveness and Adding Multiple
Issue
The RISC processors refined the notion of compiler-scheduled pipelines in the
early 1980s. The concepts of delayed branches and delayed loads—common in
microprogramming—were extended into the high-level architecture. In fact,
the Stanford processor that led to the commercial MIPS architecture was called
“Microprocessor without Interlocked Pipelined Stages” because it was up to the
assembler or compiler to avoid data hazards.

In addition to its contribution to the development of the RISC concepts, IBM did
pioneering work on multiple issue. In the 1960s, a project called ACS was under-
way. It included multiple-instruction issue concepts and the notion of integrated
compiler and architecture design, but it never reached product stage. The earliest
proposal for a superscalar processor that dynamically makes issue decisions was

FIGURE e4.16.3 The IBM 360/91 pushed the state of the art in pipelined execution when it
was unveiled in 1966.

347.e4 4.16 Historical Perspective and Further Reading

by John Cocke; he described the key ideas in several talks in the mid-1980s and,
with Tilak Agarwala, coined the name superscalar. This original design was a two-
issue machine named Cheetah, which was followed by a more widely discussed
four-issue machine named America. The IBM Power-1 architecture, used in the
RS/6000 line, is based on these ideas, and the PowerPC is a variation of the Power-1
architecture. Cocke won the Turing Award, the highest award in computer science
and engineering, for his architecture work.

Static multiple issue, as exemplified by the long instruction word (LIW) or
sometimes very long instruction word (VLIW) approaches, appeared in real designs
before the superscalar approach. In fact, the earliest multiple-issue machines
were special-purpose attached processors designed for scientific applications.
Culler Scientific and Floating Point Systems were two of the most prominent
manufacturers of such computers. Another inspiration for the use of multiple
operations per instruction came from those working on microcode compilers.
Such inspiration led to a research project at Yale led by Josh Fisher, who coined
the term VLIW. Cydrome and Multiflow were two early companies involved in
building mini-supercomputers using processors with multiple-issue capability.
These processors, built with bit-slice and multiple-chip gate array implementations,
arrived on the market at the same time as the initial RISC microprocessors. Despite
some promising performance on high-end scientific codes, the much better cost/
performance of the microprocessor-based computers doomed the first generation
of VLIW computers. Bob Rau and Josh Fisher won the Eckert-Mauchly Award in
2002 and 2003, respectively, for their contributions to the development of multiple
processors and software techniques to exploit ILP.

The very beginning of the 1990s saw the first superscalar processors using
static scheduling and no speculation, including versions of the MIPS and
PowerPC architectures. The early 1990s also saw important research at a number
of universities, including Wisconsin, Stanford, Illinois, and Michigan, focused on
techniques for exploiting additional ILP through multiple issue with and without
speculation. These research insights were used to build dynamically scheduled,
speculative processors, including the Motorola 88110, MIPS R10000, DEC Alpha
21264, PowerPC 603, and the Intel Pentium Pro, Pentium III, and Pentium 4.

In 2001, Intel introduced the IA-64 architecture and its first implementation,
Itanium. Itanium represented a return to a more compiler-intensive approach that
they called EPIC. EPIC represented a considerable enhancement over the early
VLIW architectures, removing many of their drawbacks. It has had modest sales.
In 2013, the IA-64 architecture is used only in low-volume, high-end servers and is
outnumbered by x86 processors by more than 100:1.

Compiler Technology for Exploiting ILP
Successful development of processors to exploit ILP has depended on progress in
compiler technology. The concept of loop unrolling was understood early, and a
number of companies and researchers—including Floating Point Systems, Cray,
and the Stanford MIPS project—developed compilers that made use of loop

 4.16 Historical Perspective and Further Reading 347.e5

unrolling and pipeline scheduling to improve instruction throughput. A special-
purpose processor called WARP, designed at Carnegie Mellon University, inspired
the development of software pipelining, an approach that symbolically unrolls
loops.

To exploit higher levels of ILP, more aggressive compiler technology was needed.
The VLIW project at Yale developed the concept of trace scheduling that Multi-
flow implemented in their compilers. Trace scheduling relies on aggressive loop
unrolling and path prediction to compile favored execution traces efficiently. The
Cydrome designers created early versions of predication and support for software
pipelining. Hwu at Illinois worked on extended versions of loop unrolling, called
superblocks, and techniques for compiling with predication. The concepts from
Multiflow, Cydrome, and the research group at Illinois served as the architectural
and compiler basis for the IA-64 architecture.

Further Reading

Bhandarkar, D. and D.W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CISC with
similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Palo Alto, CA, 310–19.

A quantitative comparison of RISC and CISC written by scholars who argued for CISCs as well as built them;
they conclude that MIPS is between 2 and 4 times faster than a VAX built with similar technology, with a mean
of 2.7.

Fisher, J.A. and B.R. Rau [1993]. Journal of Supercomputing (January), Kluwer.

This entire issue is devoted to the topic of exploiting ILP. It contains papers on both the architecture and software
and is a wonderful source for further references.

Hennessy, J. L. and D. A. Patterson [2001]. Computer Architecture: A Quantitative Approach, fourth edition,
Morgan Kaufmann, San Francisco.

Chapter 2 and Appendix A go into considerably more detail about pipelined processors (almost 200 pages),
including superscalar processors and VLIW processors. Appendix G describes Itanium.

Jouppi, N.P. and D.W. Wall [1989]. “Available instruction-level parallelism for superscalar and superpipelined
processors,” Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, 272–82.

A comparison of deeply pipelined (also called superpipelined) and superscalar systems.

Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

A formal text on pipelined control, with emphasis on underlying principles.

Russell, R. M. [1978]. “The CRAY-1 computer system”, Comm. of the ACM 21:1 (January), 63–72.

A short summary of a classic computer that uses vectors of operations to remove pipeline stalls.

Smith, A. and J. Lee [1984]. “Branch prediction strategies and branch target buffer design”, Computer
17:1 (January), 6–22.

An early survey on branch prediction.

http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref4

347.e6 4.16 Historical Perspective and Further Reading

Smith, J. E. and A. R. Plezkun [1988]. “Implementing precise interrupts in pipelined processors”, IEEE Trans.
on Computers 37:5 (May), 562–73.

Covers the difficulties in interrupting pipelined computers.

Thornton, J. E. [1970]. Design of a Computer. The Control Data 6600, Glenview, IL: Scott, Foresman.

A classic book describing a classic computer, considered the first supercomputer.

http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00033-6/sbref6

348 Chapter 4 The Processor

4.1.2 [5] <§4.3> Which resources (blocks) perform a useful function for this
instruction?

4.1.3 [10] <§4.3> Which resources (blocks) produce no output for this
instruction? Which resources produce output that is not used?

4.2 [10] <§4.4> Explain each of the “don’t cares” in Figure 4.18.

4.3 Consider the following instruction mix:

R-type I-type (non-ld) Load Store Branch Jump

24% 28% 25% 10% 11% 2%

4.3.1 [5] <§4.4> What fraction of all instructions use data memory?

4.3.2 [5] <§4.4> What fraction of all instructions use instruction memory?

4.3.3 [5] <§4.4> What fraction of all instructions use the sign extend?

4.3.4 [5] <§4.4> What is the sign extend doing during cycles in which its output
is not needed?

4.4 When silicon chips are fabricated, defects in materials (e.g., silicon) and
manufacturing errors can result in defective circuits. A very common defect is for
one signal wire to get “broken” and always register a logical 0. This is often called a
“stuck-at-0” fault.

4.4.1 [5] <§4.4> Which instructions fail to operate correctly if the MemToReg
wire is stuck at 0?

4.4.2 [5] <§4.4> Which instructions fail to operate correctly if the ALUSrc wire
is stuck at 0?

4.5 In this exercise, we examine in detail how an instruction is executed in a
single-cycle datapath. Problems in this exercise refer to a clock cycle in which the
processor fetches the following instruction word: 0x00c6ba23.

4.5.1 [10] <§4.4> What are the values of the ALU control unit’s inputs for this
instruction?

4.5.2 [5] <§4.4> What is the new PC address after this instruction is executed?
Highlight the path through which this value is determined.

4.5.3 [10] <§4.4> For each mux, show the values of its inputs and outputs during
the execution of this instruction. List values that are register outputs at Reg [xn].

4.5.4 [10] <§4.4> What are the input values for the ALU and the two add units?

马德

马德

 4.17 Exercises 349

4.5.5 [10] <§4.4> What are the values of all inputs for the registers unit?

4.6 Section 4.4 does not discuss I-type instructions like addi or andi.

4.6.1 [5] <§4.4> What additional logic blocks, if any, are needed to add I-type
instructions to the CPU shown in Figure 4.21? Add any necessary logic blocks to
Figure 4.21 and explain their purpose.

4.6.2 [10] <§4.4> List the values of the signals generated by the control unit for
addi. Explain the reasoning for any “don’t care” control signals.

4.7 Problems in this exercise assume that the logic blocks used to implement a
processor’s datapath have the following latencies:

I-Mem /
D-Mem

Register
File Mux ALU Adder

Single
gate

Register
Read

Register
Setup

Sign
extend Control

250 ps 150 ps 25 ps 200 ps 150 ps 5 ps 30 ps 20 ps 50 ps 50 ps

“Register read” is the time needed after the rising clock edge for the new register
value to appear on the output. This value applies to the PC only. “Register setup” is
the amount of time a register’s data input must be stable before the rising edge of
the clock. This value applies to both the PC and Register File.

4.7.1 [5] <§4.4> What is the latency of an R-type instruction (i.e., how long must
the clock period be to ensure that this instruction works correctly)?

4.7.2 [10] <§4.4> What is the latency of ld? (Check your answer carefully. Many
students place extra muxes on the critical path.)

4.7.3 [10] <§4.4> What is the latency of sd? (Check your answer carefully. Many
students place extra muxes on the critical path.)

4.7.4 [5] <§4.4> What is the latency of beq?

4.7.5 [5] <§4.4> What is the latency of an I-type instruction?

4.7.6 [5] <§4.4> What is the minimum clock period for this CPU?

4.8 [10] <§4.4> Suppose you could build a CPU where the clock cycle time was
different for each instruction. What would the speedup of this new CPU be over
the CPU presented in Figure 4.21 given the instruction mix below?

R-type/I-type (non-ld) ld sd beq

52% 25% 11% 12%

马德

马德

350 Chapter 4 The Processor

4.9 Consider the addition of a multiplier to the CPU shown in Figure 4.21. This
addition will add 300 ps to the latency of the ALU, but will reduce the number of
instructions by 5% (because there will no longer be a need to emulate the multiply
instruction).

4.9.1 [5] <§4.4> What is the clock cycle time with and without this improvement?

4.9.2 [10] <§4.4> What is the speedup achieved by adding this improvement?

4.9.3 [10] <§4.4> What is the slowest the new ALU can be and still result in
improved performance?

4.10 When processor designers consider a possible improvement to the processor
datapath, the decision usually depends on the cost/performance trade-off. In the
following three problems, assume that we are beginning with the datapath from
Figure 4.21, the latencies from Exercise 4.7, and the following costs:

I-Mem
Register

File Mux ALU Adder D-Mem
Single

Register
Sign

extend
Single
gate Control

1000 200 10 100 30 2000 5 100 1 500

Suppose doubling the number of general purpose registers from 32 to 64 would
reduce the number of ld and sd instruction by 12%, but increase the latency of
the register file from 150 ps to 160 ps and double the cost from 200 to 400. (Use the
instruction mix from Exercise 4.8 and ignore the other effects on the ISA discussed
in Exercise 2.18.)

4.10.1 [5] <§4.4> What is the speedup achieved by adding this improvement?

4.10.2 [10] <§4.4> Compare the change in performance to the change in cost.

4.10.3 [10] <§4.4> Given the cost/performance ratios you just calculated,
describe a situation where it makes sense to add more registers and describe a
situation where it doesn’t make sense to add more registers.

4.11 Examine the difficulty of adding a proposed lwi.d rd, rs1, rs2 (“Load
With Increment”) instruction to RISC-V.

Interpretation: Reg[rd]=Mem[Reg[rs1]+Reg[rs2]]

4.11.1 [5] <§4.4> Which new functional blocks (if any) do we need for this
instruction?

4.11.2 [5] <§4.4> Which existing functional blocks (if any) require modification?

4.11.3 [5] <§4.4> Which new data paths (if any) do we need for this instruction?

4.11.4 [5] <§4.4> What new signals do we need (if any) from the control unit to
support this instruction?

马德

马德

 4.17 Exercises 351

4.12 Examine the difficulty of adding a proposed swap rs1, rs2 instruction to
RISC-V.

Interpretation: Reg[rs2]=Reg[rs1]; Reg[rs1]=Reg[rs2]

4.12.1 [5] <§4.4> Which new functional blocks (if any) do we need for this
instruction?

4.12.2 [10] <§4.4> Which existing functional blocks (if any) require
modification?

4.12.3 [5] <§4.4> What new data paths do we need (if any) to support this
instruction?

4.12.4 [5] <§4.4> What new signals do we need (if any) from the control unit to
support this instruction?

4.12.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an implementation of this
new instruction.

4.13 Examine the difficulty of adding a proposed ss rs1, rs2, imm (Store Sum)
instruction to RISC-V.

Interpretation: Mem[Reg[rs1]]=Reg[rs2]+immediate

4.13.1 [10] <§4.4> Which new functional blocks (if any) do we need for this
instruction?

4.13.2 [10] <§4.4> Which existing functional blocks (if any) require modification?

4.13.3 [5] <§4.4> What new data paths do we need (if any) to support this
instruction?

4.13.4 [5] <§4.4> What new signals do we need (if any) from the control unit to
support this instruction?

4.13.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an implementation of this
new instruction.

4.14 [5] <§4.4> For which instructions (if any) is the Imm Gen block on the
critical path?

4.15 ld is the instruction with the longest latency on the CPU from Section 4.4.
If we modified ld and sd so that there was no offset (i.e., the address to be loaded
from/stored to must be calculated and placed in rs1 before calling ld/sd), then
no instruction would use both the ALU and Data memory. This would allow us
to reduce the clock cycle time. However, it would also increase the number of
instructions, because many ld and sd instructions would need to be replaced with
ld/add or sd/add combinations.

352 Chapter 4 The Processor

4.15.1 [5] <§4.4> What would the new clock cycle time be?

4.15.2 [10] <§4.4> Would a program with the instruction mix presented in
Exercise 4.7 run faster or slower on this new CPU? By how much? (For simplicity,
assume every ld and sd instruction is replaced with a sequence of two instructions.)

4.15.3 [5] <§4.4> What is the primary factor that influences whether a program
will run faster or slower on the new CPU?

4.15.4 [5] <§4.4> Do you consider the original CPU (as shown in Figure 4.21)
a better overall design; or do you consider the new CPU a better overall design?
Why?

4.16 In this exercise, we examine how pipelining affects the clock cycle time of the
processor. Problems in this exercise assume that individual stages of the datapath
have the following latencies:

IF ID EX MEM WB

250 ps 350 ps 150 ps 300 ps 200 ps

Also, assume that instructions executed by the processor are broken down as
follows:

ALU/Logic Jump/Branch Load Store

45% 20% 20% 15%

4.16.1 [5] <§4.5> What is the clock cycle time in a pipelined and non-pipelined
processor?

4.16.2 [10] <§4.5> What is the total latency of an ld instruction in a pipelined
and non-pipelined processor?

4.16.3 [10] <§4.5> If we can split one stage of the pipelined datapath into two
new stages, each with half the latency of the original stage, which stage would you
split and what is the new clock cycle time of the processor?

4.16.4 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization
of the data memory?

4.16.5 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization
of the write-register port of the “Registers” unit?

4.17 [10] <§4.5> What is the minimum number of cycles needed to completely
execute n instructions on a CPU with a k stage pipeline? Justify your formula.

4.18 [5] <§4.5> Assume that x11 is initialized to 11 and x12 is initialized to 22.
Suppose you executed the code below on a version of the pipeline from Section
4.5 that does not handle data hazards (i.e., the programmer is responsible for

马德

马德

 4.17 Exercises 353

addressing data hazards by inserting NOP instructions where necessary). What
would the final values of registers x13 and x14 be?

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15

4.19 [10] <§4.5> Assume that x11 is initialized to 11 and x12 is initialized to
22. Suppose you executed the code below on a version of the pipeline from Section
4.5 that does not handle data hazards (i.e., the programmer is responsible for
addressing data hazards by inserting NOP instructions where necessary). What
would the final values of register x15 be? Assume the register file is written at the
beginning of the cycle and read at the end of a cycle. Therefore, an ID stage will
return the results of a WB state occurring during the same cycle. See Section 4.7
and Figure 4.51 for details.

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15
add x15, x11, x11

4.20 [5] <§4.5> Add NOP instructions to the code below so that it will run
correctly on a pipeline that does not handle data hazards.

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15
add x15, x13, x12

4.21 Consider a version of the pipeline from Section 4.5 that does not handle
data hazards (i.e., the programmer is responsible for addressing data hazards by
inserting NOP instructions where necessary). Suppose that (after optimization)
a typical n-instruction program requires an additional 4*n NOP instructions to
correctly handle data hazards.

4.21.1 [5] <§4.5> Suppose that the cycle time of this pipeline without forwarding
is 250 ps. Suppose also that adding forwarding hardware will reduce the number
of NOPs from .4*n to .05*n, but increase the cycle time to 300 ps. What is the
speedup of this new pipeline compared to the one without forwarding?

4.21.2 [10] <§4.5> Different programs will require different amounts of NOPs.
How many NOPs (as a percentage of code instructions) can remain in the typical
program before that program runs slower on the pipeline with forwarding?

4.21.3 [10] <§4.5> Repeat 4.21.2; however, this time let x represent the number
of NOP instructions relative to n. (In 4.21.2, x was equal to .4.) Your answer will
be with respect to x.

马德

354 Chapter 4 The Processor

4.21.4 [10] <§4.5> Can a program with only .075*n NOPs possibly run faster
on the pipeline with forwarding? Explain why or why not.

4.21.5 [10] <§4.5> At minimum, how many NOPs (as a percentage of code
instructions) must a program have before it can possibly run faster on the pipeline
with forwarding?

4.22 [5] <§4.5> Consider the fragment of RISC-V assembly below:

sd x29, 12(x16)
ld x29, 8(x16)
sub x17, x15, x14
beqz x17, label
add x15, x11, x14
sub x15, x30, x14

Suppose we modify the pipeline so that it has only one memory (that handles both
instructions and data). In this case, there will be a structural hazard every time
a program needs to fetch an instruction during the same cycle in which another
instruction accesses data.

4.22.1 [5] <§4.5> Draw a pipeline diagram to show were the code above will
stall.

4.22.2 [5] <§4.5> In general, is it possible to reduce the number of stalls/NOPs
resulting from this structural hazard by reordering code?

4.22.3 [5] <§4.5> Must this structural hazard be handled in hardware? We have
seen that data hazards can be eliminated by adding NOPs to the code. Can you do
the same with this structural hazard? If so, explain how. If not, explain why not.

4.22.4 [5] <§4.5> Approximately how many stalls would you expect this
structural hazard to generate in a typical program? (Use the instruction mix from
Exercise 4.8.)

4.23 If we change load/store instructions to use a register (without an offset) as
the address, these instructions no longer need to use the ALU. (See Exercise 4.15.)
As a result, the MEM and EX stages can be overlapped and the pipeline has only
four stages.

4.23.1 [10] <§4.5> How will the reduction in pipeline depth affect the cycle
time?

4.23.2 [5] <§4.5> How might this change improve the performance of the
pipeline?

4.23.3 [5] <§4.5> How might this change degrade the performance of the
pipeline?

 4.17 Exercises 355

4.24 [10] <§4.7> Which of the two pipeline diagrams below better describes the
operation of the pipeline’s hazard detection unit? Why?

Choice 1:

ld x11, 0(x12): IF ID EX ME WB
add x13, x11, x14: IF ID EX..ME WB
or x15, x16, x17: IF ID..EX ME WB

Choice 2:

ld x11, 0(x12): IF ID EX ME WB
add x13, x11, x14: IF ID..EX ME WB
or x15, x16, x17: IF..ID EX ME WB

4.25 Consider the following loop.

LOOP: ld x10, 0(x13)
 ld x11, 8(x13)

 add x12, x10, x11
 subi x13, x13, 16

 bnez x12, LOOP

Assume that perfect branch prediction is used (no stalls due to control hazards),
that there are no delay slots, that the pipeline has full forwarding support, and that
branches are resolved in the EX (as opposed to the ID) stage.

4.25.1 [10] <§4.7> Show a pipeline execution diagram for the first two iterations
of this loop.

4.25.2 [10] <§4.7> Mark pipeline stages that do not perform useful work. How
often while the pipeline is full do we have a cycle in which all five pipeline stages are
doing useful work? (Begin with the cycle during which the subi is in the IF stage.
End with the cycle during which the bnez is in the IF stage.)

4.26 This exercise is intended to help you understand the cost/complexity/
performance trade-offs of forwarding in a pipelined processor. Problems in this
exercise refer to pipelined datapaths from Figure 4.53. These problems assume
that, of all the instructions executed in a processor, the following fraction of these
instructions has a particular type of RAW data dependence. The type of RAW data
dependence is identified by the stage that produces the result (EX or MEM) and
the next instruction that consumes the result (1st instruction that follows the one
that produces the result, 2nd instruction that follows, or both). We assume that the
register write is done in the first half of the clock cycle and that register reads are
done in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences

马德

356 Chapter 4 The Processor

are not counted because they cannot result in data hazards. We also assume that
branches are resolved in the EX stage (as opposed to the ID stage), and that the CPI
of the processor is 1 if there are no data hazards.

EX to
1st Only

MEM to 1st
Only

EX to 2nd
Only

MEM to 2nd
Only

EX to 1st and EX
to 2nd

5% 20% 5% 10% 10%

Assume the following latencies for individual pipeline stages. For the EX stage,
latencies are given separately for a processor without forwarding and for a processor
with different kinds of forwarding.

IF ID
EX (no

FW)
EX (full

FW)

EX (FW
from EX/
MEM only)

EX (FW
from MEM/
WB only) MEM WB

120 ps 100 ps 110 ps 130 ps 120 ps 120 ps 120 ps 100 ps

4.26.1 [5] <§4.7> For each RAW dependency listed above, give a sequence of at
least three assembly statements that exhibits that dependency.

4.26.2 [5] <§4.7> For each RAW dependency above, how many NOPs would
need to be inserted to allow your code from 4.26.1 to run correctly on a pipeline
with no forwarding or hazard detection? Show where the NOPs could be inserted.

4.26.3 [10] <§4.7> Analyzing each instruction independently will over-count
the number of NOPs needed to run a program on a pipeline with no forwarding or
hazard detection. Write a sequence of three assembly instructions so that, when
you consider each instruction in the sequence independently, the sum of the stalls
is larger than the number of stalls the sequence actually needs to avoid data hazards.

4.26.4 [5] <§4.7> Assuming no other hazards, what is the CPI for the program
described by the table above when run on a pipeline with no forwarding? What
percent of cycles are stalls? (For simplicity, assume that all necessary cases are listed
above and can be treated independently.)

4.26.5 [5] <§4.7> What is the CPI if we use full forwarding (forward all results
that can be forwarded)? What percent of cycles are stalls?

4.26.6 [10] <§4.7> Let us assume that we cannot afford to have three-input
multiplexors that are needed for full forwarding. We have to decide if it is better to
forward only from the EX/MEM pipeline register (next-cycle forwarding) or only
from the MEM/WB pipeline register (two-cycle forwarding). What is the CPI for
each option?

4.26.7 [5] <§4.7> For the given hazard probabilities and pipeline stage latencies,
what is the speedup achieved by each type of forwarding (EX/MEM, MEM/WB,
for full) as compared to a pipeline that has no forwarding?

 4.17 Exercises 357

4.26.8 [5] <§4.7> What would be the additional speedup (relative to the fastest
processor from 4.26.7) be if we added “time-travel” forwarding that eliminates all
data hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100 ps
to the latency of the full-forwarding EX stage.

4.26.9 [5] <§4.7> The table of hazard types has separate entries for “EX to 1st” and
“EX to 1st and EX to 2nd”. Why is there no entry for “MEM to 1st and MEM to 2nd”?

4.27 Problems in this exercise refer to the following sequence of instructions, and
assume that it is executed on a five-stage pipelined datapath:

add x15, x12, x11
ld x13, 4(x15)
ld x12, 0(x2)
or x13, x15, x13
sd x13, 0(x15)

4.27.1 [5] <§4.7> If there is no forwarding or hazard detection, insert NOPs to
ensure correct execution.

4.27.2 [10] <§4.7> Now, change and/or rearrange the code to minimize
the number of NOPs needed. You can assume register x17 can be used to hold
temporary values in your modified code.

4.27.3 [10] <§4.7> If the processor has forwarding, but we forgot to implement
the hazard detection unit, what happens when the original code executes?

4.27.4 [20] <§4.7> If there is forwarding, for the first seven cycles during the
execution of this code, specify which signals are asserted in each cycle by hazard
detection and forwarding units in Figure 4.59.

4.27.5 [10] <§4.7> If there is no forwarding, what new input and output signals
do we need for the hazard detection unit in Figure 4.59? Using this instruction
sequence as an example, explain why each signal is needed.

4.27.6 [20] <§4.7> For the new hazard detection unit from 4.26.5, specify which
output signals it asserts in each of the first five cycles during the execution of this
code.

4.28 The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor accuracy, this
will determine how much time is spent stalling due to mispredicted branches. In
this exercise, assume that the breakdown of dynamic instructions into various
instruction categories is as follows:

R-type beqz/bnez jal ld sd

40% 25% 5% 25% 5%

358 Chapter 4 The Processor

Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit

45% 55% 85%

4.28.1 [10] <§4.8> Stall cycles due to mispredicted branches increase the CPI.
What is the extra CPI due to mispredicted branches with the always-taken predictor?
Assume that branch outcomes are determined in the ID stage and applied in the EX
stage that there are no data hazards, and that no delay slots are used.

4.28.2 [10] <§4.8> Repeat 4.28.1 for the “always-not-taken” predictor.

4.28.3 [10] <§4.8> Repeat 4.28.1 for the 2-bit predictor.

4.28.4 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if
we could convert half of the branch instructions to some ALU instruction? Assume
that correctly and incorrectly predicted instructions have the same chance of being
replaced.

4.28.5 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if
we could convert half of the branch instructions in a way that replaced each branch
instruction with two ALU instructions? Assume that correctly and incorrectly
predicted instructions have the same chance of being replaced.

4.28.6 [10] <§4.8> Some branch instructions are much more predictable than
others. If we know that 80% of all executed branch instructions are easy-to-predict
loop-back branches that are always predicted correctly, what is the accuracy of the
2-bit predictor on the remaining 20% of the branch instructions?

4.29 This exercise examines the accuracy of various branch predictors for the
following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT.

4.29.1 [5] <§4.8> What is the accuracy of always-taken and always-not-taken
predictors for this sequence of branch outcomes?

4.29.2 [5] <§4.8> What is the accuracy of the 2-bit predictor for the first four
branches in this pattern, assuming that the predictor starts off in the bottom left
state from Figure 4.61 (predict not taken)?

4.29.3 [10] <§4.8> What is the accuracy of the 2-bit predictor if this pattern is
repeated forever?

4.29.4 [30] <§4.8> Design a predictor that would achieve a perfect accuracy if
this pattern is repeated forever. You predictor should be a sequential circuit with
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs
other than the clock and the control signal that indicates that the instruction is a
conditional branch.

 4.17 Exercises 359

4.29.5 [10] <§4.8> What is the accuracy of your predictor from 4.29.4 if it is
given a repeating pattern that is the exact opposite of this one?

4.29.6 [20] <§4.8> Repeat 4.29.4, but now your predictor should be able to
eventually (after a warm-up period during which it can make wrong predictions)
start perfectly predicting both this pattern and its opposite. Your predictor should
have an input that tells it what the real outcome was. Hint: this input lets your
predictor determine which of the two repeating patterns it is given.

4.30 This exercise explores how exception handling affects pipeline design. The
first three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2

beqz x11, LABEL ld x11, 0(x12)

4.30.1 [5] <§4.9> Which exceptions can each of these instructions trigger? For
each of these exceptions, specify the pipeline stage in which it is detected.

4.30.2 [10] <§4.9> If there is a separate handler address for each exception, show
how the pipeline organization must be changed to be able to handle this exception.
You can assume that the addresses of these handlers are known when the processor
is designed.

4.30.3 [10] <§4.9> If the second instruction is fetched immediately after the
first instruction, describe what happens in the pipeline when the first instruction
causes the first exception you listed in Exercise 4.30.1. Show the pipeline execution
diagram from the time the first instruction is fetched until the time the first
instruction of the exception handler is completed.

4.30.4 [20] <§4.9> In vectored exception handling, the table of exception handler
addresses is in data memory at a known (fixed) address. Change the pipeline to
implement this exception handling mechanism. Repeat Exercise 4.30.3 using this
modified pipeline and vectored exception handling.

4.30.5 [15] <§4.9> We want to emulate vectored exception handling (described
in Exercise 4.30.4) on a machine that has only one fixed handler address. Write
the code that should be at that fixed address. Hint: this code should identify the
exception, get the right address from the exception vector table, and transfer
execution to that handler.

4.31 In this exercise we compare the performance of 1-issue and 2-issue
processors, taking into account program transformations that can be made to
optimize for 2-issue execution. Problems in this exercise refer to the following loop
(written in C):

for(i=0;i!=j;i+=2)
 b[i]=a[i]–a[i+1];

360 Chapter 4 The Processor

A compiler doing little or no optimization might produce the following RISC-V
assembly code:

li x12, 0
jal ENT

TOP: slli x5, x12, 3
add x6, x10, x5
ld x7, 0(x6)
ld x29, 8(x6)
sub x30, x7, x29
add x31, x11, x5
sd x30, 0(x31)
addi x12, x12, 2

ENT: bne x12, x13, TOP

The code above uses the following registers:

i j a b
Temporary

values

x12 x13 x10 x11 x5–x7, x29–x31

Assume the two-issue, statically scheduled processor for this exercise has the
following properties:

1. One instruction must be a memory operation; the other must be an
arithmetic/logic instruction or a branch.

2. The processor has all possible forwarding paths between stages (including
paths to the ID stage for branch resolution).

3. The processor has perfect branch prediction.
4. Two instruction may not issue together in a packet if one depends on the

other. (See page 324.)
5. If a stall is necessary, both instructions in the issue packet must stall. (See

page 324.)

As you complete these exercises, notice how much effort goes into generating
code that will produce a near-optimal speedup.

4.31.1 [30] <§4.10> Draw a pipeline diagram showing how RISC-V code given
above executes on the two-issue processor. Assume that the loop exits after two
iterations.

4.31.2 [10] <§4.10> What is the speedup of going from a one-issue to a two-
issue processor? (Assume the loop runs thousands of iterations.)

4.31.3 [10] <§4.10> Rearrange/rewrite the RISC-V code given above to achieve
better performance on the one-issue processor. Hint: Use the instruction “beqz
x13,DONE” to skip the loop entirely if j = 0.

 4.17 Exercises 361

4.31.4 [20] <§4.10> Rearrange/rewrite the RISC-V code given above to achieve
better performance on the two-issue processor. (Do not unroll the loop, however.)

4.31.5 [30] <§4.10> Repeat Exercise 4.31.1, but this time use your optimized
code from Exercise 4.31.4.

4.31.6 [10] <§4.10> What is the speedup of going from a one-issue processor to
a two-issue processor when running the optimized code from Exercises 4.31.3 and
4.31.4.

4.31.7 [10] <§4.10> Unroll the RISC-V code from Exercise 4.31.3 so that each
iteration of the unrolled loop handles two iterations of the original loop. Then,
rearrange/rewrite your unrolled code to achieve better performance on the one-
issue processor. You may assume that j is a multiple of 4.

4.31.8 [20] <§4.10> Unroll the RISC-V code from Exercise 4.31.4 so that each
iteration of the unrolled loop handles two iterations of the original loop. Then,
rearrange/rewrite your unrolled code to achieve better performance on the two-
issue processor. You may assume that j is a multiple of 4. (Hint: Re-organize the
loop so that some calculations appear both outside the loop and at the end of the
loop. You may assume that the values in temporary registers are not needed after
the loop.)

4.31.9 [10] <§4.10> What is the speedup of going from a one-issue processor to
a two-issue processor when running the unrolled, optimized code from Exercises
4.31.7 and 4.31.8?

4.31.10 [30] <§4.10> Repeat Exercises 4.31.8 and 4.31.9, but this time assume
the two-issue processor can run two arithmetic/logic instructions together. (In
other words, the first instruction in a packet can be any type of instruction, but the
second must be an arithmetic or logic instruction. Two memory operations cannot
be scheduled at the same time.)

4.32 This exercise explores energy efficiency and its relationship with performance.
Problems in this exercise assume the following energy consumption for activity in
Instruction memory, Registers, and Data memory. You can assume that the other
components of the datapath consume a negligible amount of energy. (“Register
Read” and “Register Write” refer to the register file only.)

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write

140pJ 70pJ 60pJ 140pJ 120pJ

Assume that components in the datapath have the following latencies. You can
assume that the other components of the datapath have negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write

200 ps 150 ps 90 ps 90 ps 250 ps

362 Chapter 4 The Processor

4.32.1 [5] <§§4.3, 4.6, 4.14> How much energy is spent to execute an add
instruction in a single-cycle design and in the five-stage pipelined design?

4.32.2 [10] <§§4.6, 4.14> What is the worst-case RISC-V instruction in terms of
energy consumption? What is the energy spent to execute it?

4.32.3 [10] <§§4.6, 4.14> If energy reduction is paramount, how would you
change the pipelined design? What is the percentage reduction in the energy spent
by an ld instruction after this change?

4.32.4 [10] <§§4.6, 4.14> What other instructions can potentially benefit from
the change discussed in Exercise 4.32.3?

4.32.5 [10] <§§4.6, 4.14> How do your changes from Exercise 4.32.3 affect the
performance of a pipelined CPU?

4.32.6 [10] <§§4.6, 4.14> We can eliminate the MemRead control signal and have
the data memory be read in every cycle, i.e., we can permanently have MemRead=1.
Explain why the processor still functions correctly after this change. If 25% of
instructions are loads, what is the effect of this change on clock frequency and
energy consumption?

4.33 When silicon chips are fabricated, defects in materials (e.g., silicon) and
manufacturing errors can result in defective circuits. A very common defect is
for one wire to affect the signal in another. This is called a “cross-talk fault”. A
special class of cross-talk faults is when a signal is connected to a wire that has a
constant logical value (e.g., a power supply wire). These faults, where the affected
signal always has a logical value of either 0 or 1 are called “stuck-at-0” or “stuck-
at-1” faults. The following problems refer to bit 0 of the Write Register input on the
register file in Figure 4.21.

4.33.1 [10] <§§4.3, 4.4> Let us assume that processor testing is done by (1)
filling the PC, registers, and data and instruction memories with some values (you
can choose which values), (2) letting a single instruction execute, then (3) reading
the PC, memories, and registers. These values are then examined to determine if
a particular fault is present. Can you design a test (values for PC, memories, and
registers) that would determine if there is a stuck-at-0 fault on this signal?

4.33.2 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1 for a stuck-at-1 fault. Can you
use a single test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no,
explain why not.

4.33.3 [10] <§§4.3, 4.4> If we know that the processor has a stuck-at-1 fault on
this signal, is the processor still usable? To be usable, we must be able to convert any
program that executes on a normal RISC-V processor into a program that works
on this processor. You can assume that there is enough free instruction memory
and data memory to let you make the program longer and store additional data.

 4.17 Exercises 363

4.33.4 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the fault to test for is
whether the MemRead control signal becomes 0 if the branch control signal is 0,
no fault otherwise.

4.33.5 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the fault to test for
is whether the MemRead control signal becomes 1 if RegRd control signal is 1,
no fault otherwise. Hint: This problem requires knowledge of operating systems.
Consider what causes segmentation faults.

§4.1, page 240: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 243: false. Edge-triggered state elements make simultaneous reading and
writing both possible and unambiguous.
§4.3, page 250: I. a. II. c.
§4.4, page 262: Yes, Branch and ALUOp0 are identical. In addition, you can use
the flexibility of the don’t care bits to combine other signals together. ALUSrc and
MemtoReg can be made the same by setting the two don’t care bits of MemtoReg
to 1 and 0. ALUOp1 and MemtoReg can be made to be inverses of one another by
setting the don’t care bit of MemtoReg to 1. You don’t need an inverter; simply use
the other signal and flip the order of the inputs to the MemtoReg multiplexor!
§4.5, page 275: 1. Stall due to a load-use data hazard of the ld result. 2. Avoid
stalling in the third instruction for the read-after-write data hazard on x11 by
forwarding the add result. 3. It need not stall, even without forwarding.
§4.6, page 288: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 314: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 321: The first instruction, since it is logically executed before the others.
§4.10, page 334: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware.
6. Hardware. 7. Both. 8. Hardware. 9. Both.
§4.12, page 344: First two are false and the last two are true.

Answers to
Check Yourself

Large and Fast:
Exploiting Memory
Hierarchy
 5.1 Introduction 366
 5.2 Memory Technologies 370
 5.3 The Basics of Caches 375
 5.4 Measuring and Improving Cache

Performance 390
 5.5 Dependable Memory Hierarchy 410
 5.6 Virtual Machines 416
 5.7 Virtual Memory 419

5
Ideally one would desire an
indefinitely large memory
capacity such that any
particular … word would be
immediately available. … We
are … forced to recognize the
possibility of constructing a
hierarchy of memories, each
of which has greater capacity
than the preceding but which
is less quickly accessible.

A. W. Burks, H. H. Goldstine, and
J. von Neumann,
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, 1946

Computer Organization and Design. DOI:
© 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00005-1
2018

 5.8 A Common Framework for Memory Hierarchy 443
 5.9 Using a Finite-State Machine to Control a Simple Cache 449
 5.10 Parallelism and Memory Hierarchy: Cache Coherence 454
 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of

Inexpensive Disks 458
 5.12 Advanced Material: Implementing Cache Controllers 459
 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory

Hierarchies 459
 5.14 Real Stuff: The Rest of the RISC-V System and Special

Instructions 464
 5.15 Going Faster: Cache Blocking and Matrix Multiply 465
 5.16 Fallacies and Pitfalls 468
 5.17 Concluding Remarks 472
 5.18 Historical Perspective and Further Reading 473
 5.19 Exercises 473

The Five Classic Components of a Computer

366 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited
amounts of fast memory. The topics in this chapter aid programmers by creating
that illusion. Before we look at creating the illusion, let’s consider a simple analogy
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical
developments in computer hardware. You are sitting at a desk in a library with
a collection of books that you have pulled from the shelves and are examining.
You find that several of the important computers that you need to write about are
described in the books you have, but there is nothing about the EDSAC. Therefore,
you go back to the shelves and look for an additional book. You find a book on
early British computers that covers the EDSAC. Once you have a good selection of
books on the desk in front of you, there is a high probability that many of the topics
you need can be found in them, and you may spend most of your time just using
the books on the desk without returning to the shelves. Having several books on
the desk in front of you saves time compared to having only one book there and
constantly having to go back to the shelves to return it and take out another.

The same principle allows us to create the illusion of a large memory that we
can access as fast as a very small memory. Just as you did not need to access all the
books in the library at once with equal probability, a program does not access all of
its code or data at once with equal probability. Otherwise, it would be impossible
to make most memory accesses fast and still have large memory in computers, just
as it would be impossible for you to fit all the library books on your desk and still
find what you wanted quickly.

This principle of locality underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library’s collection. There are
two different types of locality:

■	 Temporal locality	(locality in time): if an item is referenced, it will tend to be
referenced again soon. If you recently brought a book to your desk to look at,
you will probably need to look at it again soon.

■	 Spatial locality	 (locality in space): if an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when you
brought out the book on early English computers to learn about the EDSAC,
you also noticed that there was another book shelved next to it about early
mechanical computers, so you likewise brought back that book and, later
on, found something useful in that book. Libraries put books on the same
topic together on the same shelves to increase spatial locality. We’ll see how
memory hierarchies use spatial locality a little later in this chapter.

temporal locality The
locality principle stating
that if a data location is
referenced then it will
tend to be referenced
again soon.

spatial locality The
locality principle stating
that if a data location is
referenced, data locations
with nearby addresses will
tend to be referenced soon.

 5.1 Introduction 367

Just as accesses to books on the desk naturally exhibit locality, locality in programs
arises from simple and natural program structures. For example, most programs
contain loops, so instructions and data are likely to be accessed repeatedly, showing
large temporal locality. Since instructions are normally accessed sequentially,
programs also show high spatial locality. Accesses to data also exhibit a natural
spatial locality. For example, sequential accesses to elements of an array or a record
will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory
of a computer as a memory hierarchy. A memory hierarchy consists of multiple
levels of memory with different speeds and sizes. The faster memories are more
expensive per bit than the slower memories and thus are smaller.

Figure 5.1 shows the faster memory is close to the processor and the slower,
less expensive memory is below it. The goal is to present the user with as much
memory as is available in the cheapest technology, while providing access at the
speed offered by the fastest memory.

The data are similarly hierarchical: a level closer to the processor is generally a
subset of any level further away, and all the data are stored at the lowest level. By
analogy, the books on your desk form a subset of the library you are working in,
which is in turn a subset of all the libraries on campus. Furthermore, as we move
away from the processor, the levels take progressively longer to access, just as we
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data are copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.

memory hierarchy
A structure that uses
multiple levels of
memories; as the distance
from the processor
increases, the size of the
memories and the access
time both increase.

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)
Current

technology

Highest

Lowest

SRAM

DRAM

Magnetic disk

Processor

Memory

Memory

Memory

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.

368 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The upper level—the one closer to the processor—is smaller and faster than the
lower level, since the upper level uses technology that is more expensive. Figure
5.2 shows that the minimum unit of information that can be either present or not
present in the two-level hierarchy is called a block or a line; in our library analogy,
a block of information is one book.

If the data requested by the processor appear in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books on
your desk). If the data are not found in the upper level, the request is called a miss.
The lower level in the hierarchy is then accessed to retrieve the block containing the
requested data. (Continuing our analogy, you go from your desk to the shelves to
find the desired book.) The hit rate, or hit ratio, is the fraction of memory accesses
found in the upper level; it is often used as a measure of the performance of the
memory hierarchy. The miss rate (1−hit rate) is the fraction of memory accesses
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether
the access is a hit or a miss (that is, the time needed to look through the books
on the desk). The miss penalty is the time to replace a block in the upper level with
the corresponding block from the lower level, plus the time to deliver this block
to the processor (or the time to get another book from the shelves and place it on the
desk). Because the upper level is smaller and built using faster memory parts,
the hit time will be much smaller than the time to access the next level in the
hierarchy, which is the major component of the miss penalty. (The time to examine
the books on the desk is much smaller than the time to get up and get a new book
from the shelves.)

block (or line) The
minimum unit of
information that can
be either present or not
present in a cache.

hit rate The fraction of
memory accesses found
in a level of the memory
hierarchy.

miss rate The fraction
of memory accesses not
found in a level of the
memory hierarchy.

hit time The time
required to access a level
of the memory hierarchy,
including the time needed
to determine whether the
access is a hit or a miss.

miss penalty The time
required to fetch a block
into a level of the memory
hierarchy from the lower
level, including the time
to access the block,
transmit it from one
level to the other, insert
it in the level that
experienced the miss,
and then pass the block
to the requestor.

Processor

Data are transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block or
a line. Usually we transfer an entire block when we copy something between levels.

 5.1 Introduction 369

As we will see in this chapter, the concepts used to build memory systems affect
many other aspects of a computer, including how the operating system manages
memory and I/O, how compilers generate code, and even how applications use
the computer. Of course, because all programs spend much of their time accessing
memory, the memory system is necessarily a major factor in determining
performance. The reliance on memory hierarchies to achieve performance
has meant that programmers, who used to be able to think of memory as a flat,
random access storage device, now need to understand that memory is a hierarchy
to get good performance. We show how important this understanding is in later
examples, such as Figure 5.18 on page 400, and Section 5.14, which shows how to
double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote
a great deal of attention to these systems and develop sophisticated mechanisms for
improving the performance of the memory system. In this chapter, we discuss the
major conceptual ideas, although we use many simplifications and abstractions to keep
the material manageable in length and complexity.

Which of the following statements are generally true?

1. Memory hierarchies take advantage of temporal locality.
2. On a read, the value returned depends on which blocks are in the cache.
3. Most of the cost of the memory hierarchy is at the highest level.
4. Most of the capacity of the memory hierarchy is at the lowest level.

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take advantage of temporal locality by keeping more recently accessed
data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster
memory technologies close to the processor. Thus, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an effective access time
close to that of the highest (and fastest) level and a size equal to that of the
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data
cannot be present in level i unless they are also present in level i + 1.

The BIG
Picture

Check
Yourself

370 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.2 Memory Technologies

There are four primary technologies used today in memory hierarchies. Main
memory is implemented from DRAM (dynamic random access memory), while
levels closer to the processor (caches) use SRAM (static random access memory).
DRAM is less costly per bit than SRAM, although it is substantially slower.
The price difference arises because DRAM uses significantly less area per bit of
memory, and DRAMs thus have larger capacity for the same amount of silicon; the
speed difference arises from several factors described in Section A.9 of Appendix A.
The third technology is flash memory. This nonvolatile memory is the secondary
memory in Personal Mobile Devices. The fourth technology, used to implement
the largest and slowest level in the hierarchy in servers, is magnetic disk. The access
time and price per bit vary widely among these technologies, as the table below
shows, using typical values for 2012.

Memory technology Typical access time $ per GiB in 2012

SRAM semiconductor memory 0.5–2.5 ns $500–$1000

DRAM semiconductor memory 50–70 ns $10–$20

Flash semiconductor memory 5,000–50,000 ns $0.75–$1.00

Magnetic disk 5,000,000–20,000,000 ns $0.05–$0.10

We describe each memory technology in the remainder of this section.

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure, with the appropriate operating
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the
hierarchy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

 5.2 Memory Technologies 371

SRAM Technology
SRAMs are simply integrated circuits that are memory arrays with (usually) a
single access port that can provide either a read or a write. SRAMs have a fixed
access time to any datum, though the read and write access times may differ.

SRAMs don’t need to refresh and so the access time is very close to the cycle
time. SRAMs typically use six to eight transistors per bit to prevent the information
from being disturbed when read. SRAM needs only minimal power to retain the
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law,
all levels of caches are integrated onto the processor chip, so the market for
independent SRAM chips has nearly evaporated.

DRAM Technology
In a SRAM, as long as power is applied, the value can be kept indefinitely. In a
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.
A single transistor is then used to access this stored charge, either to read the value
or to overwrite the charge stored there. Because DRAMs use only one transistor per
bit of storage, they are much denser and cheaper per bit than SRAM. As DRAMs
store the charge on a capacitor, it cannot be kept indefinitely and must periodically
be refreshed. That is why this memory structure is called dynamic, in contrast to
the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge
can be kept for several milliseconds. If every bit had to be read out of the DRAM
and then written back individually, we would constantly be refreshing the DRAM,
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding
structure, and this allows us to refresh an entire row (which shares a word line)
with a read cycle followed immediately by a write cycle.

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows
how the density, cost, and access time of DRAMs have changed over the years.

The row organization that helps with refresh also helps with performance. To
improve performance, DRAMs buffer rows for repeated access. The buffer acts
like an SRAM; by changing the address, random bits can be accessed in the buffer
until the next row access. This capability improves the access time significantly,
since the access time to bits in the row is much lower. Making the chip wider also
improves the memory bandwidth of the chip. When the row is in the buffer, it
can be transferred by successive addresses at whatever the width of the DRAM is
(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address
within the buffer.

To improve the interface to processors further, DRAMs added clocks and are
properly called synchronous DRAMs or SDRAMs. The advantage of SDRAMs
is that the use of a clock eliminates the time for the memory and processor to
synchronize. The speed advantage of synchronous DRAMs comes from the ability
to transfer the bits in the burst without having to specify additional address bits.

372 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Instead, the clock transfers the successive bits in a burst. The fastest version is called
Double Data Rate (DDR) SDRAM. The name means data transfers on both the
rising and falling edge of the clock, thereby getting twice as much bandwidth as you
might expect based on the clock rate and the data width. The latest version of this
technology is called DDR4. A DDR4-3200 DRAM can do 3200 million transfers
per second, which means it has a 1600-MHz clock.

Sustaining that much bandwidth requires clever organization inside the DRAM.
Instead of just a faster row buffer, the DRAM can be internally organized to read or

Column

Rd/Wr

Pre

Act

Row

Bank

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically
four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a
bank. A row address is sent with an Act (activate), which causes the row to transfer to a buffer. When the row
is in the buffer, it can be transferred by successive column addresses at whatever the width of the DRAM is
(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command,
as well as block transfers, is synchronized with a clock.

Year introduced Chip size $ per GiB
Total access time to
a new row/column

Average column
access time to
existing row

1980 64 Kibibit $1,500,000 250 ns 150 ns

1983 256 Kibibit $500,000 185 ns 100 ns

1985 1 Mebibit $200,000 135 ns 40 ns

1989 4 Mebibit $50,000 110 ns 40 ns

1992 16 Mebibit $15,000 90 ns 30 ns

1996 64 Mebibit $10,000 60 ns 12 ns

1998 128 Mebibit $4,000 60 ns 10 ns

2000 256 Mebibit $1,000 55 ns 7 ns

2004 512 Mebibit $250 50 ns 5 ns

2007 1 Gibibit $50 45 ns 1.25 ns

2010 2 Gibibit

4 Gibibit

$30 40 ns 1 ns

2012 $1 35 ns 0.8 ns

FIGURE 5.5 DRAM size increased by multiples of four approximately once every 3 years
until 1996, and thereafter considerably slower. The improvements in access time have been slower
but continuous, and cost roughly tracks density improvements, although cost is often affected by other issues,
such as availability and demand. The cost per gibibyte is not adjusted for inflation.

 5.2 Memory Technologies 373

write from multiple banks, with each having its own row buffer. Sending an address
to several banks permits them all to read or write simultaneously. For example,
with four banks, there is just one access time and then accesses rotate between
the four banks to supply four times the bandwidth. This rotating access scheme is
called address interleaving.

Although personal mobile devices like the iPad (see Chapter 1) use individual
DRAMs, memory for servers is commonly sold on small boards called dual inline
memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are
normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-
3200 SDRAMs could transfer at 8 × 3200 = 25,600 megabytes per second. Such
DIMMs are named after their bandwidth: PC25600. Since a DIMM can have so
many DRAM chips that only a portion of them are used for a particular transfer, we
need a term to refer to the subset of chips in a DIMM that share common address
lines. To avoid confusion with the internal DRAM names of row and banks, we use
the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of
long vector operations. They have no temporal locality and they access arrays that are
larger than the cache of the computer being tested.

Flash Memory
Flash memory is a type of electrically erasable programmable read-only memory
(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out
flash memory bits. To cope with such limits, most flash products include a controller
to spread the writes by remapping blocks that have been written many times to less
trodden blocks. This technique is called wear leveling. With wear leveling, personal
mobile devices are very unlikely to exceed the write limits in the flash. Such wear
leveling lowers the potential performance of flash, but it is needed unless higher-
level software monitors block wear. Flash controllers that perform wear leveling can
also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory
As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which
rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal platters are
covered with magnetic recording material on both sides, similar to the material found
on a cassette or videotape. To read and write information on a hard disk, a movable arm
containing a small electromagnetic coil called a read-write head is located just above
each surface. The entire drive is permanently sealed to control the environment inside
the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

Each disk surface is divided into concentric circles, called tracks. There are
typically tens of thousands of tracks per surface. Each track is in turn divided into

track One of thousands
of concentric circles that
make up the surface of a
magnetic disk.

374 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

sectors that contain the information; each track may have thousands of sectors.
Sectors are typically 512 to 4096 bytes in size. The sequence recorded on the
magnetic media is a sector number, a gap, the information for that sector including
error correction code (see Section 5.5), a gap, the sector number of the next sector,
and so on.

The disk heads for each surface are connected together and move in conjunction,
so that every head is over the same track of every surface. The term cylinder is used
to refer to all the tracks under the heads at a given point on all surfaces.

sector One of the
segments that make up a
track on a magnetic disk;
a sector is the smallest
amount of information
that is read or written on
a disk.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. The diameter of
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage
process. The first step is to position the head over the proper track. This operation is
called a seek, and the time to move the head to the desired track is called the seek time.

Disk manufacturers report minimum seek time, maximum seek time, and average
seek time in their manuals. The first two are easy to measure, but the average is open to
wide interpretation because it depends on the seek distance. The industry calculates
average seek time as the sum of the time for all possible seeks divided by the number
of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but,
depending on the application and scheduling of disk requests, the actual average seek
time may be only 25% to 33% of the advertised number because of the locality of disk

seek The process of
positioning a read/write
head over the proper
track on a disk.

 5.3 The Basics of Caches 375

references. This locality arises both because of successive accesses to the same file and
because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector
to rotate under the read/write head. This time is called the rotational latency or
rotational delay. The average latency to the desired information is halfway around
the disk. Disks rotate at 5400 RPM to 15,000 RPM. The average rotational latency
at 5400 RPM is

Average rotational latency rotation
 RPM

 rotati
= =

0 5
5400

0 5. . oon

 RPM/ seconds
minute

 seconds ms

5400 60

0 0056 5 6

= =. .

The last component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and the
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores
sectors as they are passed over; transfer rates from the cache are typically higher,
and were up to 750 MB/sec (6 Gbit/sec) in 2012.

Alas, where block numbers are located is no longer intuitive. The assumptions of
the sector-track-cylinder model above are that nearby blocks are on the same track,
blocks in the same cylinder take less time to access since there is no seek time,
and some tracks are closer than others. The reason for the change was the raising
of the level of the disk interfaces. To speed-up sequential transfers, these higher-
level interfaces organize disks more like tapes than like random access devices.
The logical blocks are ordered in serpentine fashion across a single surface, trying
to capture all the sectors that are recorded at the same bit density to try to get best
performance. Hence, sequential blocks may be on different tracks.

In summary, the two primary differences between magnetic disks and
semiconductor memory technologies are that disks have a slower access time because
they are mechanical devices—flash is 1000 times as fast and DRAM is 100,000 times
as fast—yet they are cheaper per bit because they have very high storage capacity at a
modest cost—disks are 10 to 100 times cheaper. Magnetic disks are nonvolatile like
flash, but unlike flash there is no write wear-out problem. However, flash is much
more rugged and hence a better match to the jostling inherent in personal mobile
devices.

 5.3 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things (books)
that we needed to examine. Cache was the name chosen to represent the level of the
memory hierarchy between the processor and main memory in the first commercial
computer to have this extra level. The memories in the datapath in Chapter 4 are

rotational latency Also
called rotational delay.
The time required for
the desired sector of a
disk to rotate under the
read/write head; usually
assumed to be half the
rotation time.

Cache: a safe place
for hiding or storing
things.
Webster’s New World
Dictionary of the
American Language,
Third College Edition,
1988

376 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

simply replaced by caches. Today, although this remains the dominant use of the
word cache, the term is also used to refer to any storage managed to take advantage of
locality of access. Caches first appeared in research computers in the early 1960s and
in production computers later in that same decade; every general-purpose computer
built now from servers to low-power embedded processors, includes caches.

In this section, we begin by looking at a very simple cache in which the processor
requests are each one word, and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows
such a simple cache, before and after requesting a data item that is not initially in
the cache. Before the request, the cache contains a collection of recent references
X1, X2, …, Xn−1, and the processor requests a word Xn that is not in the cache. This
request results in a miss, and the word Xn is brought from memory into the cache.

In looking at the scenario in Figure 5.7, there are two questions to answer: How
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The
answers are related. If each word can go in exactly one place in the cache, then it
is straightforward to find the word if it is in the cache. The simplest way to assign
a location in the cache for each word in memory is to assign the cache location
based on the address of the word in memory. This cache structure is called direct
mapped, since each memory location is mapped directly to exactly one location in
the cache. The typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use
this mapping to find a block:

()Block address modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be
computed simply by using the low-order log2 (cache size in blocks) bits of the
address. Thus, an 8-block cache uses the three lowest bits (8 = 23) of the block
address. For example, Figure 5.8 shows how the memory addresses between 1ten
(00001two) and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of different
memory locations, how do we know whether the data in the cache corresponds
to a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The tags
contain the address information required to identify whether a word in the cache
corresponds to the requested word. The tag needs just to contain the upper portion
of the address, corresponding to the bits that are not used as an index into the cache.
For example, in Figure 5.8 we need only have the upper two of the five address
bits in the tag, since the lower 3-bit index field of the address selects the block.
Architects omit the index bits because they are redundant, since by definition, the
index field of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid
information. For instance, when a processor starts up, the cache does not have good
data, and the tag fields will be meaningless. Even after executing many instructions,

direct-mapped cache
A cache structure in
which each memory
location is mapped to
exactly one location in the
cache.

tag A field in a table used
for a memory hierarchy
that contains the address
information required
to identify whether the
associated block in the
hierarchy corresponds to
a requested word.

 5.3 The Basics of Caches 377

X4

X1

Xn – 2

Xn – 1

X2

X3

a. Before the reference to Xn

X4

X1

Xn – 2

Xn – 1

X2

X3

b. After the reference to Xn

Xn

FIGURE 5.7 The cache just before and just after a reference to a word Xn that is not
initially in the cache. This reference causes a miss that forces the cache to fetch Xn from memory and
insert it into the cache.

Cache

Memory
00001 10001

01
0

10
0

10
1

11
1

11
0

00
0

00
1

01
1

00101 01001 01101 10101 11001 11101

FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight words in
the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order log2(8) =
3 bits are used as the cache index. Thus, addresses 00001two, 01001two, 10001two, and 11001two all map to entry
001two of the cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two of
the cache.

378 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

some of the cache entries may still be empty, as in Figure 5.7. Thus, we need to
know that the tag should be ignored for such entries. The most common method is
to add a valid bit to indicate whether an entry contains a valid address. If the bit is
not set, there cannot be a match for this block.

For the rest of this section, we will focus on explaining how a cache deals with
reads. In general, handling reads is a little simpler than handling writes, since reads
do not have to change the contents of the cache. After seeing the basics of how
reads work and how cache misses can be handled, we’ll examine the cache designs
for real computers and detail how these caches handle writes.

valid bit A field in
the tables of a memory
hierarchy that indicates
that the associated block
in the hierarchy contains
valid data.

Caching is perhaps the most important example of the big idea of
prediction. It relies on the principle of locality to try to find the
desired data in the higher levels of the memory hierarchy, and provides
mechanisms to ensure that when the prediction is wrong it finds and
uses the proper data from the lower levels of the memory hierarchy. The
hit rates of the cache prediction on modern computers are often above
95% (see Figure 5.46).

The BIG
Picture

Accessing a Cache
Below is a sequence of nine memory references to an empty eight-block cache,
including the action for each reference. Figure 5.9 shows how the contents of the
cache change on each miss. Since there are eight blocks in the cache, the low-order
3 bits of an address give the block number:

Decimal address
of reference

Binary address
of reference

Hit or miss
in cache

Assigned cache block
(where found or placed)

22 10110two miss (5.9b) (10110two mod 8) = 110two

26 11010two miss (5.9c) (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (5.9d) (10000two mod 8) = 000two

3 00011two miss (5.9e) (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (5.9f) (10010two mod 8) = 010two

16 10000two hit (10000two mod 8) = 000two

Since the cache is empty, several of the first references are misses; the caption of
Figure 5.9 describes the actions for each memory reference. On the eighth reference

 5.3 The Basics of Caches 379

Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory (10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Data Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag fields
shown in binary for the sequence of addresses on page 379. The cache is initially empty, with all valid bits (V entry in cache)
turned off (N). The processor requests the following addresses: 10110two (miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two (miss),
00011two (miss), 10000two (hit), 10010two (miss), and 10000two (hit). The figures show the cache contents after each miss in the sequence has been
handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must be replaced, and a reference to 11010two will cause
a subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in cache block i with
tag field j for this cache is j×8+ i, or equivalently the concatenation of the tag field j and the index i. For example, in cache f above, index 010two
has tag 10two and corresponds to address 10010two.

380 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

we have conflicting demands for a block. The word at address 18 (10010two) should
be brought into cache block 2 (010two). Hence, it must replace the word at address
26 (11010two), which is already in cache block 2 (010two). This behavior allows a
cache to take advantage of temporal locality: recently referenced words replace less
recently referenced words.

This situation is directly analogous to needing a book from the shelves and
having no more space on your desk—some book already on your desk must be
returned to the shelves. In a direct-mapped cache, there is only one place to put the
newly requested item and hence just one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits
of an address can be used to find the unique cache entry to which the address could
map. Figure 5.10 shows how a referenced address is divided into

■	 A tag field, which is used to compare with the value of the tag field of the
cache

■	 A cache index, which is used to select the block

The index of a cache block, together with the tag contents of that block, uniquely
specifies the memory address of the word contained in the cache block. Because
the index field is used as an address to reference the cache, and because an n-bit
field has 2n values, the total number of entries in a direct-mapped cache must be a
power of 2. Since words are aligned to multiples of four bytes, the least significant
two bits of every address specify a byte within a word. Hence, if the words are
aligned in memory, the least significant two bits can be ignored when selecting a
word in the block. For this chapter, we’ll assume that data are aligned in memory,
and discuss how to handle unaligned cache accesses in an Elaboration.

The total number of bits needed for a cache is a function of the cache size and
the address size, because the cache includes both the storage for the data and the
tags. The size of the block above was one word (4 bytes), but normally it is several.
For the following situation:

■	 64-bit addresses

■	 A direct-mapped cache

■	 The cache size is 2n blocks, so n bits are used for the index

■	 The block size is 2m words (2m+2 bytes), so m bits are used for the word within
the block, and two bits are used for the byte part of the address

The size of the tag field is

64 2− + +().n m

The total number of bits in a direct-mapped cache is

2n × + +)(.block size tag size size

 5.3 The Basics of Caches 381

Since the block size is 2m words (2m+5 bits), and we need 1 bit for the valid field, the
number of bits in such a cache is

2 2 32 64 2 1 2 2 32 63n m n mn m n m× × + − − − + = × × + − −(()) ().

Although this is the actual size in bits, the naming convention is to exclude the size
of the tag and valid field and to count only the size of the data. Thus, the cache in
Figure 5.10 is called a 4 KiB cache.

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3252

Index

0

1

2

1023

1022

1021

=

Index

52 10

Byte
offset

63 62 13 12 11 2 1 0

FIGURE 5.10 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KiB. Unless noted
otherwise, we assume 64-bit addresses in this chapter. The tag from the cache is compared against the upper
portion of the address to determine whether the entry in the cache corresponds to the requested address.
Because the cache has 210 (or 1024) words and a block size of one word, 10 bits are used to index the cache,
leaving 64 − 10 − 2 = 52 bits to be compared against the tag. If the tag and upper 52 bits of the address are
equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor.
Otherwise, a miss occurs.

382 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of
data and four-word blocks, assuming a 64-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of four words (22),
there are 1024 (210) blocks. Each block has 4 × 32 or 128 bits of data plus a tag,
which is 64 − 10 − 2 − 2 bits, plus a valid bit. Thus, the complete cache size is

2 4 32 64 10 2 2 1 2 179 17910 10× × + − − − + = × =(()) Kibibits

or 22.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the
cache is about 1.4 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block
number does byte address 1200 map?

We saw the formula on page 376. The block is given by

()Block address modulo (Number of blocks in the cache)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address
Bytes per block

Bytes per block

 ×

EXAMPLE

EXAMPLE

ANSWER

ANSWER

 5.3 The Basics of Caches 383

and

Byte address
Bytes per block

Bytes per block Bytes per

× + (bblock −1)

Thus, with 16 bytes per block, byte address 1200 is block address

1200
16

75

=

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significant fraction of the cache size, because
the number of blocks that can be held in the cache will become small, and there will
be a great deal of competition for those blocks. As a result, a block will be bumped
out of the cache before many of its words are accessed. Stated alternatively, spatial
locality among the words in a block decreases with a very large block; consequently,
the benefits to the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the
cost of a miss rises. The miss penalty is determined by the time required to fetch

4K

16

10%

16K

64K

256K

5%

0%
32 64 128 256

Miss
rate

Block size

FIGURE 5.11 Miss rate versus block size. Note that the miss rate actually goes up if the block size
is too large relative to the cache size. Each line represents a cache of different size. (This figure is independent
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were
included, so these data are based on SPEC92.

384 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the block from the next lower level of the hierarchy and load it into the cache. The
time to fetch the block has two parts: the latency to the first word and the transfer
time for the rest of the block. Clearly, unless we change the memory system, the
transfer time—and hence the miss penalty—will likely increase as the block size
expands. Furthermore, the improvement in the miss rate starts to decrease as the
blocks become larger. The result is that the increase in the miss penalty overwhelms
the decrease in the miss rate for blocks that are too large, and cache performance
thus decreases. Of course, if we design the memory to transfer larger blocks more
efficiently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component
of the miss penalty for large blocks, we may be able to hide some of the transfer time
so that the miss penalty is effectively smaller. The easiest method for doing this, called
early restart, is simply to resume execution as soon as the requested word of the block
is returned, rather than wait for the entire block. Many processors use this technique
for instruction access, where it works best. Instruction accesses are largely sequential,
so if the memory system can deliver a word every clock cycle, the processor may be
able to restart operation when the requested word is returned, with the memory system
delivering new instruction words just in time. This technique is usually less effective for
data caches because it is likely that the words will be requested from the block in a
less predictable way, and the probability that the processor will need another word from
a different cache block before the transfer completes is high. If the processor cannot
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested
word is transferred from the memory to the cache first. The remainder of the block
is then transferred, starting with the address after the requested word and wrapping
around to the beginning of the block. This technique, called requested word first or
critical word first, can be slightly faster than early restart, but it is limited by the same
properties that restrain early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with
cache misses. (We describe a cache controller in detail in Section 5.9.) The control
unit must detect a miss and process the miss by fetching the requested data from
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done in collaboration with
the processor control unit and with a separate controller that initiates the memory
access and refills the cache. The processing of a cache miss creates a pipeline stall
(Chapter 4) in contrast to an exception or interrupt, which would require saving the
state of all registers. For a cache miss, we can stall the entire processor, essentially
freezing the contents of the temporary and programmer-visible registers, while we
wait for memory. More sophisticated out-of-order processors can allow execution

cache miss A request for
data from the cache that
cannot be filled because
the data are not present in
the cache.

 5.3 The Basics of Caches 385

of instructions while waiting for a cache miss, but we’ll assume in-order processors
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same
approach can be easily extended to handle data misses. If an instruction access
results in a miss, then the content of the Instruction register is invalid. To get the
proper instruction into the cache, we must be able to tell the lower level in the
memory hierarchy to perform a read. Since the program counter is incremented
in the first clock cycle of execution, the address of the instruction that generates
an instruction cache miss is equal to the value of the program counter minus 4.
Once we have the address, we need to instruct the main memory to perform
a read. We wait for the memory to respond (since the access will take multiple
clock cycles), and then write the words containing the desired instruction into
the cache.

We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value to the memory.

2. Instruct main memory to perform a read and wait for the memory to
complete its access.

3. Write the cache entry, putting the data from memory in the data portion of
the entry, writing the upper bits of the address (from the ALU) into the tag
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction, this time finding it in the cache.

The control of the cache on a data access is essentially identical: on a miss, we
simply stall the processor until the memory responds with the data.

Handling Writes
Writes work somewhat differently. Suppose on a store instruction, we wrote the
data into only the data cache (without changing main memory); then, after the
write into the cache, memory would have a different value from that in the cache.
In such a case, the cache and memory are said to be inconsistent. The simplest way
to keep the main memory and the cache consistent is always to write the data into
both the memory and the cache. This scheme is called write-through.

The other key aspect of writes is what occurs on a write miss. We first fetch the
words of the block from memory. After the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. We also
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide good
performance. With a write-through scheme, every write causes the data to be
written to main memory. These writes will take a long time, likely at least 100
processor clock cycles, and could slow down the processor considerably. For
example, suppose 10% of the instructions are stores. If the CPI without cache

write-through
A scheme in which writes
always update both the
cache and the next lower
level of the memory
hierarchy, ensuring that
data are always consistent
between the two.

386 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of
1.0 + 100 × 10% = 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the
data while they are waiting to be written to memory. After writing the data into the
cache and into the write buffer, the processor can continue execution. When a write
to main memory completes, the entry in the write buffer is freed. If the write buffer
is full when the processor reaches a write, the processor must stall until there is an
empty position in the write buffer. Of course, if the rate at which the memory can
complete writes is less than the rate at which the processor is generating writes, no
amount of buffering can help, because writes are being generated faster than the
memory system can accept them.

The rate at which writes are generated may also be less than the rate at which the
memory can accept them, and yet stalls may still occur. This can happen when the
writes occur in bursts. To reduce the occurrence of such stalls, processors usually
increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back. In a
write-back scheme, when a write occurs, the new value is written only to the block
in the cache. The modified block is written to the lower level of the hierarchy when
it is replaced. Write-back schemes can improve performance, especially when
processors can generate writes as fast or faster than the writes can be handled by
main memory; a write-back scheme is, however, more complex to implement than
write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 5.8, we will describe
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present
for reads. Here we discuss two of them: the policy on write misses and efficient
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate
a block in the cache, called write allocate. The block is fetched from memory and then
the appropriate portion of the block is overwritten. An alternative strategy is to update the
portion of the block in memory but not put it in the cache, called no write allocate.
The motivation is that sometimes programs write entire blocks of data, such as when the
operating system zeros a page of memory. In such cases, the fetch associated with
the initial write miss may be unnecessary. Some computers allow the write allocation
policy to be changed on a per-page basis.

Actually implementing stores efficiently in a cache that uses a write-back strategy is
more complex than in a write-through cache. A write-through cache can write the data
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the
cache is write-through, the overwriting of the block in the cache is not catastrophic, since
memory has the correct value. In a write-back cache, we must first write the block back
to memory if the data in the cache are modified and we have a cache miss. If we simply
overwrote the block on a store instruction before we knew whether the store had hit in
the cache (as we could for a write-through cache), we would destroy the contents of the
block, which is not backed up in the next lower level of the memory hierarchy.

write buffer A queue
that holds data while the
data are waiting to be
written to memory.

write-back A scheme
that handles writes by
updating values only to
the block in the cache,
then writing the modified
block to the lower level
of the hierarchy when the
block is replaced.

 5.3 The Basics of Caches 387

In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or
require a write buffer to hold that data—effectively allowing the store to take only one
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup
and places the data in the store buffer during the normal cache access cycle. Assuming
a cache hit, the new data are written from the store buffer into the cache on the next
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle.
We read the tag and write the data portion of the selected block. If the tag matches
the address of the block being written, the processor can continue normally, since the
correct block has been updated. If the tag does not match, the processor generates a
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a modified block. In such a case, the modified block is
moved to a write-back buffer associated with the cache while the requested block is read
from memory. The write-back buffer is later written back to memory. Assuming another
miss does not occur immediately, this technique halves the miss penalty when a dirty
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor
The Intrinsity FastMATH is an embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache designs of ARM and Intel microprocessors,
but we start with this simple, yet real, example for pedagogical reasons. Figure
5.12 shows the organization of the Intrinsity FastMATH data cache. Note that the
address size for this computer is just 32 bits, not 64 as in the rest of the book.

This processor has a 12-stage pipeline. When operating at peak speed, the
processor can request both an instruction word and a data word on every clock. To
satisfy the demands of the pipeline without stalling, separate instruction and data
caches are used. Each cache is 16 KiB, or 4096 words, with 16-word blocks.

Read requests for the cache are straightforward. Because there are separate
data and instruction caches, we need separate control signals to read and write
each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right one.
A block index field is used to control the multiplexor (shown at the bottom
of the figure), which selects the requested word from the 16 words in the
indexed block.

388 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

3. If the cache signals miss, we send the address to the main memory. When
the memory returns with the data, we write it into the cache and then read it
to fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back,
leaving it up to the operating system to decide which strategy to use for an
application. It has a one-entry write buffer.

What cache miss rates are attained with a cache structure like that used by the
Intrinsity FastMATH? Figure 5.13 shows the miss rates for the instruction and
data caches. The combined miss rate is the effective miss rate per reference for
each program after accounting for the differing frequency of instruction and data
accesses.

Address (showing bit positions)

Data
Hit

Data

Tag

V Tag

32

18

=

Index

18 8 Byte
offset

31 14 13 2 1 06 5

4

Block offset

256
entries

512 bits18 bits

Mux

3232 32

FIGURE 5.12 The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. Note that
the address size for this computer is just 32 bits. The tag field is 18 bits wide and the index field is 8 bits wide, while a 4-bit field (bits 5–2) is
used to index the block and select the word from the block using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor, caches use a
separate large RAM for the data and a smaller RAM for the tags, with the block offset supplying the extra address bits for the large data RAM.
In this case, the large RAM is 32 bits wide and must have 16 times as many words as blocks in the cache.

 5.3 The Basics of Caches 389

Although miss rate is an important characteristic of cache designs, the ultimate
measure will be the effect of the memory system on program execution time; we’ll
see how miss rate and execution time are related shortly.

Elaboration: A combined cache with a total size equal to the sum of the two split
caches will usually have a better hit rate. This higher rate occurs because the combined
cache does not rigidly divide the number of entries that may be used by instructions
from those that may be used by data. Nonetheless, almost all processors today use
split instruction and data caches to increase cache bandwidth to match what modern
pipelines expect. (There may also be fewer conflict misses; see Section 5.8.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH
processor, and for a combined cache whose size is equal to the sum of the two caches:

■	 Total cache size: 32 KiB
■	 Split cache effective miss rate: 3.24%
■	 Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction

and data access simultaneously, easily overcomes the disadvantage of a slightly
increased miss rate. This observation cautions us that we cannot use miss rate as the
sole measure of cache performance, as Section 5.4 shows.

Summary
We began the previous section by examining the simplest of caches: a direct-mapped
cache with a one-word block. In such a cache, both hits and misses are simple, since
a word can go in exactly one location and there is a separate tag for every word. To
keep the cache and memory consistent, a write-through scheme can be used, so
that every write into the cache also causes memory to be updated. The alternative
to write-through is a write-back scheme that copies a block back to memory when
it is replaced; we’ll discuss this scheme further in upcoming sections.

split cache A scheme
in which a level of the
memory hierarchy
is composed of two
independent caches that
operate in parallel with
each other, with one
handling instructions and
one handling data.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.13 Approximate instruction and data miss rates for the Intrinsity FastMATH
processor for SPEC CPU2000 benchmarks. The combined miss rate is the effective miss rate seen
for the combination of the 16 KiB instruction cache and 16 KiB data cache. It is obtained by weighting the
instruction and data individual miss rates by the frequency of instruction and data references.

390 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

To take advantage of spatial locality, a cache must have a block size larger than
one word. The use of a bigger block decreases the miss rate and improves the
efficiency of the cache by reducing the amount of tag storage relative to the amount
of data storage in the cache. Although a larger block size decreases the miss rate, it
can also increase the miss penalty. If the miss penalty increased linearly with the
block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to
transfer cache blocks more efficiently. Common methods for increasing bandwidth
external to the DRAM are making the memory wider and interleaving. DRAM
designers have steadily improved the interface between the processor and memory
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache
block sizes.

The speed of the memory system affects the designer’s decision on the size of
the cache block. Which of the following cache designer guidelines is generally
valid?

1. The shorter the memory latency, the smaller the cache block

2. The shorter the memory latency, the larger the cache block

3. The higher the memory bandwidth, the smaller the cache block

4. The higher the memory bandwidth, the larger the cache block

Check Yourself

 5.4 Measuring and Improving Cache
Performance

In this section, we begin by examining ways to measure and analyze cache
performance. We then explore two different techniques for improving cache
performance. One focuses on reducing the miss rate by reducing the probability
that two distinct memory blocks will contend for the same cache location. The
second technique reduces the miss penalty by adding an additional level to the
hierarchy. This technique, called multilevel caching, first appeared in high-end
computers selling for more than $100,000 in 1990; since then it has become
common on personal mobile devices selling for a few hundred dollars!

 5.4 Measuring and Improving Cache Performance 391

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time CPU execution clock cycles Memory-stall clock cy+= c(cles
 Clock cycle time

)
×

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

Memory-stall clock cycles Read-stall cycles Write-stall c= + y(ycles)

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles Reads
Program

Read miss rate Read miss pe= × × nnalty

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continuing
the write (see the Elaboration on page 386 for more details on dealing with writes),
and write buffer stalls, which occur when the write buffer is full when a write
happens. Thus, the cycles stalled for writes equal the sum of these two:

Write-stall cycles Writes
Program

Write miss rate Write mis= × × ss penalty

Write bu�er stalls

+

Because the write buffer stalls depend on the proximity of writes, and not just
the frequency, it is impossible to give a simple equation to compute such stalls.
Fortunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly exceeds
the average write frequency in programs (e.g., by a factor of 2), the write buffer
stalls will be small, and we can safely ignore them. If a system did not meet these
criteria, it would not be well designed; instead, the designer should have used either
a deeper write buffer or a write-back organization.

392 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are
the same (the time to fetch the block from memory). If we assume that the write
buffer stalls are negligible, we can combine the reads and writes by using a single
miss rate and the miss penalty:

Memory-stall clock cycles Memory accesses
Program

Miss rate= × ××Miss penalty

We can also factor this as

Memory-stall clock cycles Instructions
Program

Misses
Instru

= ×
cction

Miss penalty×

Let’s consider a simple example to help us understand the impact of cache
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the
data cache is 4%. If a processor has a CPI of 2 without any memory stalls,
and the miss penalty is 100 cycles for all misses, determine how much faster
a processor would run with a perfect cache that never missed. Assume the
frequency of all loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruction
count (I) is

Instruction miss cycles I I= × × = ×2 100 2 00% .

As the frequency of all loads and stores is 36%, we can find the number of
memory miss cycles for data references:

Data miss cycles II= × × × = ×36 4 100 1 44% % .

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 393

The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is
more than three cycles of memory stall per instruction. Accordingly, the total
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

I CPIstall=
× ××
× ×

= =

Clock cycle
I CPI Clock cycle
CPI

CPI

perfect

stall

perfect

5..44
2

The performance with the perfect cache is better by 5 44
2

2 72. .= .

What happens if the processor is made faster, but the memory system is not? The
amount of time spent on memory stalls will take up an increasing fraction of the
execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed-up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the
system with the perfect cache would be

4 44
1

4 44. . .= times as fast

The amount of execution time spent on memory stalls would have risen from
3 44
5 44

63.
.

%=

to 3 44
4 44

77.
.

%=

Similarly, increasing the clock rate without changing the memory system also
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a factor in
determining cache performance. Clearly, if the hit time increases, the total time to
access a word from the memory system will increase, possibly causing an increase in
the processor cycle time. Although we will see additional examples of what can raise

394 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

hit time shortly, one example is increasing the cache size. A larger cache could clearly
have a bigger access time, just as, if your desk in the library was very large (say, 3 square
meters), it would take longer to locate a book on the desk. An increase in hit time
likely adds another stage to the pipeline, since it may take multiple cycles for a cache
hit. Although it is more complex to calculate the performance impact of a deeper
pipeline, at some point the increase in hit time for a larger cache could dominate the
improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses affects
performance, designers sometime use average memory access time (AMAT) as
a way to examine alternative cache designs. Average memory access time is the
average time to access memory considering both hits and misses and the frequency
of different accesses; it is equal to the following:

AMAT Time for a hit Miss rate Miss penalty= + ×

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access
time (including hit detection) of 1 clock cycle. Assume that the read and write
miss penalties are the same and ignore other write stalls.

The average memory access time per instruction is

AMAT Time for a hit Miss rate Miss penalty

 clo

= + ×
= + ×
=

1 0 05 20
2

.
cck cycles

or 2 ns.

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in
Section 5.16.

Reducing Cache Misses by More Flexible Placement
of Blocks
So far, when we put a block in the cache, we have used a simple placement scheme:
A block can go in exactly one place in the cache. As mentioned earlier, it is called
direct mapped because there is a direct mapping from any block address in memory
to a single location in the upper level of the hierarchy. However, there is actually a
whole range of schemes for placing blocks. Direct mapped, where a block can be
placed in exactly one location, is at one extreme.

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 395

At the other extreme is a scheme where a block can be placed in any location
in the cache. Such a scheme is called fully associative, because a block in memory
may be associated with any entry in the cache. To find a given block in a fully
associative cache, all the entries in the cache must be searched because a block
can be placed in any one. To make the search practical, it is done in parallel with
a comparator associated with each cache entry. These comparators significantly
increase the hardware cost, effectively making fully associative placement practical
only for caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative
is called set associative. In a set-associative cache, there are a fixed number of
locations where each block can be placed. A set-associative cache with n locations
for a block is called an n-way set-associative cache. An n-way set-associative cache
consists of a number of sets, each of which consists of n blocks. Each block in the
memory maps to a unique set in the cache given by the index field, and a block can
be placed in any element of that set. Thus, a set-associative placement combines
direct-mapped placement and fully associative placement: a block is directly
mapped into a set, and then all the blocks in the set are searched for a match. For
example, Figure 5.14 shows where block 12 may be put in a cache with eight blocks
total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is
given by

()Block number modulo (Number of in the cache)blocks

fully associative
cache A cache structure
in which a block can be
placed in any location in
the cache.

set-associative cache
A cache that has a fixed
number of locations (at
least two) where each
block can be placed.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1
2

Set associative

20 1 3Set #

Data

Tag

Search

1
2

Fully associative

Data

Tag

Search

1
2

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is
given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block
12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative
placement, the memory block for block address 12 can appear in any of the eight cache blocks.

396 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

In a set-associative cache, the set containing a memory block is given by

()Block number modulo (Number of in the cache)sets

Since the block may be placed in any element of the set, all the tags of all the elements
of the set must be searched. In a fully associative cache, the block can go anywhere,
and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set
associativity. Figure 5.15 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is just a one-way set-associative cache: each
cache entry holds one block and each set has one element. A fully associative cache
with m entries is simply an m-way set-associative cache; it has one set with m
blocks, and an entry can reside in any block within that set.

The advantage of increasing the degree of associativity is that it usually decreases
the miss rate, as the next example shows. The main disadvantage, which we discuss
in more detail shortly, is a potential increase in the hit time.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

Four-way set associative

TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative

Tag DataBlock

One-way set associative

(direct mapped)

FIGURE 5.15 An eight-block cache configured as direct-mapped, two-way set associative,
four-way set associative, and fully associative. The total size of the cache in blocks is equal to
the number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity decreases
the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-
associative cache is the same as a fully associative cache.

 5.4 Measuring and Improving Cache Performance 397

Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set associative, and the third
is direct-mapped. Find the number of misses for each cache organization given
the following sequence of block addresses: 0, 8, 0, 6, and 8.

The direct-mapped case is easiest. First, let’s determine to which cache block
each block address maps:

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored text to show a new entry added to
the cache for the associated reference, and plain text to show an old entry in
the cache:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two

elements per set. Let’s first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past
is replaced. (We will discuss other replacement rules in more detail shortly.)

EXAMPLE

ANSWER

398 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Using this replacement rule, the contents of the set-associative cache after each
reference look like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. The fully associative cache has
the best performance, with only three misses:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because
three unique block addresses are accessed. Notice that if we had eight blocks in
the cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all three caches would
have the identical number of misses. Even this trivial example shows that cache
size and associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? Figure
5.16 shows the improvement for a 64 KiB data cache with a 16-word block, and
associativity ranging from direct-mapped to eight-way. Going from one-way
to two-way associativity decreases the miss rate by about 15%, but there is little
further improvement in going to higher associativity.

 5.4 Measuring and Improving Cache Performance 399

Locating a Block in the Cache
Now, let’s consider the task of finding a block in a cache that is set associative.
Just as in a direct-mapped cache, each block in a set-associative cache includes
an address tag that gives the block address. The tag of every cache block within
the appropriate set is checked to see if it matches the block address from the
processor. Figure 5.17 decomposes the address. The index value is used to select
the set containing the address of interest, and the tags of all the blocks in the set
must be searched. Because speed is of the essence, all the tags in the selected set are
searched in parallel. As in a fully associative cache, a sequential search would make
the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity raises the
number of blocks per set, which is the number of simultaneous compares needed
to perform the search in parallel: each increase by a factor of 2 in associativity
doubles the number of blocks per set and halves the number of sets. Accordingly,
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and
expands the size of the tag by 1 bit. In a fully associative cache, there is effectively
only one set, and all the blocks must be checked in parallel. Thus, there is no index,
and the entire address, excluding the block offset, is compared against the tag of
every block. In other words, we search the full cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can
be in only one block, and we access the cache simply by indexing. Figure 5.18 shows
that in a four-way set-associative cache, four comparators are needed, together with
a 4-to-1 multiplexor to choose among the four potential members of the selected set.
The cache access consists of indexing the appropriate set and then searching the tags
of the set. The costs of an associative cache are the extra comparators and any delay
imposed by having to do the compare and select from among the elements of the set.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to
eight-way. These results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Block offsetTag Index

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

400 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines
comparison and storage in a single device. Instead of supplying an address and reading
a word like a RAM, you send the data and the CAM looks to see if it has a copy and
returns the index of the matching row. CAMs mean that cache designers can afford
to implement much higher set associativity than if they needed to build the hardware
out of SRAMs and comparators. In 2013, the greater size and power of CAM generally
leads to two-way and four-way set associativity being built from standard SRAMs and
comparators, with eight-way and above built using CAMs.

Address

Data

Tag

V Tag

=

Index

22 8

31 30 12 11 10 9 8 3 2 1 0

4-to-1 multiplexor

Index
0
1
2

253
254
255

DataV Tag

=

DataV Tag

=

DataV Tag

22

=

32

DataHit

FIGURE 5.18 The implementation of a four-way set-associative cache requires four
comparators and a 4-to-1 multiplexor. The comparators determine which element of the selected set
(if any) matches the tag. The output of the comparators is used to select the data from one of the four blocks
of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the
output. The Output enable signal comes from the comparators, causing the element that matches to drive the
data outputs. This organization eliminates the need for the multiplexor.

 5.4 Measuring and Improving Cache Performance 401

Choosing Which Block to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme, the block replaced is the one that has
been unused for the longest time. The set-associative example on page 397 uses
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a
set was used relative to the other elements in the set. For a two-way set-associative
cache, tracking when the two elements were used can be implemented by keeping
a single bit in each set and setting the bit to indicate an element whenever that
element is referenced. As associativity increases, implementing LRU gets harder; in
Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per
cache block. Assuming a cache of 4096 blocks, a four-word block size, and a
64-bit address, find the total number of sets and the total number of tag bits
for caches that are direct-mapped, two-way and four-way set associative, and
fully associative.

Since there are 16 (= 24) bytes per block, a 64-bit address yields 64 − 4 = 60 bits
to be used for index and tag. The direct-mapped cache has the same number
of sets as blocks, and hence 12 bits of index, since log2(4096) = 12; hence, the
total number is (60 − 12) × 4096 = 48 × 4096 = 197 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and
thus decreases the number of bits used to index the cache by 1 and increases
the number of bits in the tag by 1. Thus, for a two-way set-associative cache,
there are 2048 sets, and the total number of tag bits is (60 − 11) × 2 × 2048 =
98 × 2048 = 401 Kbits. For a four-way set-associative cache, the total number
of sets is 1024, and the total number is (60 − 10) × 4 × 1024 = 100 × 1024 =
205 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the
tag is 60 bits, leading to 60 × 4096 × 1 = 246 K tag bits.

least recently used
(LRU) A replacement
scheme in which the
block replaced is the one
that has been unused for
the longest time.

EXAMPLE

ANSWER

402 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Reducing the Miss Penalty Using Multilevel Caches
All modern computers make use of caches. To close the gap further between the
fast clock rates of modern processors and the increasingly long time required to
access DRAMs, most microprocessors support an additional level of caching. This
second-level cache is normally on the same chip and is accessed whenever a miss
occurs in the primary cache. If the second-level cache contains the desired data,
the miss penalty for the first-level cache will be essentially the access time of the
second-level cache, which will be much less than the access time of main memory.
If neither the primary nor the secondary cache contains the data, a main memory
access is required, and a larger miss penalty is incurred.

How significant is the performance improvement from the use of a secondary
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the processor
be if we add a secondary cache that has a 5-ns access time for either a hit or
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

The miss penalty to main memory is

100

0 25
400

ns
ns

clock cycle

 clock cycles
.

=

The effective CPI with one level of caching is given by

Total CPI Base CPI Memory-stall cycles per instruction= +

For the processor with one level of caching,

Total CPI Memory-stall cycles per instruction= + = + ×1 0 1 0 2 4.. % 000 9=

With two levels of caching, a miss in the primary (or first-level) cache can be
satisfied either by the secondary cache or by main memory. The miss penalty
for an access to the second-level cache is

5

0 25
20

ns
ns

clock cycle

 clock cycles
.

=

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 403

If the miss is satisfied in the secondary cache, then this is the entire miss
penalty. If the miss needs to go to main memory, then the total miss penalty is
the sum of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI:

Thus, the processor with the secondary cache is faster by

9 0
3 4

2 6.
.

.=

Alternatively, we could have computed the stall cycles by summing the stall
cycles of those references that hit in the secondary cache ((2% − 0.5%) × 20 =
0.3). Those references that go to main memory, which must include the cost to
access the secondary cache as well as the main memory access time, are (0.5% ×
(20 + 400) = 2.1). The sum, 1.0 + 0.3 + 2.1, is again 3.4.

The design considerations for a primary and secondary cache are significantly
different, because the presence of the other cache changes the best choice versus
a single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce
the penalty of long memory access times.

The effect of these changes on the two caches can be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore,
the primary cache may use a smaller block size, to go with the smaller cache size and
also to reduce the miss penalty. In comparison, the secondary cache will be much
larger than in a single-level cache, since the access time of the secondary cache is
less critical. With a larger total size, the secondary cache may use a larger block size
than appropriate with a single-level cache. It often uses higher associativity than
the primary cache given the focus of reducing miss rates.

Total CPI Primary stalls per instruction Secondary stall= + + s1 s per instruction
= + × + × = + + =1 2 20 0 5 400 1 0 4 2 0 3 4% . % . . .

multilevel cache
A memory hierarchy with
multiple levels of caches,
rather than just a cache
and main memory.

Sorting has been exhaustively analyzed to find better algorithms: Bubble Sort,
Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by
item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix
Sort has an algorithmic advantage over Quicksort in terms of number of operations.
Figure 5.19(b) shows time per key instead of instructions executed. We see that the
lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line

Understanding
Program
Performance

404 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Radix Sort

Quicksort

Size (K items to sort)

In
st

ru
ct

io
ns

/i
te

m

0
4 8 16 32

200

400

600

800

1000

1200

64 128 256 512 1024 2048 4096
a.

Radix Sort

Quicksort

Size (K items to sort)

C
lo

ck
 c

yc
le

s
/i

te
m

0
4 8 16 32

400

800

1200

1600

2000

64 128 256 512 1024 2048 4096

b.

Radix Sort

Quicksort

Size (K items to sort)

C
ac

he
 m

is
se

s
/i

te
m

0
4 8 16 32

1

2

3

4

5

64 128 256 512 1024 2048 4096

c.

FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c) cache misses per item sorted. These data are from
a paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). The basic
idea of cache optimizations is to use all the data in a block repeatedly before they are replaced on a miss.

 5.4 Measuring and Improving Cache Performance 405

Software Optimization via Blocking
Given the importance of the memory hierarchy to program performance, not
surprisingly many software optimizations were invented that can dramatically
improve performance by reusing data within the cache and hence lower miss rates
due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory
system if we store the array in memory so that accesses to the array are sequential
in memory. Suppose that we are dealing with multiple arrays, however, with some
arrays accessed by rows and some by columns. Storing the arrays row-by-row
(called row major order) or column-by-column (column major order) does not
solve the problem because both rows and columns are used in every loop iteration.

Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. The goal is to maximize accesses to the data
loaded into the cache before the data are replaced; that is, improve temporal locality
to reduce cache misses.

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.22 in
Chapter 3) are

for (int j = 0; j < n; ++j)
 {
 double cij = C[i+j*n]; /* cij = C[i][j] */
 for(int k = 0; k < n; k++)
 cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
 C[i+j*n] = cij; /* C[i][j] = cij */
 }
}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to
one row of A repeatedly, and writes what corresponds to one row of N elements of
C. (The comments make the rows and columns of the matrices easier to identify.)
Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade
indicates a recent access, a light shade indicates an older access, and white means
not yet accessed.

diverges as the data to sort increase. What is going on? Figure 5.19(c) answers by
looking at the cache misses per item sorted: Quicksort consistently has many fewer
misses per item to be sorted.

Alas, standard algorithmic analysis often ignores the impact of the memory
hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all
the performance out of a stream of instructions, using the memory hierarchy well
is vital to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today’s computers.

406 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices, then all is well, provided there are no cache
conflicts. We purposely picked the matrix size to be 32 by 32 in DGEMM for
Chapters 3 and 4 so that this would be the case. Each matrix is 32 × 32 = 1024
elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which
comfortably fit in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith
row of A and the array B may stay in the cache. Less than that and misses may
occur for both B and C. In the worst case, there would be 2 N3 + N2 memory words
accessed for N3 operations.

To ensure that the elements being accessed can fit in the cache, the original code
is changed to compute on a submatrix. Hence, we essentially invoke the version of
DGEMM from Figure 4.78 in Chapter 4 repeatedly on matrices of size BLOCKSIZE
by BLOCKSIZE. BLOCKSIZE is called the blocking factor.

Figure 5.21 shows the blocked version of DGEMM. The function do_block is
DGEMM from Figure 3.22 with three new parameters si, sj, and sk to specify
the starting position of each submatrix of A, B, and C. The two inner loops of the
do_block now compute in steps of size BLOCKSIZE rather than the full length of
B and C. The gcc optimizer removes any function call overhead by “inlining” the
function; that is, it inserts the code directly to avoid the conventional parameter
passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2
N3/BLOCKSIZE + N2. This total is an improvement by about a factor of BLOCKSIZE.
Hence, blocking exploits a combination of spatial and temporal locality, since A
benefits from spatial locality and B benefits from temporal locality.

0

1

2

3

4

5

10 2 3 4 5
C

j

i

0

1

2

3

4

5

10 2 3 4 5
A

k

i

0

1

2

3

4

5

10 2 3 4 5
B

j

k

FIGURE 5.20 A snapshot of the three arrays C, A, and B when N = 6 and i = 1. The age
of accesses to the array elements is indicated by shade: white means not yet touched, light means older
accesses, and dark means newer accesses. Compared to Figure 5.22, elements of A and B are read repeatedly
to calculate new elements of C. The variables i, j, and k are shown along the rows or columns used to access
the arrays.

 5.4 Measuring and Improving Cache Performance 407

Although we have aimed at reducing cache misses, blocking can also be used to
help register allocation. By taking a small blocking size, such that the block can be
held in registers, we can minimize the number of loads and stores in the program,
which again improves performance.

1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5 for (int i = si; i < si+BLOCKSIZE; ++i)
6 for (int j = sj; j < sj+BLOCKSIZE; ++j)
7 {
8 double cij = C[i+j*n];/* cij = C[i][j] */
9 for(int k = sk; k < sk+BLOCKSIZE; k++)
10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11 C[i+j*n] = cij;/* C[i][j] = cij */
12 }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16 for (int sj = 0; sj < n; sj += BLOCKSIZE)
17 for (int si = 0; si < n; si += BLOCKSIZE)
18 for (int sk = 0; sk < n; sk += BLOCKSIZE)
19 do_block(n, si, sj, sk, A, B, C);
20 }

FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.22. Assume C is initialized to zero. The do_block
function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of
BLOCKSIZE. The gcc optimizer can remove the function overhead instructions by inlining the do_block function.

0

1

2

3

4

5

10 2 3 4 5
C

j

i

0

1

2

3

4

5

10 2 3 4 5
A

k

i

0

1

2

3

4

5

10 2 3 4 5
B

j

k

FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE = 3. Note that,
in contrast to Figure 5.20, fewer elements are accessed.

408 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Figure 5.23 shows the impact of cache blocking on the performance of the
unoptimized DGEMM as we increase the matrix size beyond where all three
matrices fit in the cache. The unoptimized performance is halved for the largest
matrix. The cache-blocked version is less than 10% slower even at matrices that are
960 × 960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create many complications. First, there are now
several different types of misses and corresponding miss rates. In the example on
pages 402–403, we saw the primary cache miss rate and the global miss rate—the
fraction of references that missed in all cache levels. There is also a miss rate for
the secondary cache, which is the ratio of all misses in the secondary cache divided
by the number of accesses to it. This miss rate is called the local miss rate of the
secondary cache. Because the primary cache filters accesses, especially those with
good spatial and temporal locality, the local miss rate of the secondary cache is much
higher than the global miss rate. For the example on pages 402–403, we can compute
the local miss rate of the secondary cache as 0.5%/2% = 25%! Luckily, the global miss
rate dictates how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more
complex, since they execute instructions during the miss penalty. Instead of instruction
miss rates and data miss rates, we use misses per instruction, and this formula:

Memory stall cycles
Instruction

Misses
Instruction

Total mi
−

= × (sss latency Overlapped miss latency−)

global miss rate The
fraction of references
that miss in all levels of a
multilevel cache.

local miss rate The
fraction of references to
one level of a cache that
miss; used in multilevel
hierarchies.

1.8

1.5

1.2

0.9

0.6

G
F

LO
P

S

0.3

–
Unoptimized

1.7
1.5

1.3

0.8

1.7 1.6 1.6
1.5

Blocked

32 x 32 160 x 160 480 x 480 960 x 960

FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.22) versus cache blocked
DGEMM (Figure 5.21) as the matrix dimension varies from 32 × 32 (where all three
matrices fit in the cache) to 960 × 960.

 5.4 Measuring and Improving Cache Performance 409

There is no general way to calculate overlapped miss latency, so evaluations of
memory hierarchies for out-of-order processors inevitably require simulation of the
processor and the memory hierarchy. Only by seeing the execution of the processor
during each miss can we see if the processor stalls waiting for data or simply finds other
work to do. A guideline is that the processor often hides the miss penalty for an L1
cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy
varies between different implementations of the same architecture in cache size,
associativity, block size, and number of caches. To cope with such variability, some
recent numerical libraries parameterize their algorithms and then search the parameter
space at runtime to find the best combination for a particular computer. This approach
is called autotuning.

Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second-level
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level
caches are more concerned about hit time.

Check Yourself

Summary
In this section, we focused on four topics: cache performance, using associativity to
reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties,
and software optimizations to improve effectiveness of caches.

The memory system has a significant effect on program execution time. The
number of memory-stall cycles depends on both the miss rate and the miss penalty.
The challenge, as we will see in Section 5.8, is to reduce one of these factors without
significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.
Such schemes can reduce the miss rate of a cache by allowing more flexible
placement of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to satisfy
a request. The higher costs make large fully associative caches impractical. Set-
associative caches are a practical alternative, since we need only search among the
elements of a unique set that is chosen by indexing. Set-associative caches have higher
miss rates but are faster to access. The amount of associativity that yields the best
performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by
allowing a larger secondary cache to handle misses to the primary cache. Second-
level caches have become commonplace as designers find that limited silicon and
the goals of high clock rates prevent primary caches from becoming large. The
secondary cache, which is often 10 or more times larger than the primary cache,
handles many accesses that miss in the primary cache. In such cases, the miss
penalty is that of the access time to the secondary cache (typically <10 processor

410 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

cycles) versus the access time to memory (typically > 100 processor cycles). As
with associativity, the design tradeoffs between the size of the secondary cache and
its access time depend on a number of aspects of the implementation.

Finally, given the importance of the memory hierarchy in performance, we
looked at how to change algorithms to improve cache behavior, with blocking
being an important technique when dealing with large arrays.

 5.5 Dependable Memory Hierarchy

Implicit in all the prior discussion is that the memory hierarchy doesn’t forget. Fast
but undependable is not very attractive. As we learned in Chapter 1, the one great
idea for dependability is redundancy. In this section we’ll first go over the terms to
define terms and measures associated with failure, and then show how redundancy
can make nearly unforgettable memories.

Defining Failure
We start with an assumption that you have a specification of proper service. Users
can then see a system alternating between two states of delivered service with
respect to the service specification:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the
specified service

Transitions from state 1 to state 2 are caused by failures, and transitions from state
2 to state 1 are called restorations. Failures can be permanent or intermittent. The
latter is the more difficult case; it is harder to diagnose the problem when a system
oscillates between the two states. Permanent failures are far easier to diagnose.

This definition leads to two related terms: reliability and availability.
Reliability is a measure of the continuous service accomplishment—or, equivalently,

of the time to failure—from a reference point. Hence, mean time to failure (MTTF)
is a reliability measure. A related term is annual failure rate (AFR), which is just the
percentage of devices that would be expected to fail in a year for a given MTTF.
When MTTF gets large it can be misleading, while AFR leads to better intuition.

MTTF vs. AFR of Disks

Some disks today are quoted to have a 1,000,000-hour MTTF. As 1,000,000
hours is 1,000,000/(365 × 24) = 114 years, it would seem like they practically
never fail. Warehouse-scale computers that run Internet services such as
Search might have 50,000 servers. Assume each server has two disks. Use AFR
to calculate how many disks we would expect to fail per year.

EXAMPLE

 5.5 Dependable Memory Hierarchy 411

One year is 365 × 24 = 8760 hours. A 1,000,000-hour MTTF means an AFR
of 8760/1,000,000 = 0.876%. With 100,000 disks, we would expect 876 disks to
fail per year, or on average more than two disk failures per day!

Service interruption is measured as mean time to repair (MTTR). Mean time
between failures (MTBF) is simply the sum of MTTF + MTTR. Although MTBF
is widely used, MTTF is often the more appropriate term. Availability is then a
measure of service accomplishment with respect to the alternation between the two
states of accomplishment and interruption. Availability is statistically quantified as

Availability MTTF
MTTF MTTR

=
+()

Note that reliability and availability are actually quantifiable measures, rather than
just synonyms for dependability. Shrinking MTTR can help availability as much as
increasing MTTF. For example, tools for fault detection, diagnosis, and repair can
help reduce the time to repair faults and thereby improve availability.

We want availability to be very high. One shorthand is to quote the number of
“nines of availability” per year. For instance, a very good Internet service today
offers 4 or 5 nines of availability. Given 365 days per year, which is 365 × 24 ×
60 = 526,000 minutes, then the shorthand is decoded as follows:

One nine: 90% => 36.5 days of repair/year
Two nines: 99% => 3.65 days of repair/year
Three nines: 99.9% => 526 minutes of repair/year
Four nines: 99.99% => 52.6 minutes of repair/year
Five nines: 99.999% => 5.26 minutes of repair/year

and so on.
To increase MTTF, you can improve the quality of the components or design

systems to continue operation in the presence of components that have failed.
Hence, failure needs to be defined with respect to a context, as failure of a component
may not lead to a failure of the system. To make this distinction clear, the term fault
is used to mean failure of a component. Here are three ways to improve MTTF:

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the
service specification despite faults occurring.

3. Fault forecasting: Predicting the presence and creation of faults, allowing the
component to be replaced before it fails.

ANSWER

412 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Hamming Single Error Correcting, Double Error
Detecting Code (SEC/DED)
Richard Hamming invented a popular redundancy scheme for memory, for which
he received the Turing Award in 1968. To invent redundant codes, it is helpful
to talk about how “close” correct bit patterns can be. What we call the Hamming
distance is just the minimum number of bits that are different between any two
correct bit patterns. For example, the distance between 011011 and 001111 is two.
What happens if the minimum distance between members of a code is two, and we
get a one-bit error? It will turn a valid pattern in a code to an invalid one. Thus, if
we can detect whether members of a code are accurate or not, we can detect single
bit errors, and can say we have a single bit error detection code.

Hamming used a parity code for error detection. In a parity code, the number
of 1 s in a word is counted; the word has odd parity if the number of 1 s is odd and
even otherwise. When a word is written into memory, the parity bit is also written
(1 for odd, 0 for even). That is, the parity of the N+1 bit word should always be even.
Then, when the word is read out, the parity bit is read and checked. If the parity of the
memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31ten and show the pattern stored to
memory. Assume the parity bit is on the right. Suppose the most significant bit
was inverted in memory, and then you read it back. Did you detect the error?
What happens if the two most significant bits are inverted?

31ten is 00011111two, which has five 1s. To make parity even, we need to write a 1
in the parity bit, or 000111111two. If the most significant bit is inverted when we
read it back, we would see 100111111two which has seven 1s. Since we expect
even parity and calculated odd parity, we would signal an error. If the two most
significant bits are inverted, we would see 110111111two which has eight 1s or
even parity, and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since
the parity will match the data with two errors. (Actually, a 1-bit parity scheme can
detect any odd number of errors; however, the probability of having three errors is
much lower than the probability of having two, so, in practice, a 1-bit parity code is
limited to detecting a single bit of error.)

Of course, a parity code cannot correct errors, which Hamming wanted to do
as well as detect them. If we used a code that had a minimum distance of 3, then
any single bit error would be closer to the correct pattern than to any other valid
pattern. He came up with an easy to understand mapping of data into a distance 3
code that we call Hamming Error Correction Code (ECC) in his honor. We use extra

error detection
code A code that
enables the detection of
an error in data, but not
the precise location and,
hence, correction of the
error.

EXAMPLE

ANSWER

 5.5 Dependable Memory Hierarchy 413

parity bits to allow the position identification of a single error. Here are the steps to
calculate Hamming ECC

1. Start numbering bits from 1 on the left, contrary to the traditional
numbering of the rightmost bit being 0.

2. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8,
16, …).

3. All other bit positions are used for data bits (positions 3, 5, 6, 7, 9, 10, 11, 12,
13, 14, 15, …).

4. The position of parity bit determines sequence of data bits that it checks
(Figure 5.24 shows this coverage graphically) is:

■	 Bit 1 (0001two) checks bits (1,3,5,7,9,11,...), which are bits where rightmost
bit of address is 1 (0001two, 0011two, 0101two, 0111two, 1001two, 1011two,…).

■	 Bit 2 (0010two) checks bits (2,3,6,7,10,11,14,15,…), which are the bits
where the second bit to the right in the address is 1.

■	 Bit 4 (0100two) checks bits (4–7, 12–15, 20–23,…), which are the bits
where the third bit to the right in the address is 1.

■	 Bit 8 (1000two) checks bits (8–15, 24–31, 40–47,...), which are the bits
where the fourth bit to the right in the address is 1.

Note that each data bit is covered by two or more parity bits.

5. Set parity bits to create even parity for each group.

Bit position

Encoded data bits

Parity
bit

coverage

p1

p1

p2

p4

p8

p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8

X X X X X X

X X X X X X

X X X X X

X X X X X

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 5.24 Parity bits, data bits, and field coverage in a Hamming ECC code for eight
data bits.

In what seems like a magic trick, you can determine whether bits are incorrect
by looking at the parity bits. Using the 12 bit code in Figure 5.24, if the value of the
four parity calculations (p8,p4,p2,p1) was 0000, then there was no error. However,
if the pattern was, say, 1010, which is 10ten, then Hamming ECC tells us that bit
10 (d6) is an error. Since the number is binary, we can correct the error just by
inverting the value of bit 10.

414 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Assume one byte data value is 10011010two. First show the Hamming ECC code
for that byte, and then invert bit 10 and show that the ECC code finds and
corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is__ 1_ 0 0 1_ 1 0 1 0.

Position 1 checks bits 1,3,5,7,9, and 11, which we highlight:__ 1_ 0 0 1_ 1 0 1
0. To make the group even parity, we should set bit 1 to 0.
Position 2 checks bits 2,3,6,7,10,11, which is 0_ 1_ 0 0 1_ 1 0 1 0 or odd parity,
so we set position 2 to a 1.
Position 4 checks bits 4,5,6,7,12, which is 0 1 1_ 0 0 1_ 1 0 1, so we set it to a 1.
Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1_ 1 0 1 0, so we set it
to a 0.
The final code word is 011100101010. Inverting bit 10 changes it to
011100101110.
Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).
Parity bit 2 is 1 (011100101110 is five 1s, so odd parity; there is an error
somewhere).
Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).
Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error
somewhere).
Parity bits 2 and 8 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence,
we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more
bit, we can make the minimum Hamming distance in a code be 4. This means we
can correct single bit errors and detect double bit errors. The idea is to add a parity
bit that is calculated over the whole word. Let’s use a 4-bit data word as an example,
which would only need 7 bits for single bit error detection. Hamming parity bits H
(p1 p2 p3) are computed (even parity as usual) plus the even parity over the entire
word, p4:

1 2 3 4 5 6 7 8
p1 p2 d1 p3 d2 d3 d4 p4

Then the algorithm to correct one error and detect two is just to calculate parity
over the ECC groups (H) as before plus one more over the whole group (p4). There
are four cases:

1. H is even and p4 is even, so no error occurred.

2. H is odd and p4 is odd, so a correctable single error occurred. (p4 should
calculate odd parity if one error occurred.)

3. H is even and p4 is odd, a single error occurred in p4 bit, not in the rest of the
word, so correct the p4 bit.

ANSWER

EXAMPLE

 5.5 Dependable Memory Hierarchy 415

4. H is odd and p4 is even, a double error occurred. (p4 should calculate even
parity if two errors occurred.)

Single Error Correcting/Double Error Detecting (SEC/DED) is common in
memory for servers today. Conveniently, 8-byte data blocks can get SEC/DED with
just one more byte, which is why many DIMMs are 72 bits wide.

Elaboration: To calculate how many bits are needed for SEC, let p be total number
of parity bits and d number of data bits in p + d bit word. If p error correction bits are to
point to error bit (p + d cases) plus one case to indicate that no error exists, we need:

2 1 1p bits and thus ≥ + + ≥ + +p d p p d, log().

For example, for 8 bits data means d = 8 and 2p ≥ p + 8 + 1, so p = 4. Similarly, p = 5
for 16 bits of data, 6 for 32 bits, 7 for 64 bits, and so on.

Elaboration: In very large systems, the possibility of multiple errors as well as
complete failure of a single wide memory chip becomes significant. IBM introduced
chipkill to solve this problem, and many big systems use this technology. (Intel calls
their version SDDC.) Similar in nature to the RAID approach used for disks (see

 Section 5.11), Chipkill distributes the data and ECC information, so that the complete
failure of a single memory chip can be handled by supporting the reconstruction of the
missing data from the remaining memory chips. Assuming a 10,000-processor cluster
with 4 GiB per processor, IBM calculated the following rates of unrecoverable memory
errors in 3 years of operation:

■	 Parity only—about 90,000, or one unrecoverable (or undetected) failure every 17
minutes.

■	 SEC/DED only—about 3500, or about one undetected or unrecoverable failure
every 7.5 hours.

■	 Chipkill—6, or about one undetected or unrecoverable failure every 2 months.

Hence, Chipkill is a requirement for warehouse-scale computers.

Elaboration: While single or double bit errors are typical for memory systems, networks
can have bursts of bit errors. One solution is called Cyclic Redundancy Check. For a block
of k bits, a transmitter generates an n-k bit frame check sequence. It transmits n bits
exactly divisible by some number. The receiver divides the frame by that number. If there
is no remainder, it assumes there is no error. If there is, the receiver rejects the message,
and asks the transmitter to send again. As you might guess from Chapter 3, it is easy to
calculate division for some binary numbers with a shift register, which made CRC codes
popular even when hardware was more precious. Going even further, Reed-Solomon codes
use Galois fields to correct multibit transmission errors, but now data are considered
coefficients of a polynomial and the code space is values of a polynomial. The Reed-
Solomon calculation is considerably more complicated than binary division!

416 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.6 Virtual Machines

Virtual machines (VM) were first developed in the mid-1960s, and they have
remained an important part of mainframe computing over the years. Although
largely ignored in the single-user PC era in the 1980s and 1990s, they have recently
gained popularity due to

■	 The increasing importance of isolation and security in modern systems

■	 The failures in security and reliability of standard operating systems

■	 The sharing of a single computer among many unrelated users, in particular
for Cloud computing

■	 The dramatic increases in raw speed of processors over the decades, which
makes the overhead of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. In this section, we are
interested in VMs that provide a complete system-level environment at the binary
instruction set architecture (ISA) level. Although some VMs run different ISAs in
the VM from the native hardware, we assume they always match the hardware. Such
VMs are called (Operating) System Virtual Machines. IBM VM/370, VirtualBox,
VMware ESX Server, and Xen are examples.

System virtual machines present the illusion that the users have an entire
computer to themselves, including a copy of the operating system. A single
computer runs multiple VMs and can support a number of different operating
systems (OSes). On a conventional platform, a single OS “owns” all the hardware
resources, but with a VM, multiple OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM) or
hypervisor; the VMM is the heart of virtual machine technology. The underlying
hardware platform is called the host, and its resources are shared among the guest
VMs. The VMM determines how to map virtual resources to physical resources: a
physical resource may be time-shared, partitioned, or even emulated in software.
The VMM is much smaller than a traditional OS; the isolation portion of a VMM
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete
software stack, even including old operating systems like DOS. A typical
deployment might be some VMs running legacy OSes, many running the
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each
application running with the compatible version of the operating system
on separate computers, as this separation can improve dependability. VMs

 5.6 Virtual Machines 417

allow these separate software stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a different computer, either
to balance load or to evacuate from failing hardware.

Amazon Web Services (AWS) uses the virtual machines in its Cloud computing
offering EC2 for five reasons:

1. It allows AWS to protect users from each other while sharing the same server.

2. It simplifies software distribution within a warehouse-scale computer. A
customer installs a virtual machine image configured with the appropriate
software, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage
when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is
running, which means AWS can keep using old servers and introduce new,
more efficient servers. The customer expects performance for instances to
match their ratings in “EC2 Compute Units,” which AWS defines: to “provide
the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007
Intel Xeon processor.” Thanks to Moore’s Law, newer servers clearly offer
more EC2 Compute Units than older ones, but AWS can keep renting old
servers as long as they are economical.

5. Virtual machine monitors can control the rate that a VM uses the processor,
the network, and disk space, which allows AWS to offer many price points
of instances of different types running on the same underlying servers. For
example, in 2012 AWS offered 14 instance types, from small standard instances
at $0.08 per hour to high I/O quadruple extra-large instances at $3.10 per hour.

Hardware/
Software
Interface

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads
are generally also OS-intensive, executing many system calls and privileged
instructions that can result in high virtualization overhead. On the other hand, if
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization
can be completely hidden, since the processor is often idle waiting for I/O.

The overhead is determined by both the number of instructions that must be
emulated by the VMM and by how much time each takes to emulate. Hence, when
the guest VMs run the same ISA as the host, as we assume here, the goal of the
architecture and the VMM is to run almost all instructions directly on the native
hardware.

418 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a software interface to guest software, it
must isolate the state of guests from each other, and it must protect itself from guest
software (including guest OSes). The qualitative requirements are:

■	 Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

■	 Guest software should not be able to change the allocation of real system
resources directly.

To “virtualize” the processor, the VMM must control just about everything—access
to privileged state, I/O, exceptions, and interrupts—even though the guest VM and
OS presently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the
currently running guest VM, save its state, handle the interrupt, determine which
guest VM to run next, and then load its state. Guest VMs that rely on a timer interrupt
are provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of any
privileged instruction will be handled by the VMM. The basic system requirements
to support VMMs are:

■	 At least two processor modes, system and user.

■	 A privileged subset of instructions that is available only in system mode,
resulting in a trap if executed in user mode; all system resources must be
controllable just via these instructions.

(Lack of) Instruction Set Architecture Support
for Virtual Machines
If VMs are planned for during the design of the ISA, it’s relatively easy to reduce
both the number of instructions that must be executed by a VMM and improve
their emulation speed. An architecture that allows the VM to execute directly
on the hardware earns the title virtualizable, and the IBM 370 and the RISC-V
architectures proudly bear that label.

Alas, since VMs have been considered for PC and server applications only fairly
recently, most instruction sets were created without virtualization in mind. These
culprits include x86 and most RISC architectures, including ARMv7 and MIPS.

Because the VMM must ensure that the guest system only interacts with virtual
resources, a conventional guest OS runs as a user mode program on top of the
VMM. Then, if a guest OS attempts to access or modify information related to
hardware resources via a privileged instruction—for example, reading or writing
a status bit that enables interrupts—it will trap to the VMM. The VMM can then
affect the appropriate changes to corresponding real resources.

 5.7 Virtual Memory 419

Hence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complexity
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint effort of architecture and operating systems, but architects
had to modify some awkward details of existing instruction set architectures when
virtual memory became popular.

For example, the x86 instruction POPF loads the flag registers from the top of
the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you run
the POPF instruction in user mode, rather than trap it, it simply changes all the
flags except IE. In system mode, it does change the IE. Since a guest OS runs in user
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve
the performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without
invoking VMM.

AMD and Intel tried to address the first point in 2006 by reducing the cost of
processor virtualization. It will be interesting to see how many generations of
architecture and VMM modifications it will take to address all three points, and
how long before virtual machines of the 21st century for x86 will be as efficient as
the IBM mainframes and VMMs of the 1970s.

Elaboration: RISC-V traps all privileged instructions when running in user mode, so it
supports classical virtualization, wherein the guest OS runs in user mode and the VMM
runs in supervisor mode.

 5.7 Virtual Memory

In earlier sections, we saw how caches provided fast access to recently-used portions
of a program’s code and data. Similarly, the main memory can act as a “cache” for the
secondary storage, traditionally implemented with magnetic disks. This technique

… a system has
been devised to
make the core drum
combination appear
to the programmer
as a single level
store, the requisite
transfers taking place
automatically.
Kilburn et al., One-level
storage system, 1962

420 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

is called virtual memory. Historically, there were two major motivations for virtual
memory: to allow efficient and safe sharing of memory among several programs, such
as for the memory needed by multiple virtual machines for Cloud computing, and to
remove the programming burdens of a small, limited amount of main memory. Five
decades after its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we must
be able to protect the virtual machines from each other, ensuring that a program
can just read and write the portions of main memory that have been assigned to it.
Main memory need contain only the active portions of the many virtual machines,
just as a cache contains only the active portion of one program. Thus, the principle
of locality enables virtual memory as well as caches, and virtual memory allows us
to share the processor efficiently as well as the main memory.

We cannot know which virtual machines will share the memory with other
virtual machines when we compile them. In fact, the virtual machines sharing
the memory change dynamically while they are running. Because of this dynamic
interaction, we would like to compile each program into its own address space—a
separate range of memory locations accessible only to this program. Virtual
memory implements the translation of a program’s address space to physical
addresses. This translation process enforces protection of a program’s address
space from other virtual machines.

The second motivation for virtual memory is to allow a single-user program
to exceed the size of primary memory. Formerly, if a program became too large
for memory, it was up to the programmer to make it fit. Programmers divided
programs into pieces and then identified the pieces that were mutually exclusive.
These overlays were loaded or unloaded under user program control during
execution, with the programmer ensuring that the program at no time tried to
access an overlay that was not loaded and that the overlays loaded never exceeded
the total size of the memory. Overlays were traditionally organized as modules,
each containing both code and data. Calls between procedures in different modules
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on
programmers. Virtual memory, which was invented to relieve programmers of
this difficulty, automatically manages the two levels of the memory hierarchy
represented by main memory (sometimes called physical memory to distinguish it
from virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same,
their differing historical roots have led to the use of different terminology. A virtual
memory block is called a page, and a virtual memory miss is called a page fault.
With virtual memory, the processor produces a virtual address, which is translated
by a combination of hardware and software to a physical address, which in turn can
be used to access main memory. Figure 5.25 shows the virtually addressed memory
with pages mapped to main memory. This process is called address mapping or
address translation. Today, the two memory hierarchy levels controlled by virtual
memory are usually DRAMs and flash memory in personal mobile devices and

virtual memory
A technique that uses
main memory as a “cache”
for secondary storage.

physical address An
address in main memory.

protection A set
of mechanisms for
ensuring that multiple
processes sharing the
processor, memory,
or I/O devices cannot
interfere, intentionally
or unintentionally, with
one another by reading or
writing each other’s data.
These mechanisms also
isolate the operating system
from a user process.

DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library
analogy, we can think of a virtual address as the title of a book and a physical
address as the location of that book in the library, such as might be given by the
Library of Congress call number.

Virtual memory also simplifies loading the program for execution by providing
relocation. Relocation maps the virtual addresses used by a program to different
physical addresses before the addresses are used to access memory. This relocation
allows us to load the program anywhere in main memory. Furthermore, all virtual
memory systems in use today relocate the program as a set of fixed-size blocks
(pages), thereby eliminating the need to find a contiguous block of memory to
allocate to a program; instead, the operating system needs only to find enough
pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page
offset. Figure 5.26 shows the translation of the virtual page number to a physical
page number. While RISC-V has a 64-bit address, the upper 16 bits are not used,
so the address to be mapped is 48 bits. This figure assumes the physical memory
is 1 TiB, or 240 bytes, which needs a 40-bit address. The physical page number
constitutes the upper portion of the physical address, while the page offset, which
is not changed, constitutes the lower portion. The number of bits in the page offset
field determines the page size. The number of pages addressable with the virtual
address can be different than the number of pages addressable with the physical
address. Having a larger number of virtual pages than physical pages is the basis for
the illusion of an essentially unbounded amount of virtual memory.

page fault An event that
occurs when an accessed
page is not present in
main memory.

virtual address
An address that
corresponds to a location
in virtual space and is
translated by address
mapping to a physical
address when memory is
accessed.

address translation
Also called address
mapping. The process by
which a virtual address
is mapped to an address
used to access memory.

 5.7 Virtual Memory 421

DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library
analogy, we can think of a virtual address as the title of a book and a physical
address as the location of that book in the library, such as might be given by the
Library of Congress call number.

Virtual memory also simplifies loading the program for execution by providing
relocation. Relocation maps the virtual addresses used by a program to different
physical addresses before the addresses are used to access memory. This relocation
allows us to load the program anywhere in main memory. Furthermore, all virtual
memory systems in use today relocate the program as a set of fixed-size blocks
(pages), thereby eliminating the need to find a contiguous block of memory to
allocate to a program; instead, the operating system needs only to find enough
pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page
offset. Figure 5.26 shows the translation of the virtual page number to a physical
page number. While RISC-V has a 64-bit address, the upper 16 bits are not used,
so the address to be mapped is 48 bits. This figure assumes the physical memory
is 1 TiB, or 240 bytes, which needs a 40-bit address. The physical page number
constitutes the upper portion of the physical address, while the page offset, which
is not changed, constitutes the lower portion. The number of bits in the page offset
field determines the page size. The number of pages addressable with the virtual
address can be different than the number of pages addressable with the physical
address. Having a larger number of virtual pages than physical pages is the basis for
the illusion of an essentially unbounded amount of virtual memory.

page fault An event that
occurs when an accessed
page is not present in
main memory.

virtual address
An address that
corresponds to a location
in virtual space and is
translated by address
mapping to a physical
address when memory is
accessed.

address translation
Also called address
mapping. The process by
which a virtual address
is mapped to an address
used to access memory.

Virtual addresses Physical addresses
Address translation

Disk addresses

FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses). The
processor generates virtual addresses while the memory is accessed using physical addresses. Both the virtual
memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical page.
Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to a physical
address; in that case, the page resides on disk. Physical pages can be shared by having two virtual addresses
point to the same physical address. This capability is used to allow two different programs to share data or code.

422 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Many design choices in virtual memory systems are motivated by the high cost
of a page fault. A page fault to disk will take millions of clock cycles to process.
(The table on page 372 shows that main memory latency is about 100,000 times
quicker than disk.) This enormous miss penalty, dominated by the time to get the
first word for typical page sizes, leads to several key decisions in designing virtual
memory systems:

■	 Pages should be large enough to try to amortize the high access time. Sizes
from 4 KiB to 64 KiB are typical today. New desktop and server systems are
being developed to support 32 KiB and 64 KiB pages, but new embedded
systems are going in the other direction, to 1 KiB pages.

■	 Organizations that reduce the page fault rate are attractive. The primary
technique used here is to allow fully associative placement of pages in
memory.

■	 Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use clever
algorithms for choosing how to place pages because even little reductions in
the miss rate will pay for the cost of such algorithms.

■	 Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

Virtual page number Page offset

47 46 45 44 43 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

39 38 37 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

FIGURE 5.26 Mapping from a virtual to a physical address. The page size is 212 = 4 KiB. The
number of physical pages allowed in memory is 228, since the physical page number has 28 bits in it. Thus,
main memory can have at most 1 TiB, while the virtual address space is 256 TiB. RISC-V allows physical
memory to be up to 1 PiB; we chose 1 TiB because it is ample for many computers in 2016.

 5.7 Virtual Memory 423

The next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines
sharing the same memory, but virtual memory was originally invented so that many
programs could share a computer as part of a timesharing system. Since many readers
today have no experience with time-sharing systems, we use virtual machines to motivate
this section.

Elaboration: RISC-V supports a variety of virtual memory configurations. In addition
to the 48-bit virtual address scheme, which is a good fit for large servers in 2016,
the architecture can support 39-bit and 57-bit virtual address spaces. All of these
configurations use a page size of 4 Kibibytes.

Elaboration: For servers and even PCs, 32-bit address processors are problematic.
Although we normally think of virtual addresses as much larger than physical addresses,
the opposite can occur when the processor address size is small relative to the state
of the memory technology. No single program or virtual machine can benefit, but a
collection of programs or virtual machines running at the same time can benefit from not
having to be swapped out of main memory or by running on parallel processors.

Elaboration: The discussion of virtual memory in this book focuses on paging, which
uses fixed-size blocks. There is also a variable-size block scheme called segmentation.
In segmentation, an address consists of two parts: a segment number and a segment
offset. The segment number is mapped to a physical address, and the offset is added
to find the actual physical address. Because the segment can vary in size, a bounds
check is also needed to make sure that the offset is within the segment. The major
use of segmentation is to support more powerful methods of protection and sharing in
an address space. Most operating system textbooks contain extensive discussions of
segmentation compared to paging and of the use of segmentation to share the address
space logically. The major disadvantage of segmentation is that it splits the address
space into logically separate pieces that must be manipulated as a two-part address:
the segment number and the offset. Paging, in contrast, makes the boundary between
page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful because
of the awkwardness and performance penalties inherent in a two-part address, of which
programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that simplify
protection between the operating system and user programs and increase the efficiency
of implementing paging. Although these divisions are often called “segments,” this
mechanism is much simpler than variable block size segmentation and is not visible to
user programs; we discuss it in more detail shortly.

segmentation A
variable-size address
mapping scheme in which
an address consists of two
parts: a segment number,
which is mapped to a
physical address, and a
segment offset.

424 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Placing a Page and Finding It Again
Because of the incredibly high penalty for a page fault, designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page
it wants when a page fault occurs. For example, the operating system can use a
sophisticated algorithm and complex data structures that track page usage to try
to choose a page that will not be needed for a long time. The ability to use a clever
and flexible replacement scheme reduces the page fault rate and simplifies the use
of fully associative placement of pages.

As mentioned in Section 5.4, the difficulty in using fully associative placement
is in locating an entry, since it can be anywhere in the upper level of the hierarchy.
A full search is impractical. In virtual memory systems, we locate pages by using
a table that indexes the main memory; this structure is called a page table, and
it resides in main memory. A page table is indexed by the page number from the
virtual address to discover the corresponding physical page number. Each program
has its own page table, which maps the virtual address space of that program to main
memory. In our library analogy, the page table corresponds to a mapping between
book titles and library locations. Just as the card catalog may contain entries for
books in another library on campus rather than the local branch library, we will
see that the page table may contain entries for pages not present in memory. To
indicate the location of the page table in memory, the hardware includes a register
that points to the start of the page table; we call this the page table register. Assume
for now that the page table is in a fixed and contiguous area of memory.

page table The table
containing the virtual
to physical address
translations in a virtual
memory system. The
table, which is stored
in memory, is typically
indexed by the virtual page
number; each entry in the
table contains the physical
page number for that
virtual page if the page is
currently in memory.

The page table, together with the program counter and the registers, specifies
the state of a virtual machine. If we want to allow another virtual machine to use
the processor, we must save this state. Later, after restoring this state, the virtual
machine can continue execution. We often refer to this state as a process. The
process is considered active when it is in possession of the processor; otherwise, it
is considered inactive. The operating system can make a process active by loading
the process’s state, including the program counter, which will initiate execution at
the value of the saved program counter.

The process’s address space, and hence all the data it can access in memory, is
defined by its page table, which resides in memory. Rather than save the entire page
table, the operating system simply loads the page table register to point to the page
table of the process it wants to make active. Each process has its own page table,
since different processes use the same virtual addresses. The operating system is
responsible for allocating the physical memory and updating the page tables, so
that the virtual address spaces of distinct processes do not collide. As we will see
shortly, the use of separate page tables also provides protection of one process from
another.

Hardware/
Software
Interface

 5.7 Virtual Memory 425

Figure 5.27 uses the page table register, the virtual address, and the indicated page
table to show how the hardware can form a physical address. A valid bit is used
in each page table entry, just as we did in a cache. If the bit is off, the page is not
present in main memory and a page fault occurs. If the bit is on, the page is in
memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no
tags are required. In cache terminology, the index that is used to access the page
table consists of the full block address, which in this case is the virtual page number.

Virtual page number Page offset

4 7 4 6 4 5 4 4 4 3 3 2 1 01 5 1 4 1 3 1 2 11 1 0 9 8

Physical page number Page offset

3 9 3 8 3 7 3 2 1 01 5 1 4 1 3 1 2 11 1 0 9 8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

36 12

28

FIGURE 5.27 The page table is indexed with the virtual page number to obtain the
corresponding portion of the physical address. We assume a 48-bit address. The page table pointer
gives the starting address of the page table. In this figure, the page size is 212 bytes, or 4 KiB. The virtual
address space is 248 bytes, or 256 TiB, and the physical address space is 240 bytes, which allows main memory
of up to 1 TiB. If RISC-V used a single page table as shown in this figure, the number of entries in the page
table would be 236, or about 64 billion entries. (We’ll see what RISC-V does to reduce the number of entries
shortly.) The valid bit for each entry indicates whether the mapping is legal. If it is off, then the page is not
present in memory. Although the page table entry shown here need only be 29 bits wide, it would typically
be rounded up to a power of 2 bits for ease of indexing. The page table entries in RISC-V are 64 bits. The
extra bits would be used to store additional information that needs to be kept on a per-page basis, such as
protection.

426 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Page Faults
If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we saw in Chapter 4 and will discuss again later in this section. Once the operating
system gets control, it must find the page in the next level of the hierarchy (usually
flash memory or magnetic disk) and decide where to place the requested page in
the main memory.

The virtual address alone does not immediately tell us where the page is in
secondary memory. Returning to our library analogy, we cannot find the location of
a library book on the shelves just by knowing its title. Instead, we go to the catalog
and look up the book, obtaining an address for the location on the shelves, such as
the Library of Congress call number. Likewise, in a virtual memory system, we must
keep track of the location in secondary memory of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced,
the operating system usually creates the space on flash memory or disk for all the
pages of a process when it creates the process. This space is called the swap space.
At that time, it also creates a data structure to record where each virtual page is
stored on disk. This data structure may be part of the page table or may be an
auxiliary data structure indexed in the same way as the page table. Figure 5.28
shows the organization when a single table holds either the physical page number
or the secondary memory address.

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs, if all
the pages in main memory are in use, the operating system must choose a page to
replace. Because we want to minimize the number of page faults, most operating
systems try to choose a page that they hypothesize will not be needed soon. Using
the past to predict the future, operating systems follow the least recently used
(LRU) replacement scheme, which we mentioned in Section 5.4. The operating
system searches for the least recently used page, assuming that a page that has not
been used in a long time is less likely to be needed than a more recently accessed
page. The replaced pages are written to swap space in secondary memory. In case
you are wondering, the operating system is just another process, and these tables
controlling memory are in memory; the details of this seeming contradiction will
be explained shortly.

swap space The space on
the disk reserved for the
full virtual memory space
of a process.

 5.7 Virtual Memory 427

Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid

FIGURE 5.28 The page table maps each page in virtual memory to either a page in main
memory or a page stored on disk, which is the next level in the hierarchy. The virtual page
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

SPTBR

VA[47:39]

Table desc

Level 0 table
VA[38:30]

Table desc

Level 1 table

VA[29:21]

Table desc

Level 2 table
VA[20:12]

Table desc

Level 3 table

4 KiB
memory
page

FIGURE 5.29 RISC-V uses four levels of tables to translate a 48-bit virtual address into a 40-bit physical address.
Rather than needing 64 billion page table entries for the single page table in Figure 5.27, this hierarchical approach needs just a tiny fraction.
Each step of the translation uses 9 bits of the virtual address to find the next level table, until the upper 36 bits of the virtual address are mapped
to the physical address of the desired 4 KiB page. Each RISC-V page table entry is 8 bytes, so the 512 entries of a table fill a single 4 KiB page.
The Supervisor Page Table Base Register (SPTBR) gives the starting address of the first page table.

428 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Virtual Memory for Large Virtual Addresses
The caption in Figure 5.27 points out that with a single level page table for a
48-bit address with 4 KiB pages, we need 64 billion table entries. As each page
table entry is 8 bytes for RISC-V, it would require 0.5 TiB just to map the virtual
addresses to physical addresses! Moreover, there could be hundreds of processes
running, each with its own page table. That much memory for translation would
be unaffordable even for the largest systems.

A range of techniques is used to reduce the amount of storage required for the
page table. The five techniques below aim at reducing the total maximum storage
required as well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the
page table for a given process. If the virtual page number becomes larger
than the contents of the limit register, entries must be added to the page
table. This technique allows the page table to grow as a process consumes
more space. Thus, the page table will only be large if the process is using
many pages of virtual address space. This technique requires that the address
space expand in just one direction.

2. Allowing growth in only one direction is not sufficient, since most languages
require two areas whose size is expandable: one area holds the stack, and
the other area holds the heap. Because of this duality, it is convenient to
divide the page table and let it grow from the highest address down, as well
as from the lowest address up. This means that there will be two separate
page tables and two separate limits. The use of two page tables breaks the
address space into two segments. The high-order bit of an address usually
determines which segment and thus which page table to use for that address.
Since the high-order address bit specifies the segment, each segment can be

Implementing a completely accurate LRU scheme is too expensive, since it requires
updating a data structure on every memory reference. Thus, most operating systems
approximate LRU by keeping track of which pages have and which pages have not
been recently used. To help the operating system estimate the LRU pages, RISC-V
computers provide a reference bit, sometimes called a use bit or access bit, which
is set whenever a page is accessed. The operating system periodically clears the
reference bits and later records them so it can determine which pages were touched
during a particular time period. With this usage information, the operating system
can select a page that is among the least recently referenced (detected by having its
reference bit off). If this bit is not provided by the hardware, the operating system
must find another way to estimate which pages have been accessed.

Hardware/
Software
Interface

reference bit Also called
use bit or access bit. A
field that is set whenever
a page is accessed and
that is used to implement
LRU or other replacement
schemes.

 5.7 Virtual Memory 429

as large as one-half of the address space. A limit register for each segment
specifies the current size of the segment, which grows in units of pages.
Unlike the type of segmentation discussed in the second elaboration on
page 423, this form of segmentation is invisible to the application program,
although not to the operating system. The major disadvantage of this scheme
is that it does not work well when the address space is used in a sparse fashion
rather than as a contiguous set of virtual addresses.

3. Another approach to reducing the page table size is to apply a hashing
function to the virtual address so that the page table need be only the
size of the number of physical pages in main memory. Such a structure is
called an inverted page table. Of course, the lookup process is slightly more
complex with an inverted page table, because we can no longer just index the
page table.

4. To reduce the actual main memory tied up in page tables, most modern
systems also allow the page tables to be paged. Although this sounds
tricky, it works by using the same basic ideas of virtual memory and simply
allowing the page tables to reside in the virtual address space. In addition,
there are some small but critical problems, such as a never-ending series
of page faults, which must be avoided. How these problems are overcome
is both very detailed and typically highly processor-specific. In brief, these
problems are avoided by placing all the page tables in the address space of
the operating system and placing at least some of the page tables for the
operating system in a portion of main memory that is physically addressed
and is always present and thus never in secondary memory.

5. Multiple levels of page tables can also be used to reduce the total amount
of page table storage, and this is the solution that RISC-V uses to reduce
the memory footprint of address translation. Figure 5.29 above shows the
four levels of address translation to go from a 48-bit virtual address to a
40-bit physical address of a 4 KiB page. Address translation happens by first
looking in the level 0 table, using the highest-order bits of the address. If
the address in this table is valid, the next set of high-order bits is used to
index the page table indicated by the segment table entry, and so on. Thus,
the level 0 table maps the virtual address to a 512 GB (239 bytes) region. The
level 1 table in turn maps the virtual address to a 1 GB (230) region. The next
level maps this down to a 2 MB (221) region. The final table maps the virtual
address to the 4 KiB (212) memory page. This scheme allows the address
space to be used in a sparse fashion (multiple noncontiguous segments can
be active) without having to allocate the entire page table. Such schemes are
particularly useful with very large address spaces and in software systems
that require noncontiguous allocation. The primary disadvantage of this
multi-level mapping is the more complex process for address translation.

430 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

What about Writes?
The difference between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes can be used, although we need a
write buffer to hide the latency of the write from the processor. In a virtual memory
system, writes to the next level of the hierarchy (disk) can take millions of processor
clock cycles; therefore, building a write buffer to allow the system to write-through
to disk would be completely impractical. Instead, virtual memory systems must use
write-back, performing the individual writes into the page in memory, and copying
the page back to secondary memory when it is replaced in the main memory.

A write-back scheme has another major advantage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying back
an entire page is much more efficient than writing individual words back to the
disk. A write-back operation, although faster than transferring separate words, is
still costly. Thus, we would like to know whether a page needs to be copied back
when we choose to replace it. To track whether a page has been written since it was
read into the memory, a dirty bit is added to the page table. The dirty bit is set when
any word in a page is written. If the operating system chooses to replace the page,
the dirty bit indicates whether the page needs to be written out before its location
in memory can be given to another page. Hence, a modified page is often called a
dirty page.

Hardware/
Software
Interface

Making Address Translation Fast: the TLB
Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address
and a second access to get the data. The key to improving access performance is to
rely on locality of reference to the page table. When a translation for a virtual page
number is used, it will probably be needed again soon, because the references to the
words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of
recently used translations. This special address translation cache is traditionally
referred to as a translation-lookaside buffer (TLB), although it would be more
accurate to call it a translation cache. The TLB corresponds to that little piece of
paper we typically use to record the location of a set of books we look up in the card
catalog; rather than continually searching the entire catalog, we record the location
of several books and use the scrap of paper as a cache of Library of Congress call
numbers.

Figure 5.30 shows that each tag entry in the TLB holds a portion of the virtual page
number, and each data entry of the TLB holds a physical page number. Because we

translation-lookaside
buffer (TLB) A cache
that keeps track of
recently used address
mappings to try to avoid
an access to the page
table.

 5.7 Virtual Memory 431

access the TLB instead of the page table on every reference, the TLB will need to include
other status bits, such as the dirty and the reference bits. Although Figure 5.30 shows a
single page table, TLBs work fine with multi-level page tables as well. The TLB simply
loads the physical address and protection tags from the last level page table.

On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the corresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is also
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates
only that the translation is missing. In such cases, the processor can handle the
TLB miss by loading the translation from the (last-level) page table into the TLB
and then trying the reference again. If the page is not present in memory, then
the TLB miss indicates a true page fault. In this case, the processor invokes the
operating system using an exception. Because the TLB has many fewer entries than
the number of pages in main memory, TLB misses will be much more frequent
than true page faults.

1
1
1
1
0
1
1

1
1

1

0

0

0
0
0
0
0
0
0

1
1

1

0

0

1
0
0
1
0
1
1

1
1

1

0

0

Physical page
or disk addressValidDirty Ref

Page table

Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1

0
1
1
0
0
0

1
1
1
1
0
1

Physical page
addressValidDirty Ref

TLB

Tag

FIGURE 5.30 The TLB acts as a cache of the page table for the entries that map to
physical pages only. The TLB contains a subset of the virtual-to-physical page mappings that are in the
page table. The TLB mappings are shown in color. Because the TLB is a cache, it must have a tag field. If there
is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no
tag field is needed; in other words, unlike a TLB, a page table is not a cache.

432 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

TLB misses can be handled either in hardware or in software. In practice, with
care there can be little performance difference between the two approaches, because
the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from the
page table, we will need to select a TLB entry to replace. Because the reference and
dirty bits are contained in the TLB entry, we need to copy these bits back to the page
table entry when we replace an entry. These bits are the only portion of the TLB
entry that can be changed. Using write-back—that is, copying these entries back at
miss time rather than when they are written—is very efficient, since we expect the
TLB miss rate to be small. Some systems use other techniques to approximate the
reference and dirty bits, eliminating the need to write into the TLB except to load
a new table entry on a miss.

Some typical values for a TLB might be

■	 TLB size: 16–512 entries

■	 Block size: 1–2 page table entries (typically 4–8 bytes each)

■	 Hit time: 0.5–1 clock cycle

■	 Miss penalty: 10–100 clock cycles

■	 Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With
a fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page faults.
As a result, many systems provide some support for randomly choosing an entry
to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the Intrinsity
FastMATH. The memory system uses 4 KiB pages and just a 32-bit address space;
thus, the virtual page number is 20 bits long. The physical address is the same size
as the virtual address. The TLB contains 16 entries, it is fully associative, and it is
shared between the instruction and data references. Each entry is 64 bits wide and
contains a 20-bit tag (which is the virtual page number for that TLB entry), the
corresponding physical page number (also 20 bits), a valid bit, a dirty bit, and other
bookkeeping bits. Like most MIPS systems, it uses software to handle TLB misses.

Figure 5.31 shows the TLB and one of the caches, while Figure 5.32 shows the
steps in processing a read or write request. When a TLB miss occurs, the hardware
saves the page number of the reference in a special register and generates an

 5.7 Virtual Memory 433

=

=

20

Virtual page number Page offset

TagValid Dirty

TLB

Physical page number

TagValid

TLB hit

Cache hit

Data

Data

Byte
offset

=
=
=
=
=

Physical page number Page offset

Physical address tag Cache index

12

20

Block
offset

Physical address

18

32

8 4 2

12
8

Cache

31 30 29 3 2 1 014 13 12 11 10 9

Virtual address

FIGURE 5.31 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity
FastMATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. Note that the address size for this
computer is just 32 bits. This diagram focuses on a read; Figure 5.32 describes how to handle writes. Note that unlike Figure 5.12, the tag and
data RAMs are split. By addressing the long but narrow data RAM with the cache index concatenated with the block offset, we select the desired
word in the block without a 16:1 multiplexor. While the cache is direct mapped, the TLB is fully associative. Implementing a fully associative
TLB requires that every TLB tag be compared against the virtual page number, since the entry of interest can be anywhere in the TLB. (See
content addressable memories in the Elaboration on page 400.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from
the physical page number together with bits from the page offset form the index that is used to access the cache.

434 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Yes
Write access

bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception

Physical address

FIGURE 5.32 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the
cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall
while the data are brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data are sent to
the write buffer if we assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory.
Write-back requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB
hit occurs, which means that the data must be present in memory. The relationship between TLB misses and cache misses is examined further
in the following example and the exercises at the end of this chapter. Note that the address size for this computer is just 32 bits.

 5.7 Virtual Memory 435

exception. The exception invokes the operating system, which handles the miss in
software. To find the physical address for the missing page, a TLB miss indexes the
page table using the page number of the virtual address and the page table register,
which indicates the starting address of the active process page table. Using a special
set of system instructions that can update the TLB, the operating system places the
physical address from the page table into the TLB. A TLB miss takes about 13 clock
cycles, assuming the code and the page table entry are in the instruction cache and
data cache, respectively. A true page fault occurs if the page table entry does not
have a valid physical address. The hardware maintains an index that indicates the
recommended entry to replace; it is chosen randomly.

There is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. This bit prevents the program from writing into pages
for which it has only read access. If the program attempts a write and the write
access bit is off, an exception is generated. The write access bit forms part of the
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches
Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
helps maintain this hierarchy by flushing the contents of any page from the cache
when it decides to migrate that page to secondary memory. At the same time, the
OS modifies the page tables and TLB, so that an attempt to access any data on the
migrated page will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data are found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of the
memory hierarchy: the TLB, the page table, and the cache. The following example
illustrates these interactions in more detail.

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.31, which includes a TLB and a
cache organized as shown, a memory reference can encounter three different
types of misses: a TLB miss, a page fault, and a cache miss. Consider all
the combinations of these three events with one or more occurring (seven
possibilities). For each possibility, state whether this event can actually occur
and under what circumstances.

Figure 5.33 shows all combinations and whether each is possible in practice.

EXAMPLE

ANSWER

436 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: Figure 5.33 assumes that all memory addresses are translated to
physical addresses before the cache is accessed. In this organization, the cache is
physically indexed and physically tagged (both the cache index and tag are physical,
rather than virtual, addresses). In such a system, the amount of time to access memory,
assuming a cache hit, must accommodate both a TLB access and a cache access; of
course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a virtually addressed cache, and it uses tags that
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In
such caches, the address translation hardware (TLB) is unused during the normal cache
access, since the cache is accessed with a virtual address that has not been translated
to a physical address. This takes the TLB out of the critical path, reducing cache latency.
When a cache miss occurs, however, the processor needs to translate the address to a
physical address so that it can fetch the cache block from main memory.

When the cache is accessed with a virtual address and pages are shared between
processes (which may access them with different virtual addresses), there is the
possibility of aliasing. Aliasing occurs when the same object has two names—in this
case, two virtual addresses for the same page. This ambiguity creates a problem, because
a word on such a page may be cached in two different locations, each corresponding
to distinct virtual addresses. This ambiguity would allow one program to write the data
without the other program being aware that the data had changed. Completely virtually
addressed caches either introduce design limitations on the cache and TLB to reduce
aliases or require the operating system, and possibly the user, to take steps to ensure
that aliases do not occur.

A common compromise between these two design points is caches that are virtually
indexed—sometimes using just the page-offset portion of the address, which is really
a physical address since it is not translated—but use physical tags. These designs,
which are virtually indexed but physically tagged, attempt to achieve the performance
advantages of virtually indexed caches with the architecturally simpler advantages of a
physically addressed cache. For example, there is no alias problem in this case. Figure
5.31 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can
use this trick. To pull it off, there must be careful coordination between the minimum
page size, the cache size, and associativity. RISC-V requires caches to behave as

though physically tagged and indexed, but it does not mandate this implementation. For
example, virtually indexed, physically tagged data caches could use additional logic to
ensure that software cannot tell the difference.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of
a single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or into
the operating system either intentionally or unintentionally. The write access bit in
the TLB can protect a page from being written. Without this level of protection,
computer viruses would be even more widespread.

virtually addressed
cache A cache that is
accessed with a virtual
address rather than a
physical address.

aliasing A situation
in which two addresses
access the same object;
it can occur in virtual
memory when there are
two virtual addresses for
the same physical page.

physically addressed
cache A cache that is
addressed by a physical
address.

supervisor mode Also
called kernel mode. A
mode indicating that a
running process is an
operating system process.

system call A special
instruction that transfers
control from user mode
to a dedicated location
in supervisor code space,
invoking the exception
mechanism in the process.

TLB
Page
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.33 The possible combinations of events in the TLB, virtual memory system,
and cache. Three of these combinations are impossible, and one is possible (TLB hit, page table hit, cache
miss) but never detected.

 5.7 Virtual Memory 437

though physically tagged and indexed, but it does not mandate this implementation. For
example, virtually indexed, physically tagged data caches could use additional logic to
ensure that software cannot tell the difference.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of
a single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or into
the operating system either intentionally or unintentionally. The write access bit in
the TLB can protect a page from being written. Without this level of protection,
computer viruses would be even more widespread.

virtually addressed
cache A cache that is
accessed with a virtual
address rather than a
physical address.

aliasing A situation
in which two addresses
access the same object;
it can occur in virtual
memory when there are
two virtual addresses for
the same physical page.

physically addressed
cache A cache that is
addressed by a physical
address.

supervisor mode Also
called kernel mode. A
mode indicating that a
running process is an
operating system process.

system call A special
instruction that transfers
control from user mode
to a dedicated location
in supervisor code space,
invoking the exception
mechanism in the process.

To enable the operating system to implement protection in the virtual memory
system, the hardware must provide at least the three basic capabilities summarized
below. Note that the first two are the same requirements as needed for virtual
machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but
not write. This state includes the user/supervisor mode bit, which dictates
whether the processor is in user or supervisor mode, the page table pointer,
and the TLB. To write these elements, the operating system uses special
instructions that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to
supervisor mode and vice versa. The first direction is typically accomplished
by a system call exception, implemented as a special instruction (ecall in
the RISC-V instruction set) that transfers control to a dedicated location in
supervisor code space. As with any other exception, the program counter
from the point of the system call is saved in the supervisor exception program
counter (SEPC), and the processor is placed in supervisor mode. To return
to user mode from the exception, use the supervisor exception return (sret)
instruction, which resets to user mode and jumps to the address in SEPC.

By using these mechanisms and storing the page tables in the operating system’s
address space, the operating system can change the page tables while preventing a
user process from changing them, ensuring that a user process can access only the
storage provided to it by the operating system.

Hardware/
Software
Interface

438 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

We also want to prevent a process from reading the data of another process. For
example, we wouldn’t want a student program to read the teacher’s grades while they
were in the processor’s memory. Once we begin sharing main memory, we must
provide the ability for a process to protect its data from both reading and writing by
another process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access another’s
data. Of course, this also requires that a user process be unable to change the page
table mapping. The operating system can assure safety if it prevents the user process
from modifying its own page tables. However, the operating system must be able
to modify the page tables. Placing the page tables in the protected address space of
the operating system satisfies both requirements.

When processes want to share information in a limited way, the operating system
must assist them, since accessing the information of another process requires
changing the page table of the accessing process. The write access bit can be used
to restrict the sharing to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say, P1,
to read a page owned by process P2, P2 would ask the operating system to create
a page table entry for a virtual page in P1’s address space that points to the same
physical page that P2 wants to share. The operating system could use the write
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB, because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process
P1 to running process P2 (called a context switch or process switch), it must ensure
that P2 cannot get access to the page tables of P1 because that would compromise
protection. If there is no TLB, it suffices to change the page table register to point to P2’s
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the
process switch rate were high, this could be quite inefficient. For example, P2 might load
only a few TLB entries before the operating system switched back to P1. Unfortunately,
P1 would then find that all its TLB entries were gone and would have to pay TLB misses
to reload them. This problem arises because the virtual addresses used by P1 and P2
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID)
field for this purpose. This small field identifies the currently running process; it is
kept in a register loaded by the operating system when it switches processes. RISC-V
also offers ASID to reduce TLB flushes on context switches. The process identifier is
concatenated to the tag portion of the TLB, so that a TLB hit occurs only if both the page
number and the process identifier match. This combination eliminates the need to clear
the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch, the cache will
contain data from the running process. These problems arise in different ways for
physically addressed and virtually addressed caches, and a variety of solutions, such as
process identifiers, are used to ensure that a process gets its own data.

context switch
A changing of the internal
state of the processor to
allow a different process
to use the processor
that includes saving the
state needed to return to
the currently executing
process.

 5.7 Virtual Memory 439

Handling TLB Misses and Page Faults
Although the translation of virtual to physical addresses with a TLB is
straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and
page faults is more complex. A TLB miss occurs when no entry in the TLB matches
a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry.
2. The page is not present in memory, and we need to transfer control to the

operating system to deal with a page fault.
Handling a TLB miss or a page fault requires using the exception mechanism to

interrupt the active process, transferring control to the operating system, and later
resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruction
after the page fault is handled, the program counter of the instruction that caused the
page fault must be saved. The supervisor exception program counter (SEPC) register is
used to hold this value.

In addition, a TLB miss or page fault exception must be asserted by the end of the
same clock cycle that the memory access occurs, so that the next clock cycle will begin
exception processing rather than continue normal instruction execution. If the page
fault was not recognized in this clock cycle, a load instruction could overwrite a register,
and this could be disastrous when we try to restart the instruction. For example, consider
the instruction lb x10, 0(x10): the computer must be able to prevent the write
pipeline stage from occurring; otherwise, it could not properly restart the instruction,
since the contents of x10 would have been destroyed. A similar complication arises on
stores. We must prevent the write into memory from actually completing when there
is a page fault; this is usually done by deasserting the write control line to the memory.

exception enable Also
called interrupt enable.
A signal or action that
controls whether the
process responds to
an exception or not;
necessary for preventing
the occurrence of
exceptions during
intervals before the
processor has safely saved
the state needed to restart.

Between the time we begin executing the exception handler in the operating
system and the time that the operating system has saved all the state of the process,
the operating system is particularly vulnerable. For instance, if another exception
occurred when we were processing the first exception in the operating system, the
control unit would overwrite the exception link register, making it impossible to
return to the instruction that caused the page fault! We can avoid this disaster by
providing the ability to disable and enable exceptions. When an exception first
occurs, the processor sets a bit that disables all other exceptions; this could happen
at the same time the processor sets the supervisor mode bit. The operating system
will then save just enough state to allow it to recover if another exception occurs—
namely, the supervisor exception rogram counter (SEPC) and the supervisor exception
cause (SCAUSE) registers, which as we saw in Chapter 4 records the reason for the
exception. SEPC and SCAUSE in RISC-V are two of the special control registers
that help with exceptions, TLB misses, and page faults. The operating system can
then re-enable exceptions. These steps make sure that exceptions will not cause
the processor to lose any state and thereby be unable to restart execution of the
interrupting instruction.

Hardware/
Software
Interface

440 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Once the operating system knows the virtual address that caused the page fault,
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location
of the referenced page in secondary memory.

2. Choose a physical page to replace; if the chosen page is dirty, it must be
written out to secondary memory before we can bring a new virtual page
into this physical page.

3. Start a read to bring the referenced page from secondary memory into the
chosen physical page.

Of course, this last step will take millions of processor clock cycles for disks (so
will the second if the replaced page is dirty); accordingly, the operating system
will usually select another process to execute in the processor until the disk access
completes. Because the operating system has saved the state of the process, it can
freely give control of the processor to another process.

When the read of the page from secondary memory is complete, the operating
system can restore the state of the process that originally caused the page fault and
execute the instruction that returns from the exception. This instruction will reset
the processor from kernel to user mode, as well as restore the program counter. The
user process then re-executes the instruction that faulted, accesses the requested
page successfully, and continues execution.

Page fault exceptions for data accesses are difficult to implement properly in a
processor because of a combination of three characteristics:

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing
had occurred.

Making instructions restartable, so that the exception can be handled and the
instruction later continued, is relatively easy in an architecture like the RISC-V.
Because each instruction writes only one data item and this write occurs at the end
of the instruction cycle, we can simply prevent the instruction from completing (by
not writing) and restart the instruction at the beginning.

Elaboration: For processors with more complex instructions that can touch many
memory locations and write many data items, making instructions restartable is much
harder. Processing one instruction may generate a number of page faults in the middle
of the instruction. For example, x86 processors have block move instructions that touch
thousands of data words. In such processors, instructions often cannot be restarted from
the beginning, as we do for RISC-V instructions. Instead, the instruction must be interrupted
and later continued midstream in its execution. Resuming an instruction in the middle of its
execution usually requires saving some special state, processing the exception, and restoring
that special state. Making this work properly requires careful and detailed coordination
between the exception-handling code in the operating system and the hardware.

restartable
instruction An
instruction that can
resume execution after
an exception is resolved
without the exception’s
affecting the result of the
instruction.

 5.7 Virtual Memory 441

Elaboration: Rather than pay an extra level of indirection on every memory access, the
Virtual Memory Monitor (Section 5.6) maintains a shadow page table that maps directly
from the guest virtual address space to the physical address space of the hardware. By
detecting all modifications to the guest’s page table, the VMM can ensure the shadow
page table entries being used by the hardware for translations correspond to those of
the guest OS environment, with the exception of the correct physical pages substituted
for the real pages in the guest tables. Hence, the VMM must trap any attempt by the
guest OS to change its page table or to access the page table pointer. This is commonly
done by write protecting the guest page tables and trapping any access to the page table
pointer by a guest OS. As noted above, the latter happens naturally if accessing the page
table pointer is a privileged operation.

Elaboration: The final portion of the architecture to virtualize is I/O. This is by far
the most difficult part of system virtualization because of the increasing number of
I/O devices attached to the computer and the expanding diversity of I/O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet another
comes from supporting the myriad of device drivers that are required, especially if
different guest OSes are supported on the same VM system. The VM illusion can be
maintained by giving each VM generic versions of each type of I/O device driver, and then
leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine, another
challenge is virtualization of virtual memory, as each guest OS in every virtual machine
manages its own set of page tables. To make this work, the VMM separates the notions of
real and physical memory (which are often treated synonymously), and makes real memory
a separate, intermediate level between virtual memory and physical memory. (Some use
the terms virtual memory, physical memory, and machine memory to name the same three
levels.) The guest OS maps virtual memory to real memory via its page tables, and the
VMM page tables map the guest’s real memory to physical memory. The virtual memory
architecture is typically specified via page tables, as in IBM VM/370, the x86, and RISC-V.

Summary
Virtual memory is the name for the level of memory hierarchy that manages
caching between the main memory and secondary memory. Virtual memory
allows a single program to expand its address space beyond the limits of main
memory. More importantly, virtual memory supports sharing of the main memory
among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging
because of the high cost of page faults. Several techniques are used to reduce the
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the
miss rate.

2. The mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

442 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Writes to secondary memory are expensive, so virtual memory uses a write-back
scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid
writing clean pages.

The virtual memory mechanism provides address translation from a virtual
address used by the program to the physical address space used for accessing memory.
This address translation allows protected sharing of the main memory and provides
several additional benefits, such as simplifying memory allocation. Ensuring that
processes are protected from each other requires that only the operating system can
change the address translations, which is implemented by preventing user programs
from altering the page tables. Controlled sharing of pages between processes can be
implemented with the help of the operating system and access bits in the page table
that indicate whether the user program has read or write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would be too expensive, as caches would be pointless!
Instead, a TLB acts as a cache for translations from the page table. Addresses are
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. The next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large
one, the performance difference between secondary memory and main memory
means that if a program routinely accesses more virtual memory than it has physical
memory, it will run very slowly. Such a program would be continuously swapping
pages between main memory and secondary memory, called thrashing. Thrashing is
a disaster if it occurs, but it is rare. If your program thrashes, the easiest solution is to
run it on a computer with more memory or buy more memory for your computer. A
more complex choice is to re-examine your algorithm and data structures to see if you
can change the locality and thereby reduce the number of pages that your program
uses simultaneously. This set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might
handle only 32–64 page entries at a time, a program could easily see a high TLB
miss rate, as the processor may access less than a quarter mebibyte directly: 64 × 4
KiB = 0.25 MiB. For example, TLB misses are often a challenge for Radix Sort. To
try to alleviate this problem, most computer architectures now offer support for
larger page sizes. For instance, in addition to the minimum 4 KiB page, RISC-V
hardware supports 2 MiB and 1 GiB pages. Hence, if a program uses large page
sizes, it can access more memory directly without TLB misses.

The practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing
TLB misses is to re-examine the algorithm and data structures to reduce the
working set of pages; given the importance of memory accesses to performance
and the frequency of TLB misses, some programs with large working sets have
been redesigned with that goal.

Understanding
Program

Performance

 5.8 A Common Framework for Memory Hierarchy 443

Elaboration: RISC-V supports the larger page sizes via the multi-level page table of
Figure 5.29. In addition to pointing at the next level page table in levels 1 and 2, it allows
a superpage translation to map the virtual address to a 1 GiB physical address (if the block
translation is in level 1) or a 2 MiB physical address (if the block translation is in level 2).

 5.8 A Common Framework for Memory
Hierarchy

By now, you’ve recognized that the different types of memory hierarchies have a
great deal in common. Although many of the aspects of memory hierarchies differ
quantitatively, many of the policies and features that determine how a hierarchy
functions are similar qualitatively. Figure 5.34 shows how some of the quantitative
characteristics of memory hierarchies can differ. In the rest of this section, we will
discuss the common operational alternatives for memory hierarchies, and how
these determine their behavior. We will examine these policies in a series of four
questions that apply between any two levels of a memory hierarchy, although for
simplicity, we will primarily use terminology for caches.

Question 1: Where Can a Block Be Placed?
We have seen that block placement in the upper level of the hierarchy can use a range
of schemes, from direct mapped to set associative to fully associative. As mentioned
above, this entire range of schemes can be thought of as variations on a set-associative
scheme where the number of sets and the number of blocks per set varies:

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative
Number of blocks in the cache

Associativity
Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

Feature
Typical values
for L1 caches

Typical values
for L2 caches

Typical values for
paged memory

Typical values
for a TLB

Total size in blocks 250–2000 2500–25,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 125–2000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.34 The key quantitative design parameters that characterize the major elements of memory hierarchy in a
computer. These are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values
that have shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not
shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches
lower the L2 miss penalty to 30 to 40 clock cycles.

444 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The advantage of increasing the degree of associativity is that it usually decreases
the miss rate. The improvement in miss rate comes from reducing misses that
compete for the same location. We will examine these in more detail shortly. First,
let’s look at how much improvement is gained. Figure 5.35 shows the miss rates
for several cache sizes as associativity varies from direct mapped to eight-way set
associative. The largest gains are obtained in going from direct mapped to two-way
set associative, which yields between a 20% and 30% reduction in the miss rate.
As cache sizes grow, the relative improvement from associativity increases only
slightly; since the overall miss rate of a larger cache is lower, the opportunity for
improving the miss rate decreases and the absolute improvement in the miss rate
from associativity shrinks significantly. The potential disadvantages of associativity,
as we mentioned earlier, are increased cost and slower access time.

Question 2: How Is a Block Found?
The choice of how we locate a block depends on the block placement scheme, since
that dictates the number of possible locations. We can summarize the schemes as
follows:

Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full
Search all cache entries Size of the cache

Separate lookup table 0

Associativity

M
is

s
ra

te

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KiB

2 KiB

4 KiB

8 KiB

16 KiB
32 KiB

64 KiB 128 KiB

FIGURE 5.35 The data cache miss rates for each of eight cache sizes improve as the
associativity increases. While the benefit of going from one-way (direct mapped) to two-way set
associative is significant, the benefits of further associativity are smaller (e.g., 1–10% improvement going
from two-way to four-way versus 20–30% improvement going from one-way to two-way). There is even less
improvement in going from four-way to eight-way set associative, which, in turn, comes very close to the miss
rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit from associativity
because the base miss rate of a small cache is larger. Figure 5.16 explains how these data were collected.

 5.8 A Common Framework for Memory Hierarchy 445

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware. Including the
L2 cache on the chip enables much higher associativity, because the hit times are
not as critical and the designer does not have to rely on standard SRAM chips as
the building blocks. Fully associative caches are prohibitive except for small sizes,
where the cost of the comparators is not overwhelming and where the absolute
miss rate improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept
to index the memory. In addition to the storage needed for the table, using an
index table requires an extra memory access. The choice of full associativity for
page placement and the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes
that are designed to reduce the miss rate.

3. The full map can be easily indexed with no extra hardware and no searching
required.

Therefore, virtual memory systems almost always use fully associative placement.
Set-associative placement is often used for caches and TLBs, where the access

combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. The
advantage in access time occurs because finding the requested block does not depend
on a comparison. Such design choices depend on many details of the implementation,
such as whether the cache is on-chip, the technology used for implementing the cache,
and the critical role of cache access time in determining the processor cycle time.

Question 3: Which Block Should Be Replaced on
a Cache Miss?
When a miss occurs in an associative cache, we must decide which block to replace.
In a fully associative cache, all blocks are candidates for replacement. If the cache is
set associative, we must choose among the blocks in the set. Of course, replacement
is easy in a direct-mapped cache because there is only one candidate.

There are the two primary strategies for replacement in set-associative or fully
associative caches:

■	 Random: Candidate blocks are randomly selected, possibly using some
hardware assistance.

■	 Least recently used (LRU): The block replaced is the one that has been unused
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small
degree of associativity (two to four, typically), since tracking the usage information
is expensive. Even for four-way set associativity, LRU is often approximated—for

446 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

example, by keeping track of which pair of blocks is LRU (which requires 1 bit),
and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is
used. In caches, the replacement algorithm is in hardware, which means that the
scheme should be easy to implement. Random replacement is simple to build in
hardware, and for a two-way set-associative cache, random replacement has a miss
rate about 1.1 times higher than LRU replacement. As the caches become larger, the
miss rate for both replacement strategies falls, and the absolute difference becomes
small. In fact, random replacement can sometimes be better than the simple LRU
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny
reduction in the miss rate can be important when the cost of a miss is enormous.
Reference bits or equivalent functionality are often provided to make it easier for
the operating system to track a set of less recently used pages. Because misses are
so expensive and relatively infrequent, approximating this information primarily
in software is acceptable.

Question 4: What Happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have
already seen the two basic options:

■	 Write-through: The information is written to both the block in the cache and
the block in the lower level of the memory hierarchy (main memory for a
cache). The caches in Section 5.3 used this scheme.

■	 Write-back: The information is written just to the block in the cache. The
modified block is written to the lower level of the hierarchy only when it
is replaced. Virtual memory systems always use write-back, for the reasons
discussed in Section 5.7.

Both write-back and write-through have their advantages. The key advantages of
write-back are the following:

■	 Individual words can be written by the processor at the rate that the cache,
rather than the memory, can accept them.

■	 Multiple writes within a block require only one write to the lower level in the
hierarchy.

■	 When blocks are written back, the system can make effective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:

■	 Misses are simpler and cheaper because they never require a block to be
written back to the lower level.

■	 Write-through is easier to implement than write-back, although to be
realistic, a write-through cache will still need to use a write buffer.

 5.8 A Common Framework for Memory Hierarchy 447

In virtual memory systems, only a write-back policy is practical because of the long
latency of a write to the lower level of the hierarchy. The rate at which writes are
generated by a processor generally exceeds the rate at which the memory system can
process them, even allowing for physically and logically wider memories and burst
modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the
Behavior of Memory Hierarchies
In this subsection, we look at a model that provides insight into the sources of
misses in a memory hierarchy and how the misses will be affected by changes
in the hierarchy. We will explain the ideas in terms of caches, although the ideas
carry over directly to any other level in the hierarchy. In this model, all misses are
classified into one of three categories (the three Cs):

■	 Compulsory misses: These are cache misses caused by the first access to a
block that has never been in the cache. These are also called cold-start misses.

■	 Capacity misses: These are cache misses caused when the cache cannot
contain all the blocks needed during execution of a program. Capacity misses
occur when blocks are replaced and then later retrieved.

■	 Conflict misses: These are cache misses that occur in set-associative or
direct-mapped caches when multiple blocks compete for the same set.
Conflict misses are those misses in a direct-mapped or set-associative cache
that are eliminated in a fully associative cache of the same size. These cache
misses are also called collision misses.

three Cs model A cache
model in which all cache
misses are classified into
one of three categories:
compulsory misses,
capacity misses, and
conflict misses.

compulsory miss Also
called cold-start miss.
A cache miss caused by
the first access to a block
that has never been in the
cache.

capacity miss A cache
miss that occurs because
the cache, even with
full associativity, cannot
contain all the blocks
needed to satisfy the
request.

conflict miss Also called
collision miss. A cache
miss that occurs in a
set-associative or direct-
mapped cache when
multiple blocks compete
for the same set and that
are eliminated in a fully
associative cache of the
same size.

Caches, TLBs, and virtual memory may initially look very different, but
they rely on the same two principles of locality, and they can be understood
by their answers to four questions:

Question 1: Where can a block be placed?

Answer: One place (direct mapped), a few places (set associative), or any place
(fully associative).

Question 2: How is a block found?

Answer: There are four methods: indexing (as in a direct-mapped cache),
limited search (as in a set-associative cache), full search (as in a fully
associative cache), and a separate lookup table (as in a page table).

Question 3: What block is replaced on a miss?

Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?

Answer: Each level in the hierarchy can use either write-through or write-back.

The BIG
Picture

448 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Figure 5.36 shows how the miss rate divides into the three sources. These sources of
misses can be directly attacked by changing some aspect of the cache design. Since
conflict misses arise straight from contention for the same cache block, increasing
associativity reduces conflict misses. Associativity, however, may slow access time,
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily bigger for many years. Of course, when we
make the cache larger, we must also be careful about increasing the access time,
which could lead to lower overall performance. Thus, first-level caches have been
growing slowly, if at all.

Because compulsory misses are generated by the first reference to a block, the
primary way for the cache system to reduce the number of compulsory misses is
to increase the block size. This will reduce the number of references required to
touch each block of the program once, because the program will consist of fewer
cache blocks. As mentioned above, increasing the block size too much can have a
negative effect on performance because of the increase in the miss penalty.

Cache size (KiB)

Miss rate
per type

0%
8 32

1%

2%

3%

4%

5%

128 512

6%

7%

16 64 2564

Capacity

8%

9%

10%

1024

One-way

Two-way

Four-way

FIGURE 5.36 The miss rate can be broken into three sources of misses. This graph shows the
total miss rate and its components for a range of cache sizes. These data are for the SPEC CPU2000 integer
and floating-point benchmarks and are from the same source as the data in Figure 5.35. The compulsory
miss component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate,
which depends on cache size. The conflict portion, which depends both on associativity and on cache size, is
shown for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds
to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to
the labeled degree of associativity. For example, the section labeled two-way indicates the additional misses
arising when the cache has associativity of two rather than four. Thus, the difference in the miss rate incurred
by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections
marked four-way, two-way, and one-way. The difference between eight-way and four-way is so small that it
is difficult to see on this graph.

 5.9 Using a Finite-State Machine to Control a Simple Cache 449

The decomposition of misses into the three Cs is a useful qualitative model. In
real cache designs, many of the design choices interact, and changing one cache
characteristic will often affect several components of the miss rate. Despite such
shortcomings, this model is a useful way to gain insight into the performance of
cache designs.

The challenge in designing memory hierarchies is that every change
that potentially improves the miss rate can also negatively affect overall
performance, as Figure 5.37 summarizes. This combination of positive
and negative effects is what makes the design of a memory hierarchy
interesting.

The BIG
Picture

Design change Effect on miss rate
Possible negative

performance effect

Increases cache size Decreases capacity misses May increase access time

Increases associativity Decreases miss rate due to conflict
misses

May increase access time

Increases block size Decreases miss rate for a wide range of
block sizes due to spatial locality

Increases miss penalty. Very large
block could increase miss rate

FIGURE 5.37 Memory hierarchy design challenges.

Which of the following statements (if any) is generally true?

1. There is no way to reduce compulsory misses.

2. Fully associative caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

Check Yourself

 5.9 Using a Finite-State Machine to Control a
Simple Cache

We can now build control for a cache, just as we implemented control for the single-
cycle and pipelined datapaths in Chapter 4. This section starts with a definition of a
simple cache and then a description of finite-state machines (FSMs). It finishes with
the FSM of a controller for this simple cache. Section 5.12 goes into more depth,
showing the cache and controller in a new hardware description language.

450 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

A Simple Cache
We’re going to design a controller for a straightforward cache. Here are the key
characteristics of the cache:

■	 Direct-mapped cache

■	 Write-back using write allocate

■	 Block size is four words (16 bytes or 128 bits)

■	 Cache size is 16 KiB, so it holds 1024 blocks

■	 32-bit addresses

■	 The cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fields of an address for the cache:

■	 Cache index is 10 bits

■	 Block offset is 4 bits

■	 Tag size is 32− (10+ 4) or 18 bits

The signals between the processor to the cache are

■	 1-bit Read or Write signal

■	 1-bit Valid signal, saying whether there is a cache operation or not

■	 32-bit address

■	 32-bit data from processor to cache

■	 32-bit data from cache to processor

■	 1-bit Ready signal, saying the cache operation is complete

The interface between the memory and the cache has the same fields as between
the processor and the cache, except that the data fields are now 128 bits wide. The
extra memory width is generally found in microprocessors today, which deal with
either 32-bit or 64-bit words in the processor while the DRAM controller is often
128 bits. Making the cache block match the width of the DRAM simplified the
design. Here are the signals:

■	 1-bit Read or Write signal

■	 1-bit Valid signal, saying whether there is a memory operation or not

■	 32-bit address

■	 128-bit data from cache to memory

■	 128-bit data from memory to cache

■	 1-bit Ready signal, saying the memory operation is complete

 5.9 Using a Finite-State Machine to Control a Simple Cache 451

Note that the interface to memory is not a fixed number of cycles. We assume a
memory controller that will notify the cache via the Ready signal when the memory
read or write is finished.

Before describing the cache controller, we need to review finite-state machines,
which allow us to control an operation that can take multiple clock cycles.

Finite-State Machines
To design the control unit for the single-cycle datapath, we used truth tables that
specified the setting of the control signals based on the instruction class. For a
cache, the control is more complex because the operation can be a series of steps.
The control for a cache must specify both the signals to be set in any step and the
next step in the sequence.

The most common multistep control method is based on finite-state machines,
which are usually represented graphically. A finite-state machine consists of a set
of states and directions on how to change states. The directions are defined by a
next-state function, which maps the current state and the inputs to a new state.
When we use a finite-state machine for control, each state also specifies a set of
outputs that are asserted when the machine is in that state. The implementation
of a finite-state machine usually assumes that all outputs that are not explicitly
asserted are deasserted. Similarly, the correct operation of the datapath depends on
the fact that a signal that is not explicitly asserted is deasserted, rather than acting
as a don’t care.

Multiplexor controls are slightly different, since they select one of the inputs,
whether they are 0 or 1. Thus, in the finite-state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement
the finite-state machine with logic, setting a control to 0 may be the default and
therefore may not require any gates. A simple example of a finite-state machine
appears in Appendix A, and if you are unfamiliar with the concept of a finite-state
machine, you may want to examine Appendix A before proceeding.

A finite-state machine can be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the
data-path signals to be asserted and the next state. Figure 5.38 shows how such an
implementation might look. Appendix C describes in detail how the finite-state
machine is implemented using this structure. In Section A.3, the combinational
control logic for a finite-state machine is implemented both with either a ROM
(read-only memory) or a PLA (programmable logic array). (Also see Appendix A
for a description of these logic elements.)

Elaboration: Note that this simple design is called a blocking cache, in that the
processor must wait until the cache has finished the request. Section 5.12 describes
the alternative, which is called a nonblocking cache.

finite-state machine
A sequential logic
function consisting of a
set of inputs and outputs,
a next-state function that
maps the current state and
the inputs to a new state,
and an output function
that maps the current
state and possibly the
inputs to a set of asserted
outputs.

next-state function
A combinational function
that, given the inputs
and the current state,
determines the next state
of a finite-state machine.

452 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: The style of finite-state machine in this book is called a Moore machine,
after Edward Moore. Its identifying characteristic is that the output depends only on the
current state. For a Moore machine, the box labeled combinational control logic can be
split into two pieces. One piece has the control output and only the state input, while the
other has just the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine the
output. Moore machines have potential implementation advantages in speed and size
of the control unit. The speed advantages arise because the control outputs, which are
needed early in the clock cycle, do not depend on the inputs, but only on the current
state. In Appendix A, when the implementation of this finite-state machine is taken down
to logic gates, the size advantage can be clearly seen. The potential disadvantage of a
Moore machine is that it may require additional states. For example, in situations where
there is a one-state difference between two sequences of states, the Mealy machine
may unify the states by making the outputs depend on the inputs.

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath

FIGURE 5.38 Finite-state machine controllers are typically implemented using a block of
combinational logic and a register to hold the current state. The outputs of the combinational
logic are the next-state number and the control signals to be asserted for the current state. The inputs to
the combinational logic are the current state and any inputs used to determine the next state. Notice that
in the finite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs.
We use color to indicate that these are control lines and logic versus data lines and logic. The Elaboration
below explains this in more detail.

 5.9 Using a Finite-State Machine to Control a Simple Cache 453

FSM for a Simple Cache Controller
Figure 5.39 shows the four states of our simple cache controller:

■	 Idle: This state waits for a valid read or write request from the processor,
which moves the FSM to the Compare Tag state.

■	 Compare Tag: As the name suggests, this state tests to see if the requested read
or write is a hit or a miss. The index portion of the address selects the tag to
be compared. If the data in the cache block referred to by the index portion
of the address are valid, and the tag portion of the address matches the tag,
then it is a hit. Either the data are read from the selected word if it is a load or
written to the selected word if it is a store. The Cache Ready signal is then set.
If it is a write, the dirty bit is set to 1. Note that a write hit also sets the valid
bit and the tag field; while it seems unnecessary, it is included because the
tag is a single memory, so to change the dirty bit we likewise need to change
the valid and tag fields. If it is a hit and the block is valid, the FSM returns to
the idle state. A miss first updates the cache tag and then goes either to the
Write-Back state, if the block at this location has dirty bit value of 1, or to the
Allocate state if it is 0.

Cache
Miss
and
Old Block
is Dirty

Cache
Miss
and
Old Block
is Clean

Valid CPU request

Mark Cache Ready
Idle

Cache Hit
Compare Tag

If Valid && Hit ,
Set Valid, SetTag,
if Write Set Dirty

Memory Ready

M
em

or
y R

ea
dy

Memory
not

Ready

Memory
not

Ready

Write Old
Block to
Memory

Write-Back

Read new block
from Memory

Allocate

FIGURE 5.39 Four states of the simple controller.

454 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■	 Write-Back: This state writes the 128-bit block to memory using the address
composed from the tag and cache index. We remain in this state waiting for
the Ready signal from memory. When the memory write is complete, the
FSM goes to the Allocate state.

■	 Allocate: The new block is fetched from memory. We remain in this state
waiting for the Ready signal from memory. When the memory read is
complete, the FSM goes to the Compare Tag state. Although we could
have gone to a new state to complete the operation instead of reusing the
Compare Tag state, there is a good deal of overlap, including the update of the
appropriate word in the block if the access was a write.

This simple model could easily be extended with more states to try to improve
performance. For example, the Compare Tag state does both the compare and the
read or write of the cache data in a single clock cycle. Often the compare and cache
access are done in separate states to try to improve the clock cycle time. Another
optimization would be to add a write buffer so that we could save the dirty block
and then read the new block first so that the processor doesn’t have to wait for two
memory accesses on a dirty miss. The cache would next write the dirty block from
the write buffer while the processor is operating on the requested data.

 Section 5.12 goes into more detail about the FSM, showing the full controller
in a hardware description language and a block diagram of this simple cache.

 5.10 Parallelism and Memory Hierarchy:
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip,
these processors very likely share a common physical address space. Caching shared
data introduces a new problem, because the view of memory held by two different
processors is through their individual caches, which, without any additional
precautions, could end up seeing two distinct values. Figure 5.40 illustrates the
problem and shows how two different processors can have two different values
for the same location. This difficulty is generally referred to as the cache coherence
problem.

Informally, we could say that a memory system is coherent if any read of a data
item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared memory programs.
The first aspect, called coherence, defines what values can be returned by a read. The
second aspect, called consistency, determines when a written value will be returned
by a read.

 5.10 Parallelism and Memory Hierarchy: Cache Coherence 455

Let’s look at coherence first. A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read
by P, always returns the value written by P. Thus, in Figure 5.40, if CPU A
were to read X after time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses. Thus, in
Figure 5.40, we need a mechanism so that the value 0 in the cache of CPU B
is replaced by the value 1 after CPU A stores 1 into memory at address X in
time step 3.

3. Writes to the same location are serialized; that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if CPU B stores 2 into memory at address X after time step 3,
processors can never read the value at location X as 2 and then later read it
as 1.

The first property simply preserves program order—we certainly expect this
property to be true in uniprocessors, for instance. The second property defines
the notion of what it means to have a coherent view of memory: if a processor
could continuously read an old data value, we would clearly say that memory was
incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor P1 writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see the
write done by P2 at some point. If we did not serialize the writes, it might be the

Time
step Event

Cache contents for
CPU A

Cache contents
for CPU B

Memory
contents for
location X

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A stores 1 into X 1 0 1

FIGURE 5.40 The cache coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains the variable and
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but
similar complications. After the value of X has been written by A, A’s cache and the memory both contain the
new value, but B’s cache does not, and if B reads the value of X, it will receive 0!

456 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

case that some processor could see the write of P2 first and then see the write of P1,
maintaining the value written by P1 indefinitely. The simplest way to avoid such
difficulties is to ensure that all writes to the same location are seen in the identical
order, which we call write serialization.

Basic Schemes for Enforcing Coherence
In a cache coherent multiprocessor, the caches provide both migration and
replication of shared data items:

■	 Migration: A data item can be moved to a local cache and used there in a
transparent fashion. Migration reduces both the latency to access a shared
data item that is allocated remotely and the bandwidth demand on the shared
memory.

■	 Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing
shared data, so many multiprocessors introduce a hardware protocol to maintain
coherent caches. The protocols to maintain coherence for multiple processors are
called cache coherence protocols. Key to implementing a cache coherence protocol
is tracking the state of any sharing of a data block.

The most popular cache coherence protocol is snooping. Every cache that has a
copy of the data from a block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept. The caches are all accessible via
some broadcast medium (a bus or network), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as
implemented with a shared bus, but any communication medium that broadcasts
cache misses to all processors can be used to implement a snooping-based
coherence scheme. This broadcasting to all caches makes snooping protocols
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive
access to a data item before it writes that item. This style of protocol is called a write
invalidate protocol because it invalidates copies in other caches on a write. Exclusive
access ensures that no other readable or writable copies of an item exist when the
write occurs: all other cached copies of the item are invalidated.

Figure 5.41 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action. To see how this protocol ensures coherence,
consider a write followed by a read by another processor: since the write requires

 5.10 Parallelism and Memory Hierarchy: Cache Coherence 457

exclusive access, any copy held by the reading processor must be invalidated (hence
the protocol name). Thus, when the read occurs, it misses in the cache, and the
cache is forced to fetch a new copy of the data. For a write, we require that the
writing processor have exclusive access, preventing any other processor from being
able to write simultaneously. If two processors do attempt to write the same data at
the same time, one of them wins the race, causing the other processor’s copy to be
invalidated. For the other processor to complete its write, it must obtain a new copy
of the data, which must now contain the updated value. Therefore, this protocol
also enforces write serialization.

false sharing When two
unrelated shared variables
are located in the same
cache block and the
full block is exchanged
between processors even
though the processors
are accessing different
variables.

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache

Contents of
memory

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0

01XrofnoitadilavnIXot1asetirwAUPC

CPU B reads X Cache miss for X 1 1 1

FIGURE 5.41 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume that neither cache initially holds X
and that the value of X in memory is 0. The CPU and memory contents show the value after the processor
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both
the contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the
write-back only if the block is replaced. This requires the introduction of an additional state called “owner,”
which indicates that a block may be shared, but the owning processor is responsible for updating any other
processors and memory when it changes the block or replaces it.

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. Most protocols
exchange full blocks between processors, thereby increasing coherency bandwidth
demands.

Large blocks can also cause what is called false sharing: when two unrelated
shared variables are located in the same cache block, the whole block is exchanged
between processors even though the processors are accessing different variables.
Programmers and compilers should lay out data carefully to avoid false sharing.

Hardware/
Software
Interface

458 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: Although the three properties on page 455 are sufficient to ensure
coherence, the question of when a written value is seen is also important. To see why,
observe that we cannot require that a read of X in Figure 5.40 instantaneously sees
the value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor very shortly beforehand, it may
be impossible to ensure that the read returns the value of the data written, since the
written data may not even have left the processor at that point. The issue of exactly
when a written value must be seen by a reader is defined by a memory consistency
model.

We make the following two assumptions. First, a write does not complete (and allow
the next write to occur) until all processors have seen the effect of that write. Second,
the processor does not change the order of any write with respect to any other memory
access. These two conditions mean that if a processor writes location X followed by
location Y, any processor that sees the new value of Y must also see the new value of X.
These restrictions allow the processor to reorder reads, but force the processor to finish
a write in program order.

Elaboration: Since input can change memory behind the caches, and since output
could need the latest value in a write back cache, there is also a cache coherency
problem for I/O with the caches of a single processor as well as just between caches
of multiple processors. The cache coherence problem for multiprocessors and I/O
(see Chapter 6), although similar in origin, has different characteristics that affect the
appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to
be avoided whenever possible—a program running on multiple processors will normally
have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status
of shared blocks is distributed, a directory-based cache coherence protocol keeps the
sharing status of a block of physical memory in just one location, called the directory.
Directory-based coherence has slightly higher implementation overhead than snooping,
but it can reduce traffic between caches and thus scale to larger processor counts.

5.11 Parallelism and Memory Hierarchy:
Redundant Arrays of Inexpensive Disks

This online section describes how using many disks in conjunction can offer much
higher throughput, which was the original inspiration of Redundant Arrays of
Inexpensive Disks (RAID). The real popularity of RAID, however, was due more
to the considerably greater dependability offered by including a modest number
of redundant disks. The section explains the differences in performance, cost, and
dependability between the RAID levels.

 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 458.e1

 Parallelism and Memory Hierarchy:
Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution
is foolhardy. A simple example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of
which 90 seconds is CPU time, and the rest is I/O time. Suppose the number of
processors doubles every 2 years, but the processors remain at the same speed,
and I/O time doesn’t improve. How much faster will our program run at the
end of 6 years?

We know that

Elapsed time CPU time I/O time
I/O time

I/O time secon

= +
= +
=

100 90
10 dds

The new CPU times and the resulting elapsed times are computed in the
following table.

5.11

EXAMPLE

ANSWER

The improvement in CPU performance after 6 years is

90
11

8=

458.e2 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks

However, the improvement in elapsed time is only

100
21

4 7= .

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or
the effort spent in parallelizing could be squandered whenever programs do I/O,
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays. In the
late 1980s, the high-performance storage of choice was large, expensive disks. The
argument was that by replacing a few big disks with many small disks, performance
would improve because there would be more read heads. This shift is a good match
for multiple processors as well, since many read/write heads mean the storage
system could support many more independent accesses as well as large transfers
spread across many disks. That is, you could get both high I/Os per second and high
data transfer rates. In addition to higher performance, there could be advantages
in cost, power, and floor space, since smaller disks are generally more efficient per
gigabyte than larger disks.

The flaw in the argument was that disk arrays could make reliability much
worse. These smaller, inexpensive drives had lower MTTF ratings than the large
drives, but more importantly, by replacing a single drive with, say, 50 small drives,
the failure rate would go up by at least a factor of 50.

The solution was to add redundancy so that the system could cope with disk
failures without losing information. By having many little disks, the cost of
extra redundancy to improve dependability is small, relative to the solutions for
a few large disks. Thus, dependability was more affordable if you constructed a
redundant array of inexpensive disks. This observation led to its name: redundant
arrays of inexpensive disks, abbreviated RAID.

In retrospect, although its invention was motivated by performance,
dependability was the key reason for the widespread popularity of RAID. The
parallel revolution has resurfaced the original performance side of the argument
for RAID. The rest of this section surveys the options for dependability and their
impacts on cost and performance.

How much redundancy do you need? Do you need extra information to find
the faults? Does it matter how you organize the data and the additional check
information on these disks? The paper that coined the term gave an evolutionary
answer to these questions, starting with the simplest but most expensive solution.
Figure e5.11.1 shows the evolution and example cost in the number of extra check
disks. To keep track of the evolution, the authors numbered the stages of RAID,
and they are still used today.

redundant arrays of
inexpensive disks
(RAID) An organization
of disks that uses an array
of small and inexpensive
disks so as to increase
both performance and
reliability.

 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 458.e3

No Redundancy (RAID 0)
Simply spreading data over multiple disks, called striping, automatically forces
accesses to several disks. Striping across a set of disks makes the collection appear
to software as a single large disk, which simplifies storage management. It also
improves performance for large accesses, since many disks can operate at once.
Video-editing systems, for example, frequently stripe their data and may not worry
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID
levels are often left to the operator to set when creating a storage system, and RAID
0 is often listed as one of the options. Hence, the term RAID 0 has become widely
used.

striping Allocation of
logically sequential blocks
to separate disks to allow
higher performance than
a single disk can deliver.

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused

RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy)
Recently popular

Redundant check disks

FIGURE e5.11.1 RAID for an example of four data disks showing extra check disks per
RAID level and companies that use each level. Figures e5.11.2 and e5.11.3 explain the difference
between RAID 3, RAID 4, and RAID 5.

458.e4 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks

Mirroring (RAID 1)
This traditional scheme for tolerating disk failure, called mirroring or shadowing,
uses twice as many disks as does RAID 0. Whenever data are written to one disk,
that data are also written to a redundant disk, so that there are always two copies
of the information. If a disk fails, the system just goes to the “mirror” and reads
its contents to get the desired information. Mirroring is the most expensive RAID
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)
RAID 2 borrows an error detection and correction scheme most often used for memories
(see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe it here.

Bit-Interleaved Parity (RAID 3)
The cost of higher availability can be reduced to 1/n, where n is the number of
disks in a protection group. Rather than have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one extra
disk to hold the check information in case there is a failure. RAID 3 is popular in
applications with large data sets, such as multimedia and some scientific codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the
redundant disk as having the sum of all the data in the other disks. When a disk fails,
then you subtract all the data in the good disks from the parity disk; the remaining
information must be the missing information. Parity is simply the sum modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. The
assumption behind this technique is that taking longer to recover from failure but
spending less on redundant storage is a good tradeoff.

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they
access data differently. The parity is stored as blocks and associated with a set of
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer
smaller accesses, allowing independent accesses to occur in parallel. That is the
purpose of the RAID levels 4 to 7. Since error detection information in each sector
is checked on reads to see if the data are correct, such “small reads” to each disk
can occur independently as long as the minimum access is one sector. In the RAID
context, a small access goes to just one disk in a protection group while a large
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to
recalculate the new parity, as in the left in Figure e5.11.2. A “small write” would

mirroring Writing
identical data to multiple
disks to increase data
availability.

protection group The
group of data disks
or blocks that share a
common check disk or
block.

 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 458.e5

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

New Data 1. Read 2. Read 3. Read

4. Write 5. Write

XOR

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

+

New Data1. Read 2. Read

3. Write 4. Write

XOR

+ XOR

+

FIGURE e5.11.2 Small write update on RAID 4. This optimization for small writes reduces the
number of disk accesses as well as the number of disks occupied. This figure assumes we have four blocks
of data and one block of parity. The naive RAID 4 parity calculation in the left of the figure reads blocks D1,
D2, and D3 before adding block D0? to calculate the new parity P? (In case you were wondering, the new
data D0? comes directly from the CPU, so disks are not involved in reading it.) The RAID 4 shortcut on the
right reads the old value D0 and compares it to the new value D0? to see which bits will change. You next
read the old parity P and then change the corresponding bits to form P? The logical function exclusive OR
does exactly what we want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?)
involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks.
Enlarging the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut.

require reading the old data and old parity, adding the new information, and then
writing the new parity to the parity disk and the new data to the data disk.

The key insight to reduce this overhead is that parity is simply a sum of
information; by watching which bits change when we write the new information,
we need only change the corresponding bits on the parity disk. The right of Figure
e5.11.2 shows the shortcut. We must read the old data from the disk being written,
compare old data to the new data to see which bits change, read the old parity,
change the corresponding bits, and then write the new data and new parity. Thus,
the small write involves four disk accesses to two disks instead of accessing all
disks. This organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 efficiently supports a mixture of large reads, large writes, and small reads,
plus it allows small writes. One drawback to the system is that the parity disk must be
updated on every write, so the parity disk is the bottleneck for back-to-back writes.

To fix the parity-write bottleneck, the parity information can be spread
throughout all the disks so that there is no single bottleneck for writes. The
distributed parity organization is RAID 5.

Figure e5.11.3 shows how data are distributed in RAID 4 versus RAID 5. As the
organization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. This organization allows multiple
writes to occur simultaneously as long as the parity blocks are not located on the
same disk. For example, a write to block 8 on the right must also access its parity

458.e6 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks

block P2, thereby occupying the first and third disks. A second write to block 5 on
the right, implying an update to its parity block P1, accesses the second and fourth
disks and thus could occur concurrently with the write to block 8. Those same
writes to the organization on the left result in changes to blocks P1 and P2, both on
the fifth disk, which is a bottleneck.

P + Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure. When a
single failure correction is not sufficient, parity can be generalized to have a second
calculation over the data and another check disk of information. This second check
block allows recovery from a second failure. Thus, the storage overhead is twice
that of RAID 5. The small write shortcut of Figure e5.11.2 works as well, except
now there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data
unavailable during repair, the array must be designed to allow the failed disks to be
replaced without having to turn off the system. RAIDs have enough redundancy
to allow continuous operation, but hot-swapping disks place demands on the
physical and electrical design of the array and the disk interfaces. Second, another
failure could occur during repair, so the repair time affects the chances of losing
data: the longer the repair time, the greater the chances of another failure that will

hot-swapping Replacing
a hardware component
while the system is
running.

0

4

8

12

16

20

. . .

1

5

9

13

17

21

. . .

2

6

10

14

18

22

. . .

3

7

11

15

19

23

. . .

P0

P1

P2

P3

P4

P5

. . .

0

4

8

12

P4

20

. . .

1

5

9

P3

16

21

. . .

2

6

P2

13

17

22

. . .

3

P1

10

14

18

23

. . .

P0

7

11

15

19

P5

. . .

RAID 4 RAID 5

FIGURE e5.11.3 Block-interleaved parity (RAID 4) versus distributed block-interleaved
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in parallel.

 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 458.e7

lose data. Rather than having to wait for the operator to bring in a good disk, some
systems include standby spares so that the data can be reconstructed instantly
upon discovery of the failure. The operator can then replace the failed disks in a
more leisurely fashion. Note that a human operator ultimately determines which
disks to remove. Operators are only human, so they occasionally remove the good
disk instead of the broken disk, leading to an unrecoverable disk failure.

In addition to designing the RAID system for repair, there are questions about
how disk technology changes over time. Although disk manufacturers quote very
high MTTF for their products, those numbers are under nominal conditions.
If a particular disk array has been subject to temperature cycles due to, say, the
failure of the air-conditioning system, or to shaking due to a poor rack design,
construction, or installation, the failure rates can be three to six times higher (see
the fallacy on page 470). The calculation of RAID reliability assumes independence
between disk failures, but disk failures could be correlated, because such damage
due to the environment would likely happen to all the disks in the array. Another
concern is that since disk bandwidth is growing more slowly than disk capacity, the
time to repair a disk in a RAID system is increasing, which in turn enhances the
chances of a second failure. For example, a 3-TB disk could take almost 9 hours
to read sequentially, assuming no interference. Given that the damaged RAID is
likely to continue to serve data, reconstruction could be stretched considerably.
Besides increasing that time, another concern is that reading much more data
during reconstruction means increasing the chance of an uncorrectable read
media failure, which would result in data loss. Other arguments for concern about
simultaneous multiple failures are the increasing number of disks in arrays and the
use of higher-capacity disks.

Hence, these trends have led to a growing interest in protecting against more
than one failure, and so RAID 6 is increasingly being offered as an option and being
used in the field.

standby spares Reserve
hardware resources that
can immediately take
the place of a failed
component.

Elaboration One issue is how mirroring interacts with striping. Suppose you had, say,
four disks’ worth of data to store and eight physical disks to use. Would you create four
pairs of disks—each organized as RAID 1—and then stripe data across the four RAID
1 pairs? Alternatively, would you create two sets of four disks—each organized as RAID
0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call
the former RAID 1 + 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 + 1 or RAID
01 (“mirrored stripes”).

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Check
Yourself

 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies 459

5.12 Advanced Material: Implementing Cache
Controllers

This online section shows how to implement control for a cache, just as we
implemented control for the single-cycle and pipelined datapaths in Chapter 4. This
section starts with a description of finite-state machines and the implementation
of a cache controller for a simple data cache, including a description of the cache
controller in a hardware description language. It then goes into details of an example
cache coherence protocol and the difficulties in implementing such a protocol.

 5.13 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors
described in Chapter 4: the ARM Cortex-A53 and Intel Core i7. This section is
in part based on Section 2.6 of Computer Architecture: A Quantitative Approach,
5th edition.

Figure 5.42 summarizes the address sizes and TLBs of the two processors. Note
that the Cortex-A53 has two 10-entry fully associative micro-TLBs backed by a
shared 512-entry four-way set associative main TLB with a 48-bit virtual address
space and a 40-bit physical address space. The Core i7 has three TLBs with a
48-bit virtual address and a 44-bit physical address. Although the 64-bit registers of
these processors could hold a larger virtual address, there was no software need for
such a large space, and 48-bit virtual addresses shrinks both the page table memory
footprint and the TLB hardware.

Figure 5.43 shows their caches. The Cortex-A53 has between one and four
processors or cores while the Core i7 is fixed at four. Cortex-A53 has a 16 to
64 KiB, two-way L1 instruction cache (per core) and the Core i7 has a 32 KiB,
four-way set associative, L1 instruction cache (per core). Both use 64 byte blocks.
The Cortex-A53 increases the associativity to four-way for the data cache, other
variables remain the same. Similarly, the Core i7 keeps everything the same except
the associativity, which it increases to eight-way. The Core i7 provides a 256
KiB, eight-way set associative unified L2 cache (per core) with 64 byte blocks. In
contrast, the Cortex-A53 provides a L2 cache that is shared between one and four
cores. This cache is 16-way set associative with 64 byte blocks and between 128 KiB
and 2 MiB in size. As the Core i7 is used for servers, it also offers an L3 cache shared
by all the cores on the chip. Its size varies depending on the number of cores. With
four cores, as in this case, the size is 8 MiB.

 5.12 Advanced Material: Implementing Cache Controllers 459.e1

Advanced Material: Implementing Cache
Controllers

The section starts with the SystemVerilog of the cache controller from Section 5.9
in eight figures. It then goes into details of an example cache coherency protocol
and the difficulties in implementing such a protocol.

SystemVerilog of a Simple Cache Controller
The hardware description language we are using in this section is SystemVerilog.
The biggest change from prior versions of Verilog is that it borrows structures
from C to make the code easier to read. Figures e5.12.1 through e5.12.8 show the
SystemVerilog description of the cache controller.

package cache_def;
 // data structures for cache tag & data

 parameter int TAGMSB = 31; //tag msb
 parameter int TAGLSB = 14; //tag lsb

 //data structure for cache tag
 typedef struct packed {
 bit valid; //valid bit
 bit dirty; //dirty bit
 bit [TAGMSB:TAGLSB]tag; //tag bits
 }cache_tag_type;

 //data structure for cache memory request
 typedef struct {
 bit [9:0]index; //10-bit index
 bit we; //write enable
 }cache_req_type;

 //128-bit cache line data
 typedef bit [127:0]cache_data_type;

FIGURE e5.12.1 Type declarations in SystemVerilog for the cache tags and data. The tag
field is 18 bits wide and the index field is 10 bits wide, while a 2-bit field (bits 3–2) is used to index the block
and select the word from the block. The rest of the type declaration is found in the following figure.

5.12

459.e2 5.12 Advanced Material: Implementing Cache Controllers

Figures e5.12.1 and e5.12.2 declare the structures that are used in the definition
of the cache in the following figures. For example, the cache tag structure (cache_
tag_type) contains a valid bit (valid), a dirty bit (dirty), and an 18-bit tag field
([TAGMSB:TAGLSB] tag). Figure e5.12.3 shows the block diagram of the cache
using the names from the Verilog description.

 // data structures for CPU<->Cache controller interface

 // CPU request (CPU->cache controller)
 typedef struct {
 bit [31:0]addr; //32-bit request addr
 bit [31:0]data; //32-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib
 bit valid; //request is valid
 }cpu_req_type;

 // Cache result (cache controller->cpu)
 typedef struct {
 bit [31:0]data; //32-bit data
 bit ready; //result is ready
 }cpu_result_type;

 //--
 // data structures for cache controller<->memory interface

 // memory request (cache controller->memory)
 typedef struct {
 bit [31:0]addr; //request byte addr
 bit [127:0]data; //128-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib
 bit valid; //request is valid
 }mem_req_type;

 // memory controller response (memory -> cache controller)
 typedef struct {
 cache_data_type data; //128-bit read back data
 bit ready; //data is ready
 }mem_data_type;

endpackage

FIGURE e5.12.2 Type declarations in SystemVerilog for the CPU-cache and cache-memory interfaces. These are nearly
identical except that the data are 32 bits wide between the CPU and cache and are 128 bits wide between the cache and memory.

 5.12 Advanced Material: Implementing Cache Controllers 459.e3

Figure e5.12.4 defines modules for the cache data (dm_cache_data) and cache
tag (dm_cache_tag). These memories can be read at any time, but writes only
occur on the positive clock edge (posedge(clk)) and only if write enable is a 1
(data_req.we or tag_req.we).

cpu_req.addr
(showing bit positions)

Data

Hit

Data

Tag

V D Tag

32

18

=

Index
18 10 Byte

offset

31 14 13 3 2 1 04

2

Block offset

1024
entries

18 bits

128

128

Mux

Mux Mux Mux Mux

Data Read

Data Write

mem_data.data

cpu_req.data

FIGURE e5.12.3 Block diagram of the simple cache using the Verilog names. Not shown are the write enables for the cache tag
memory and for the cache data memory, or the control signals for multiplexors that supply data for the Data Write variable. Rather than have
separate write enables on every word of the cache data block, the Verilog reads the old value of the block into Data Write and then updates the
word in that variable on a write. It then writes the whole 128-bit block.

459.e4 5.12 Advanced Material: Implementing Cache Controllers

Figure e5.12.5 defines the inputs, outputs, and states of the FSM. The inputs are
the requests from the CPU (cpu_req) and responses from memory (mem_data),
and the outputs are responses to the CPU (cpu_res) and requests to memory
(mem_req). The figure also declares the internal variables needed by the FSM.
For example, the current state and next state registers of the FSM are rstate and
vstate, respectively.

Figure e5.12.6 lists the default values of the control signals, including the word
to be read or written from a block, setting the cache write enables to 0, and so
on. These values are set every clock cycle, so the write enable for a portion of the
cache—for example, tag_req.we—would be set to 1 for one clock cycle in the
figures below and then would be reset to 0 according to the Verilog in this figure.

The last two figures show the FSM as a large case statement (case(rstate)),
with the four states split across the two figures. Figure e5.12.7 starts with the Idle
state (idle), which simply goes to the Compare Tag state (compare_tag) if the
CPU makes a valid request. It then describes most of the Compare Tag state. The
Compare Tag state checks to see if the tags match and the entry is valid. If so, then
it first sets the Cache Ready signal (v_cpu_res.ready). If the request is a write, it
sets the tag field, the valid bit, and the dirty bit. The next state is Idle. If it is a miss,
then the state prepares to change the tag entry and valid and dirty bits. If the block
to be replaced is clean or invalid, the next state is Allocate.

Figure e5.12.8 continues the Compare Tag state. If the block to be replaced
is dirty, then the next state is Write-Back. The figure shows the Allocate state
(allocate) next, which simply reads the new block. It keeps looping until the
memory is ready; when it is, it goes to the Compare Tag state. This is followed in the
figure by the Write-Back state (write_back). As the figure shows, the Write-Back
state merely writes the dirty block to memory, once again looping until memory
is ready. When memory is ready, indicating the write is complete, we go to the
Allocate state.

The code at the end sets the current state from the next state or resets the FSM to
the Idle state on the next clock edge, depending on a reset signal (rst).

The online material includes a Test Case module that will be useful to check the
code in these figures. This SystemVerilog could be used to create a cache and cache
controller in an FPGA.

 5.12 Advanced Material: Implementing Cache Controllers 459.e5

/*cache: data memory, single port, 1024 blocks*/
module dm_cache_data(input bit clk,
 input cache_req_type data_req,//data request/command, e.g. RW, valid
 input cache_data_type data_write, //write port (128-bit line)
 output cache_data_type data_read); //read port
 timeunit 1ns; timeprecision 1ps;

 cache_data_typedata_mem[0:1023];

 initial begin
 for (int i=0; i<1024; i++)
 data_mem[i] = ‘0;
 end

 assign data_read = data_mem[data_req.index];

 always_ff @(posedge(clk)) begin
 if (data_req.we)
 data_mem[data_req.index] <= data_write;
 end
endmodule

/*cache: tag memory, single port, 1024 blocks*/
module dm_cache_tag(input bit clk, //write clock
 input cache_req_type tag_req, //tag request/command, e.g. RW, valid
 input cache_tag_type tag_write,//write port
 output cache_tag_type tag_read);//read port
 timeunit 1ns; timeprecision 1ps;

 cache_tag_typetag_mem[0:1023];

 initial begin
 for (int i=0; i<1024; i++)
 tag_mem[i] = ‘0;
 end

 assign tag_read = tag_mem[tag_req.index];

 always_ff @(posedge(clk)) begin
 if (tag_req.we)
 tag_mem[tag_req.index] <= tag_write;
 end

endmodule

FIGURE e5.12.4 Cache data and tag modules in SystemVerilog. These are nearly identical except that the data are 32 bits wide
between the CPU and cache and are 128 bits wide between the cache and memory. Both only write on positive clock edges if the write enable
is set.

459.e6 5.12 Advanced Material: Implementing Cache Controllers

/*cache fi nite state machine*/

module dm_cache_fsm(input bit clk, input bit rst,
 input cpu_req_type cpu_req, //CPU request input (CPU->cache)
 input mem_data_type mem_data, //memory response (memory->cache)
 output mem_req_type mem_req, //memory request (cache->memory)
 output cpu_result_type cpu_res //cache result (cache->CPU)
);

 timeunit 1ns;
 timeprecision 1ps;

 /*write clock*/
 typedef enum {idle, compare_tag, allocate, write_back} cache_state_type;

 /*FSM state register*/
 cache_state_typevstate, rstate;

 /*interface signals to tag memory*/
 cache_tag_typetag_read; //tag read result
 cache_tag_typetag_write; //tag write data
 cache_req_typetag_req; //tag request

 /*interface signals to cache data memory*/
 cache_data_typedata_read; //cache line read data
 cache_data_typedata_write; //cache line write data
 cache_req_typedata_req; //data req

 /*temporary variable for cache controller result*/
 cpu_result_typev_cpu_res;

 /*temporary variable for memory controller request*/
 mem_req_typev_mem_req;

 assign mem_req = v_mem_req; //connect to output ports
 assign cpu_res = v_cpu_res;

FIGURE e5.12.5 FSM in SystemVerilog, part I. These modules instantiate the memories according to the type definitions in the
previous figure.

 5.12 Advanced Material: Implementing Cache Controllers 459.e7

always_comb begin

 /*-------------------------default values for all signals------------*/
 /*no state change by default*/
 vstate = rstate;
 v_cpu_res = ‘{0, 0}; tag_write = ‘{0, 0, 0};

 /*read tag by default*/
 tag_req.we = ‘0;
 /*direct map index for tag*/
 tag_req.index = cpu_req.addr[13:4];

 /*read current cache line by default*/
 data_req.we = ‘0;
 /*direct map index for cache data*/
 data_req.index = cpu_req.addr[13:4];

 /*modify correct word (32-bit) based on address*/
 data_write = data_read;
 case(cpu_req.addr[3:2])
 2’b00:data_write[31:0] = cpu_req.data;
 2’b01:data_write[63:32] = cpu_req.data;
 2’b10:data_write[95:64] = cpu_req.data;
 2’b11:data_write[127:96] = cpu_req.data;
 endcase

 /*read out correct word(32-bit) from cache (to CPU)*/
 case(cpu_req.addr[3:2])
 2’b00:v_cpu_res.data = data_read[31:0];
 2’b01:v_cpu_res.data = data_read[63:32];
 2’b10:v_cpu_res.data = data_read[95:64];
 2’b11:v_cpu_res.data = data_read[127:96];
 endcase

 /*memory request address (sampled from CPU request)*/
 v_mem_req.addr = cpu_req.addr;
 /*memory request data (used in write)*/
 v_mem_req.data = data_read;
 v_mem_req.rw = ‘0;

FIGURE e5.12.6 FSM in SystemVerilog, part II. This section describes the default value of all signals. The following figures will set
these values for one clock cycle, and this Verilog will reset it to these values for the following clock cycle.

459.e8 5.12 Advanced Material: Implementing Cache Controllers

 //------------------------------------Cache FSM-------------------------
 case(rstate)
 /*idle state*/
 idle : begin
 /*If there is a CPU request, then compare cache tag*/
 if (cpu_req.valid)
 vstate = compare_tag;
 end
 /*compare_tag state*/
 compare_tag : begin
 /*cache hit (tag match and cache entry is valid)*/
 if (cpu_req.addr[TAGMSB:TAGLSB] == tag_read.tag && tag_read.valid) begin
 v_cpu_res.ready = ‘1;

 /*write hit*/
 if (cpu_req.rw) begin
 /*read/modify cache line*/
 tag_req.we = ‘1; data_req.we = ‘1;

 /*no change in tag*/
 tag_write.tag = tag_read.tag;
 tag_write.valid = ‘1;
 /*cache line is dirty*/
 tag_write.dirty = ‘1;
 end

 /*xaction is fi nished*/
 vstate = idle;
 end
 /*cache miss*/
 else begin
 /*generate new tag*/
 tag_req.we = ‘1;
 tag_write.valid = ‘1;
 /*new tag*/
 tag_write.tag = cpu_req.addr[TAGMSB:TAGLSB];
 /*cache line is dirty if write*/
 tag_write.dirty = cpu_req.rw;

 /*generate memory request on miss*/
 v_mem_req.valid = ‘1;
 /*compulsory miss or miss with clean block*/
 if (tag_read.valid == 1’b0 || tag_read.dirty == 1’b0)
 /*wait till a new block is allocated*/
 vstate = allocate;

FIGURE e5.12.7 FSM in SystemVerilog, part III. Actual FSM states via case statement in this figure and the next. This figure has the
Idle state and most of the Compare Tag state.

 5.12 Advanced Material: Implementing Cache Controllers 459.e9

 else begin
 /*miss with dirty line*/
 /*write back address*/
 v_mem_req.addr = {tag_read.tag, cpu_req.addr[TAGLSB-1:0]};
 v_mem_req.rw = ‘1;
 /*wait till write is completed*/
 vstate = write_back;
 end
 end
 end
 /*wait for allocating a new cache line*/
 allocate: begin
 /*memory controller has responded*/
 if (mem_data.ready) begin
 /*re-compare tag for write miss (need modify correct word)*/
 vstate = compare_tag;
 data_write = mem_data.data;
 /*update cache line data*/
 data_req.we = ‘1;
 end
 end
 /*wait for writing back dirty cache line*/
 write_back : begin
 /*write back is completed*/
 if (mem_data.ready) begin
 /*issue new memory request (allocating a new line)*/
 v_mem_req.valid = ‘1;
 v_mem_req.rw = ‘0;

 vstate = allocate;
 end
 end
 endcase
 end

 always_ff @(posedge(clk)) begin
 if (rst)
 rstate <= idle; //reset to idle state
 else
 rstate <= vstate;
 end
 /*connect cache tag/data memory*/
 dm_cache_tag ctag(.*);
 dm_cache_data cdata(.*);
endmodule

FIGURE e5.12.8 FSM in SystemVerilog, part IV. Actual FSM states via the case statement in the prior figure and this one. This figure
has the last part of the Compare Tag state, plus Allocate and Write-Back states.

459.e10 5.12 Advanced Material: Implementing Cache Controllers

Basic Coherent Cache Implementation Techniques
The key to implementing an invalidate protocol is the use of the bus, or another
broadcast medium, to perform invalidates. To invalidate, the processor simply
acquires bus access and broadcasts the address to be invalidated on the bus. All
processors continuously snoop on the bus, watching the addresses. The processors
check whether the address on the bus is in their cache. If so, the corresponding data
in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must
acquire bus access to broadcast its invalidation. If two processors try to write
shared blocks at the same time, their attempts to broadcast an invalidate operation
will be serialized when they arbitrate for the bus. The first processor to obtain bus
access will cause any other copies of the block it is writing to be invalidated. If the
processors were attempting to write the same block, the serialization enforced by
the bus also serializes their writes. One implication of this scheme is that a write
to a shared data item cannot actually complete until it obtains bus access. All
coherence schemes require some method of serializing accesses to the same cache
block, by serializing access either to the communication medium or another shared
structure.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to find the recent value of a data item, since all
written data are unfailingly sent to the memory, from which the most-recent value
of a data item can always be fetched. In a design with adequate memory bandwidth
to support the write traffic from the processors, using write-through simplifies the
implementation of cache coherence.

For a write-back cache, finding the most-recent data value is more difficult,
since the most recent value of a data item can be in a cache rather than in memory.
Happily, write-back caches can use the same snooping scheme both for cache misses
and for writes: each processor snoops all addresses placed on the bus. If a processor
finds that it has a dirty copy of the requested cache block, it provides that cache
block in response to the read request and causes the memory access to be aborted.
The increased complexity comes from having to retrieve the cache block from a
processor’s cache, which can often take longer than retrieving it from the shared
memory if the processors are in separate chips. Since write-back caches generate
lower requirements for memory bandwidth, they can support larger numbers of
faster processors and have been the approach chosen in most multiprocessors,
despite the additional complexity of maintaining coherence. Therefore, we will
examine the implementation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping,
and the valid bit for each block makes invalidation easy to implement. Read
misses, whether generated by an invalidation or by some other event, are also
straightforward, since they simply rely on the snooping capability. For writes, we’d
like to know whether any other copies of the block are cached, because if there are

 5.12 Advanced Material: Implementing Cache Controllers 459.e11

no other cached copies, the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time taken by the write and the
required bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a write
must generate an invalidate. When a write to a block in the shared state occurs, the
cache generates an invalidation on the bus and marks the block as exclusive. No
further invalidations will be sent by that processor for that block. The processor
with the sole copy of a cache block is normally called the owner of the cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor, and the state should be made shared.

Every bus transaction must check the cache-address tags, which could potentially
interfere with processor cache accesses. One way to reduce this interference is to
duplicate the tags. The interference can also be reduced in a multilevel cache by
directing the snoop requests to the L2 cache, which the processor uses only when
it has a miss in the L1 cache. For this scheme to work, every entry in the L1 cache
must be present in the L2 cache, a property called the inclusion property. If the
snoop gets a hit in the L2 cache, then it must arbitrate for the L1 cache to update the
state and possibly retrieve the data, which usually requires a stall of the processor.
Sometimes it may even be useful to duplicate the tags of the secondary cache to
further decrease contention between the processor and the snooping activity.

An Example Cache Coherency Protocol
A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each node. This controller responds to requests from the
processor and from the bus (or other broadcast medium), changing the state of
the selected cache block, as well as using the bus to access data or to invalidate
it. Logically, you can think of a separate controller being associated with each
block; that is, snooping operations or cache requests for different blocks can
proceed independently. In actual implementations, a single controller allows
multiple operations to distinct blocks to proceed in interleaved fashion (that is,
one operation may be initiated before another is completed, even though only one
cache access or one bus access is allowed at a time). Also, remember that although
we refer to a bus in the following description, any interconnection network that
supports a broadcast to all the coherence controllers and their associated caches
can be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, and modified.
The shared state indicates that the block is potentially shared, while the modified
state indicates that the block has been updated in the cache; note that the

459.e12 5.12 Advanced Material: Implementing Cache Controllers

modified state implies that the block is exclusive. Figure e5.12.9 shows the requests
generated by the processor-cache module in a node (in the first nine rows of the
table) as well as those coming from the bus (in the last five rows of the table).
This protocol is for a write-back cache, but it can be easily changed to work for a
write-through cache by reinterpreting the modified state as an exclusive state and
updating the cache on writes in the normal fashion for a write-through cache. The
most common extension of this basic protocol is the addition of an exclusive state,
which describes a block that is unmodified but held in only one cache; the caption
of Figure e5.12.9 describes this state and its addition in more detail.

When an invalidate or a write miss is placed on the bus, any processors with
copies of the cache block invalidate it. For a write-through cache, the data for a
write miss can always be retrieved from the memory. For a write miss in a writeback
cache, if the block is exclusive in just one cache, that cache also writes back the
block; otherwise, the data can be read from memory.

Figure e5.12.10 shows a finite-state transition diagram for a single cache
block using a write invalidation protocol and a write-back cache. For simplicity,
the three states of the protocol are duplicated to represent transitions based on
processor requests (on the left, which corresponds to the top half of the table in
Figure e5.12.9), contrary to transitions based on bus requests (on the right, which
corresponds to the last five rows of the table in Figure e5.12.9). Boldface type is
used to distinguish the bus actions, in contrast to the conditions on which a state
transition depends. The state in each node represents the state of the selected cache
block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor
cache, where they would correspond to the invalid, valid (and clean), and dirty
states. Most of the state changes indicated by arcs in the left half of Figure e5.12.10
would be needed in a write-back uniprocessor cache, with the exception being the
invalidate on a write hit to a shared block. The state changes represented by the arcs
in the right half of Figure e5.12.10 are needed only for coherence and would not
appear at all in an uniprocessor cache controller.

As mentioned earlier, there is only one finite-state machine per cache, with
stimuli coming either from the attached processor or from the bus. Figure e5.12.11
shows how the state transitions in the right half of Figure e5.12.10 are combined
with those in the left half of the figure to form a single state diagram for each cache
block.

To understand why this protocol works, observe that any valid cache block is
either in the shared state in one or more caches or in the exclusive state in exactly
one cache. Any transition to the exclusive state (which is required for a processor
to write to the block) requires an invalidate or write miss to be placed on the bus,
causing all caches to make the block invalid. In addition, if some other cache had
the block in the exclusive state, that cache generates a write back, which supplies
the block containing the desired address. Finally, if a read miss occurs on the bus
to a block in the exclusive state, the cache with the exclusive copy changes its state
to shared.

 5.12 Advanced Material: Implementing Cache Controllers 459.e13

Request Source

State of
addressed

cache block
Type of

cache action Function and explanation

Read hit processor shared or
modifi ed

normal hit Read data in cache.

Read miss processor invalid normal miss Place read miss on bus.

Read miss processor shared replacement Address confl ict miss: place read miss on bus.

Read miss processor modifi ed replacement Address confl ict miss: write-back block, then place read miss
on bus.

Write hit processor modifi ed normal hit Write data in cache.

Write hit processor shared coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data
but only change the state.

Write miss processor invalid normal miss Place write miss on bus.

Write miss processor shared replacement Address confl ict miss: place write miss on bus.

Write miss processor modifi ed replacement Address confl ict miss: write-back block, then place write miss
on bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modifi ed coherence Attempt to share data: place cache block on bus and change
state to shared.

Invalidate bus shared coherence Attempt to write shared block; invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache
block.

Write miss bus modifi ed coherence Attempt to write block that is exclusive elsewhere: write-back
the cache block and make its state invalid.

FIGURE e5.12.9 The cache coherence mechanism receives requests from both the processor and the bus and
responds to these based on the type of request, whether it hits or misses in the cache, and the state of the cache
block specified in the request. The fourth column describes the type of cache action as normal hit or miss (the same as a uniprocessor
cache would see), replacement (a uniprocessor cache replacement miss), or coherence (required to maintain cache coherence); a normal
or replacement action may cause a coherence action depending on the state of the block in other caches. For read misses, write misses, or
invalidates snooped from the bus, an action is required only if the read or write addresses match a block in the cache and the block is valid.
Some protocols also introduce a state to designate when a block is exclusively in one cache but has not yet been written. This state can arise if
a write access is broken into two pieces: getting the block exclusively in one cache and then subsequently updating it; in such a protocol this
“exclusive unmodified state” is transient, ending as soon as the write is completed. Other protocols use and maintain an exclusive state for an
unmodified block. In a snooping protocol, this state can be entered when a processor reads a block that is not resident in any other cache.
Because all subsequent accesses are snooped, it is possible to maintain the accuracy of this state. In particular, if another processor issues a
read miss, the state is changed from exclusive to shared. The advantage of adding this state is that a subsequent write to a block in the exclusive
state by the same processor need not acquire bus access or generate an invalidate, since the block is known to be exclusively in this cache; the
processor merely changes the state to modified. This state is easily added by using the bit that encodes the coherent state as an exclusive state
and using the dirty bit to indicate that a block is modified. The popular MESI protocol, which is named for the four states it includes (modified,
exclusive, shared, and invalid), uses this structure. The MOESI protocol introduces another extension: the “owned” state.

459.e14 5.12 Advanced Material: Implementing Cache Controllers

The actions in gray in Figure e5.12.11, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the memory, which simplifies the
implementation.

Although our simple cache protocol is correct, it omits a number of complications
that make the implementation much trickier. The most important of these is that
the protocol assumes that operations are atomic—that is, an operation can be done
in such a way that no intervening operation can occur. For example, the protocol
described assumes that write misses can be detected, acquire the bus, and receive
a response as a single atomic action. In reality, this is not true. Similarly, if we used

Exclusive
(read/write)

Exclusive
(read/write)

Invalidate for
this block

Write miss for this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Pla
ce

 in
va

lid
at

e
on b

us

Plac
e r

ea
d m

iss
 o

n b
us CPU w

rit
e

Place read miss on bus

Place read
miss on bus

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid Invalid

Read miss
for this block

Shared
(read only)

CPU w
rit

e
m

iss

Pla
ce

 w
rit

e
m

is
s

on b
us

FIGURE e5.12.10 A write-invalidate, cache-coherence protocol for a write-back cache, showing the states and state
transitions for each block in the cache. The cache states are shown in circles, with any access permitted by the processor without a
state transition shown in parentheses under the name of the state. The stimulus causing a state change is shown on the transition arcs in regular
type, and any bus actions generated as part of the state transition are shown on the transition arc in bold. The stimulus actions apply to a block
in the cache, not to a specific address in the cache. Hence, a read miss to a block in the shared state is a miss for that cache block but for a
different address. The left side of the diagram shows state transitions based on actions of the processor associated with this cache; the right side
shows transitions based on operations on the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when
the address requested by the processor does not match the address in the cache block. Such a miss is a standard cache replacement miss. An
attempt to write a block in the shared state generates an invalidate. Whenever a bus transaction occurs, all caches that contain the cache block
specified in the bus transaction take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on
a read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined. In practice, there
are many subtle variations on invalidate protocols, including the introduction of the exclusive unmodified state, as to whether a processor or
memory provides data on a miss.

 5.12 Advanced Material: Implementing Cache Controllers 459.e15

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e i

nv
ali

dat
e o

n b
us

CPU w
rit

e

Place read miss on bus

Write miss for this block

Place read
miss on bus

CPU read

CPU write miss

Write-back data
Place write miss on bus

Read miss
for this
block

Invalid

Invalidate for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

CPU w
rit

e
m

iss

Plac
e w

rit
e m

iss
 o

n b
us

CPU
read
hit

FIGURE e5.12.11 Cache coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in Figure
e5.12.10, the activities on a transition are shown in bold.

a switch, as all recent multiprocessors do, then even read misses would also not be
atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. On the next page, we will
discuss how these protocols are implemented without a bus.

Constructing small-scale (two to four processors) multiprocessors has become
very easy. For example, the Intel Nehalem and AMD Opteron processors are
designed for use in cache-coherent multiprocessors and have an external interface
that supports snooping and allows two to four processors to be directly connected.
They also have larger on-chip caches to reduce bus utilization. In the case of
the Opteron processors, the support for interconnecting multiple processors is
integrated onto the processor chip, as are the memory interfaces. In the case of the
Intel design, a two-processor system can be built with only a few additional external
chips to interface with the memory system and I/O. Although these designs cannot
be easily scaled to larger processor counts, they offer an extremely cost-effective
solution for two to four processors.

459.e16 5.12 Advanced Material: Implementing Cache Controllers

Implementing Snoopy Cache Coherence
As we said earlier, the major complication in actually implementing the snooping
coherence protocol we have described is that write and upgrade misses are not
atomic in any recent multiprocessor. The steps of detecting a write or upgrade miss;
communicating with the other processors and memory; getting the most-recent
value for a write miss and ensuring that any invalidates are processed; and updating
the cache cannot be done as if they took a single cycle.

In a simple single-bus system, these steps can be made effectively atomic by
arbitrating for the bus first (before changing the cache state) and not releasing
the bus until all actions are complete. How can the processor know when all the
invalidates are complete? In most bus-based multiprocessors, a single line is used to
signal when all necessary invalidates have been received and are being processed.
Following that signal, the processor that generated the miss can release the bus,
knowing that any required actions will be completed before any activity related
to the next miss. By holding the bus exclusively during these steps, the processor
effectively makes the individual steps atomic.

In a system without a bus, we must find some other method of making the steps
in a miss atomic. In particular, we must ensure that two processors that attempt to
write the same block at the same time, a situation which is called a race, are strictly
ordered: one write is processed before the next is begun. It does not matter which
of two writes in a race wins the race, just that there be only a single winner whose
coherence actions are completed first. In a snoopy system, ensuring that a race
has only one winner is accomplished by using broadcast for all misses, as well as
some basic properties of the interconnection network. These properties, together
with the ability to restart the miss handling of the loser in a race, are the keys to
implementing snoopy cache coherence without a bus.

The devil is in the
details.
Classic proverb.

460 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

A significant challenge facing cache designers is to support processors like the
Cortex-A53 and the Core i7 that can execute more than one memory instruction
per clock cycle. A popular technique is to break the cache into banks and allow
multiple, independent, parallel accesses, provided the accesses are to different
banks. The technique is similar to interleaved DRAM banks (see Section 5.2).

The Cortex-A53 and the Core i7 have additional optimizations that allow them
to reduce the miss penalty. The first of these is the return of the requested word
first on a miss. They also continue to execute instructions that access the data cache
during a cache miss. Designers who are attempting to hide the cache miss latency
commonly use this technique, called a nonblocking cache. They implement two
flavors of nonblocking. Hit under miss allows additional cache hits during a miss,
while miss under miss allows multiple outstanding cache misses. The aim of the
first of these two is hiding some miss latency with other work, while the aim of the
second is overlapping the latency of two different misses.

Overlapping a large fraction of miss times for multiple outstanding misses
requires a high-bandwidth memory system capable of handling multiple misses
in parallel. In a personal mobile device, the memory system below it can often
pipeline, merge, reorder, or prioritize requests appropriately. Large servers and
multiprocessors typically have memory systems capable of handling several
outstanding misses in parallel.

nonblocking cache
A cache that allows
the processor to make
references to the cache
while the cache is
handling an earlier miss.

Characteristic ARM Cortex-A53 Intel Core i7

Virtual address 48 bits 48 bits

Physical address 40 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB Variable: 4 KiB, 2/4 MiB

TLB organization 1 TLB for instructions and 1 TLB
for data per core

Both micro TLBs are fully associative,
with 10 entries, round robin
replacement
64-entry, four-way set-associative TLBs

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement

L1 I-TLB has 128 entries for small
pages, seven per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

FIGURE 5.42 Address translation and TLB hardware for the ARM Cortex-A53 and Intel
Core i7 920. Both processors provide support for large pages, which are used for things like the operating
system or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a
single object that is always present.

The Cortex-A53 and the Core i7 have prefetch mechanisms for data accesses.
They look at a pattern of data misses and uses this information to try to predict
the next address to start fetching the data before the miss occurs. Such techniques
generally work best when accessing arrays in loops.

The sophisticated memory hierarchies of these chips and the large fraction of
the dies dedicated to caches and TLBs show the significant design effort expended
to try to close the gap between processor cycle times and memory latency.

Characteristic ARM Cortex-A53 Intel Core i7

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size Configurable 16 to 64 KiB each
for instructions/data

32 KiB each for instructions/data per
core

L1 cache associativity Two-way (I), four-way (D) set
associative

Four-way (I), eight-way (D) set
associative

L1 replacement Random Approximated LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, variable allocation
policies (default is Write-allocate)

Write-back, No-write-allocate

L1 hit time (load-use) Two clock cycles Four clock cycles, pipelined

L2 cache organization Unified (instruction and data) Unified (instruction and data) per core

L2 cache size 128 KiB to 2 MiB 256 KiB (0.25 MiB)

L2 cache associativity 16-way set associative 8-way set associative

L2 replacement Approximated LRU Approximated LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time 12 clock cycles 10 clock cycles

L3 cache
organization –

Unified (instruction and data)

L3 cache size – 8 MiB, shared

L3 cache
associativity

– 16-way set associative

L3 replacement – Approximated LRU

L3 block size – 64 bytes

L3 write policy – Write-back, Write-allocate

L3 hit time – 35 clock cycles

FIGURE 5.43 Caches in the ARM Cortex-A53 and Intel Core i7 920.

 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies 461

462 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Performance of the Cortex-A53 and Core i7 Memory
Hierarchies
The memory hierarchy of the Cortex-A53 was measured using a 32 KiB two-way
set associative L1 instruction cache, a 32 KiB four-way set associative L1 data
cache, and a 1 MiB 16-way set associative L2 cache running the integer SPEC2006
benchmarks.

The Cortex-A53 instruction cache miss rates for these benchmarks are very
small. Figure 5.44 shows the data cache results for the Cortex-A53, which have
significant L1 and L2 miss rates. The L1 data cache miss rates go from 0.5% to
37.3%, with a mean of 6.4% and a median of 2.4%. The (global) L2 cache miss
rates vary from 0.1% to 9.0%, with a mean of 1.3% and a median of 0.3%. The L1
miss penalty for a 1 GHz Cortex-A53 is 12 clock cycles, while the L2 miss penalty
is 124 clock cycles. Using these miss penalties, Figure 5.45 shows the average miss
penalty per data access. When these low miss rates are multiplied by their high
miss penalties, you can see that they can represent a significant fraction of the CPI
for 5 of the 12 SPEC2006 programs.

0.0%

hm
m

er

h2
64

re
f

lib
qu

an
tu

m

pe
rlb

en
ch

sje
ng

bz
ip2

go
bm

k

xa
lan

cb
m

k
gc

c
as

ta
r

om
ne

tp
p

m
cf

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

M
is

s
R

at
e

L1 Data Miss Rate

L2 Data Miss Rate

FIGURE 5.44 Data cache miss rates for ARM Cortex-A53 when running SPEC2006int. Applications with larger memory
footprints tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references,
including those that hit in L1. (See the Elaboration in Section 5.4.) mcf is known as a cache buster. Note that this figure is for the same systems
and benchmarks as Figure 4.74 in Chapter 4.

Figure 5.46 shows the miss rates for the caches of the Core i7 using the SPEC2006
benchmarks. The L1 instruction cache miss rate varies from 0.1% to 1.8%,
averaging just over 0.4%. This rate is in keeping with other studies of instruction
cache behavior for the SPECCPU2006 benchmarks, which show low instruction
cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes
higher, the importance of the L2 and L3 caches should be obvious. Since the cost
for a miss to memory is over 100 cycles, and the average data miss rate in L2 is 4%,
L3 is obviously critical. Assuming about half the instructions is loads or stores,
without L3 the L2 cache misses could add two cycles per instruction to the CPI! In
comparison, the average L3 data miss rate of 1% is still significant but four times
lower than the L2 miss rate and six times less than the L1 miss rate.

Elaboration: Because speculation may sometimes be wrong (see Chapter 4), there
are references to the L1 data cache that do not correspond to loads or stores that
eventually complete execution. The data in Figure 5.44 are measured against all data
requests, including some that are cancelled. The miss rate when measured against only
completed data accesses is 1.6 times higher (an average of 9.5% versus 5.9% for L1
Dcache misses).

16

14

12

10

8

6

4

2

0

hm
m

er

h2
64

re
f

lib
qu

an
tu

m

pe
rlb

en
ch

sje
ng

bz
ip2

go
bm

k

xa
lan

cb
m

k
gc

c
as

ta
r

om
ne

tp
p

m
cf

M
is

s
p

en
al

ty
 p

er
 d

at
a

re
fe

re
n

ce

L2 data average memory penalty

L1 data average memory penalty

FIGURE 5.45 The average memory access penalty in clock cycles per data memory
reference coming from L1 and L2 is shown for the ARM processor when running
SPEC2006int. Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is more
than five times higher, means that the L2 misses can contribute significantly.

 5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies 463

464 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.14 Real Stuff: The Rest of the RISC-V
System and Special Instructions

Figure 5.48 lists the 13 remaining RISC-V instructions in the special purpose and
systems category.

The fence instructions provide synchronization barriers for instructions
(fence.i), data (fence), and address translations (sfence.vma). The first,
fence.i, informs the processor that software has modified instruction memory,
so that it can guarantee that instruction fetch will reflect the updated instructions.
The second, fence, affects data memory access ordering for multiprocessing and
I/O. The third, sfence.vma, informs the processor that software has modified the
page tables, so that it can guarantee that address translations will reflect the updates.

The six control and status register (CSR) access instructions move data between
general-purpose registers and CSRs. The csrrwi instruction (CSR read/write
immediate) copies a CSR to an integer register, then overwrites the CSR with an
immediate. csrrsi (CSR read/set immediate) copies a CSR to an integer register,
and overwrites the CSR with the bitwise OR of the CSR and an immediate. csrrci

25%

20%

15%

10%

5%

0%

lib
qu

an
tu

m

h2
64

re
f

hu
m

m
er

pe
rlb

en
ch

bz
ip2

xa
lan

cb
m

k
sje

ng

gp
bm

l
as

ta
r

gc
c

om
ne

tp
p

m
cf

L1 Data Miss Rate

L2 Data Miss Rate

L3 Data Miss Rate

FIGURE 5.46 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running the
full integer SPECCPU2006 benchmarks.

 5.15 Going Faster: Cache Blocking and Matrix Multiply 465

(CSR read/clear) is like csrrsi, but clears bits instead of setting them. The csrrw,
csrrs, and csrrc instructions use a register operand instead of an immediate,
but otherwise do the same thing.

Two instructions’ only purpose is to generate exceptions: ecall generates an
environment call exception to invoke the OS, and ebreak generates a breakpoint
exception to invoke the debugger. The supervisor exception-return instruction
(sret), naturally enough, allows the program to return from an exception handler.

Finally, the wait-for-interrupt instruction, wfi, informs the processor that it
may enter an idle state until an interrupt occurs.

 5.15 Going Faster: Cache Blocking and Matrix
Multiply

Our next step in the continuing saga of improving performance of DGEMM by
tailoring it to the underlying hardware is to add cache blocking to the subword
parallelism and instruction level parallelism optimizations of Chapters 3 and 4.
Figure 5.47 shows the blocked version of DGEMM from Figure 4.78. The changes
are the same as was made earlier in going from unoptimized DGEMM in Figure
3.22 to blocked DGEMM in Figure 5.21 above. This time we take the unrolled
version of DGEMM from Chapter 4 and invoke it many times on the submatrices
of A, B, and C. Indeed, lines 28–34 and lines 7–8 in Figure 5.47 mirror lines 14–20
and lines 5–6 in Figure 5.21, except for incrementing the for loop in line 7 by the
amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because
the inner loop code is nearly identical to Figure 4.79, as the blocking does not
affect the computation, just the order that it accesses data in memory. What does
change is the bookkeeping integer instructions to implement the loops. It expands
from 14 instructions before the inner loop and eight after the loop for Figure
4.78 to 40 and 28 instructions respectively for the bookkeeping code generated
for Figure 5.47. Nevertheless, the extra instructions executed pale in comparison
to the performance improvement of reducing cache misses. Figure 5.49 compares
unoptimized to optimized for subword parallelism, instruction level parallelism,
and caches. Blocking improves performance over unrolled AVX code by factors of
2 to 2.5 for the larger matrices. When we compare unoptimized code to the code
with all three optimizations, the performance improvement is factors of 8 to 15,
with the largest increase for the largest matrix.

Elaboration: As mentioned in the Elaboration in Section 3.9, these results are with
Turbo mode turned off. As in Chapters 3 and 4, when we turn it on, we improve all the
results by the temporary increase in the clock rate of 3.3/2.6 = 1.27. Turbo mode works
particularly well in this case because it is using only a single core of an eight-core chip.
However, if we want to run fast we should use all cores, which we’ll see in Chapter 6.

466 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk,
 double *A, double *B, double *C)
{
 for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)
 for (int j = sj; j < sj+BLOCKSIZE; j++) {
 __m256d c[4];
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_load_pd(C+i+x*4+j*n);
 /* c[x] = C[i][j] */
 for(int k = sk; k < sk+BLOCKSIZE; k++)
 {
 __m256d b = _mm256_broadcast_sd(B+k+j*n);
 /* b = B[k][j] */
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
 }

 for (int x = 0; x < UNROLL; x++)
 _mm256_store_pd(C+i+x*4+j*n, c[x]);
 /* C[i][j] = c[x] */
 }
}

void dgemm (int n, double* A, double* B, double* C)
{
 for (int sj = 0; sj < n; sj += BLOCKSIZE)
 for (int si = 0; si < n; si += BLOCKSIZE)
 for (int sk = 0; sk < n; sk += BLOCKSIZE)
 do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

FIGURE 5.47 Optimized C version of DGEMM from Figure 4.78 using cache blocking. These changes are the same ones found
in Figure 5.21. The assembly language produced by the compiler for the do_block function is nearly identical to Figure 4.79. Once again,
there is no overhead to call the do_block because the compiler inlines the function call.

 5.15 Going Faster: Cache Blocking and Matrix Multiply 467

FENCE.I Instruction Fence
Mem. Ordering FENCE Fence

SFENCE.VMA Address Translation Fence

CSRRWI CSR Read/Write Immediate

CSRRSI CSR Read/Set Immediate

CSR Access
CSRRCI CSR Read/Clear Immediate

CSRRW CSR Read/Write

CSRRS CSR Read/Set

CSRRC CSR Read/Clear

ECALL Environment Call

System
EBREAK Environment Breakpoint

SRET Supervisor Exception Return

WFI Wait for Interrupt

Type Mnemonic Name

FIGURE 5.48 The list of assembly language instructions for the systems and special
operations in the full RISC-V instruction set.

32 x 32 160 x 160 480 x 480 960 x 960

16.0

12.0

8.0

4.0

Unoptimized AVX AVX + unroll AVX + unroll +
blocked

–

1.7 1.5 1.3
0.8

6.4

3.5
2.3 2.5

14.6

6.6

4.7 5.1

13.6
12.7

11.712.0

G
F

L
O

P
S

FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32 × 32
to 960 × 960. The fully optimized code for the largest matrix is almost 15 times as fast the unoptimized
version in Figure 3.22 in Chapter 3.

468 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.16 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not
only have there been many fallacies propagated and pitfalls encountered, but some
have led to major negative outcomes. We start with a pitfall that often traps students
in exercises and exams.

Pitfall: Ignoring memory system behavior when writing programs or when
generating code in a compiler.

This could be rewritten as a fallacy: “Programmers can ignore memory hierarchies
in writing code.” The evaluation of sort in Figure 5.19 and of cache blocking in
Section 5.14 demonstrate that programmers can easily double performance if
they factor the behavior of the memory system into the design of their algorithms.

Pitfall: Forgetting to account for byte addressing or the cache block size in
simulating a cache.

When simulating a cache (by hand or by computer), we need to make sure we
account for the effect of byte addressing and multiword blocks in determining into
which cache block a given address maps. For example, if we have a 32-byte direct-
mapped cache with a block size of 4 bytes, the byte address 36 maps into block 1
of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1. On the
other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4.
Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache with
256 bytes and a block size of 32 bytes. Into which block does the byte address 300
fall? If we break the address 300 into fields, we can see the answer:

63 62 61 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

Cache block
number

Block offset

Block address

Byte address 300 is block address

The number of blocks in the cache is

300
32

9

=

256
32

8

=

 5.16 Fallacies and Pitfalls 469

Block number 9 falls into cache block number (9 modulo 8) = 1.
This mistake catches many people, including the authors (in earlier drafts) and

instructors who forget whether they intended the addresses to be in doublewords,
words, bytes, or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Having less set associativity for a shared cache than the number of cores or
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can
easily allocate data structures to addresses that would map to the same set of a
shared L2 cache. If the cache is at least 2n-way associative, then these accidental
conflicts are hidden by the hardware from the program. If not, programmers could
face apparently mysterious performance bugs—actually due to L2 conflict misses—
when migrating from, say, a 16-core design to 32-core design if both use 16-way
associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the
memory-stall time and the processor execution time, and hence evaluate the memory
hierarchy independently using average memory access time (see page 391).

If the processor continues to execute instructions, and may even sustain more
cache misses during a cache miss, then the only accurate assessment of the memory
hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented
address space.

During the 1970s, many programs grew so large that not all the code and data
could be addressed with just a 16-bit address. Computers were then revised to
offer 32-bit addresses, either through an unsegmented 32-bit address space (also
called a flat address space) or by adding 16 bits of segment to the existing 16-bit
address. From a marketing point of view, adding segments that were programmer-
visible and that forced the programmer and compiler to decompose programs into
segments could solve the addressing problem. Unfortunately, there is trouble any
time a programming language wants an address that is larger than one segment,
such as indices for large arrays, unrestricted pointers, or reference parameters.
Moreover, adding segments can turn every address into two words—one for the
segment number and one for the segment offset—causing problems in the use of
addresses in registers.

Fallacy: Disk failure rates in the field match their specifications.
Two recent studies evaluated large collections of disks to check the relationship
between results in the field compared to specifications. One study was of almost
100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of
0.6% to 0.8%. They found AFRs of 2% to 4% to be common, often three to five times
higher than the specified rates [Schroeder and Gibson, 2007]. A second study of
more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw

470 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

failure rates of 1.7% for drives in their first year rise to 8.6% for drives in their third
year, or about five to six times the declared rate [Pinheiro, Weber, and Barroso, 2007].

Fallacy: Operating systems are the best place to schedule disk accesses.
As mentioned in Section 5.2, higher-level disk interfaces offer logical block
addresses to the host operating system. Given this high-level abstraction, the best
an OS can do to try to help performance is to sort the logical block addresses into
increasing order. However, since the disk knows the actual mapping of the logical
addresses onto the physical geometry of sectors, tracks, and surfaces, it can reduce
the rotational and seek latencies by rescheduling.

For example, suppose the workload is four reads [Anderson, 2003]:

Operation Starting LBA Length

Read 724 8

Read 100 16

Read 9987 1

Read 26 128

The host might reorder the four reads into logical block order:

Operation Starting LBA Length

Read 26 128

Read 100 16

Read 724 8

Read 9987 1

Depending on the relative location of the data on the disk, reordering could
make it worse, as Figure 5.50 shows. The disk-scheduled reads complete in three-
quarters of a disk revolution, but the OS-scheduled reads take three revolutions.

Pitfall: Implementing a virtual machine monitor on an instruction set architecture
that wasn’t designed to be virtualizable.
Many architects in the 1970s and 1980s weren’t careful to make sure that

all instructions reading or writing information related to hardware resource
information were privileged. This laissez-faire attitude causes problems for VMMs
for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization
[Robin and Irvine, 2000]. The two broad classes are instructions that

■	 Read control registers in user mode that reveals that the guest operating
system is running in a virtual machine (such as POPF, mentioned earlier)

■	 Check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have
proposed extensions to the architecture via a new mode. Intel’s VT-x provides

 5.16 Fallacies and Pitfalls 471

Host-ordered queue
Drive-ordered queue

724

100

26

9987

FIGURE 5.50 Example showing OS versus disk schedule accesses, labeled host-ordered
versus drive-ordered. The former takes three revolutions to complete the four reads, while the latter
completes them in just three-fourths of a revolution. From Anderson [2003].

Problem category Problem x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory
mechanisms in user mode, instructions
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization
[Robin and Irvine, 2000]. The first five instructions in the top group allow a program in user mode to read
a control register, such as descriptor table registers, without causing a trap. The pop flags instruction modifies
a control register with sensitive information but fails silently when in user mode. The protection checking of
the segmented architecture of the x86 is the downfall of the bottom group, as each of these instructions checks
the privilege level implicitly as part of instruction execution when reading a control register. The checking
assumes that the OS must be at the highest privilege level, which is not the case for guest VMs. Only the Move
to segment register tries to modify control state, and protection checking foils it as well.

472 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

a new execution mode for running VMs, an architected definition of the VM
state, instructions to swap VMs rapidly, and a large set of parameters to select the
circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new
instructions for the x86. AMD’s Pacifica makes similar proposals.

An alternative to modifying the hardware is to make small changes to the operating
system to avoid using the troublesome pieces of the architecture. This technique is
called paravirtualization, and the open source Xen VMM is a good example. The
Xen VMM provides a guest OS with a virtual machine abstraction that uses only
the easy-to-virtualize parts of the physical x86 hardware on which the VMM runs.

 5.17 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors
is underscored by the fact that the raw material for main memory, DRAMs, is
essentially the same in the fastest computers as it is in the slowest and cheapest.

It is the principle of locality that gives us a chance to overcome the long latency of
memory access—and the soundness of this strategy is demonstrated at all levels of
the memory hierarchy. Although these levels of the hierarchy look quite different
in quantitative terms, they follow similar strategies in their operation and exploit
the same properties of locality.

Multilevel caches make it possible to use more cache optimizations more easily for
two reasons. First, the design parameters of a lower-level cache are different from a first-
level cache. For example, because a lower-level cache will be much larger, it is possible
to use bigger block sizes. Second, a lower-level cache is not constantly being used by
the processor, as a first-level cache is. This allows us to consider having the lower-level
cache do something when it is idle that may be useful in preventing future misses.

Another trend is to seek software help. Efficiently managing the memory
hierarchy using a variety of program transformations and hardware facilities is a
major focus of compiler enhancements. Two different ideas are being explored.
One idea is to reorganize the program to enhance its spatial and temporal locality.
This approach focuses on loop-oriented programs that use sizable arrays as the
major data structure; large linear algebra problems are a typical example, such as
DGEMM. By restructuring the loops that access the arrays, substantially improved
locality—and, therefore, cache performance—can be obtained.

Another approach is prefetching. In prefetching, a block of data is brought into
the cache before it is actually referenced. Many microprocessors use hardware
prefetching to try to predict accesses that may be difficult for software to notice.

A third approach is special cache-aware instructions that optimize memory
transfer. For example, the microprocessors in Section 6.10 in Chapter 6 use
an optimization that does not fetch the contents of a block from memory on a
write miss because the program is going to write the full block. This optimization
significantly reduces memory traffic for one kernel.

prefetching A technique
in which data blocks
needed in the future are
brought into the cache
early by using special
instructions that specify
the address of the block.

 5.19 Exercises 473

As we will see in Chapter 6, memory systems are a central design issue for parallel
processors. The growing significance of the memory hierarchy in determining
system performance means that this important area will continue to be a focus for
both designers and researchers for some years to come.

 Historical Perspective and Further
Reading

This section, which appears online, gives an overview of memory technologies,
from mercury delay lines to DRAM, the invention of the memory hierarchy,
protection mechanisms, and virtual machines, and concludes with a brief history
of operating systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS,
Windows, and Linux.

 5.19 Exercises

Assume memory is byte addressable and words are 64 bits, unless specified
otherwise.

5.1 In this exercise we look at memory locality properties of matrix computation.
The following code is written in C, where elements within the same row are stored
contiguously. Assume each word is a 64-bit integer.

for (I=0; I<8; I++)
 for (J=0; J<8000; J++)
 A[I][J]=B[I][0]+A[J][I];

5.1.1 [5] <§5.1> How many 64-bit integers can be stored in a 16-byte cache
block?

5.1.2 [5] <§5.1> Which variable references exhibit temporal locality?

5.1.3 [5] <§5.1> Which variable references exhibit spatial locality?

Locality is affected by both the reference order and data layout. The same
computation can also be written below in Matlab, which differs from C in that it
stores matrix elements within the same column contiguously in memory.

for I=1:8
 for J=1:8000
 A(I,J)=B(I,0)+A(J,I);
 end
end

5.18

 5.18 Historical Perspective and Further Reading 473.e1

 Historical Perspective and Further
Reading

This history section gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the memory hierarchy, and protection
mechanisms, and concludes with a brief history of operating systems, including
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

The developments of most of the concepts in this chapter have been driven by
revolutionary advances in the technology we use for memory. Before we discuss
how memory hierarchies were evolved, let’s take a brief tour of the development of
memory technology.

The ENIAC had only a small number of registers (about 20) for its storage and
implemented these with the same basic vacuum tube technology that it used for
building logic circuitry. However, the vacuum tube technology was far too expensive
to be used to build a larger memory capacity. Eckert came up with the idea of
developing a new technology based on mercury delay lines. In this technology,
electrical signals were converted into vibrations that were sent down a tube of
mercury, reaching the other end, where they were read out and recirculated. One
mercury delay line could store about 0.5 Kbits. Although these bits were accessed
serially, the mercury delay line was about a hundred times more cost-effective
than vacuum tube memory. The first known working mercury delay lines were
developed at Cambridge for the EDSAC. Figure e5.17.1 shows the mercury delay
lines of the EDSAC, which had 32 tanks and 512 36-bit words.

Despite the tremendous advance offered by the mercury delay lines, they were
terribly unreliable and still rather expensive. The breakthrough came with the
invention of core memory by J. Forrester at MIT as part of the Whirlwind project
in the early 1950s (see Figure e5.17.2). Core memory uses a ferrite core, which can
be magnetized, and once magnetized, it acts as a store (just as a magnetic recording
tape stores information). A set of wires running through the center of the core,
which had a dimension of 0.1–1.0 millimeters, makes it possible to read the value
stored on any ferrite core. The Whirlwind eventually included a core memory with
2048 16-bit words, or 32 Kbits. Core memory was a tremendous advance: it was
cheaper, faster, considerably more reliable, and had higher density. Core memory
was so much better than the alternatives that it became the dominant memory
technology only a few years after its invention and remained so for nearly 20 years.

…the one single
development that put
computers on their
feet was the invention
of a reliable form of
memory, namely, the
core memory.… Its
cost was reasonable,
it was reliable and,
because it was reliable,
it could in due course
be made large.
Maurice Wilkes,
Memoirs of a Computer
Pioneer, 1985

5.18

473.e2 5.18 Historical Perspective and Further Reading

FIGURE e5.17.1 The mercury delay lines in the EDSAC. This technology made it possible to
build the first stored-program computer. The young engineer in this photograph is none other than Maurice
Wilkes, the lead architect of the EDSAC.

 5.18 Historical Perspective and Further Reading 473.e3

The technology that replaced core memory was the same one that we now use
both for logic and for memory: the integrated circuit. While registers were built
out of transistorized memory in the 1960s, and IBM computers used transistorized
memory for microcode store and caches in 1970, building main memory out
of transistors remained prohibitively expensive until the development of the
integrated circuit. With the integrated circuit, it became possible to build a DRAM
(dynamic random access memory—see Appendix A for a description). The first
DRAMs were built at Intel in 1970, and the computers using DRAM memories (as
a high-speed option to core) came shortly thereafter; they used 1 Kbit DRAMs. In
fact, computer folklore says that Intel developed the microprocessor partly to help

FIGURE e5.17.2 A core memory plane from the Whirlwind containing 256 cores arranged
in a 16 × 16 array. Core memory was invented for the Whirlwind, which was used for air defense
problems, and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder of Digital and its
president for 20 years, built the computer that tested these core memories; it was his first computer.)

473.e4 5.18 Historical Perspective and Further Reading

sell more DRAM. Figure e5.17.3 shows an early DRAM board. By the late 1970s,
core memory had become a historical curiosity. Just as core memory technology
had allowed a tremendous expansion in memory size, DRAM technology allowed
a comparable expansion. In the 1990s, many personal computers had as much
memory as the largest computers using core memory ever had.

Nowadays, DRAMs are typically packaged with multiple chips on a little board
called a DIMM (dual inline memory module). The SIMM (single inline memory
module) shown in Figure e5.17.4 contains a total of 1 MB and sold for about $5 in
1997. As of 2004, DIMMs were available with up to 1024 MB and sold for about
$100. While DRAMs will remain the dominant memory technology for some
time to come, innovations in the packaging of DRAMs to provide both higher
bandwidth and greater density are ongoing.

FIGURE e5.17.3 An early DRAM board. This board uses 18 Kbit chips.

 5.18 Historical Perspective and Further Reading 473.e5

The Development of Memory Hierarchies
Although the pioneers of computing foresaw the need for a memory hierarchy
and coined the term, the automatic management of two levels was first proposed
by Kilburn and his colleagues and demonstrated at the University of Manchester
with the Atlas computer, which implemented virtual memory. This was the year
before the IBM 360 was announced. IBM planned to include virtual memory with
the next generation (System/370), but the OS/360 operating system wasn’t up to
the challenge in 1970. Virtual memory was announced for the 370 family in 1972,
and it was for this computer that the term translation-lookaside buffer was coined.
All but some embedded computers use virtual memory today.

The problems of inadequate address space have plagued designers repeatedly. The
architects of the PDP-11 identified a small address space as the only architectural
mistake from which it is difficult to recover. When the PDP-11 was designed, core
memory densities were increasing at a very slow rate, and the competition from 100
other minicomputer companies meant that DEC might not have a cost-competitive
product if every address had to go through the 16-bit datapath twice—hence, the
decision to add just 4 more address bits than the predecessor of the PDP-11, to 16
from 12. The architects of the IBM 360 were aware of the importance of address
size and planned for the architecture to extend to 32 bits of address. Only 24 bits
were used in the IBM 360, however, because the low-end 360 models would have
been even slower with the larger addresses. Unfortunately, the expansion effort was
greatly complicated by programmers who stored extra information in the upper 8

FIGURE e5.17.4 A 1 MB SIMM, built in 1986, using 1 Mbit chips. This SIMM sold for about $5/
MB in 1997. As of 2006, most main memory is packed in DIMMs similar to this, though using much higher-
density memory chips (1 Gbit).

473.e6 5.18 Historical Perspective and Further Reading

“unused” address bits. The wider address lasted until 2000, when IBM expanded
the architecture to 64 bits in the z-series.

Running out of address space has often been the cause of death for an
architecture, while other architectures have managed to make the transition to a
larger address space. For example, the PDP-11, a 16-bit computer, was replaced by
the 32-bit VAX. The 80386 extended the 80286 architecture from a segmented 24-
bit address space to a flat 32-bit address space in 1985. In the 1990s, several RISC
instruction sets made the transition from 32-bit addressing to 64-bit addressing
by providing a compatible extension of their instruction sets. MIPS was the first to
do so. A decade later, Intel and HP announced the IA-64 in large part to provide a
64-bit address successor to the 32-bit Intel IA-32 and HP Precision architectures.
The evolutionary AMD64 won that battle versus the revolutionary IA-64, and all
but a few thousand of the 64-bit address computers from Intel are based on the x86.

Many of the early ideas in memory hierarchies originated in England. Just a few
years after the Atlas paper, Wilkes [1965] published the first paper describing the
concept of a cache, calling it a “slave”:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a slower
core memory of, say, one million words in such a way that in practical cases the
effective access time is nearer that of the fast memory than that of the slow memory.

This two-page paper describes a direct-mapped cache. Although this was the first
publication on caches, the first implementation was probably a direct-mapped
instruction cache built at the University of Cambridge by Scarrott and described at
the 1965 IFIP Congress. It was based on tunnel diode memory, the fastest form of
memory available at the time.

Subsequent to that publication, IBM started a project that led to the first
commercial computer with a cache, the IBM 360/85. Gibson at IBM recognized
that memory-accessing behavior would have a significant impact on performance.
He described how to measure program behavior and cache behavior and showed
that the miss rate varies between programs. Using a sample of 20 programs (each
with 3 million references—an incredible number for that time), Gibson analyzed
the effectiveness of caches using average memory access time as the metric. Conti,
Gibson, and Pitowsky described the resulting performance of the 360/85 in the first
paper to use the term cache in 1968. Since this early work, it has become clear that
caches are one of the most important ideas not only in computer architecture but
in software systems as well. The idea of caching has found applications in operating
systems, networking systems, databases, and compilers, to name a few. There are

 5.18 Historical Perspective and Further Reading 473.e7

thousands of papers on the topic of caching, and it continues to be a popular area
of research.

One of the first papers on nonblocking caches was by Kroft in 1981, who may
have coined the term. He later explained that he was the first to design a computer
with a cache at Control Data Corporation, and when using old concepts for new
mechanisms, he hit upon the idea of allowing his two-ported cache to continue to
service other accesses on a miss.

Multilevel caches were the inevitable resolution to the lack of improvement in
main memory latency and the higher clock rates of microprocessors. Only those in
the field for a while are surprised by the size of some second- or third-level caches, as
they are larger than main memories of past machines. The other surprise is that the
number of levels is continually increasing, even on a single-chip microprocessor.

Disk Storage
In 1956, IBM developed the first disk storage system with both moving heads
and multiple disk surfaces in San Jose, helping to seed the birth of the magnetic
storage industry in the southern end of Silicon Valley. Reynold B. Johnson led the
development of the IBM 305 RAMAC (Random Access Method of Accounting
and Control). It could store 5 million characters (5 MB) of data on 50 disks, each 24
inches in diameter. The RAMAC is shown in Figures e5.17.5 and e5.17.6. Although
the disk pioneers would be amazed at the size, cost, and capacity of modern disks,
the basic mechanical design is the same as the RAMAC.

Moving-head disks quickly became the dominant high-speed magnetic storage,
though their high cost meant that magnetic tape continued to be used extensively
until the 1970s. The next key milestone for hard disks was the removable hard
disk drive developed by IBM in 1962; this made it possible to share the expensive
drive electronics and helped disks overtake tapes as the preferred storage medium.
Figure e5.17.7 shows a removable disk drive and the multiplatter disk used in the
drive. IBM also invented the floppy disk drive in 1970, originally to hold microcode
for the IBM 370 series. Floppy disks became popular with the PC about 10 years
later.

The sealed Winchester disk, which was developed by IBM in 1973, completely
dominates disk technology today. Winchester disks benefited from two related
properties. First, reductions in the cost of the disk electronics made it unnecessary
to share the electronics and thus made nonremovable disks economical. Since the
disk was fixed and could be in a sealed enclosure, both the environmental and
control problems were greatly reduced, allowing significant gains in density. The
first disk that IBM shipped had two spindles, each with a 30 MB disk; the moniker
“30-30” for the disk led to the name Winchester. Winchester disks grew rapidly in
popularity in the 1980s, completely replacing removable disks by the middle of that
decade.

The historic role of IBM in the disk industry came to an end in 2002, when IBM
sold its disk storage division to Hitachi. IBM continues to make storage subsystems,
but it purchases its disk drives from others.

473.e8 5.18 Historical Perspective and Further Reading

FIGURE e5.17.5 A magnetic drum made by Digital Development Corporation in the 1960s
and used on a CDC machine. The electronics supporting the read/write heads can be seen on the outside
of the drum.

A Very Brief History of Flash Memory
Flash memory was invented by researchers at Toshiba in the 1980s. They invented
both the NOR-based Flash memory in 1984 and the denser NAND-based Flash
memory in 1989. The first use was in digital cameras, starting with the CompactFlash
form factor for NOR Flash memory and the SmartMedia form factor for NAND
Flash memory. Today, all digital cameras, cell phones, music players, and tablets
rely on Flash memory, and an increasing fraction of laptops use flash memory
instead of disk.

 5.18 Historical Perspective and Further Reading 473.e9

A Brief History of Databases
Although there had been data stores of punch cards and later magnetic tapes, the
emergence of the magnetic disk led to modern databases.

In 1961, Charles Bachman at General Electric created a pioneering database
management system called Integrated Data Store (IDS) to take advantage of the
new magnetic disks. In 1971, Bachman and others published standards on how
to manage databases using Cobol programs, named the Codasyl approach after

FIGURE e5.17.6 The RAMAC disk drive from IBM, made in 1956, was the first disk drive
with a moving head and the first with multiple platters. The IBM storage technology Web site has
a discussion of IBM’s major contributions to storage technology.

FIGURE e5.17.7 This is a DEC disk drive and the removable pack. These disks became popular
starting in the mid-1960s and dominated disk technology until Winchester drives in the late 1970s. This drive
was made in the mid-1970s; each disk pack in this drive could hold 80 MB.

473.e10 5.18 Historical Perspective and Further Reading

the standards committee on which they served. Many companies offered Codasyl-
compatible databases, but not IBM. IBM had introduced IMS in 1968, which was
derived from IBM’s work on the NASA Apollo project. Both Codasyl databases
and IMS are classified as navigational databases because programs had to navigate
through the data.

Ted Codd, a researcher at IBM, thought the navigational approach was wrong-
headed. He recalled that people didn’t write programs when dealing with the old
punch card databases. Instead, they set up data flows through series of punch card
machines that would perform simple functions like copy or sort. Once the card
machines were set up, you just pushed all the cards through to get your results.
In his view, users should only declare the type of data they were looking for and
leave it up to computers to process it. In 1970, he published a new way to organize
and access data called the relational model. It was based on set theory; data were
independent of the implementation and users described what they were looking
for in a declarative, nonprocedural language.

This paper led to considerable controversy within IBM, because it already had a
database product. Codd even arranged a public debate between him and Bachman,
which led to internal criticism at IBM that Codd was undermining IMS. The
good news was that the debate led researchers at IBM and U.C. Berkeley to try to
demonstrate the viability of relational databases by building System R and Ingres.

System R in 1974–79 demonstrated its feasibility and, perhaps more importantly,
created the Structured Query Language (SQL) that is still widely used today.
However, these results were not sufficient to convince IBM, and some of the
researchers left IBM to build relational databases for other companies.

Mike Stonebraker and Gene Wong were interested in geographic data systems,
and in 1973 they decided to pursue relational databases. Rather than build on IBM
mainframes, the Ingres project was built on DEC minicomputers and Unix. Ingres
was important because it led to a company that tried to commercialize the ideas,
because 1000 copies of its source code were openly distributed, and because it
trained a generation of database developers and researchers. The code and people
led to many other companies, including Sybase. Larry Ellison started Oracle by
first reading the papers from the System R and Ingres groups and then by hiring
people who worked on those projects. Microsoft later purchased a copy of Sybase
sources that became the foundation of its SQL Server product.

Relational databases matured in the 1980s, with IBM developing its own
relational databases, including DB2. The 1990s saw both the development of
object-oriented databases, to address the impedance mismatch between databases
and programming, and the evolution of parallel databases for analytic processing
and data mining.

ACM showered awards on this community. The ACM Turing Award went to
Charles Bachman in 1973 for his contributions via IDS and the Codasyl group.
Codd won it in 1980 for the relational model. In 1988, the developers of System
R (Donald Chamberlin, Jim Gray, Raymond Lorie, Gianfranco Putzolu, Patricia
Selinger, and Irving Traiger) shared the ACM Systems Software Award with the
developers of Ingres (Gerald Held, Michael Stonebraker, and Eugene Wong). Jim

 5.18 Historical Perspective and Further Reading 473.e11

Gray won the Turing Award in 1998 for his contributions to transaction processing
and databases. Stonebraker won it in 2014 for contributions to the concepts
and practices underlying modern database systems. Finally, the first two ACM
SIGMOD Innovations Awards went to Stonebraker and Gray, and the 2002 and
2003 editions went to Selinger and Chamberlin.

RAID
The small-form-factor hard disks for PCs in the mid-1980s led a group at Berkeley
to propose redundant arrays of inexpensive disks (RAID). This group had worked
on the reduced instruction set computer effort and so expected much faster
processors to become available. Their two questions were: What could be done
with the small disks that accompanied their PCs? What could be done in the area
of I/O to keep up with much faster processors? They argued to replace one large
mainframe drive with 50 small drives, as you could get much greater performance
with that many independent arms. The many small drives even offered savings in
power consumption and floor space.

The downside of many disks was much lower MTTF. Hence, on their own they
reasoned out the advantages of redundant disks and rotating parity to address how
to get greater performance with many small drives yet have reliability as high as
that of a single mainframe disk.

The problem they experienced when explaining their ideas was that some
researchers had heard of disk arrays with some form of redundancy, and they didn’t
understand the Berkeley proposal. Hence, the first RAID paper [Patterson, Gibson,
and Katz 1987] is not only a case for arrays of small-form-factor disk drives, but
also something of a tutorial and classification of existing work on disk arrays.
Mirroring (RAID 1) had long been used in fault-tolerant computers such as those
sold by Tandem. Thinking Machines had arrays with 32 data disks and seven check
disks using ECC for correction (RAID 2) in 1987, and Honeywell Bull had a RAID
2 product even earlier. Also, disk arrays with a single parity disk had been used in
scientific computers in the same time frame (RAID 3). Their paper then described
a single parity disk with support for sector accesses (RAID 4) and rotated parity
(RAID 5). Chen et al. [1994] survey the original RAID ideas, commercial products,
and other developments.

Unknown to the Berkeley group, engineers at IBM working on the AS/400
computer also came up with rotated parity to give greater reliability for a collection of
large disks. IBM filed a patent on RAID 5 shortly before the Berkeley group submitted
their paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate
the IBM RAID 5 patent, which has led to plenty of courtroom action.

EMC had been a supplier of DRAM boards for IBM computers, but around 1988
new policies from IBM made it nearly impossible for EMC to continue to sell IBM
memory boards. The Berkeley paper crossed the desks of EMC executives, and so
they decided to go after the market dominated by IBM disk storage products. As
the paper advocated, their model was to use many small drives to compete with
mainframe drives, and EMC announced a RAID product in 1990. It relied on

473.e12 5.18 Historical Perspective and Further Reading

mirroring (RAID 1) for reliability; RAID 5 products came much later for EMC.
Over the next year, Micropolis offered a RAID 3 product; Compaq offered a RAID
4 product; and Data General, IBM, and NCR offered RAID 5 products.

The RAID ideas soon spread to the rest of the workstation and server industry.
An article explaining RAID in Byte magazine led to RAID products being offered
on desktop PCs, which was something of a surprise to the Berkeley group. They
had focused on performance with good availability, but higher availability was
attractive to the PC market.

Another surprise was the cost of the disk arrays. With redundant power supplies
and fans, the ability to “hot-swap” a disk drive, the RAID hardware controller itself,
the redundant disks, and so on, the first disk arrays cost many times the cost of the
disks. Perhaps as a result, the “inexpensive” in RAID morphed into “independent.”
Many marketing departments and technical writers today know of RAID only as
“redundant arrays of independent disks.”

In 2004, more than 80% of the nondesktop drive sales were found in RAIDs. In
recognition of their role, in 1999 Garth Gibson, Randy Katz, and David Patterson
received the IEEE Reynold B. Johnson Information Storage Award “for the
development of Redundant Arrays of Inexpensive Disks (RAID).”

Protection Mechanisms
Architectural support for protection has varied greatly over the past 20 years. In early
computers, before virtual memory, protection was very simple at best. In the 1960s,
more sophisticated mechanisms that supported different protection levels (called
rings) were invented. In the late 1970s and early 1980s, very elaborate mechanisms
for protection were devised and later built; these mechanisms supported a variety
of powerful protection schemes that allowed controlled instances of sharing, in
such a way that a process could share data while controlling exactly what was done
to the data. The most powerful method, called capabilities, created a data object that
described the access rights to some portion of memory. These capabilities could
then be passed to other processes, thus granting access to the object described by the
capability. Supporting this sophisticated protection mechanism was both complex
and costly, because creation, copying, and manipulation of capabilities required
a combination of operating system and hardware support. Recent computers all
support a simpler protection scheme based on virtual memory, similar to that
discussed in Section 5.7. Given current concerns about computer security due to
the costs of worms and viruses, perhaps we will see a renaissance in protection
research, potentially renewing interest in 20-year-old publications.

As mentioned in the text, system virtual machines were pioneered at IBM as part
of its investigation into virtual memory. IBM’s first computer with virtual memory
was the IBM 360/67, introduced in 1967. IBM researchers wrote the program CP-
67, which created the illusion of several independent 360 computers. They then
wrote an interactive, single-user operating system called CMS that ran on these
virtual machines. CP-67 led to the product VM/370, and today IBM sells z/VM for
its mainframe computers.

 5.18 Historical Perspective and Further Reading 473.e13

A Brief History of Modern Operating Systems
MIT developed the first timesharing system, CTSS (Compatible Time-Sharing
System), in 1961. John McCarthy is generally given credit for the idea of timesharing,
but Fernando Corbato was the systems person who realized the concept in the
form of the CTSS. CTSS allowed three people to share a machine, and its response
time of minutes or seconds was a dramatic improvement over the batch processing
system it replaced. Moreover, it demonstrated the value of interactive computing.

Flush with the success of their first system, this group launched into their second
system, MULTICS (Multiplexed Information and Computing Service). They
included many innovations, such as strong protection, controlled sharing, and
dynamic libraries. However, it suffered from the “second system effect.” Fred Brooks,
Jr. described the second system effect in his classic book about lessons learned from
developing an operating system for the IBM mainframe, The Mythical Man Month:

When one is designing the successor to a relatively small, elegant, and successful
system, there is a tendency to become grandiose in one’s success and design an
elephantine feature-laden monstrosity.

MULTICS took sharing to a logical extreme to discover the issues, including that
it was too extreme. MIT, General Electric, and later Bell Labs all tried to build an
economical and useful system. Despite a great deal of time and money, they failed.

UC Berkeley was building its own timesharing system, Cal TSS. (“Cal” is a
nickname for University of California.) The people leading that project included
Peter Deutsch, Butler Lampson, Chuck Thacker, and Ken Thompson. They added
paging virtual memory hardware to an SDS 920 and wrote an operating system
for it. SDS sold this computer as the SDS-930, and it was the first commercially
available timesharing system to have operational hardware and software.
Thompson graduated and joined Bell Labs. The others founded Berkeley Computer
Corporation (BCC), with the goal of selling time-sharing hardware and software.
We’ll pick up BCC later in the story, but for now let’s follow Thompson.

At Bell Labs in 1971, Thompson led the development of a simple timesharing
system that had some of the good ideas of MULTICS but left out many of the
complex features. To demonstrate the contrast, it was first called UNICS. As they
were joined by others at Bell Labs who had been burned from the MULTICS
experience, it was renamed UNIX, with the x coming from Phoenix, the legendary
bird that rose from the ashes.

Their result was the most elegant operating system ever built. Forced to live in
the 16-bit address space of the DEC minicomputers, it had an amazing amount
of functionality per line of code. Major contributions were pipes, a uniform file
system, a uniform process model, and the shell user interface that allowed users to
connect programs together using pipes and files.

Dennis Ritchie joined the UNIX team in 1973 from MIT, where he had
experience in MULTICS, which was written in a high-level language. Like prior
operating systems, UNIX had been written in assembly language. Ritchie designed
a language for system implementation called C, and it was used to make UNIX
portable.

473.e14 5.18 Historical Perspective and Further Reading

Between 1971 and 1976, Bell released six editions of the UNIX timesharing
system. Thompson took a sabbatical at his alma mater and brought UNIX with
him. Berkeley and many other universities began to use UNIX on the popular
PDP-11 minicomputer.

When DEC announced the VAX, a 32-bit virtual address successor to the PDP-
11, the question arose as to what operating system should be run. UNIX became
the first operating system to be migrated to a different computer when it was ported
to the VAX.

Students at Berkeley had one of the first VAXes, and they were soon adding
features to UNIX for the VAX, such as paging and a very efficient implementation
of the TCP/IP protocol. The Berkeley implementation of TCP/IP was notable not
just because it was fast. It was essentially the only implementation of TCP/IP for
years, since early implementations in most other operating systems consisted of
copying the Berkeley code verbatim, with minimal changes to integrate into the
local system.

The Advanced Research Project Agency (ARPA), which funded computer
science research, asked a Stanford professor, Forrest Basket, to recommend which
system the academic community should use: the DEC operating system VMS,
led by David Cutler, or the Berkeley version of UNIX, led by a graduate student
named Bill Joy. He recommended the latter, and Berkeley UNIX soon became the
academic standard bearer.

The Berkeley Software Distribution (BSD) of UNIX, first released in 1978, was
essentially one of the first open source movements. The sources were shipped with
the tapes, and systems developers around the world learned their craft by studying
the UNIX code.

BSD was also the first split of UNIX, because AT&T Bell Labs continued to
develop UNIX on its own. This eventually led to a forest of UNIXes, as each
company compiled the UNIX source code for their architecture. Bill Joy graduated
from Berkeley and helped found Sun Microsystems, so naturally Sun OS was based
on BSD UNIX. Among the many UNIX flavors were Santa Cruz Operation UNIX,
HP-UX, and IBM’s AIX. AT&T and Sun attempted to unify UNIX by striking a
deal whereby AT&T and Sun would combine forces and jointly develop AT&T
UNIX. This led to an adverse reaction from HP, IBM, and others, because they
did not want a competitor supplying their code, so they created the Open Source
Foundation as a competing organization.

In addition to the UNIX variants from companies, public domain versions also
proliferated. The BSD team at Berkeley rewrote substantial portions of UNIX so
that they could distribute it without needing a license from AT&T. This eventually
led to a lawsuit, which Berkeley won. BSD UNIX soon split into FreeBSD, NetBSD,
and OpenBSD, provided by competing camps of developers. Apple’s current
operating system, OS X, is based on Free BSD.

Let’s go back to Berkeley Computer Corporation. Alas, this effort was not
commercially viable. About the same time as BCC was getting in trouble, Xerox hired
Robert Taylor to build the computer science division of the new Xerox Palo Alto

 5.18 Historical Perspective and Further Reading 473.e15

Research Center (PARC) in 1970. He had just returned from a tour of duty at ARPA,
where he had funded the Berkeley research. He recruited Deutsch, Lampson, and
Thacker from BCC to form the core of PARC’s team: 11 of the initial 20 employees
were from BCC, and they decided to build small computers for individuals rather
than large computers for groups. This first personal computer, called the Alto, was
built from the same technology as minicomputers, but it had a keyboard, mouse,
graphical display, and windows. It popularized windows and led to many inventions,
including client-server computing, the Ethernet, and print servers. It directly inspired
the Macintosh, which was the successor to the popular Apple II.

IBM had long been interested in selling to the home, so the success of the Apple
II led IBM to start a competing project. In contrast to its tradition, for this project
IBM designed everything from components outside of the company. They selected
the new 16-bit microprocessor from Intel, the 8086. (To lower costs, they started
with the version with the 8-bit bus, called the 8088.) They visited Microsoft to
see if this small company would be willing to sell their popular Basic interpreter
and asked for recommendations for an operating system. Gates volunteered that
Microsoft could deliver both an interpreter and an operating system, as long as they
were paid a royalty fee of between $10 and $50 for each copy rather than a flat fee.
IBM agreed, provided Microsoft could meet their deadlines. Microsoft didn’t have
an operating system, nor the time and resources to build one, but Gates knew that
a Seattle company had developed an operating system for the Intel 8086. Microsoft
purchased QDOS (Quick and Dirty Operating System) for $15,000, made a small
change and relabeled it MS-DOS. MS-DOS was a simple operating system without
any modern features—no protection, no processes, and no virtual memory—in
part because they believed it wasn’t necessary for a personal computer.

Announced in 1980, the IBM PC became a tremendous success for IBM and the
companies it relied upon. Microsoft sold 500,000 copies of MS-DOS by 1983, and
the $10 million income allowed Microsoft to start new software projects.

After seeing a version of the Macintosh under development, Microsoft hired
some people from PARC to lead its reply. The Macintosh was announced in
1984, and Windows was available on PCs the following year. It was originally
an application that ran on top of DOS, but was later integrated with DOS and
renamed Windows 2.0. Microsoft hired Cutler from DEC to lead the development
of Windows NT, a new operating system. NT was a modern operating system with
protection, processors, and so on and has much in common with DEC’s VMS.
Today’s PC operating systems are more sophisticated than any of the timesharing
systems of 20 years ago, yet they still suffer from the need to maintain compatibility
with the crippled first PC operating systems such as MS-DOS.

The popularity of the PC led to a desire for a UNIX that ran on it. Many tried
to develop one, but the most successful was written from scratch in 1991 by Linus
Torvalds. In addition to making the source code available, like BSD, he allowed
everyone to make changes and submit them for inclusion in his next release. Linux
popularized open source development as we know it today, with such software
getting hundreds of volunteers to test releases and add new features.

473.e16 5.18 Historical Perspective and Further Reading

Many people in this story won awards for their roles in the development of
modern operating systems. McCarthy received an ACM Turing Award in 1971 in
part for his contributions to timesharing. In 1983, Thompson and Ritchie received
one for UNIX. The announcement said that “the genius of the UNIX system is its
framework, which enables programmers to stand on the work of others.” In 1990,
Corbato received the Turing Award for his contributions to CTSS and MULTICS.
Two years later, Lampson won it in part for his work on personal computing and
operating systems.

Further Reading

Brooks, F. P. [1975]. The mythical man-month. Reading: Addison-Wesley.

The classic book that explains the challenge of software engineering using IBM OS development as the example.

Cantin, J. F. and M. D. Hill [2001]. “Cache performance for selected SPEC CPU2000 benchmarks”, SIGARCH
Computer Architecture News 29:4 þ (September), 13–18.

A reference paper of cache miss rates for many cache sizes for the SPEC2000 benchmarks.

Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson [1994]. “RAID: High-performance,
reliable secondary storage”, ACM Computing Surveys 26:2 (June) 145–88.

A tutorial covering disk arrays and the advantages of such an organization.

Conti, C., D. H. Gibson, and S. H. Pitowsky [1968]. “Structural aspects of the System/360 Model 85, part I:
General organization”, IBM Systems J. 7:1, 2–14.

A classic paper that describes the first commercial computer to use a cache and its resulting performance.

Hennessy, J. and D. Patterson [2003]. Chapter 5 in Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers, San Francisco.

For more in-depth coverage of a variety of topics including protection, cache performance of out-of-order
processors, virtually addressed caches, multilevel caches, compiler optimizations, additional latency tolerance
mechanisms, and cache coherency.

Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level storage system”, IRE
Transactions on Electronic Computers EC-11(April), 223–335. Also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell [1982], Computer Structures: Principles and Examples, McGraw-Hill, New York, 135–48.

This classic paper is the first proposal for virtual memory.

LaMarca, A. and R. E. Ladner [1996]. “The influence of caches on the performance of heaps”, ACM J. of
Experimental Algorithmics, Vol. 1.

This paper shows the difference between complexity analysis of an algorithm, instruction count performance,
and memory hierarchy for four sorting algorithms.

McCalpin, J.D. [1995]. “STREAM: Sustainable Memory Bandwidth in High Performance Computers”, https://
www.cs.virginia.edu/stream/.

A widely used microbenchmark that measures the performance of the memory system behind the caches.

Patterson, D., G. Gibson, and R. Katz [1988]. “A case for redundant arrays of inexpensive disks (RAID)”,
SIGMOD Conference, 109–116.

A classic paper that advocates arrays of smaller disks and introduces RAID levels.

http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref6
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref7

 5.18 Historical Perspective and Further Reading 473.e17

Przybylski, S. A. [1990]. Cache and Memory Hierarchy Design: A Performance-Directed Approach, Morgan
Kaufmann Publishers, San Francisco.

A thorough exploration of multilevel memory hierarchies and their performance.

Ritchie, D. [1984]. “The evolution of the UNIX time-sharing system”, AT&T Bell Laboratories Technical
Journal 1984, 1577–1593.

The history of UNIX from one of its inventors.

Ritchie, D. M. and K. Thompson [1978]. “The UNIX time-sharing system”, Bell System Technical Journal
(August), 1991–2019.

A paper describing the most elegant operating system ever invented.

Silberschatz, A., P. Galvin, and G. Grange [2003]. Operating System Concepts, sixth edition, Addison-Wesley,
Reading, MA.

An operating systems textbook with a thorough discussion of virtual memory, processes and process management,
and protection issues.

Smith, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.

The classic survey paper on caches. This paper defined the terminology for the field and has served as a reference
for many computer designers.

Smith, D. K. and R. C. Alexander [1988]. Fumbling the Future: How Xerox Invented, Then Ignored, the First
Personal Computer, Morrow, New York.

A popular book that explains the role of Xerox PARC in laying the foundation for today’s computing, but which
Xerox did not substantially benefit from.

Tanenbaum, A. [2001]. Modern Operating Systems, second edition, Upper Saddle River, Prentice Hall, NJ.

An operating system textbook with a good discussion of virtual memory.

Wilkes, M. [1965]. “Slave memories and dynamic storage allocation”, IEEE Trans. Electronic Computers
EC-14:2 (April), 270–71.

The first classic paper on caches.

http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00036-1/sbref15

474 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.1.4 [5] <§5.1> Which variable references exhibit temporal locality?

5.1.5 [5] <§5.1> Which variable references exhibit spatial locality?

5.1.6 [15] <§5.1> How many 16-byte cache blocks are needed to store all 64-bit
matrix elements being referenced using Matlab’s matrix storage? How many using
C’s matrix storage? (Assume each row contains more than one element.)

5.2 Caches are important to providing a high-performance memory hierarchy
to processors. Below is a list of 64-bit memory address references, given as word
addresses.

0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5,
0x2c, 0xba, 0xfd

5.2.1 [10] <§5.3> For each of these references, identify the binary word address,
the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also
list whether each reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary word address,
the tag, the index, and the offset given a direct-mapped cache with two-word blocks
and a total size of eight blocks. Also list if each reference is a hit or a miss, assuming
the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given
references. There are three direct-mapped cache designs possible, all with a total of
eight words of data:

■ C1 has 1-word blocks,

■ C2 has 2-word blocks, and

■ C3 has 4-word blocks.

5.3 By convention, a cache is named according to the amount of data it contains
(i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to
store metadata such as tags and valid bits. For this exercise, you will examine how
a cache’s configuration affects the total amount of SRAM needed to implement it as
well as the performance of the cache. For all parts, assume that the caches are byte
addressable, and that addresses and words are 64 bits.

5.3.1 [10] <§5.3> Calculate the total number of bits required to implement a 32
KiB cache with two-word blocks.

5.3.2 [10] <§5.3> Calculate the total number of bits required to implement a
64 KiB cache with 16-word blocks. How much bigger is this cache than the 32
KiB cache described in Exercise 5.3.1? (Notice that, by changing the block size, we
doubled the amount of data without doubling the total size of the cache.)

马德

 5.19 Exercises 475

5.3.3 [5] <§5.3> Explain why this 64 KiB cache, despite its larger data size, might
provide slower performance than the first cache.

5.3.4 [10] <§§5.3, 5.4> Generate a series of read requests that have a lower miss
rate on a 32 KiB two-way set associative cache than on the cache described in
Exercise 5.3.1.

5.4 [15] <§5.3> Section 5.3 shows the typical method to index a direct-mapped
cache, specifically (Block address) modulo (Number of blocks in the cache). Assuming
a 64-bit address and 1024 blocks in the cache, consider a different indexing function,
specifically (Block address[63:54] XOR Block address[53:44]). Is it possible to use
this to index a direct-mapped cache? If so, explain why and discuss any changes that
might need to be made to the cache. If it is not possible, explain why.

5.5 For a direct-mapped cache design with a 64-bit address, the following bits of
the address are used to access the cache.

Tag Index Offset

63–10 9–5 4–0

5.5.1 [5] <§5.3> What is the cache block size (in words)?

5.5.2 [5] <§5.3> How many blocks does the cache have?

5.5.3 [5] <§5.3> What is the ratio between total bits required for such a cache
implementation over the data storage bits?

Beginning from power on, the following byte-addressed cache references are
recorded.

Address

Hex 00 04 10 84 E8 A0 400 1E 8C C1C B4 884

Dec 0 4 16 132 232 160 1024 30 140 3100 180 2180

5.5.4 [20] <§5.3> For each reference, list (1) its tag, index, and offset, (2) whether
it is a hit or a miss, and (3) which bytes were replaced (if any).

5.5.5 [5] <§5.3> What is the hit ratio?

5.5.6 [5] <§5.3> List the final state of the cache, with each valid entry represented
as a record of <index, tag, data>. For example,

<0, 3, Mem[0xC00]-Mem[0xC1F]>

5.6 Recall that we have two write policies and two write allocation policies, and
their combinations can be implemented either in L1 or L2 cache. Assume the
following choices for L1 and L2 caches:

L1 L2

Write through, non-write allocate Write back, write allocate

马德

马德

马德

476 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.6.1 [5] <§§5.3, 5.8> Buffers are employed between different levels of memory
hierarchy to reduce access latency. For this given configuration, list the possible
buffers needed between L1 and L2 caches, as well as L2 cache and memory.

5.6.2 [20] <§§5.3, 5.8> Describe the procedure of handling an L1 write-miss,
considering the components involved and the possibility of replacing a dirty block.

5.6.3 [20] <§§5.3, 5.8> For a multilevel exclusive cache configuration (a block
can only reside in one of the L1 and L2 caches), describe the procedures of handling
an L1 write-miss and an L1 read-miss, considering the components involved and
the possibility of replacing a dirty block.

5.7 Consider the following program and cache behaviors.

Data Reads per
1000 Instructions

Data Writes per
1000 Instructions

Instruction Cache
Miss Rate

Data Cache
Miss Rate

Block Size
(bytes)

250 100 0.30% 2% 64

5.7.1 [10] <§§5.3, 5.8> Suppose a CPU with a write-through, write-allocate
cache achieves a CPI of 2. What are the read and write bandwidths (measured
by bytes per cycle) between RAM and the cache? (Assume each miss generates a
request for one block.)

5.7.2 [10] <§§5.3, 5.8> For a write-back, write-allocate cache, assuming 30%
of replaced data cache blocks are dirty, what are the read and write bandwidths
needed for a CPI of 2?

5.8 Media applications that play audio or video files are part of a class of workloads
called “streaming” workloads (i.e., they bring in large amounts of data but do not
reuse much of it). Consider a video streaming workload that accesses a 512 KiB
working set sequentially with the following word address stream:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . . .

5.8.1 [10] <§§5.4, 5.8> Assume a 64 KiB direct-mapped cache with a 32-byte
block. What is the miss rate for the address stream above? How is this miss rate
sensitive to the size of the cache or the working set? How would you categorize the
misses this workload is experiencing, based on the 3C model?

5.8.2 [5] <§§5.1, 5.8> Re-compute the miss rate when the cache block size is 16
bytes, 64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.8.3 [10] <§5.13> “Prefetching” is a technique that leverages predictable address
patterns to speculatively bring in additional cache blocks when a particular cache
block is accessed. One example of prefetching is a stream buffer that prefetches
sequentially adjacent cache blocks into a separate buffer when a particular cache
block is brought in. If the data are found in the prefetch buffer, it is considered

 5.19 Exercises 477

as a hit, moved into the cache, and the next cache block is prefetched. Assume
a two-entry stream buffer; and, assume that the cache latency is such that a
cache block can be loaded before the computation on the previous cache block is
completed. What is the miss rate for the address stream above?

5.9 Cache block size (B) can affect both miss rate and miss latency. Assuming a
machine with a base CPI of 1, and an average of 1.35 references (both instruction
and data) per instruction, find the block size that minimizes the total miss latency
given the following miss rates for various block sizes.

8: 4% 16: 3% 32: 2% 64: 1.5% 128: 1%

5.9.1 [10] <§5.3> What is the optimal block size for a miss latency of 20 × B
cycles?

5.9.2 [10] <§5.3> What is the optimal block size for a miss latency of 24 + B
cycles?

5.9.3 [10] <§5.3> For constant miss latency, what is the optimal block size?

5.10 In this exercise, we will look at the different ways capacity affects overall
performance. In general, cache access time is proportional to capacity. Assume
that main memory accesses take 70 ns and that 36% of all instructions access data
memory. The following table shows data for L1 caches attached to each of two
processors, P1 and P2.

L1 Size L1 Miss Rate L1 Hit Time

P1 2 KiB 8.0% 0.66 ns

P2 4 KiB 6.0% 0.90 ns

5.10.1 [5] <§5.4> Assuming that the L1 hit time determines the cycle times for
P1 and P2, what are their respective clock rates?

5.10.2 [10] <§5.4> What is the Average Memory Access Time for P1 and P2 (in
cycles)?

5.10.3 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is
the total CPI for P1 and P2? Which processor is faster? (When we say a “base CPI of
1.0”, we mean that instructions complete in one cycle, unless either the instruction
access or the data access causes a cache miss.)

For the next three problems, we will consider the addition of an L2 cache to P1 (to
presumably make up for its limited L1 cache capacity). Use the L1 cache capacities
and hit times from the previous table when solving these problems. The L2 miss
rate indicated is its local miss rate.

L2 Size L2 Miss Rate L2 Hit Time

1 MiB 95% 5.62 ns

马德

478 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.10.4 [10] <§5.4> What is the AMAT for P1 with the addition of an L2 cache?
Is the AMAT better or worse with the L2 cache?

5.10.5 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what
is the total CPI for P1 with the addition of an L2 cache?

5.10.6 [10] <§5.4> What would the L2 miss rate need to be in order for P1 with
an L2 cache to be faster than P1 without an L2 cache?

5.10.7 [15] <§5.4> What would the L2 miss rate need to be in order for P1 with
an L2 cache to be faster than P2 without an L2 cache?

5.11 This exercise examines the effect of different cache designs, specifically
comparing associative caches to the direct-mapped caches from Section 5.4. For
these exercises, refer to the sequence of word address shown below.

0x03, 0xb4, 0x2b, 0x02, 0xbe, 0x58, 0xbf, 0x0e, 0x1f,
0xb5, 0xbf, 0xba, 0x2e, 0xce

5.11.1 [10] <§5.4> Sketch the organization of a three-way set associative cache
with two-word blocks and a total size of 48 words. Your sketch should have a style
similar to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.2 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.1. Assume
a true LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset

■ whether the reference is a hit or a miss, and

■ which tags are in each way of the cache after the reference has been handled.

5.11.3 [5] <§5.4> Sketch the organization of a fully associative cache with one-
word blocks and a total size of eight words. Your sketch should have a style similar
to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.4 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.3. Assume
a true LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset,

马德

 5.19 Exercises 479

■ whether the reference is a hit or a miss, and

■ the contents of the cache after each reference has been handled.

5.11.5 [5] <§5.4> Sketch the organization of a fully associative cache with two-
word blocks and a total size of eight words. Your sketch should have a style similar
to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.6 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.5. Assume
an LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset,

■ whether the reference is a hit or a miss, and

■ the contents of the cache after each reference has been handled.

5.11.7 [10] <§5.4> Repeat Exercise 5.11.6 using MRU (most recently used)
replacement.

5.11.8 [15] <§5.4> Repeat Exercise 5.11.6 using the optimal replacement policy
(i.e., the one that gives the lowest miss rate).

5.12 Multilevel caching is an important technique to overcome the limited
amount of space that a first-level cache can provide while still maintaining its
speed. Consider a processor with the following parameters:

B
as

e
 C

P
I,

N
o

 M
e

m
o

ry

S
ta

ll
s

P
ro

ce
ss

o
r

S
pe

e
d

M
ai

n
M

e
m

o
ry

 A
cc

e
ss

Ti

m
e

Fi
rs

t-
Le

ve
l
C

ac
he

 M
is

s
R

at
e

 p
e

r
In

st
ru

ct
io

n*
*

S
e

co
nd

-L
ev

e
l
C

ac
he

,
D

ir
e

ct
-M

ap
pe

d
S

pe
e

d

M
is

s
R

at
e

 w
it

h
S

e
co

nd
-

Le
ve

l
C

ac
he

, D
ir

e
ct

-
M

ap
pe

d

S
e

co
nd

-L
ev

e
l
C

ac
he

,
E

ig
ht

-W
ay

 S
e

t
A

ss
o

ci
at

iv
e

 S
pe

e
d

M
is

s
R

at
e

 w
it

h
S

e
co

nd
-

Le
ve

l
C

ac
he

, E
ig

ht
-W

ay

S
e

t
A

ss
o

ci
at

iv
e

1.5 2 GHz 100 ns 7% 12 cycles 3.5% 28 cycles 1.5%

**First Level Cache miss rate is per instruction. Assume the total number of L1 cache misses
(instruction and data combined) is equal to 7% of the number of instructions.

5.12.1 [10] <§5.4> Calculate the CPI for the processor in the table using: 1) only
a first-level cache, 2) a second-level direct-mapped cache, and 3) a second-level
eight-way set associative cache. How do these numbers change if main memory access
time doubles? (Give each change as both an absolute CPI and a percent change.)
Notice the extent to which an L2 cache can hide the effects of a slow memory.

480 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.12.2 [10] <§5.4> It is possible to have an even greater cache hierarchy than
two levels? Given the processor above with a second-level, direct-mapped cache, a
designer wants to add a third-level cache that takes 50 cycles to access and will have
a 13% miss rate. Would this provide better performance? In general, what are the
advantages and disadvantages of adding a third-level cache?

5.12.3 [20] <§5.4> In older processors, such as the Intel Pentium or Alpha
21264, the second level of cache was external (located on a different chip) from the
main processor and the first-level cache. While this allowed for large second-level
caches, the latency to access the cache was much higher, and the bandwidth was
typically lower because the second-level cache ran at a lower frequency. Assume a
512 KiB off-chip second-level cache has a miss rate of 4%. If each additional 512
KiB of cache lowered miss rates by 0.7%, and the cache had a total access time of
50 cycles, how big would the cache have to be to match the performance of the
second-level direct-mapped cache listed above?

5.13 Mean time between failures (MTBF), mean time to replacement (MTTR),
and mean time to failure (MTTF) are useful metrics for evaluating the reliability
and availability of a storage resource. Explore these concepts by answering the
questions about a device with the following metrics:

MTTF MTTR

3 Years 1 Day

5.13.1 [5] <§5.5> Calculate the MTBF for such a device.

5.13.2 [5] <§5.5> Calculate the availability for such a device.

5.13.3 [5] <§5.5> What happens to availability as the MTTR approaches 0? Is
this a realistic situation?

5.13.4 [5] <§5.5> What happens to availability as the MTTR gets very high, i.e.,
a device is difficult to repair? Does this imply the device has low availability?

5.14 This exercise examines the single error correcting, double error detecting
(SEC/DED) Hamming code.

5.14.1 [5] <§5.5> What is the minimum number of parity bits required to protect
a 128-bit word using the SEC/DED code?

5.14.2 [5] <§5.5> Section 5.5 states that modern server memory modules
(DIMMs) employ SEC/DED ECC to protect each 64 bits with 8 parity bits.
Compute the cost/performance ratio of this code to the code from Exercise 5.14.1.
In this case, cost is the relative number of parity bits needed while performance is
the relative number of errors that can be corrected. Which is better?

5.14.3 [5] <§5.5> Consider a SEC code that protects 8 bit words with 4 parity
bits. If we read the value 0x375, is there an error? If so, correct the error.

 5.19 Exercises 481

5.15 For a high-performance system such as a B-tree index for a database, the
page size is determined mainly by the data size and disk performance. Assume
that, on average, a B-tree index page is 70% full with fix-sized entries. The utility
of a page is its B-tree depth, calculated as log2(entries). The following table shows
that for 16-byte entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s
transfer rate, the optimal page size is 16 K.

Page Size (KiB)

Page Utility or B-Tree Depth
(Number of Disk Accesses

Saved)

Index Page
Access Cost

(ms) Utility/Cost

2 6.49 (or log2(2048/16 × 0.7)) 10.2 0.64

4 7.49 10.4 0.72

8 8.49 10.8 0.79

16 9.49 11.6 0.82

32 10.49 13.2 0.79

64 11.49 16.4 0.70

128 12.49 22.8 0.55

256 13.49 35.6 0.38

5.15.1 [10] <§5.7> What is the best page size if entries now become 128 bytes?

5.15.2 [10] <§5.7> Based on Exercise 5.15.1, what is the best page size if pages
are half full?

5.15.3 [20] <§5.7> Based on Exercise 5.15.2, what is the best page size if using
a modern disk with a 3 ms latency and 100 MB/s transfer rate? Explain why future
servers are likely to have larger pages.

Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but
how do we determine the exact meaning of “frequently used” for a given system?
Data engineers use the cost ratio between DRAM and disk access to quantify the
reuse time threshold for hot pages. The cost of a disk access is $Disk/accesses_per_
sec, while the cost to keep a page in DRAM is $DRAM_MiB/page_size. The typical
DRAM and disk costs and typical database page sizes at several time points are
listed below:

Year
DRAM Cost

($/MiB)
Page Size

(KiB)
Disk Cost
($/disk)

Disk Access Rate
(access/sec)

1987 5000 1 15,000 15

1997 15 8 2000 64

2007 0.05 64 80 83

5.15.4 [20] <§5.7> What other factors can be changed to keep using the same
page size (thus avoiding software rewrite)? Discuss their likeliness with current
technology and cost trends.

5.16 As described in Section 5.7, virtual memory uses a page table to track the
mapping of virtual addresses to physical addresses. This exercise shows how this

马德

482 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

table must be updated as addresses are accessed. The following data constitute a
stream of virtual byte addresses as seen on a system. Assume 4 KiB pages, a four-
entry fully associative TLB, and true LRU replacement. If pages must be brought in
from disk, increment the next largest page number.

Decimal 4669 2227 13916 34587 48870 12608 49225
hex 0x123d 0x08b3 0x365c 0x871b 0xbee6 0x3140 0xc049

TLB

Valid Tag
Physical Page

Number
Time Since Last

Access

1 0xb 12 4

1 0x7 4 1

1 0x3 6 3

0 0x4 9 7

Page table

Index Valid Physical Page or in Disk

0 1 5

1 0 Disk

2 0 Disk

3 1 6

4 1 9

5 1 11

6 0 Disk

7 1 4

8 0 Disk

9 0 Disk

a 1 3

b 1 12

5.16.1 [10] <§5.7> For each access shown above, list

■ whether the access is a hit or miss in the TLB,

■ whether the access is a hit or miss in the page table,

■ whether the access is a page fault,

■ the updated state of the TLB.

5.16.2 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 16 KiB pages instead
of 4 KiB pages. What would be some of the advantages of having a larger page size?
What are some of the disadvantages?

5.16.3 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 4 KiB pages and a
two-way set associative TLB.

 5.19 Exercises 483

5.16.4 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 4 KiB pages and a
direct mapped TLB.

5.16.5 [10] <§§5.4, 5.7> Discuss why a CPU must have a TLB for high
performance. How would virtual memory accesses be handled if there were no
TLB?

5.17 There are several parameters that affect the overall size of the page table.
Listed below are key page table parameters.

Virtual Address Size Page Size Page Table Entry Size

32 bits 8 KiB 4 bytes

5.17.1 [5] <§5.7> Given the parameters shown above, calculate the maximum
possible page table size for a system running five processes.

5.17.2 [10] <§5.7> Given the parameters shown above, calculate the total page
table size for a system running five applications that each utilize half of the virtual
memory available, given a two-level page table approach with up to 256 entries
at the 1st level. Assume each entry of the main page table is 6 bytes. Calculate the
minimum and maximum amount of memory required for this page table.

5.17.3 [10] <§5.7> A cache designer wants to increase the size of a 4 KiB virtually
indexed, physically tagged cache. Given the page size shown above, is it possible to
make a 16 KiB direct-mapped cache, assuming two 64-bit words per block? How
would the designer increase the data size of the cache?

5.18 In this exercise, we will examine space/time optimizations for page tables.
The following list provides parameters of a virtual memory system.

Virtual Address (bits)
Physical DRAM

Installed Page Size PTE Size (byte)

43 16 GiB 4 KiB 4

5.18.1 [10] <§5.7> For a single-level page table, how many page table entries
(PTEs) are needed? How much physical memory is needed for storing the page
table?

5.18.2 [10] <§5.7> Using a multi-level page table can reduce the physical memory
consumption of page tables by only keeping active PTEs in physical memory. How
many levels of page tables will be needed if the segment tables (the upper-level
page tables) are allowed to be of unlimited size? How many memory references are
needed for address translation if missing in TLB?

5.18.3 [10] <§5.7> Suppose the segments are limited to the 4 KiB page size (so
that they can be paged). Is 4 bytes large enough for all page table entries (including
those in the segment tables?

马德

484 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.18.4 [10] <§5.7> How many levels of page tables are needed if the segments are
limited to the 4 KiB page size?

5.18.5 [15] <§5.7> An inverted page table can be used to further optimize space
and time. How many PTEs are needed to store the page table? Assuming a hash
table implementation, what are the common case and worst case numbers of
memory references needed for servicing a TLB miss?

5.19 The following table shows the contents of a four-entry TLB.

Entry-ID Valid VA Page Modified Protection PA Page

1 1 140 1 RW 30

2 0 40 0 RX 34

3 1 200 1 RO 32

4 1 280 0 RW 31

5.19.1 [5] <§5.7> Under what scenarios would entry 3’s valid bit be set to zero?

5.19.2 [5] <§5.7> What happens when an instruction writes to VA page 30?
When would a software managed TLB be faster than a hardware managed TLB?

5.19.3 [5] <§5.7> What happens when an instruction writes to VA page 200?

5.20 In this exercise, we will examine how replacement policies affect miss rate.
Assume a two-way set associative cache with four one-word blocks. Consider the
following word address sequence: 0, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0.

Consider the following address sequence: 0, 2, 4, 8, 10, 12, 14, 16, 0

5.20.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, which accesses
are hits?

5.20.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement
policy, which accesses are hits?

5.20.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by flipping a coin.
For example, “heads” means to evict the first block in a set and “tails” means to
evict the second block in a set. How many hits does this address sequence exhibit?

5.20.4 [10] <§§5.4, 5.8> Describe an optimal replacement policy for this
sequence. Which accesses are hits using this policy?

5.20.5 [10] <§§5.4, 5.8> Describe why it is difficult to implement a cache
replacement policy that is optimal for all address sequences.

5.20.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory
reference whether or not you want the requested address to be cached. What effect
could this have on miss rate?

马德

 5.19 Exercises 485

5.21 One of the biggest impediments to widespread use of virtual machines is the
performance overhead incurred by running a virtual machine. Listed below are
various performance parameters and application behavior.

Base CPI

Privileged
O/S

accesses
per 10,000

instructions

Overhead to
trap to the
guest O/S

Overhead to
trap to VMM

I/O access
per 10,000

instructions

I/O access time
(includes time

to trap to guest
O/S)

1.5 120 15 cycles 175 cycles 30 1100 cycles

5.21.1 [10] <§5.6> Calculate the CPI for the system listed above assuming that
there are no accesses to I/O. What is the CPI if the VMM overhead doubles? If it is
cut in half? If a virtual machine software company wishes to limit the performance
degradation to 10%, what is the longest possible penalty to trap to the VMM?

5.21.2 [15] <§5.6> I/O accesses often have a large effect on overall system
performance. Calculate the CPI of a machine using the performance characteristics
above, assuming a non-virtualized system. Calculate the CPI again, this time using
a virtualized system. How do these CPIs change if the system has half the I/O
accesses?

5.22 [15] <§§5.6, 5.7> Compare and contrast the ideas of virtual memory and
virtual machines. How do the goals of each compare? What are the pros and cons
of each? List a few cases where virtual memory is desired, and a few cases where
virtual machines are desired.

5.23 [10] <§5.6> Section 5.6 discusses virtualization under the assumption that
the virtualized system is running the same ISA as the underlying hardware. However,
one possible use of virtualization is to emulate non-native ISAs. An example of this
is QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC.
What are some of the difficulties involved in this kind of virtualization? Is it possible
for an emulated system to run faster than on its native ISA?

5.24 In this exercise, we will explore the control unit for a cache controller for a
processor with a write buffer. Use the finite state machine found in Figure 5.39 as a
starting point for designing your own finite state machines. Assume that the cache
controller is for the simple direct-mapped cache described on page 453 (Figure
5.39 in Section 5.9), but you will add a write buffer with a capacity of one block.

Recall that the purpose of a write buffer is to serve as temporary storage so that
the processor doesn’t have to wait for two memory accesses on a dirty miss. Rather
than writing back the dirty block before reading the new block, it buffers the dirty
block and immediately begins reading the new block. The dirty block can then be
written to main memory while the processor is working.

486 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.24.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request
that hits in the cache while a block is being written back to main memory from the
write buffer?

5.24.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request
that misses in the cache while a block is being written back to main memory from
the write buffer?

5.24.3 [30] <§§5.8, 5.9> Design a finite state machine to enable the use of a write
buffer.

5.25 Cache coherence concerns the views of multiple processors on a given cache
block. The following data show two processors and their read/write operations on
two different words of a cache block X (initially X[0] = X[1] = 0).

P1 P2

X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

5.25.1 [15] <§5.10> List the possible values of the given cache block for a correct
cache coherence protocol implementation. List at least one more possible value of
the block if the protocol doesn’t ensure cache coherency.

5.25.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on
each processor/cache to finish the above read/write operations.

5.25.3 [10] <§5.10> What are the best-case and worst-case numbers of cache
misses needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. The following data
show two processors and their read/write operations on different cache blocks (A
and B initially 0).

P1 P2

A = 1; B = 2; A+=2; B++; C = B; D = A;

5.25.4 [15] <§5.10> List the possible values of C and D for all implementations
that ensure both consistency assumptions on page 455.

5.25.5 [15] <§5.10> List at least one more possible pair of values for C and D if
such assumptions are not maintained.

5.25.6 [15] <§§5.3, 5.10> For various combinations of write policies and write
allocation policies, which combinations make the protocol implementation
simpler?

5.26 Chip multiprocessors (CMPs) have multiple cores and their caches on a
single chip. CMP on-chip L2 cache design has interesting trade-offs. The following

 5.19 Exercises 487

table shows the miss rates and hit latencies for two benchmarks with private vs.
shared L2 cache designs. Assume the L1 cache has a 3% miss rate and a 1-cycle
access time.

Private Shared

Benchmark A miss rate 10% 4%

Benchmark B miss rate 2% 1%

Assume the following hit latencies:

Private Cache Shared Cache Memory

5 20 180

5.26.1 [15] <§5.13> Which cache design is better for each of these benchmarks?
Use data to support your conclusion.

5.26.2 [15] <§5.13> Off-chip bandwidth becomes the bottleneck as the number
of CMP cores increases. How does this bottleneck affect private and shared cache
systems differently? Choose the best design if the latency of the first off-chip link
doubles.

5.26.3 [10] <§5.13> Discuss the pros and cons of shared vs. private L2 caches
for both single-threaded, multi-threaded, and multiprogrammed workloads, and
reconsider them if having on-chip L3 caches.

5.26.4 [10] <§5.13> Would a non-blocking L2 cache produce more improvement
on a CMP with a shared L2 cache or a private L2 cache? Why?

5.26.5 [10] <§5.13> Assume new generations of processors double the number
of cores every 18 months. To maintain the same level of per-core performance,
how much more off-chip memory bandwidth is needed for a processor released in
three years?

5.26.6 [15] <§5.13> Consider the entire memory hierarchy. What kinds of
optimizations can improve the number of concurrent misses?

5.27 In this exercise we show the definition of a web server log and examine code
optimizations to improve log processing speed. The data structure for the log is
defined as follows:

struct entry {
 int srcIP; // remote IP address
 char URL[128]; // request URL (e.g., “GET index.html”)
 long long refTime; // reference time
 int status; // connection status
 char browser[64]; // client browser name
} log [NUM_ENTRIES];

488 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Assume the following processing function for the log:

topK_sourceIP (int hour);

This function determines the most frequently observed source IPs during the given
hour.

5.27.1 [5] <§5.15> Which fields in a log entry will be accessed for the given
log processing function? Assuming 64-byte cache blocks and no prefetching, how
many cache misses per entry does the given function incur on average?

5.27.2 [5] <§5.15> How can you reorganize the data structure to improve cache
utilization and access locality?

5.27.3 [10] <§5.15> Give an example of another log processing function that
would prefer a different data structure layout. If both functions are important, how
would you rewrite the program to improve the overall performance? Supplement
the discussion with code snippet and data.

5.28 For the problems below, use data from “Cache Performance for SPEC
CPU2000 Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-
data/) for the pairs of benchmarks shown in the following table.

a. Mesa/gcc
b. mcf/swim

5.28.1 [10] <§5.15> For 64 KiB data caches with varying set associativities, what
are the miss rates broken down by miss types (cold, capacity, and conflict misses)
for each benchmark?

5.28.2 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data
cache shared by both benchmarks. If the L1 cache has to be directly mapped, select
the set associativity for the 1 MiB L2 cache.

5.28.3 [20] <§5.15> Give an example in the miss rate table where higher set
associativity actually increases miss rate. Construct a cache configuration and
reference stream to demonstrate this.

5.29 To support multiple virtual machines, two levels of memory virtualization
are needed. Each virtual machine still controls the mapping of virtual address
(VA) to physical address (PA), while the hypervisor maps the physical address (PA)
of each virtual machine to the actual machine address (MA). To accelerate such
mappings, a software approach called “shadow paging” duplicates each virtual
machine’s page tables in the hypervisor, and intercepts VA to PA mapping changes
to keep both copies consistent. To remove the complexity of shadow page tables, a

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/

 5.19 Exercises 489

hardware approach called nested page table (NPT) explicitly supports two classes of
page tables (VA⇒PA and PA⇒MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss;
(3) page fault; (4) context switch;

5.29.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence
for shadow page table and nested page table, respectively?

5.29.2 [10] <§§5.6, 5.7> Assuming an x86-based four-level page table in both
guest and nested page table, how many memory references are needed to service a
TLB miss for native vs. nested page table?

5.29.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate,
and page fault handler latency, which metrics are more important for shadow page
table? Which are important for nested page table?

Assume the following parameters for a shadow paging system.

TLB Misses per 1000
Instructions

NPT TLB Miss
Latency

Page Faults per 1000
Instructions

Shadowing Page
Fault Overhead

0.2 200 cycles 0.001 30,000 cycles

5.29.4 [10] <§5.6> For a benchmark with native execution CPI of 1, what are
the CPI numbers if using shadow page tables vs. NPT (assuming only page table
virtualization overhead)?

5.29.5 [10] <§5.6> What techniques can be used to reduce page table shadowing
induced overhead?

5.29.6 [10] <§5.6> What techniques can be used to reduce NPT induced
overhead?

§5.1, page 369: 1 and 4. (3 is false because the cost of the memory hierarchy varies
per computer, but in 2016 the highest cost is usually the DRAM.)
§5.3, page 390: 1 and 4: A lower miss penalty can enable smaller blocks, since you
don’t have that much latency to amortize, yet higher memory bandwidth usually
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 409: 1.
§5.8, page 449: 2. (Both large block sizes and prefetching may reduce compulsory
misses, so 1 is false.)

Answers to
Check Yourself

Parallel Processors
from Client to Cloud
6.1 Introduction 492
6.2 The Difficulty of Creating Parallel

Processing Programs 494
6.3 SISD, MIMD, SIMD, SPMD, and Vector 499
6.4 Hardware Multithreading 506
6.5 Multicore and Other Shared Memory

Multiprocessors 509
6.6 Introduction to Graphics Processing

Units 514

6
“I swing big, with
everything I’ve got.
I hit big or I miss big.
I like to live as big as
I can.”
Babe Ruth
American baseball player

Computer Organization and Design. DOI:
© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812275-4.00006-3
2018

6.7 Clusters, Warehouse Scale Computers, and Other

Message-Passing Multiprocessors 521
6.8 Introduction to Multiprocessor Network Topologies 526
6.9 Communicating to the Outside World: Cluster Networking 529
6.10 Multiprocessor Benchmarks and Performance Models 530
6.11 Real Stuff: Benchmarking and Rooflines of the Intel

Core i7 960 and the NVIDIA Tesla GPU 540
6.12 Going Faster: Multiple Processors and Matrix Multiply 545
6.13 Fallacies and Pitfalls 548
6.14 Concluding Remarks 550
6.15 Historical Perspective and Further Reading 553
6.16 Exercises 553

Multiprocessor or Cluster Organization

Computer

Computer

Computer

Computer

Network

492 Chapter 6 Parallel Processors from Client to Cloud

 6.1 Introduction

Computer architects have long sought the “The City of Gold” (El Dorado) of
computer design: to create powerful computers simply by connecting many existing
smaller ones. This golden vision is the fountainhead of multiprocessors. Ideally,
customers order as many processors as they can afford and receive a commensurate
amount of performance. Thus, multiprocessor software must be designed to work
with a variable number of processors. As mentioned in Chapter 1, energy has
become the overriding issue for both microprocessors and datacenters. Replacing
large inefficient processors with many smaller, efficient processors can deliver
better performance per joule both in the large and in the small, if software
can efficiently use them. Therefore, improved energy efficiency joins scalable
performance in the case for multiprocessors.

Since multiprocessor software should scale, some designs support operation
in the presence of broken hardware; that is, if a single processor fails in a
multiprocessor with n processors, these systems would continue to provide service
with n – 1 processors. Hence, multiprocessors can also improve availability (see
Chapter 5).

High performance can mean greater throughput for independent tasks, called
task-level parallelism or process-level parallelism. These tasks are independent
single-threaded applications, and they are an important and popular use of
multiple processors. This approach contrasts with running a single job on multiple
processors. We use the term parallel processing program to refer to a single
program that runs on multiple processors simultaneously.

There have long been scientific problems that have needed much faster
computers, and this class of problems has been used to justify many novel parallel
computers over the decades. Some of these problems can be handled simply today,
using a cluster composed of microprocessors housed in many independent servers
(see Section 6.7). In addition, clusters can serve equally demanding applications
outside the sciences, such as search engines, Web servers, email servers, and
databases.

As described in Chapter 1, multiprocessors have been shoved into the spotlight
because the energy problem means that future increases in performance will
primarily come from explicit hardware parallelism rather than much higher
clock rates or vastly improved CPI. As we said in Chapter 1, they are called

multiprocessor
A computer system with at
least two processors. This
computer is in contrast to
a uniprocessor, which has
one, and is increasingly
hard to find today.

task-level parallelism
or process-level
parallelism Utilizing
multiple processors by
running independent
programs simultaneously.

parallel processing
program A single
program that runs on
multiple processors
simultaneously.

cluster A set of
computers connected over
a local area network that
function as a single large
multiprocessor.

Over the Mountains Of
the Moon, Down the
Valley of the Shadow,
Ride, boldly ride the
shade replied—If you
seek for El Dorado!
Edgar Allan Poe,
“El Dorado,”
stanza 4, 1849

 6.1 Introduction 493

multicore microprocessors instead of multiprocessor microprocessors,
presumably to avoid redundancy in naming. Hence, processors are often called
cores in a multicore chip. The number of cores is expected to increase with
Moore’s Law. These multicores are almost always Shared Memory Processors
(SMPs), as they usually share a single physical address space. We’ll see SMPs
more in Section 6.5.

The state of technology today means that programmers who care about
performance must become parallel programmers, for sequential code now means
slow code.

The tall challenge facing the industry is to create hardware and software that
will make it easy to write correct parallel processing programs that will execute
efficiently in performance and energy as the number of cores per chip scales.

This abrupt shift in microprocessor design caught many off guard, so there is a
great deal of confusion about the terminology and what it means. Figure 6.1 tries to
clarify the terms serial, parallel, sequential, and concurrent. The columns of this figure
represent the software, which is either inherently sequential or concurrent. The rows
of the figure represent the hardware, which is either serial or parallel. For example, the
programmers of compilers think of them as sequential programs: the steps include
parsing, code generation, optimization, and so on. In contrast, the programmers
of operating systems normally think of them as concurrent programs: cooperating
processes handling I/O events due to independent jobs running on a computer.

The point of these two axes of Figure 6.1 is that concurrent software can run on
serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor,
or on parallel hardware, such as an OS on the more recent Intel Core i7. The same
is true for sequential software. For example, the MATLAB programmer writes
a matrix multiply thinking about it sequentially, but it could run serially on the
Pentium 4 or in parallel on the Intel Core i7.

You might guess that the only challenge of the parallel revolution is figuring out how
to make naturally sequential software have high performance on parallel hardware, but
it is also to make concurrent programs have high performance on multiprocessors
as the number of processors increases. With this distinction made, in the rest of this
chapter we will use parallel processing program or parallel software to mean either
sequential or concurrent software running on parallel hardware. The next section of
this chapter describes why it is hard to create efficient parallel processing programs.

multicore
microprocessor
A microprocessor
containing multiple
processors (“cores”)
in a single integrated
circuit. Virtually all
microprocessors today in
desktops and servers are
multicore.

shared memory
multiprocessor
(SMP) A parallel
processor with a single
physical address space.

Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in MatLab
running on an Intel Pentium 4

Windows Vista Operating System
running on an Intel Pentium 4

Parallel
Matrix Multiply written in MATLAB
running on an Intel Core i7

Windows Vista Operating System
running on an Intel Core i7

FIGURE 6.1 Hardware/software categorization and examples of application perspective
on concurrency versus hardware perspective on parallelism.

494 Chapter 6 Parallel Processors from Client to Cloud

Before proceeding further down the path to parallelism, don’t forget our initial
incursions from the earlier chapters:

n	 Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

n	 Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword
Parallelism

n	 Chapter 4, Section 4.10: Parallelism via Instructions

n	 Chapter 5, Section 5.10: Parallelism and Memory Hierarchy: Cache
Coherence

True or false: To benefit from a multiprocessor, an application must be concurrent.

 6.2 The Difficulty of Creating Parallel
Processing Programs

The difficulty with parallelism is not the hardware; it is that too few important
application programs have been rewritten to complete tasks sooner on
multiprocessors. It is difficult to write software that uses multiple processors to
complete one task faster, and the problem gets worse as the number of processors
increases.

Why has this been so? Why have parallel processing programs been so much
harder to develop than sequential programs?

The first reason is that you must get better performance or better energy
efficiency from a parallel processing program on a multiprocessor; otherwise, you
would just use a sequential program on a uniprocessor, as sequential programming
is simpler. In fact, uniprocessor design techniques, such as superscalar and out-of-
order execution, take advantage of instruction-level parallelism (see Chapter 4),
normally without the involvement of the programmer. Such innovations reduced
the demand for rewriting programs for multiprocessors, since programmers could
do nothing and yet their sequential programs would run faster on new computers.

Why is it difficult to write parallel processing programs that are fast, especially
as the number of processors increases? In Chapter 1, we used the analogy of eight
reporters trying to write a single story in hopes of doing the work eight times faster.
To succeed, the task must be broken into eight equal-sized pieces, because otherwise
some reporters would be idle while waiting for the ones with larger pieces to finish.
Another speed-up obstacle could be that the reporters would spend too much time
communicating with each other instead of writing their pieces of the story. For
both this analogy and parallel programming, the challenges include scheduling,
partitioning the work into parallel pieces, balancing the load evenly between the
workers, time to synchronize, and overhead for communication between the

Check
Yourself

 6.2 The Difficulty of Creating Parallel Processing Programs 495

parties. The challenge is stiffer with the more reporters for a newspaper story and
with the more processors for parallel programming.

Our discussion in Chapter 1 reveals another obstacle, namely Amdahl’s Law. It
reminds us that even small parts of a program must be parallelized if the program
is to make good use of many cores.

Speed-up Challenge

Suppose you want to achieve a speed-up of 90 times faster with 100 processors.
What percentage of the original computation can be sequential?

Amdahl’s Law (Chapter 1) says

EXAMPLE

ANSWER
Execution time a�er improvement =

Execution time a�ected byy improvement
Amount of improvement

Execution time una�ec+ tted

Speed-up = Execution time before

(Execution time before Execu− ttion time a�ected) Execution time a�ected
+

Amount of improovement

We can reformulate Amdahl’s Law in terms of speed-up versus the initial
execution time:

This formula is usually rewritten assuming that the execution time before is
1 for some unit of time, and the execution time affected by improvement is
considered the fraction of the original execution time:

Speed-up
(Fraction time a�ected) Fraction time a�ecte=

+

1

1 �
dd

Amount of improvement

Substituting 90 for speed-up and 100 for the amount of improvement into the
formula above:

90 1

1
100

=
+(Fraction time a�ected) Fraction time a�ected

�

496 Chapter 6 Parallel Processors from Client to Cloud

Then simplifying the formula and solving for fraction time affected:

90 (1 0.99 Fraction time a�ected) = 1
90 (90 0.99 Fraction t
× − ×
− × × iime a�ected) = 1

90 = 90 0.99 Fraction time a�ected
Fractio

−1 × ×
nn time a�ected = 89/89.1 = 0.999

Thus, to achieve a speed-up of 90 from 100 processors, the sequential
percentage can only be 0.1%.

However, there are applications with plenty of parallelism, as we shall see next.

Speed-up Challenge: Bigger Problem

Suppose you want to perform two sums: one is a sum of 10 scalar variables, and
one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10.
For now let’s assume only the matrix sum is parallelizable; we’ll see soon how to
parallelize scalar sums. What speed-up do you get with 10 versus 40 processors?
Next, calculate the speed-ups assuming the matrices grow to 20 by 20.

If we assume performance is a function of the time for an addition, t, then
there are 10 additions that do not benefit from parallel processors and 100
additions that do. If the time for a single processor is 110 t, the execution time
for 10 processors is

so the speed-up with 10 processors is 110t/20t = 5.5. The execution time for
40 processors is

Execution timea�er improvement = + =
100

40
10 12 5t t t.

so the speed-up with 40 processors is 110t/12.5t = 8.8. Thus, for this problem
size, we get about 55% of the potential speed-up with 10 processors, but only
22% with 40.

EXAMPLE

ANSWER

Execution timea�er improvement
Execution timea�ected by impro

=
vvement

Amount of improvement
Execution time una�ected+

Execution timea�er improvement = + =
100
10

10 20t t t

 6.2 The Difficulty of Creating Parallel Processing Programs 497

Look what happens when we increase the matrix. The sequential program now
takes 10t + 400t = 410t. The execution time for 10 processors is

Execution timea�er improvement = + =
400
10

10 50t t t

so the speed-up with 10 processors is 410t/50t = 8.2. The execution time for
40 processors is

Execution timea�er improvement = + =
400
40

10 20t t t

so the speed-up with 40 processors is 410t/20t = 20.5. Thus, for this larger
problem size, we get 82% of the potential speed-up with 10 processors and
51% with 40.

These examples show that getting good speed-up on a multiprocessor while
keeping the problem size fixed is harder than getting good speed-up by increasing
the size of the problem. This insight allows us to introduce two terms that describe
ways to scale up.

Strong scaling means measuring speed-up while keeping the problem size fixed.
Weak scaling means that the problem size grows proportionally to the increase in the
number of processors. Let’s assume that the size of the problem, M, is the working
set in main memory, and we have P processors. Then the memory per processor for
strong scaling is approximately M/P, and for weak scaling, it is about M.

Note that the memory hierarchy can interfere with the conventional wisdom
about weak scaling being easier than strong scaling. For example, if the weakly
scaled dataset no longer fits in the last level cache of a multicore microprocessor,
the resulting performance could be much worse than by using strong scaling.

Depending on the application, you can argue for either scaling approach. For
example, the TPC-C debit-credit database benchmark requires that you scale up
the number of customer accounts in proportion to the higher transactions per
minute. The argument is that it’s nonsensical to think that a given customer base
is suddenly going to start using ATMs 100 times a day just because the bank gets a
faster computer. Instead, if you’re going to demonstrate a system that can perform
100 times the numbers of transactions per minute, you should run the experiment
with 100 times as many customers. Bigger problems often need more data, which
is an argument for weak scaling.

This final example shows the importance of load balancing.

Speed-up Challenge: Balancing Load

To achieve the speed-up of 20.5 on the previous larger problem with 40
processors, we assumed the load was perfectly balanced. That is, each of the 40

strong scaling Speed-
up achieved on a
multiprocessor without
increasing the size of the
problem.

weak scaling Speed-
up achieved on a
multiprocessor while
increasing the size of the
problem proportionally
to the increase in the
number of processors.

EXAMPLE

498 Chapter 6 Parallel Processors from Client to Cloud

processors had 2.5% of the work to do. Instead, show the impact on speed-up if
one processor’s load is higher than all the rest. Calculate at twice the load (5%)
and five times the load (12.5%) for that hardest working processor. How well
utilized are the rest of the processors?

If one processor has 5% of the parallel load, then it must do 5% × 400 or 20
additions, and the other 39 will share the remaining 380. Since they are operating
simultaneously, we can just calculate the execution time as a maximum

Execution timea�er improvement Max=

 +

380
39

20
1

10t t t, == 30t

The speed-up drops from 20.5 to 410t/30t = 14. The remaining 39 processors
are utilized less than half the time: while waiting 20t for the hardest working
processor to finish, they only compute for 380t/39 = 9.7t.

If one processor has 12.5% of the load, it must perform 50 additions. The
formula is:

Execution time a�er improvement = Max 350
39

50
1

t t,

 + 110t t= 60

The speed-up drops even further to 410t/60t = 7. The rest of the processors
are utilized less than 20% of the time (9t/50t). This example demonstrates the
importance of balancing load, for just a single processor with twice the load
of the others cuts speed-up by a third, and five times the load on just one
processor reduces speed-up by almost a factor of three.

Now that we better understand the goals and challenges of parallel processing,
we give an overview of the rest of the chapter. Section 6.3 describes a much older
classification scheme than in Figure 6.1. In addition, it describes two styles of
instruction set architectures that support running of sequential applications
on parallel hardware, namely SIMD and vector. Section 6.4 then describes
multithreading, a term often confused with multiprocessing, in part because it
relies upon similar concurrency in programs. Section 6.5 describes the first the two
alternatives of a fundamental parallel hardware characteristic, which is whether
or not all the processors in the systems rely upon a single physical address space.
As mentioned above, the two popular versions of these alternatives are called
shared memory multiprocessors (SMPs) and clusters, and this section covers the
former. Section 6.6 describes a relatively new style of computer from the graphics
hardware community, called a graphics-processing unit (GPU) that also assumes
a single physical address. (Appendix B describes GPUs in even more detail.)
Section 6.7 describes clusters, a popular example of a computer with multiple
physical address spaces. Section 6.8 shows typical topologies used to connect many
processors together, either server nodes in a cluster or cores in a microprocessor.

 Section 6.9 describes the hardware and software for communicating between

ANSWER

 6.3 SISD, MIMD, SIMD, SPMD, and Vector 499

nodes in a cluster using Ethernet. It shows how to optimize its performance using
custom software and hardware. We next discuss the difficulty of finding parallel
benchmarks in Section 6.10. This section also includes a simple, yet insightful
performance model that helps in the design of applications as well as architectures.
We use this model as well as parallel benchmarks in Section 6.11 to compare a
multicore computer to a GPU. Section 6.12 divulges the final and largest step in
our journey of accelerating matrix multiply. For matrices that don’t fit in the cache,
parallel processing uses 16 cores to improve performance by a factor of 14. We
close with fallacies and pitfalls and our conclusions for parallelism.

In the next section, we introduce acronyms that you probably have already seen
to identify different types of parallel computers.

 6.3 SISD, MIMD, SIMD, SPMD, and Vector

One categorization of parallel hardware proposed in the 1960s is still used today. It
was based on the number of instruction streams and the number of data streams.
Figure 6.2 shows the categories. Thus, a conventional uniprocessor has a single
instruction stream and single data stream, and a conventional multiprocessor has
multiple instruction streams and multiple data streams. These two categories are
abbreviated SISD and MIMD, respectively.

While it is possible to write separate programs that run on different processors
on a MIMD computer and yet work together for a grander, coordinated goal,
programmers normally write a single program that runs on all processors of a
MIMD computer, relying on conditional statements when different processors
should execute distinct sections of code. This style is called Single Program
Multiple Data (SPMD), but it is just the normal way to program a MIMD computer.

The closest we can come to multiple instruction streams and single data stream
(MISD) processor might be a “stream processor” that would perform a series of
computations on a single data stream in a pipelined fashion: parse the input from
the network, decrypt the data, decompress it, search for match, and so on. The
inverse of MISD is much more popular. SIMD computers operate on vectors of

True or false: Strong scaling is not bound by Amdahl’s Law.

SISD or Single
Instruction stream,
Single Data stream.
A uniprocessor.

MIMD or Multiple
Instruction streams,
Multiple Data streams.
A multiprocessor.

SPMD Single Program,
Multiple Data streams.
The conventional MIMD
programming model,
where a single program
runs across all processors.

Check
Yourself

Data Streams

Single Multiple

Instruction

Streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Multiple MISD: No examples today MIMD: Intel Core i7

FIGURE 6.2 Hardware categorization and examples based on number of instruction
streams and data streams: SISD, SIMD, MISD, and MIMD.

SIMD or Single
Instruction stream,
Multiple Data streams.
The same instruction
is applied to many data
streams, as in a vector
processor.

500 Chapter 6 Parallel Processors from Client to Cloud

data. For example, a single SIMD instruction might add 64 numbers by sending 64
data streams to 64 ALUs to form 64 sums within a single clock cycle. The subword
parallel instructions that we saw in Sections 3.6 and 3.7 are another example of
SIMD; indeed, the middle letter of Intel’s SSE acronym stands for SIMD.

The virtues of SIMD are that all the parallel execution units are synchronized, and
they all respond to a single instruction that emanates from a single program counter
(PC). From a programmer’s perspective, this is close to the already familiar SISD.
Although every unit will be executing the same instruction, each execution unit has
its own address registers, and so each unit can have different data addresses. Thus,
in terms of Figure 6.1, a sequential application might be compiled to run on serial
hardware organized as a SISD or in parallel hardware that was organized as a SIMD.

The original motivation behind SIMD was to amortize the cost of the control
unit over dozens of execution units. Another advantage is the reduced instruction
bandwidth and space—SIMD needs only one copy of the code that is being
simultaneously executed, while message-passing MIMDs may need a copy in every
processor and shared memory MIMD will need multiple instruction caches.

SIMD works best when dealing with arrays in for loops. Hence, for parallelism
to work in SIMD, there must be a great deal of identically structured data, which
is called data-level parallelism. SIMD is at its weakest in case or switch
statements, where each execution unit must perform a different operation on its
data, depending on what data it has. Execution units with the wrong data must be
disabled so that units with proper data may continue. If there are n cases, in these
situations, SIMD processors essentially run at 1/nth of peak performance.

The so-called array processors that inspired the SIMD category have faded
into history (see Section 6.15 online), but two current interpretations of SIMD
remain active today.

SIMD in x86: Multimedia Extensions
As described in Chapter 3, subword parallelism for narrow integer data was the
original inspiration of the Multimedia Extension (MMX) instructions of the x86
in 1996. As Moore’s Law continued, more instructions were added, leading first
to Streaming SIMD Extensions (SSE) and now Advanced Vector Extensions (AVX).
AVX supports the simultaneous execution of four 64-bit floating-point numbers.
The width of the operation and the registers is encoded in the opcode of these
multimedia instructions. As the data width of the registers and operations grew,
the number of opcodes for multimedia instructions exploded, and now there are
hundreds of SSE and AVX instructions (see Chapter 3).

Vector
An older and, as we shall see, more elegant interpretation of SIMD is called a vector
architecture, which has been closely identified with computers designed by Seymour
Cray starting in the 1970s. It is also a great match to problems with lots of data-level
parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like
the old array processors, the vector architectures pipelined the ALU to get good
performance at lower cost. The basic philosophy of vector architecture is to collect

data-level
parallelism Parallelism
achieved by performing
the same operation on
independent data.

 6.3 SISD, MIMD, SIMD, SPMD, and Vector 501

data elements from memory, put them in order into a large set of registers, operate
on them sequentially in registers using pipelined execution units, and then write
the results back to memory. A key feature of vector architectures is therefore a set of
vector registers. Thus, a vector architecture might have 32 vector registers, each
with 64 64-bit elements.

Comparing Vector to Conventional Code

Suppose we extend the RISC-V instruction set architecture with vector
instructions and vector registers. Vector operations use the same names as
RISC-V operations, but with the suffix “V” appended. For example, fadd.d.v
adds two double-precision vectors. Let’s also add 32 vector registers, v0—v31,
each with sixty-four 64-bit elements. The vector instructions take as their input
either a pair of vector (V) registers (fadd.d.v) or a vector register and a scalar
register (fadd.d.vs). In the latter case, the value in the scalar register is used
as the input for all operations—the operation fadd.d.vs will add the contents
of a scalar register to each element in a vector register. The names fld.v and
fsd.v denote vector load and vector store, and they load or store an entire
vector of double-precision data. One operand is the vector register to be loaded
or stored; the other operand, which is a RISC-V general-purpose register, is the
starting address of the vector in memory.

Given this short description, show the conventional RISC-V code versus
the vector RISC-V code for

Y a X Y= × +

where X and Y are vectors of 64 double precision floating-point numbers,
initially resident in memory, and a is a scalar double precision variable. (This
example is the so-called DAXPY loop that forms the inner loop of the Linpack
benchmark; DAXPY stands for double precision a × X plus Y.) Assume that
the starting addresses of X and Y are in x19 and x20, respectively.

Here is the conventional RISC-V code for DAXPY:

 fld f0, a(x3) // load scalar a
 addi x5, x19, 512 // end of array X

loop: fld f1, 0(x19) // load x[i]
 fmul.d f1, f1, f0 // a * x[i]
 fld f2, 0(x20) // load y[i]
 fadd.d f2, f2, f1 // a * x[i] + y[i]
 fsd f2, 0(x20) // store y[i]
 addi x19, x19, 8 // increment index to x
 addi x20, x20, 8 // increment index to y
 bltu x19, x5, loop // repeat if not done

EXAMPLE

ANSWER

502 Chapter 6 Parallel Processors from Client to Cloud

Here is the hypothetical RISC-V vector code for DAXPY:

fld f0, a(x3) // load scalar a
fld.v v0, 0(x19) // load vector x
fmul.d.vs v0, v0, f0 // vector-scalar multiply
fld.v v1, 0(x20) // load vector y
fadd.d.v v1, v1, v0 // vector-vector add
fsd.v v1, 0(x20) // store vector y

There are some interesting comparisons between the two code segments in
this example. The most dramatic is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only six instructions versus over 500
for the basline RISC-V architecture. This reduction occurs both because the vector
operations work on 64 elements at a time and because the overhead instructions
that constitute nearly half the loop on RISC-V are not present in the vector code. As
you might expect, this reduction in instructions fetched and executed saves energy.

Another important difference is the frequency of pipeline hazards (Chapter 4).
In the straightforward RISC-V code, every fadd.d must wait for the fmul.d, every
fsd must wait for the fadd.d, and every fadd.d and fmul.d must wait on fld.
On the vector processor, each vector instruction will only stall for the first element
in each vector, and then subsequent elements will flow smoothly down the pipeline.
Thus, pipeline stalls are required only once per vector operation, rather than once
per vector element. In this example, the pipeline stall frequency on RISC-V will be
about 64 times higher than it is on the vector version of RISC-V. The pipeline stalls
can be eliminated on RISC-V by unrolling the loop (see Chapter 4). However, the
large difference in instruction bandwidth cannot be reduced.

Since the vector elements are independent, they can be operated on in parallel,
much like subword parallelism for the Intel x86 AVX instructions. All modern vector
computers have vector functional units with multiple parallel pipelines (called vector
lanes; see Figures 6.2 and 6.3) that can produce two or more results per clock cycle.

Elaboration: The loop in the example above exactly matched the vector length. When
loops are shorter, vector architectures use a register that reduces the length of vector
operations. When loops are larger, we add bookkeeping code to iterate full-length vector
operations and to handle the leftovers. This latter process is called strip mining.

Vector versus Scalar
Vector instructions have several important properties compared to conventional
instruction set architectures, which are called scalar architectures in this context:

n	 A single vector instruction specifies a great deal of work—it is equivalent
to executing an entire loop. The instruction fetch and decode bandwidth
needed is dramatically reduced.

n	 By using a vector instruction, the compiler or programmer indicates that the
computation of each result in the vector is independent of the computation of
other results in the same vector, so hardware does not have to check for data
hazards within a vector instruction.

 6.3 SISD, MIMD, SIMD, SPMD, and Vector 503

n	 Vector architectures and compilers have a reputation for making it much
easier than when using MIMD multiprocessors to write efficient applications
when they contain data-level parallelism.

n	 Hardware need only check for data hazards between two vector instructions
once per vector operand, not once for every element within the vectors.
Reduced checking can save energy as well as time.

n	 Vector instructions that access memory have a known access pattern. If the
vector’s elements are all adjacent, then fetching the vector from a set of heavily
interleaved memory banks works very well. Thus, the cost of the latency to
main memory is seen only once for the entire vector, rather than once for
each word of the vector.

n	 Because a complete loop is replaced by a vector instruction whose behavior
is predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

n	 The savings in instruction bandwidth and hazard checking plus the efficient
use of memory bandwidth give vector architectures advantages in power and
energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of
scalar operations on the same number of data items, and designers are motivated
to include vector units if the application domain can often use them.

Vector versus Multimedia Extensions
Like multimedia extensions found in the x86 AVX instructions, a vector instruction
specifies multiple operations. However, multimedia extensions typically denote a few
operations while vector specifies dozens of operations. Unlike multimedia extensions,
the number of elements in a vector operation is not in the opcode but in a separate
register. This distinction means different versions of the vector architecture can be
implemented with a different number of elements just by changing the contents of
that register and hence retain binary compatibility. In contrast, a new large set of
opcodes is added each time the “vector” length changes in the multimedia extension
architecture of the x86: MMX, SSE, SSE2, AVX, AVX2, ….

Also, unlike multimedia extensions, the data transfers need not be contiguous.
Vectors support both strided accesses, where the hardware loads every nth data
element in memory, and indexed accesses, where hardware finds the addresses of
the items to be loaded into a vector register. Indexed accesses are also called gather-
scatter, in that indexed loads gather elements from main memory into contiguous
vector elements, and indexed stores scatter vector elements across main memory.

Like multimedia extensions, vector architectures easily capture the flexibility
in data widths, so it is easy to make a vector operation work on 32 64-bit data
elements or 64 32-bit data elements or 128 16-bit data elements or 256 8-bit data
elements. The parallel semantics of a vector instruction allows an implementation
to execute these operations using a deeply pipelined functional unit, an array of
parallel functional units, or a combination of parallel and pipelined functional
units. Figure 6.3 illustrates how to improve vector performance by using parallel
pipelines to execute a vector add instruction.

504 Chapter 6 Parallel Processors from Client to Cloud

Vector arithmetic instructions usually only allow element N of one vector register
to take part in operations with element N from other vector registers. This dramatically
simplifies the construction of a highly parallel vector unit, which can be structured
as multiple parallel vector lanes. As with a traffic highway, we can increase the peak
throughput of a vector unit by adding more lanes. Figure 6.4 shows the structure of a four-
lane vector unit. Thus, going to four lanes from one lane reduces the number of clocks
per vector instruction by roughly a factor of four. For multiple lanes to be advantageous,
both the applications and the architecture must support long vectors. Otherwise, they
will execute so quickly that you’ll run out of instructions, requiring instruction level
parallel techniques like those in Chapter 4 to supply enough vector instructions.

Generally, vector architectures are a very efficient way to execute data parallel
processing programs; they are better matches to compiler technology than
multimedia extensions; and they are easier to evolve over time than the multimedia
extensions to the x86 architecture.

Given these classic categories, we next see how to exploit parallel streams of
instructions to improve the performance of a single processor, which we will reuse
with multiple processors.

vector lane One or
more vector functional
units and a portion
of the vector register
file. Inspired by lanes
on highways that
increase traffic speed,
multiple lanes execute
vector operations
simultaneously.

A[9]

A[8]

A[7]

A[6]

A[5]

A[4]

A[3]

A[2]

A[1]

B[9]

B[8]

B[7]

B[6]

B[5]

B[4]

B[3]

B[2]

B[1]

C[0]

+

C[0] C[1] C[2] C[3]

A[8]

A[4]

B[8]

B[4]

A[9]

A[5]

B[9]

B[5] A[6] B[6] A[7] B[7]

(a) (b)

Element group

+ + + +

FIGURE 6.3 Using multiple functional units to improve the performance of a single vector
add instruction, C = A + B. The vector processor (a) on the left has a single add pipeline and can complete
one addition per cycle. The vector processor (b) on the right has four add pipelines or lanes and can complete
four additions per cycle. The elements within a single vector add instruction are interleaved across the four lanes.

True or false: As exemplified in the x86, multimedia extensions can be thought
of as a vector architecture with short vectors that support only contiguous vector
data transfers.

Check
Yourself

 6.3 SISD, MIMD, SIMD, SPMD, and Vector 505

Elaboration: Given the advantages of vector, why aren’t they more popular outside
high-performance computing? There were concerns about the larger state for vector
registers increasing context switch time and the difficulty of handling page faults in
vector loads and stores, and SIMD instructions achieved some of the benefits of vector
instructions. In addition, as long as advances in instruction-level parallelism could
deliver on the performance promise of Moore’s Law, there was little reason to take the
chance of changing architecture styles.

Elaboration: Another advantage of vector and multimedia extensions is that it is
relatively easy to extend a scalar instruction set architecture with these instructions to
improve performance of data parallel operations.

Elaboration: The Haswell-generation x86 processors from Intel support AVX2, which
has a gather operation but not a scatter operation.

Lane 0 Lane 1 Lane 2 Lane 3

FP add
pipe 0

FP mul
pipe 0

Vector
registers:
elements
0,4,8,...

FP add
pipe 1

FP mul
pipe 1

Vector
registers:
elements
1,5,9,...

FP add
pipe 2

FP mul
pipe 2

Vector
registers:
elements
2,6,10,...

FP add
pipe 3

FP mul
pipe 3

Vector
registers:
elements
3,7,11,...

Vector load store unit

FIGURE 6.4 Structure of a vector unit containing four lanes. The vector-register storage is
divided across the lanes, with each lane holding every fourth element of each vector register. The figure
shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector
arithmetic units contains four execution pipelines, one per lane, which acts in concert to complete a single
vector instruction. Note how each section of the vector-register file only needs to provide enough read and
write ports (see Chapter 4) for functional units local to its lane.

506 Chapter 6 Parallel Processors from Client to Cloud

 6.4 Hardware Multithreading

A related concept to MIMD, especially from the programmer’s perspective, is
hardware multithreading. While MIMD relies on multiple processes or threads
to try to keep many processors busy, hardware multithreading allows multiple
threads to share the functional units of a single processor in an overlapping fashion
to try to utilize the hardware resources efficiently. To permit this sharing, the
processor must duplicate the independent state of each thread. For example, each
thread would have a separate copy of the register file and the program counter.
The memory itself can be shared through the virtual memory mechanisms, which
already support multi-programming. In addition, the hardware must support the
ability to change to a different thread relatively quickly. In particular, a thread
switch should be much more efficient than a process switch, which typically
requires hundreds to thousands of processor cycles while a thread switch can be
instantaneous.

There are two main approaches to hardware multithreading. Fine-grained
multithreading switches between threads on each instruction, resulting in
interleaved execution of multiple threads. This interleaving is often done in a
round-robin fashion, skipping any threads that are stalled at that clock cycle. To
make fine-grained multithreading practical, the processor must be able to switch
threads on every clock cycle. One advantage of fine-grained multithreading is
that it can hide the throughput losses that arise from both short and long stalls,
since instructions from other threads can be executed when one thread stalls. The
primary disadvantage of fine-grained multithreading is that it slows down the
execution of the individual threads, since a thread that is ready to execute without
stalls will be delayed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on expensive
stalls, such as last-level cache misses. This change relieves the need to have thread
switching be extremely fast and is much less likely to slow down the execution of an
individual thread, since instructions from other threads will only be issued when
a thread encounters a costly stall. Coarse-grained multithreading suffers, however,
from a major drawback: it is limited in its ability to overcome throughput losses,
especially from shorter stalls. This limitation arises from the pipeline start-up
costs of coarse-grained multithreading. Because a processor with coarse-grained
multithreading issues instructions from a single thread, when a stall occurs, the
pipeline must be emptied or frozen. The new thread that begins executing after the
stall must fill the pipeline before instructions are able to complete. Due to this start-
up overhead, coarse-grained multithreading is much more useful for reducing the
penalty of high-cost stalls, where pipeline refill is negligible compared to the stall
time.

hardware
multithreading
Increasing utilization of a
processor by switching to
another thread when one
thread is stalled.

thread A thread includes
the program counter, the
register state, and the
stack. It is a lightweight
process; whereas threads
commonly share a single
address space, processes
don’t.

process A process
includes one or more
threads, the address space,
and the operating system
state. Hence, a process
switch usually invokes the
operating system, but not
a thread switch.

fine-grained
multithreading
A version of hardware
multithreading that
implies switching between
threads after every
instruction.

coarse-grained
multithreading
A version of hardware
multithreading that
implies switching between
threads only after
significant events, such as
a last-level cache miss.

 6.4 Hardware Multithreading 507

Simultaneous multithreading (SMT) is a variation on hardware multithreading
that uses the resources of a multiple-issue, dynamically scheduled pipelined
processor to exploit thread-level parallelism at the same time it exploits instruction-
level parallelism (see Chapter 4). The key insight that motivates SMT is that
multiple-issue processors often have more functional unit parallelism available
than most single threads can effectively use. Furthermore, with register renaming
and dynamic scheduling (see Chapter 4), multiple instructions from independent
threads can be issued without regard to the dependences among them; the resolution
of the dependences can be handled by the dynamic scheduling capability.

Since SMT relies on the existing dynamic mechanisms, it does not switch
resources every cycle. Instead, SMT is always executing instructions from multiple
threads, leaving it up to the hardware to associate instruction slots and renamed
registers with their proper threads.

Figure 6.5 conceptually illustrates the differences in a processor’s ability to exploit
superscalar resources for the following processor configurations. The top portion shows

simultaneous
multithreading
(SMT) A version
of multithreading
that lowers the cost
of multithreading by
utilizing the resources
needed for multiple issue,
dynamically scheduled
microarchitecture.

Issue slots

Thread C Thread DThread A Thread B

Time

Time

SMTCoarse MT Fine MT

Issue slots

FIGURE 6.5 How four threads use the issue slots of a superscalar processor in different
approaches. The four threads at the top show how each would execute running alone on a standard
superscalar processor without multithreading support. The three examples at the bottom show how they
would execute running together in three multithreading options. The horizontal dimension represents the
instruction issue capability in each clock cycle. The vertical dimension represents a sequence of clock cycles.
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. The shades of
gray and color correspond to four different threads in the multithreading processors. The additional pipeline
start-up effects for coarse multithreading, which are not illustrated in this figure, would lead to further loss
in throughput for coarse multithreading.

508 Chapter 6 Parallel Processors from Client to Cloud

how four threads would execute independently on a superscalar with no multithreading
support. The bottom portion shows how the four threads could be combined to execute
on the processor more efficiently using three multithreading options:

n	 A superscalar with coarse-grained multithreading

n	 A superscalar with fine-grained multithreading

n	 A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue
slots is limited by a lack of instruction-level parallelism. In addition, a major stall,
such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
Although this reduces the number of completely idle clock cycles, the pipeline
start-up overhead still leads to idle cycles, and limitations to ILP mean all issue
slots will not be used. In the fine-grained case, the interleaving of threads mostly
eliminates idle clock cycles. Because only a single thread issues instructions in a
given clock cycle, however, limitations in instruction-level parallelism still lead to
idle slots within some clock cycles.

2.00

1.75

1.50

1.25

1.00

0.75

i7
 S

M
T

 p
er

fo
rm

an
ce

 a
nd

 e
ne

rg
y

ef
fic

ie
nc

y
ra

tio

Blac
ks

ch
ole

s

Bod
ytr

ac
k

Can
ne

al

Fer
re

t

Flui
da

nim
at

e

Ray
tra

ce

Stre
am

clu
ste

r

Swap
tio

ns
×2

64

Energy efficiencySpeed-up

Fac
es

im
Vips

FIGURE 6.6 The speed-up from using multithreading on one core on an i7 processor
averages 1.31 for the PARSEC benchmarks (see Section 6.9) and the energy efficiency
improvement is 1.07. These data were collected and analyzed by Esmaeilzadeh et al. [2011].

 6.5 Multicore and Other Shared Memory Multiprocessors 509

In the SMT case, thread-level parallelism and instruction-level parallelism are
both exploited, with multiple threads using the issue slots in a single clock cycle.
Ideally, the issue slot usage is limited by imbalances in the resource needs and
resource availability over multiple threads. In practice, other factors can restrict
how many slots are used. Although Figure 6.5 greatly simplifies the real operation
of these processors, it does illustrate the potential performance advantages of
multithreading in general and SMT in particular.

Figure 6.6 plots the performance and energy benefits of multithreading on
a single processor of the Intel Core i7 960, which has hardware support for two
threads. The average speed-up is 1.31, which is not bad given the modest extra
resources for hardware multithreading. The average improvement in energy
efficiency is 1.07, which is excellent. In general, you’d be happy with a performance
speed-up being energy neutral.

Now that we have seen how multiple threads can utilize the resources of a single
processor more effectively, we next show how to use them to exploit multiple
processors.

1. True or false: Both multithreading and multicore rely on parallelism to get
more efficiency from a chip.

2. True or false: Simultaneous multithreading (SMT) uses threads to improve
resource utilization of a dynamically scheduled, out-of-order processor.

 6.5 Multicore and Other Shared Memory
Multiprocessors

While hardware multithreading improved the efficiency of processors at modest
cost, the big challenge of the last decade has been to deliver on the performance
potential of Moore’s Law by efficiently programming the increasing number of
processors per chip.

Given the difficulty of rewriting old programs to run well on parallel hardware,
a natural question is: what can computer designers do to simplify the task? One
answer was to provide a single physical address space that all processors can
share, so that programs need not concern themselves with where their data are,
merely that programs may be executed in parallel. In this approach, all variables
of a program can be made available at any time to any processor. The alternative is
to have a separate address space per processor that requires that sharing must be
explicit; we’ll describe this option in the Section 6.7. When the physical address
space is common then the hardware typically provides cache coherence to give a
consistent view of the shared memory (see Section 5.8).

As mentioned above, a shared memory multiprocessor (SMP) is one that offers
the programmer a single physical address space across all processors—which is

Check
Yourself

510 Chapter 6 Parallel Processors from Client to Cloud

nearly always the case for multicore chips—although a more accurate term would
have been shared-address multiprocessor. Processors communicate through shared
variables in memory, with all processors capable of accessing any memory location
via loads and stores. Figure 6.7 shows the classic organization of an SMP. Note that
such systems can still run independent jobs in their own virtual address spaces,
even if they all share a physical address space.

Single address space multiprocessors come in two styles. In the first style, the
latency to a word in memory does not depend on which processor asks for it.
Such machines are called uniform memory access (UMA) multiprocessors. In the
second style, some memory accesses are much faster than others, depending on
which processor asks for which word, typically because main memory is divided
and attached to different microprocessors or to different memory controllers on
the same chip. Such machines are called nonuniform memory access (NUMA)
multiprocessors. As you might expect, the programming challenges are harder for
a NUMA multiprocessor than for a UMA multiprocessor, but NUMA machines
can scale to larger sizes, and NUMAs can have lower latency to nearby memory.

As processors operating in parallel will normally share data, they also need to
coordinate when operating on shared data; otherwise, one processor could start
working on data before another is finished with it. This coordination is called
synchronization, which we saw in Chapter 2. When sharing is supported with a
single address space, there must be a separate mechanism for synchronization. One
approach uses a lock for a shared variable. Only one processor at a time can acquire
the lock, and other processors interested in shared data must wait until the original
processor unlocks the variable. Section 2.11 of Chapter 2 describes the instructions
for locking in the RISC-V instruction set.

uniform memory access
(UMA) A multiprocessor
in which latency to any
word in main memory is
about the same no matter
which processor requests
the access.

nonuniform memory
access (NUMA) A type
of single address space
multiprocessor in which
some memory accesses
are much faster than
others depending on
which processor asks for
which word.

synchronization The
process of coordinating
the behavior of two or
more processes, which
may be running on
different processors.

lock A synchronization
device that allows access
to data to only one
processor at a time.

Processor

Memory I/O

Processor Processor

Cache Cache Cache

Interconnection Network

. . .

. . .

FIGURE 6.7 Classic organization of a shared memory multiprocessor.

 6.5 Multicore and Other Shared Memory Multiprocessors 511

A Simple Parallel Processing Program for a Shared Address Space

Suppose we want to sum 64,000 numbers on a shared memory multiprocessor
computer with uniform memory access time. Let’s assume we have 64
processors.

The first step is to ensure a balanced load per processor, so we split the set
of numbers into subsets of the same size. We do not allocate the subsets to a
different memory space, since there is a single memory space for this machine;
we just give different starting addresses to each processor. Pn is the number that
identifies the processor, between 0 and 63. All processors start the program by
running a loop that sums their subset of numbers:

sum[Pn] = 0;
for (i = 1000*Pn; i < 1000*(Pn+1); i += 1)
 sum[Pn] += A[i]; /*sum the assigned areas*/

(Note the C code i += 1 is just a shorter way to say i = i + 1.)

The next step is to add these 64 partial sums. This step is called a reduction,
where we divide to conquer. Half of the processors add pairs of partial sums,
and then a quarter add pairs of the new partial sums, and so on until we
have the single, final sum. Figure 6.8 illustrates the hierarchical nature of this
reduction.

In this example, the two processors must synchronize before the “consumer”
processor tries to read the result from the memory location written by the
“producer” processor; otherwise, the consumer may read the old value of

0

0 1

0 1 2 3

0 1 2 3 4 5 6 7

(half = 1)

(half = 2)

(half = 4)

FIGURE 6.8 The last four levels of a reduction that sums results from each processor,
from bottom to top. For all processors whose number i is less than half, add the sum produced by
processor number (i + half) to its sum.

EXAMPLE

ANSWER

reduction A function
that processes a data
structure and returns a
single value.

512 Chapter 6 Parallel Processors from Client to Cloud

the data. We want each processor to have its own version of the loop counter
variable i, so we must indicate that it is a “private” variable. Here is the code
(half is private also):

half = 64; /*64 processors in multiprocessor*/
do
 synch(); /*wait for partial sum completion*/
 if (half%2 != 0 && Pn == 0)
 sum[0] += sum[half–1];
 /*Conditional sum needed when half is
 odd; Processor0 gets missing element */
 half = half/2; /*dividing line on who sums */
 if (Pn < half) sum[Pn] += sum[Pn+half];
while (half > 1); /*exit with final sum in Sum[0] */

Given this tour of classic MIMD hardware and software, our next path is a more
exotic tour of a type of MIMD architecture with a different heritage and thus a very
different perspective on the parallel programming challenge.

True or false: Shared memory multiprocessors cannot take advantage of task-level
parallelism.

Elaboration: Some writers repurposed the acronym SMP to mean symmetric
multiprocessor, to indicate that the latency from processor to memory was about the
same for all processors. This shift was done to contrast them from large-scale NUMA
multiprocessors, as both classes used a single address space. As clusters proved much
more popular than large-scale NUMA multiprocessors, in this book we restore SMP to its
original meaning, and use it to contrast against those that use multiple address spaces,
such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have
separate physical address spaces but share a common virtual address space, leaving
it up to the operating system to handle communication. This approach has been tried,
but it has too high an overhead to offer a practical shared memory abstraction to the
performance-oriented programmer.

OpenMP An API
for shared memory
multiprocessing in C,
C++, or Fortran that runs
on UNIX and Microsoft
platforms. It includes
compiler directives, a
library, and runtime
directives.

Hardware/
Software
Interface

Given the long-term interest in parallel programming, there have been hundreds
of attempts to build parallel programming systems. A limited but popular example
is OpenMP. It is just an Application Programmer Interface (API) along with a set of
compiler directives, environment variables, and runtime library routines that can
extend standard programming languages. It offers a portable, scalable, and simple
programming model for shared memory multiprocessors. Its primary goal is to
parallelize loops and perform reductions.

Most C compilers already have support for OpenMP. The command to use the
OpenMP API with the UNIX C compiler is just:

cc –fopenmp foo.c

OpenMP extends C using pragmas, which are just commands to the C macro
preprocessor like #define and #include. To set the number of processors we
want to use to be 64, as we wanted in the example above, we just use the command

#define P 64 /* define a constant that we’ll use a few times */
#pragma omp parallel num_threads(P)

That is, the runtime libraries should use 64 parallel threads.
To turn the sequential for loop into a parallel for loop that divides the work

equally between all the threads that we told it to use, we just write (assuming sum
is initialized to 0)

#pragma omp parallel for
for (Pn = 0; Pn < P; Pn += 1)
 for (i = 0; 1000*Pn; i < 1000*(Pn+1); i += 1)
 sum[Pn] += A[i]; /*sum the assigned areas*/

 6.5 Multicore and Other Shared Memory Multiprocessors 513

Given this tour of classic MIMD hardware and software, our next path is a more
exotic tour of a type of MIMD architecture with a different heritage and thus a very
different perspective on the parallel programming challenge.

True or false: Shared memory multiprocessors cannot take advantage of task-level
parallelism.

Elaboration: Some writers repurposed the acronym SMP to mean symmetric
multiprocessor, to indicate that the latency from processor to memory was about the
same for all processors. This shift was done to contrast them from large-scale NUMA
multiprocessors, as both classes used a single address space. As clusters proved much
more popular than large-scale NUMA multiprocessors, in this book we restore SMP to its
original meaning, and use it to contrast against those that use multiple address spaces,
such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have
separate physical address spaces but share a common virtual address space, leaving
it up to the operating system to handle communication. This approach has been tried,
but it has too high an overhead to offer a practical shared memory abstraction to the
performance-oriented programmer.

OpenMP An API
for shared memory
multiprocessing in C,
C++, or Fortran that runs
on UNIX and Microsoft
platforms. It includes
compiler directives, a
library, and runtime
directives.

To perform the reduction, we can use another command that tells OpenMP
what the reduction operator is and what variable you need to use to place the result
of the reduction.

#pragma omp parallel for reduction(+ : FinalSum)
for (i = 0; i < P; i += 1)
 FinalSum += sum[i]; /* Reduce to a single number */

Note that it is now up to the OpenMP library to find efficient code to sum 64
numbers efficiently using 64 processors.

While OpenMP makes it easy to write simple parallel code, it is not very
helpful with debugging, so many programmers use more sophisticated parallel
programming systems than OpenMP, just as many programmers today use more
productive languages than C.

Check
Yourself

514 Chapter 6 Parallel Processors from Client to Cloud

 6.6 Introduction to Graphics Processing Units

The original justification for adding SIMD instructions to existing architectures
was that many microprocessors were connected to graphics displays in PCs and
workstations, so an increasing fraction of processing time was used for graphics.
As Moore’s Law increased the number of transistors available to microprocessors,
it therefore made sense to improve graphics processing.

A major driving force for improving graphics processing was the computer game
industry, both on PCs and in dedicated game consoles such as the Sony PlayStation.
The rapidly growing game market encouraged many companies to make increasing
investments in developing faster graphics hardware, and this positive feedback
loop led graphics processing to improve at a quicker rate than general-purpose
processing in mainstream microprocessors.

Given that the graphics and game community had different goals than the
microprocessor development community, it evolved its own style of processing and
terminology. As the graphics processors increased in power, they earned the name
Graphics Processing Units or GPUs to distinguish themselves from CPUs.

For a few hundred dollars, anyone can buy a GPU today with hundreds of
parallel floating-point units, which makes high-performance computing more
accessible. The interest in GPU computing blossomed when this potential was
combined with a programming language that made GPUs easier to program.
Hence, many programmers of scientific and multimedia applications today are
pondering whether to use GPUs or CPUs.

(This section concentrates on using GPUs for computing. To see how GPU
computing combines with the traditional role of graphics acceleration, see

 Appendix B.)
Here are some of the key characteristics as to how GPUs vary from CPUs:

n	 GPUs are accelerators that supplement a CPU, so they do not need to be able
to perform all the tasks of a CPU. This role allows them to dedicate all their
resources to graphics. It’s fine for GPUs to perform some tasks poorly or not
at all, given that in a system with both a CPU and a GPU, the CPU can do
them if needed.

n	 The GPU problem sizes are typically hundreds of megabytes to gigabytes, but
not hundreds of gigabytes to terabytes.

These differences led to different styles of architecture:

n	 Perhaps the biggest difference is that GPUs do not rely on multilevel caches
to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on
hardware multithreading (Section 6.4) to hide the latency to memory. That is,
between the time of a memory request and the time that data arrive, the GPU
executes hundreds or thousands of threads that are independent of that request.

 6.6 Introduction to Graphics Processing Units 515

n	 The GPU memory is thus oriented toward bandwidth rather than latency.
There are even special graphics DRAM chips for GPUs that are wider and
have higher bandwidth than DRAM chips for CPUs. In addition, GPU
memories have traditionally had smaller main memories than conventional
microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while
CPUs have 32 to 256 GiB. Finally, keep in mind that for general-purpose
computation, you must include the time to transfer the data between CPU
memory and GPU memory, since the GPU is a coprocessor.

n	 Given the reliance on many threads to deliver good memory bandwidth,
GPUs can accommodate many parallel processors (MIMD) as well as many
threads. Hence, each GPU processor is more highly multithreaded than a
typical CPU, plus they have more processors.

Although GPUs were designed for a narrower set of applications, some
programmers wondered if they could specify their applications in a form that
would let them tap the high potential performance of GPUs. After tiring of trying
to specify their problems using the graphics APIs and languages, they developed
C-inspired programming languages to allow them to write programs directly for
the GPUs. An example is NVIDIA’s CUDA (Compute Unified Device Architecture),
which enables the programmer to write C programs to execute on GPUs, albeit
with some restrictions. Appendix B gives examples of CUDA code. (OpenCL
is a multi-company initiative to develop a portable programming language that
provides many of the benefits of CUDA.)

NVIDIA decided that the unifying theme of all these forms of parallelism is
the CUDA Thread. Using this lowest level of parallelism as the programming
primitive, the compiler and the hardware can gang thousands of CUDA threads
together to utilize the various styles of parallelism within a GPU: multithreading,
MIMD, SIMD, and instruction-level parallelism. These threads are blocked
together and executed in groups of 32 at a time. A multithreaded processor inside
a GPU executes these blocks of threads, and a GPU consists of 8 to 32 of these
multithreaded processors.

Hardware/
Software
Interface

An Introduction to the NVIDIA GPU Architecture
We use NVIDIA systems as our example as they are representative of GPU
architectures. Specifically, we follow the terminology of the CUDA parallel
programming language and use the Fermi architecture as the example.

Like vector architectures, GPUs work well only with data-level parallel problems.
Both styles have gather-scatter data transfers, and GPU processors have even more

516 Chapter 6 Parallel Processors from Client to Cloud

registers than do vector processors. Unlike most vector architectures, GPUs also
rely on hardware multithreading within a single multithreaded SIMD processor to
hide memory latency (see Section 6.4).

A multithreaded SIMD processor is similar to a vector processor, but the former
has many parallel functional units instead of just a few that are deeply pipelined,
as does the latter.

As mentioned above, a GPU contains a collection of multithreaded SIMD
processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors.
For example, NVIDIA has four implementations of the Fermi architecture at
different price points with 7, 11, 14, or 15 multithreaded SIMD processors. To
provide transparent scalability across models of GPUs with differing number of
multithreaded SIMD processors, the Thread Block Scheduler hardware assigns
blocks of threads to multithreaded SIMD processors. Figure 6.9 shows a simplified
block diagram of a multithreaded SIMD processor.

Dropping down one more level of detail, the machine object that the hardware
creates, manages, schedules, and executes is a thread of SIMD instructions, which
we will also call a SIMD thread. It is a traditional thread, but it contains exclusively
SIMD instructions. These SIMD threads have their own program counters, and
they run on a multithreaded SIMD processor. The SIMD Thread Scheduler includes
a controller that lets it know which threads of SIMD instructions are ready to
run, and then it sends them off to a dispatch unit to be run on the multithreaded

Instruction register

Regi-
sters

1K×32

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Address coalescing unit Interconnection network

Local Memory
64 KiB

To Global
 Memory

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

Reg

1K×32

SIMD Lanes
(Thread

Processors)

FIGURE 6.9 Simplified block diagram of the datapath of a multithreaded SIMD Processor.
It has 16 SIMD lanes. The SIMD Thread Scheduler has many independent SIMD threads that it chooses from
to run on this processor.

 6.6 Introduction to Graphics Processing Units 517

SIMD processor. It is identical to a hardware thread scheduler in a traditional
multithreaded processor (see Section 6.4), except that it is scheduling threads of
SIMD instructions. Thus, GPU hardware has two levels of hardware schedulers:

1. The Thread Block Scheduler that assigns blocks of threads to multithreaded
SIMD processors, and

2. The SIMD Thread Scheduler within a SIMD processor, which schedules
when SIMD threads should run.

The SIMD instructions of these threads are 32 wide, so each thread of SIMD
instructions would compute 32 of the elements of the computation. Since the
thread consists of SIMD instructions, the SIMD processor must have parallel
functional units to perform the operation. We call them SIMD Lanes, and they are
quite similar to the Vector Lanes in Section 6.3.

Elaboration: The number of lanes per SIMD processor varies across GPU generations.
With Fermi, each 32-wide thread of SIMD instructions is mapped to 16 SIMD lanes,
so each SIMD instruction in a thread of SIMD instructions takes two clock cycles to
complete. Each thread of SIMD instructions is executed in lock step. Staying with the
analogy of a SIMD processor as a vector processor, you could say that it has 16 lanes,
and the vector length would be 32. This wide but shallow nature is why we use the term
SIMD processor instead of vector processor, as it is more intuitive.

Since by definition the threads of SIMD instructions are independent, the SIMD
Thread Scheduler can pick whatever thread of SIMD instructions is ready, and need not
stick with the next SIMD instruction in the sequence within a single thread. Thus, using
the terminology of Section 6.4, it uses fine-grained multithreading.

To hold these memory elements, a Fermi SIMD processor has an impressive 32,768
32-bit registers. Just like a vector processor, these registers are divided logically across
the vector lanes or, in this case, SIMD lanes. Each SIMD thread is limited to no more than
64 registers, so you might think of a SIMD thread as having up to 64 vector registers,
with each vector register having 32 elements and each element being 32 bits wide.

Since Fermi has 16 SIMD lanes, each contains 2048 registers. Each CUDA thread
gets one element of each of the vector registers. Note that a CUDA thread is just a
vertical cut of a thread of SIMD instructions, corresponding to one element executed by
one SIMD lane. Beware that CUDA threads are very different from POSIX threads; you
can’t make arbitrary system calls or synchronize arbitrarily in a CUDA thread.

NVIDIA GPU Memory Structures
Figure 6.10 shows the memory structures of an NVIDIA GPU. We call the on-
chip memory that is local to each multithreaded SIMD processor Local Memory.
It is shared by the SIMD lanes within a multithreaded SIMD processor, but this
memory is not shared between multithreaded SIMD processors. We call the off-
chip DRAM shared by the whole GPU and all thread blocks GPU Memory.

Rather than rely on large caches to contain the entire working sets of an
application, GPUs traditionally use smaller streaming caches and rely on extensive
multithreading of threads of SIMD instructions to hide the long latency to DRAM,

518 Chapter 6 Parallel Processors from Client to Cloud

since their working sets can be hundreds of megabytes. Thus, they will not fit
in the last-level cache of a multicore microprocessor. Given the use of hardware
multithreading to hide DRAM latency, the chip area used for caches in system
processors is spent instead on computing resources and on the large number of
registers to hold the state of the many threads of SIMD instructions.

Elaboration: While hiding memory latency is the underlying philosophy, note that the
latest GPUs and vector processors have added caches. For example, the recent Fermi
architecture has added caches, but they are thought of as either bandwidth filters to
reduce demands on GPU Memory or as accelerators for the few variables whose latency
cannot be hidden by multithreading. Local memory for stack frames, function calls,
and register spilling is a good match to caches, since latency matters when calling a
function. Caches can also save energy, since on-chip cache accesses take much less
energy than accesses to multiple, external DRAM chips.

CUDA Thread

Thread block

Per-Block
Local Memory

Grid 0

. . .

Grid 1

. . .

GPU Memory

Sequence

Inter-Grid Synchronization

Per-CUDA Thread Private Memory

FIGURE 6.10 GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads
of SIMD instructions within a thread block share Local Memory.

 6.6 Introduction to Graphics Processing Units 519

Putting GPUs into Perspective
At a high level, multicore computers with SIMD instruction extensions do share
similarities with GPUs. Figure 6.11 summarizes the similarities and differences.
Both are MIMDs whose processors use multiple SIMD lanes, although GPUs
have more processors and many more lanes. Both use hardware multithreading
to improve processor utilization, although GPUs have hardware support for many
more threads. Both use caches, although GPUs use smaller streaming caches and
multicore computers use large multilevel caches that try to contain whole working
sets completely. Both use a 64-bit address space, although the physical main
memory is much smaller in GPUs. While GPUs support memory protection at the
page level, they do not yet support demand paging.

SIMD processors are also similar to vector processors. The multiple SIMD
processors in GPUs act as independent MIMD cores, just as many vector computers
have multiple vector processors. This view would consider the Fermi GTX 580 as
a 16-core machine with hardware support for multithreading, where each core has
16 lanes. The biggest difference is multithreading, which is fundamental to GPUs
and missing from most vector processors.

GPUs and CPUs do not go back in computer architecture genealogy to a shared
ancestor; there is no Missing Link that explains both. As a result of this uncommon
heritage, GPUs have not used the terms common in the computer architecture
community, which has led to confusion about what GPUs are and how they work. To
help resolve the confusion, Figure 6.12 (from left to right) lists the more descriptive
term used in this section, the closest term from mainstream computing, the official
NVIDIA GPU term in case you are interested, and then a short description of the
term. This “GPU Rosetta Stone” may help relate this section and ideas to more
conventional GPU descriptions, such as those found in Appendix B.

While GPUs are moving toward mainstream computing, they can’t abandon
their responsibility to continue to excel at graphics. Thus, the design of GPUs may
make more sense when architects ask, given the hardware invested to do graphics

Feature Multicore with SIMD GPU

SIMD processors

SIMD lanes/processor

Multithreading hardware support for SIMD threads

Largest cache size

Size of memory address

Size of main memory

Memory protection at level of page

Demand paging

Cache coherent

4 to 8 8 to 16

8 to 16

16 to 32

2 to 4

2 to 4

8 MiB 0.75 MiB

8 GiB to 256 GiB 4 GiB to 6 GiB

64-bit 64-bit

Yes Yes

No

No

Yes

Yes

FIGURE 6.11 Similarities and differences between multicore with Multimedia SIMD
extensions and recent GPUs.

520 Chapter 6 Parallel Processors from Client to Cloud

well, how can we supplement it to improve the performance of a wider range of
applications?

Having covered two different styles of MIMD that have a shared address
space, we next introduce parallel processors where each processor has its own
private address space, which makes it considerably easier to build much larger
systems. The Internet services that you use every day depend on these large-scale
systems.

Type More descriptive
name

Vectorizable
Loop

Body of
Vectorized Loop

Body of a
(Strip-Mined)
Vectorized Loop

Thread Block

Sequence of
SIMD Lane
Operations

One iteration of
a Scalar Loop

CUDA Thread

A Thread of
SIMD
Instructions

Thread of Vector
Instructions

Warp

SIMD
Instruction

Vector Instruction PTX Instruction

Multithreaded
SIMD
Processor

(Multithreaded)
Vector Processor

Streaming
Multiprocessor

Thread Block
Scheduler

Scalar Processor Giga Thread
Engine

SIMD Thread
Scheduler

Thread scheduler
in a Multithreaded
CPU

Warp Scheduler

SIMD Lane Vector lane Thread Processor

GPU Memory Main Memory Global Memory

Local Memory Local Memory Shared Memory

SIMD Lane
Registers

Vector Lane
Registers

Thread Processor
Registers

A vectorized loop executed on a multithreaded
SIMD Processor, made up of one or more threads
of SIMD instructions. They can communicate via
Local Memory.

Pr
og

ra
m

 a
bs

tra
ct

io
ns

M
ac

hi
ne

 o
bj

ec
t

Pr
oc

es
si

ng
 h

ar
dw

ar
e

M
em

or
y

ha
rd

w
ar

e

A vertical cut of a thread of SIMD instructions
corresponding to one element executed by one
SIMD Lane. Result is stored depending on mask
and predicate register.

A traditional thread, but it contains just SIMD
instructions that are executed on a multithreaded
SIMD Processor. Results stored depending on a
per-element mask.

A single SIMD instruction executed across SIMD
Lanes.
A multithreaded SIMD Processor executes
threads of SIMD instructions, independent of
other SIMD Processors.
Assigns multiple Thread Blocks (bodies of
vectorized loop) to multithreaded SIMD
Processors.

Hardware unit that schedules and issues threads
of SIMD instructions when they are ready to
execute; includes a scoreboard to track SIMD
Thread execution.

A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

DRAM memory accessible by all multithreaded
SIMD Processors in a GPU.

Fast local SRAM for one multithreaded SIMD
Processor, unavailable to other SIMD Processors.

Registers in a single SIMD Lane allocated across
a full thread block (body of vectorized loop).

Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
up of one or more Thread Blocks (bodies of
vectorized loop) that can execute in parallel.

Closest old term
outside of GPUs

Official CUDA/
NVIDIA GPU term Book definition

FIGURE 6.12 Quick guide to GPU terms. We use the first column for hardware terms. Four groups
cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware,
and Memory Hardware.

 6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing MultiproCessors 521

Elaboration: While the GPU was introduced as having a separate memory from the
CPU, both AMD and Intel have announced “fused” products that combine GPUs and
CPUs to share a single memory. The challenge will be to maintain the high bandwidth
memory in a fused architecture that has been a foundation of GPUs.

6.7

 Clusters, Warehouse Scale Computers,
and Other Message-Passing
Multiprocessors

The alternative approach to sharing an address space is for the processors to
each have their own private physical address space. Figure 6.13 shows the classic
organization of a multiprocessor with multiple private address spaces. This
alternative multiprocessor must communicate via explicit message passing,
which traditionally is the name of such style of computers. Provided the system
has routines to send and receive messages, coordination is built in with message
passing, since one processor knows when a message is sent, and the receiving
processor knows when a message arrives. If the sender needs confirmation that the
message has arrived, the receiving processor can then send an acknowledgment
message back to the sender.

There have been several attempts to build large-scale computers based on
high-performance message-passing networks, and they do offer better absolute

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and
thereby increase performance on graphics applications.

message passing
Communicating between
multiple processors by
explicitly sending and
receiving information.

send message routine
A routine used by a
processor in machines
with private memories to
pass a message to another
processor.

receive message routine
A routine used by a
processor in machines
with private memories
to accept a message from
another processor.

Check
Yourself

Cache Cache Cache

Memory Memory Memory

Interconnection Network

. . .

. . .

Processor Processor Processor. . .

FIGURE 6.13 Classic organization of a multiprocessor with multiple private address
spaces, traditionally called a message-passing multiprocessor. Note that unlike the SMP
in Figure 6.7, the interconnection network is not between the caches and memory but is instead between
processor-memory nodes.

522 Chapter 6 Parallel Processors from Client to Cloud

communication performance than clusters built using local area networks. Indeed,
many supercomputers today use custom networks. The problem is that they are
much more expensive than local area networks like Ethernet. Few applications today
outside of high-performance computing can justify the higher communication
performance, given the much higher costs.

Computers that rely on message passing for communication rather than cache
coherent shared memory are much easier for hardware designers to build (see
Section 5.8). There is an advantage for programmers as well, in that communication
is explicit, which means there are fewer performance surprises than with the implicit
communication in cache-coherent shared memory computers. The downside
for programmers is that it’s harder to port a sequential program to a message-
passing computer, since every communication must be identified in advance or
the program doesn’t work. Cache-coherent shared memory allows the hardware to
figure out what data need to be communicated, which makes porting easier. There
are differences of opinion as to which is the shortest path to high performance,
given the pros and cons of implicit communication, but there is no confusion in the
marketplace today. Multicore microprocessors use shared physical memory and
nodes of a cluster communicate with each other using message passing.

Hardware/
Software
Interface

Some concurrent applications run well on parallel hardware, independent of
whether it offers shared addresses or message passing. In particular, task-level
parallelism and applications with little communication—like Web search, mail
servers, and file servers—do not require shared addressing to run well. As a result,
clusters have become the most widespread example today of the message-passing
parallel computer. Given the separate memories, each node of a cluster runs a
distinct copy of the operating system. In contrast, the cores inside a microprocessor
are connected using a high-speed network inside the chip, and a multichip shared-
memory system uses the memory interconnect for communication. The memory
interconnect has higher bandwidth and lower latency, allowing much better
communication performance for shared memory multiprocessors.

The weakness of separate memories for user memory from a parallel programming
perspective turns into a strength in system dependability (see Section 5.5). Since a
cluster consists of independent computers connected through a local area network,
it is much easier to replace a computer without bringing down the system in a cluster
than in a shared memory multiprocessor. Fundamentally, the shared address means
that it is difficult to isolate a processor and replace it without heroic work by the
operating system and in the physical design of the server. It is also easy for clusters
to scale down gracefully when a server fails, thereby improving dependability. Since
the cluster software is a layer that runs on top of the local operating systems running
on each computer, it is much easier to disconnect and replace a broken computer.

clusters Collections of
computers connected
via I/O over standard
network switches to
form a message-passing
multiprocessor.

6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing MultiproCessors 523

Given that clusters are constructed from whole computers and independent,
scalable networks, this isolation also makes it easier to expand the system without
bringing down the application that runs on top of the cluster.

Their lower cost, higher availability, and rapid, incremental expandability make
clusters attractive to service Internet providers, despite their poorer communication
performance when compared to large-scale shared-memory multiprocessors. The
search engines that hundreds of millions of us use every day depend upon this
technology. Amazon, Facebook, Google, Microsoft, and others all have multiple
datacenters each with clusters of tens of thousands of servers. Clearly, the use of
multiple processors in Internet service companies has been hugely successful.

Warehouse-Scale Computers
Internet services, such as those described above, necessitated the construction
of new buildings to house, power, and cool 100,000 servers. Although they may
be classified as just large clusters, their architecture and operation are more
sophisticated. They act as one giant computer and cost on the order of $150M
for the building, the electrical and cooling infrastructure, the servers, and the
networking equipment that connects and houses 50,000 to 100,000 servers. We
consider them a new class of computer, called Warehouse-Scale Computers (WSC).

The most popular framework for batch processing in a WSC is MapReduce [Dean,
2008] and its open-source twin Hadoop. Inspired by the Lisp functions of the same
name, Map first applies a programmer-supplied function to each logical input
record. Map runs on thousands of servers to produce an intermediate result of key-
value pairs. Reduce collects the output of those distributed tasks and collapses them
using another programmer-defined function. With appropriate software support,
both are highly parallel yet easy to understand and to use. Within 30 minutes, a
novice programmer can run a MapReduce task on thousands of servers.

For example, one MapReduce program calculates the number of occurrences of
every English word in a large collection of documents. Below is a simplified version
of that program, which shows only the inner loop and assumes just one occurrence
of all English words found in a document:

Anyone can build a fast
CPU. The trick is to
build a fast system.
Seymour Cray,
considered the father of
the supercomputer.

Hardware/
Software
Interface

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, “1”); // Produce list of all words
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v); // get integer from key-value pair
 Emit(AsString(result));

524 Chapter 6 Parallel Processors from Client to Cloud

At this extreme scale, which requires innovation in power distribution, cooling,
monitoring, and operations, the WSC is a modern descendant of the 1970s
supercomputers—making Seymour Cray the godfather of today’s WSC architects.
His extreme computers handled computations that could be done nowhere else, but
were so expensive that only a few companies could afford them. This time the target
is providing information technology for the world instead of high-performance
computing for scientists and engineers. Hence, WSCs surely play a more important
societal role today than Cray’s supercomputers did in the past.

While they share some common goals with servers, WSCs have three major
distinctions:

1. Ample, easy parallelism: A concern for a server architect is whether the
applications in the targeted marketplace have enough parallelism to justify
the amount of parallel hardware and whether the cost is too high for sufficient
communication hardware to exploit this parallelism. A WSC architect has
no such concern. First, batch applications like MapReduce benefit from the
large number of independent data sets that need independent processing,
such as billions of Web pages from a Web crawl. Second, interactive Internet
service applications, also known as Software as a Service (SaaS), can benefit
from millions of independent users of interactive Internet services. Reads
and writes are rarely dependent in SaaS, so SaaS rarely needs to synchronize.
For example, search uses a read-only index and email is normally reading
and writing independent information. We call this type of easy parallelism
Request-Level Parallelism, as many independent efforts can proceed in
parallel naturally with little need for communication or synchronization.

2. Operational Costs Count: Traditionally, server architects design their systems
for peak performance within a cost budget and worry about energy only to
make sure they don’t exceed the cooling capacity of their enclosure. They
usually ignored operational costs of a server, assuming that they pale in
comparison to purchase costs. WSCs have longer lifetimes—the building
and electrical and cooling infrastructure are often amortized over 10 or
more years—so the operational costs add up: energy, power distribution,
and cooling represent more than 30% of the costs of a WSC over 10 years.

3. Scale and the Opportunities/Problems Associated with Scale: To construct a
single WSC, you must purchase 100,000 servers along with the supporting
infrastructure, which means volume discounts. Hence, WSCs are so massive

internally that you get economy of scale even if there are few WSCs. These
economies of scale led to cloud computing, as the lower per unit costs of a
WSC meant that cloud companies could rent servers at a profitable rate and
still be below what it costs outsiders to do it themselves. The flip side of the
economic opportunity of scale is the need to cope with the failure frequency
of scale. Even if a server had a Mean Time To Failure of an amazing 25 years
(200,000 hours), the WSC architect would need to design for five server
failures every day. Section 5.15 mentioned annualized disk failure rate (AFR)
was measured at Google at 2% to 4%. If there were four disks per server and
their annual failure rate was 2%, the WSC architect should expect to see one
disk fail every hour. Thus, fault tolerance is even more important for the
WSC architect than for the server architect.

The economies of scale uncovered by WSC have realized the long dreamed of
goal of computing as a utility. Cloud computing means anyone anywhere with good
ideas, a business model, and a credit card can tap thousands of servers to deliver
their vision almost instantly around the world. Of course, there are important
obstacles that could limit the growth of cloud computing—such as security,
privacy, standards, and the rate of growth of Internet bandwidth—but we foresee
them being addressed so that WSCs and cloud computing can flourish.

To put the growth rate of cloud computing into perspective, in 2012 Amazon
Web Services announced that it adds enough new server capacity every day to
support all of Amazon’s global infrastructure as of 2003, when Amazon was a
$5.2Bn annual revenue enterprise with 6000 employees.

Now that we understand the importance of message-passing multiprocessors,
especially for cloud computing, we next cover ways to connect the nodes of a WSC
together. Thanks to Moore’s Law and the increasing number of cores per chip, we
now need networks inside a chip as well, so these topologies are important in the
small as well as in the large.

Elaboration: The MapReduce framework shuffles and sorts the key-value pairs at the
end of the Map phase to produce groups that all share the same key. These groups are
next passed to the Reduce phase.

Elaboration: Another form of large-scale computing is grid computing, where the
computers are spread across large areas, and then the programs that run across them
must communicate via long haul networks. The most popular and unique form of grid
computing was pioneered by the SETI@home project. As millions of PCs are idle at
any one time doing nothing useful, they could be harvested and put to good use if
someone developed software that could run on those computers and then gave each PC
an independent piece of the problem to work on. The first example was the Search for
ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5
million computer users in more than 200 countries have signed up for SETI@home, with
more than 50% outside the US. By the end of 2011, the average performance of the
SETI@home grid was 3.5 PetaFLOPS.

software as a service
(SaaS) Rather than
selling software that
is installed and run
on customers’ own
computers, software is run
at a remote site and made
available over the Internet
typically via a Web
interface to customers.
SaaS customers are
charged based on use
versus on ownership.

The function EmitIntermediate used in the Map function emits each word
in the document and the value one. Then the Reduce function sums all the values
per word for each document using ParseInt() to get the number of occurrences
per word in all documents. The MapReduce runtime environment schedules map
tasks and reduce tasks to the servers of a WSC.

6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing MultiproCessors 525

internally that you get economy of scale even if there are few WSCs. These
economies of scale led to cloud computing, as the lower per unit costs of a
WSC meant that cloud companies could rent servers at a profitable rate and
still be below what it costs outsiders to do it themselves. The flip side of the
economic opportunity of scale is the need to cope with the failure frequency
of scale. Even if a server had a Mean Time To Failure of an amazing 25 years
(200,000 hours), the WSC architect would need to design for five server
failures every day. Section 5.15 mentioned annualized disk failure rate (AFR)
was measured at Google at 2% to 4%. If there were four disks per server and
their annual failure rate was 2%, the WSC architect should expect to see one
disk fail every hour. Thus, fault tolerance is even more important for the
WSC architect than for the server architect.

The economies of scale uncovered by WSC have realized the long dreamed of
goal of computing as a utility. Cloud computing means anyone anywhere with good
ideas, a business model, and a credit card can tap thousands of servers to deliver
their vision almost instantly around the world. Of course, there are important
obstacles that could limit the growth of cloud computing—such as security,
privacy, standards, and the rate of growth of Internet bandwidth—but we foresee
them being addressed so that WSCs and cloud computing can flourish.

To put the growth rate of cloud computing into perspective, in 2012 Amazon
Web Services announced that it adds enough new server capacity every day to
support all of Amazon’s global infrastructure as of 2003, when Amazon was a
$5.2Bn annual revenue enterprise with 6000 employees.

Now that we understand the importance of message-passing multiprocessors,
especially for cloud computing, we next cover ways to connect the nodes of a WSC
together. Thanks to Moore’s Law and the increasing number of cores per chip, we
now need networks inside a chip as well, so these topologies are important in the
small as well as in the large.

Elaboration: The MapReduce framework shuffles and sorts the key-value pairs at the
end of the Map phase to produce groups that all share the same key. These groups are
next passed to the Reduce phase.

Elaboration: Another form of large-scale computing is grid computing, where the
computers are spread across large areas, and then the programs that run across them
must communicate via long haul networks. The most popular and unique form of grid
computing was pioneered by the SETI@home project. As millions of PCs are idle at
any one time doing nothing useful, they could be harvested and put to good use if
someone developed software that could run on those computers and then gave each PC
an independent piece of the problem to work on. The first example was the Search for
ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5
million computer users in more than 200 countries have signed up for SETI@home, with
more than 50% outside the US. By the end of 2011, the average performance of the
SETI@home grid was 3.5 PetaFLOPS.

software as a service
(SaaS) Rather than
selling software that
is installed and run
on customers’ own
computers, software is run
at a remote site and made
available over the Internet
typically via a Web
interface to customers.
SaaS customers are
charged based on use
versus on ownership.

526 Chapter 6 Parallel Processors from Client to Cloud

 6.8 Introduction to Multiprocessor Network
Topologies

Multicore chips require on-chip networks to connect cores together, and clusters
require local area networks to connect servers together. This section reviews the
pros and cons of different interconnection network topologies.

Network costs include the number of switches, the number of links on a switch
to connect to the network, the width (number of bits) per link, and length of the
links when the network is mapped into silicon. For example, some cores or servers
may be adjacent and others may be on the other side of the chip or the other side of
the datacenter. Network performance is multifaceted as well. It includes the latency
on an unloaded network to send and receive a message, the throughput in terms of
the maximum number of messages that can be transmitted in a given time period,
delays caused by contention for a portion of the network, and variable performance
depending on the pattern of communication. Another obligation of the network
may be fault tolerance, since systems may be required to operate in the presence
of broken components. Finally, in this era of energy-limited systems, the energy
efficiency of different organizations may trump other concerns.

Networks are normally drawn as graphs, with each edge of the graph representing
a link of the communication network. In the figures in this section, the processor-
memory node is shown as a black square and the switch is shown as a colored
circle. We assume here that all links are bidirectional; that is, information can flow
in either direction. All networks consist of switches whose links go to processor-
memory nodes and to other switches. The first network connects a sequence of
nodes together:

This topology is called a ring. Since some nodes are not directly connected, some
messages will have to hop along intermediate nodes until they arrive at the final
destination.

Unlike a bus—a shared set of wires that allows broadcasting to all connected
devices—a ring is capable of many simultaneous transfers.

1. True or false: Like SMPs, message-passing computers rely on locks for
synchronization.

2. True or false: Clusters have separate memories and thus need many copies of
the operating system.

Check
Yourself

 6.8 Introduction to Multiprocessor Network Topologies 527

Because there are numerous topologies to choose from, performance metrics
are needed to distinguish these designs. Two are popular. The first is total network
bandwidth, which is the bandwidth of each link multiplied by the number of links.
This represents the peak bandwidth. For the ring network above, with P processors,
the total network bandwidth would be P times the bandwidth of one link; the total
network bandwidth of a bus is just the bandwidth of that bus.

To balance this best bandwidth case, we include another metric that is closer to
the worst case: the bisection bandwidth. This metric is calculated by dividing the
machine into two halves. Then you sum the bandwidth of the links that cross that
imaginary dividing line. The bisection bandwidth of a ring is two times the link
bandwidth. It is one times the link bandwidth for the bus. If a single link is as fast
as the bus, the ring is only twice as fast as a bus in the worst case, but it is P times
faster in the best case.

Since some network topologies are not symmetric, the question arises
of where to draw the imaginary line when bisecting the machine. Bisection
bandwidth is a worst-case metric, so the answer is to choose the division that
yields the most pessimistic network performance. Stated alternatively, calculate
all possible bisection bandwidths and pick the smallest. We take this pessimistic
view because parallel programs are often limited by the weakest link in the
communication chain.

At the other extreme from a ring is a fully connected network, where every
processor has a bidirectional link to every other processor. For fully connected
networks, the total network bandwidth is P × (P−1)/2, and the bisection bandwidth
is (P/2)2.

The tremendous improvement in performance of fully connected networks is
offset by the tremendous increase in cost. This consequence inspires engineers
to invent new topologies that are between the cost of rings and the performance
of fully connected networks. The evaluation of success depends in large part on
the nature of the communication in the workload of parallel programs run on the
computer.

The number of different topologies that have been discussed in publications
would be difficult to count, but only a few have been used in commercial parallel
processors. Figure 6.14 illustrates two of the popular topologies.

An alternative to placing a processor at every node in a network is to leave only
the switch at some of these nodes. The switches are smaller than processor-memory-
switch nodes, and thus may be packed more densely, thereby lessening distance and
increasing performance. Such networks are frequently called multistage networks
to reflect the multiple steps that a message may travel. Types of multistage networks
are as numerous as single-stage networks; Figure 6.15 illustrates two of the popular
multistage organizations. A fully connected or crossbar network allows any
node to communicate with any other node in one pass through the network. An
Omega network uses less hardware than the crossbar network (2n log2 n versus n2
switches), but contention can occur between messages, depending on the pattern

network
bandwidth Informally,
the peak transfer rate of a
network; can refer to the
speed of a single link or
the collective transfer rate
of all links in the network.

bisection
bandwidth The
bandwidth between
two equal parts of
a multiprocessor.
This measure is for a
worst-case split of the
multiprocessor.

fully connected
network A network
that connects processor-
memory nodes by
supplying a dedicated
communication link
between every node.

multistage network
A network that supplies a
small switch at each node.

crossbar network
A network that allows
any node to communicate
with any other node in
one pass through the
network.

528 Chapter 6 Parallel Processors from Client to Cloud

of communication. For example, the Omega network in Figure 6.15 cannot send a
message from P0 to P6 at the same time that it sends a message from P1 to P4.

Implementing Network Topologies
This simple analysis of all the networks in this section ignores important practical
considerations in the construction of a network. The distance of each link affects
the cost of communicating at a high clock rate—generally, the longer the distance,
the more expensive it is to run at a high clock rate. Shorter distances also make
it easier to assign more wires to the link, as the power to drive many wires is less
if the wires are short. Shorter wires are also cheaper than longer wires. Another
practical limitation is that the three-dimensional drawings must be mapped onto
chips that are essentially two-dimensional media. The final concern is energy.
Energy concerns may force multicore chips to rely on simple grid topologies, for
example. The bottom line is that topologies that appear elegant when sketched on
the blackboard may be impractical when constructed in silicon or in a datacenter.

Now that we understand the importance of clusters and have seen topologies
that we can follow to connect them together, we next look at the hardware and
software of the interface of the network to the processor.

True or false: For a ring with P nodes, the ratio of the total network bandwidth to
the bisection bandwidth is P/2.

a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 6.14 Network topologies that have appeared in commercial parallel processors.
The colored circles represent switches and the black squares represent processor-memory nodes. Even
though a switch has many links, generally only one goes to the processor. The Boolean n-cube topology is
an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and
thus n nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to
improve performance and reliability.

Check
Yourself

 6.9 Communicating to the Outside World: Cluster Networking 529

 Communicating to the Outside World:
Cluster Networking

This online section describes the networking hardware and software used to connect
the nodes of a cluster together. The example is 10 gigabit/second Ethernet connected
to the computer using Peripheral Component Interconnect Express (PCIe). It shows
both software and hardware optimizations how to improve network performance,
including zero copy messaging, user space communication, using polling instead of I/O
interrupts, and hardware calculation of checksums. While the example is networking,
the techniques in this section apply to storage controllers and other I/O devices as well.

6.9

a. Crossbar b. Omega network

c. Omega network switch box

C

D

A

B

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

FIGURE 6.15 Popular multistage network topologies for eight nodes. The switches in these
drawings are simpler than in earlier drawings because the links are unidirectional; data come in at the left and
exit out the right link. The switch box in c can pass A to C and B to D or B to C and A to D. The crossbar uses
n2 switches, where n is the number of processors, while the Omega network uses 2n log2n of the large switch
boxes, each of which is logically composed of four of the smaller switches. In this case, the crossbar uses 64
switches versus 12 switch boxes, or 48 switches, in the Omega network. The crossbar, however, can support
any combination of messages between processors, while the Omega network cannot.

 6.9 Communicating to the Outside World: Cluster Networking 529.e1

 Communicating to the Outside World:
Cluster Networking

This online section describes the networking hardware and software used to
connect the nodes of cluster together. As there are whole books and courses just on
networking, this section only introduces the main terms and concepts. While our
example is networking, the techniques we describe apply to storage controllers and
other I/O devices as well.

Ethernet has dominated local-area networks for decades, so it is not surprising
that clusters primarily rely on Ethernet as the cluster interconnect. It became
commercially popular at 10 Megabits per second link speed in the 1980s, but
today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being
deployed in datacenters. Figure e6.9.1 shows a network interface card (NIC) for 10
Gigabit Ethernet.

Computers offer high-speed links to plug in fast I/O devices like this NIC. While
there used to be separate chips to connect the microprocessor to the memory and
high-speed I/O devices, thanks to Moore’s Law these functions have been absorbed
into the main chip in recent offerings like Intel’s Sandy Bridge. A popular high-
speed link today is PCIe, which stands for Peripheral Component Interconnect
Express. It is called a link in that the basic building block, called a serial lane,
consists of only four wires: two for receiving data and two for transmitting data.
This small number contrasts with an earlier version of PCI that consisted of 64

6.9

FIGURE e6.9.1 The NetFPGA 10-Gigabit Ethernet card (see http://netfpga.org/), which
connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for
network research and classroom experimentation. The DMA engine and the four “MAC chips”
in Figure e6.9.2 are just portions of the Xilinx Virtex FPGA in the middle of the board. The four PHY chips
in Figure e6.9.2 are the four black squares just to the right of the four white rectangles on the left edge of the
board, which is where the Ethernet cables are plugged in.

http://netfpga.org/

529.e2 6.9 Communicating to the Outside World: Cluster Networking

wires, which was called a parallel bus. PCIe allows anywhere from one to 32 lanes
to be used to connect to I/O devices, depending on its needs. This NIC uses PCI
1.1, so each lane transfers at 2 Gigabits/second.

The NIC in Figure e6.9.1 connects to the host computer over an eight-lane
PCIe link, which offers 16 Gigabits/second in both directions. To communicate,
a NIC must both send or transmit messages and receive them, often abbreviated
as TX and RX, respectively. For this NIC, each 10 G link uses separate transmit
and receive queues, each of which can store two full-length Ethernet packets, used
between the Ethernet links and the NIC. Figure e6.9.2 is a block diagram of the
NIC showing the TX and RX queues. The NIC also has two 32-entry queues for
transmitting and receiving between the host computer and the NIC.

To give a command to the NIC, the processor must be able to address the device
and to supply one or more command words. In memory-mapped I/O, portions of
the address space are assigned to I/O devices. During initialization (at boot time),
PCIe devices can request to be assigned an address region of a specified length.
All subsequent processor reads and writes to that address region are forwarded
over PCIe to that device. Reads and writes to those addresses are interpreted as
commands to the I/O device.

For example, a write operation can be used to send data to the network interface
where the data will be interpreted as a command. When the processor issues the
address and data, the memory system ignores the operation because the address
indicates a portion of the memory space used for I/O. The NIC, however, sees the
operation and records the data. User programs are prevented from issuing I/O
operations directly, because the OS does not provide access to the address space
assigned to the I/O devices, and thus the addresses are protected by the address
translation. Memory-mapped I/O can also be used to transmit data by writing or
reading to select addresses. The device uses the address to determine the type of
command, and the data may be provided by a write or obtained by a read. In any
event, the address encodes both the device identity and the type of transmission
between processor and device.

memory-mapped
I/O An I/O scheme in
which portions of the
address space are assigned
to I/O devices, and reads
and writes to those
addresses are interpreted
as commands to the I/O
device.

PCIe

TX

RX

DMA

MAC

MAC

MAC

MAC

PHY

PHY

PHY

PHY Port 0

Port 1

Port 2

Port 3

Control
Data

FIGURE e6.9.2 Block diagram of the NetFPGA Ethernet card in Figure e6.9.1 showing the
control paths and the data paths. The control path allows the DMA engine to read the status of the
queues, such as empty vs. on-empty, and the content of the next available queue entry. The DMA engine also
controls port multiplexing. The data path simply passes through the DMA block to the TX/RX queues or
to main memory. The “MAC chips” are described below. The PHY chips, which refer to the physical layer,
connect the “MAC chips” to physical networking medium, such as copper wire or optical fiber.

 6.9 Communicating to the Outside World: Cluster Networking 529.e3

While the processor could transfer the data from the user space into the I/O
space by itself, the overhead for transferring data from or to a high-speed network
could be intolerable, since it could consume a large fraction of the processor. Thus,
computer designers long ago invented a mechanism for offloading the processor and
having the device controller transfer data directly to or from the memory without
involving the processor. This mechanism is called direct memory access (DMA).

DMA is implemented with a specialized controller that transfers data between
the network interface and memory independent of the processor, and in this case
the DMA engine is inside the NIC.

To notify the operating system (and eventually the application that will receive
the packet) that a transfer is complete, the DMA sends an I/O interrupt.

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two
important distinctions:

1. An I/O interrupt is asynchronous with respect to the instruction execution.
That is, the interrupt is not associated with any instruction and does not
prevent the instruction completion, so it is very different from either page fault
exceptions or exceptions such as arithmetic overflow. Our control unit needs
only to check for a pending I/O interrupt at the time it starts a new instruction.

2. In addition to the fact that an I/O interrupt has occurred, we would like to
convey further information, such as the identity of the device generating
the interrupt. Furthermore, the interrupts represent devices that may have
different priorities and whose interrupt requests have different urgencies
associated with them.

To communicate information to the processor, such as the identity of the device
raising the interrupt, a system can use either vectored interrupts or an exception
identification register, called the supervisor exception cause (SCAUSE) register in
RISC-V (see Section 4.9). When the processor recognizes the interrupt, the device
can send either the vector address or a status field to place in the Cause register. As
a result, when the OS gets control, it knows the identity of the device that caused
the interrupt and can immediately interrogate the device. An interrupt mechanism
eliminates the need for the processor to keep checking the device and instead
allows the processor to focus on executing programs.

The Role of the Operating System in Networking
The operating system acts as the interface between the hardware and the program
that requests I/O. The network responsibilities of the operating system arise from
three characteristics of networks:

1. Multiple programs using the processor share the network.

2. Networks often use interrupts to communicate information about the
operations. Because interrupts cause a transfer to kernel or supervisor mode,
they must be handled by the operating system (OS).

direct memory access
(DMA) A mechanism
that provides a device
controller with the ability
to transfer data directly
to or from the memory
without involving the
processor.
interrupt-driven
I/O An I/O scheme that
employs interrupts to
indicate to the processor
that an I/O device needs
attention.

529.e4 6.9 Communicating to the Outside World: Cluster Networking

3. The low-level control of a network is complex, because it requires managing
a set of concurrent events and because the requirements for correct device
control are often very detailed.

These three characteristics of networks specifically and I/O systems in general lead
to several different functions the OS must provide:

■	 The OS guarantees that a user’s program accesses only the portions of an I/O
device to which the user has rights. For example, the OS must not allow a
program to read or write a file on disk if the owner of the file has not granted
access to this program. In a system with shared I/O devices, protection could
not be provided if user programs could perform I/O directly.

■	 The OS provides abstractions for accessing devices by supplying routines that
handle low-level device operations.

■	 The OS handles the interrupts generated by I/O devices, just as it handles the
exceptions generated by a program.

■	 The OS tries to provide equitable access to the shared I/O resources, as well
as schedule accesses to enhance system throughput.

The software inside the operating system that interfaces to a specific I/O device
like this NIC is called a device driver. The driver for this NIC follows five steps
when transmitting or receiving a message. Figure e6.9.3 shows the relationship of
these steps as an Ethernet packet is sent from one node of the cluster and received
by another node in the cluster.

device driver A program
that controls an I/O device
that is attached to the
computer.

Hardware/
Software
Interface

First, the transmit steps:

1. The driver first prepares a packet buffer in host memory. It copies a packet
from the user address space into a buffer that it allocates in the operating
system address space.

2. Next, it “talks” to the NIC. The driver writes an I/O descriptor to the
appropriate NIC register that gives the address of the buffer and its length.

3. The DMA in the NIC next copies the outgoing Ethernet packet from the host
buffer over PCIe.

4. When the transmission is complete, the DMA interrupts the processor to
notify the processor that the packet has been successfully transmitted.

5. Finally, the driver de-allocates the transmit buffer.

 6.9 Communicating to the Outside World: Cluster Networking 529.e5

Next, the receive steps:

1. First, the driver prepares a packet buffer in host memory, allocating a new
buffer in which to place the received packet.

2. Next, it “talks” to the NIC. The driver writes an I/O descriptor to the
appropriate NIC register that gives the address of the buffer and its length.

3. The DMA in the NIC next copies the incoming Ethernet packet over PCIe
into the allocated host buffer.

4. When the transmission is complete, the DMA interrupts the processor to
notify the host of the newly received packet and its size.

5. Finally, the driver copies the received packet into the user address space.

As you can see in Figure e6.9.3, the first three steps are time-critical when
transmitting a packet (since the last two occur after the packet is sent), and the
last three steps are time-critical when receiving a packet (since the first two occur
before a packet arrives). However, these non-critical steps must be completed
before individual nodes run out of resources, such as memory space. Failure to do
so negatively affects network performance.

Source

Step 1

Step 2

Step 3

Step 3

NIC

CPU
RAM

Step 2

Step 1

Step 4

Step 5

Destination

Ethernet

Step 4

Step 5RAM

CPU

NIC
PCIe

PCIe

FIGURE e6.9.3 Relationship of the five steps of the driver when transmitting an Ethernet
packet from one node and receiving that packet on another node.

529.e6 6.9 Communicating to the Outside World: Cluster Networking

Improving Network Performance
The importance of networking in clusters means it is certainly worthwhile to try to
improve performance. We show both software and hardware techniques.

Starting with software optimizations, one performance target is reducing the
number of times the packet is copied, which you may have noticed happening
repeatedly in the five steps of the driver above. The zero-copy optimization allows
the DMA engine to get the message directly from the user program data space
during transmission and be placed where the user wants it when the message is
received, rather than go through intermediary buffers in the operating system
along the way.

A second software optimization is to cut out the operating system almost entirely
by moving the communication into the user address space. By not invoking the
operating system and not causing a context switch, we can reduce the software
overhead considerably.

In this more radical scenario, a third step would be to drop interrupts. One
reason is that modern processors normally go into lower power mode while
waiting for an interrupt, and it takes time to come out of low power to service the
interrupt as well for the disruption to the pipeline, which increases latency. The
alternative to interrupts is for the processor to periodically check status bits to see
if I/O operation is complete, which is called polling. Hence, we can require the user
program to poll the NIC continuously to see when the DMA unit has delivered a
message, and as a side effect the processor does not go into low-power mode.

Looking at hardware optimizations, one potential target for improvement is
in calculating the values of the fields of the Ethernet packet. The 48-bit Ethernet
address, called the Media Access Control address or MAC address, is a unique
number assigned to each Ethernet NIC. To improve performance, the “MAC
chip”—actually just a portion of the FPGA on this NIC—calculates the value for
the preamble fields and the CRC field (see Section 5.5). The driver is left with
placing the MAC destination address, MAC source address, message type, the
data payload, and padding if needed. (Ethernet requires that the minimum packet,
including the header and CRC fields but not the preamble, be 64 bytes.) Note that
even the least expensive Ethernet NICs do CRC calculation in hardware today.

A second hardware optimization, available on the most recent Intel processors
such as Ivy Bridge, improves the performance of the NIC with respect to the memory
hierarchy. Direct Data IO (DDIO) allowing up to 10% of the last-level cache is used
as a fast scratchpad for the DMA engine. Data are copied directly into the last-level
cache rather than to DRAM by the DMA, and only written to DRAM upon eviction
from the cache. This optimization helps with latency, but also with bandwidth; some
memory regions used for control might be written by the NIC repeatedly, and these
writes no longer need to go to DRAM. Thus, DDIO offers benefits similar to those
of a write back cache versus a write through cache (Chapter 5).

Let’s look at an object store that follows a client-server architecture and uses most
of the optimizations above: zero copy messaging, user space communication, polling
instead of interrupts, and hardware calculation of preamble and CRC. The driver

polling The process of
periodically checking the
status of an I/O device
to determine the need to
service the device.

 6.9 Communicating to the Outside World: Cluster Networking 529.e7

operates in user address space as a library that the application invokes. It grants this
application exclusive and direct access to the NIC. All of the I/O register space on the
NIC is mapped into the application, and all of the driver state is kept in the application.
The OS kernel doesn’t even see the NIC as such, which avoids the overheads of context
switching, the standard kernel network software stack, and interrupts.

Figure e6.9.4 shows the time to send an object from one node to another. It
varies from about 9.5 to 12.5 microseconds, depending on the size of the object.
Here is the time for each step in microseconds:

0.7 – for the client “driver” (library) to make the request (Driver TX in Figure e6.9.4).

6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus
to the Ethernet, depending on the size of the object (NIC TX).

0.02 – to send object over the 10 G Ethernet (Time of Flight). The time of flight
is limited by speed of light to 5 ns per meter. The three-meter cables used in this
measurement mean the time of flight is 15 ns, which is too small to be clearly visible
in the figure.

0

2

4

6

8

10

12

14
0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

Object Size (B)

Driver RX
NIC RX
Time of Flight
NIC TX
Driver TX

FIGURE e6.9.4 Time to send an object broken into transmit driver and NIC hardware time
vs. receive driver and NIC hardware time. NIC transmit time is much larger than the NIC receive
time because transmit requires more PCIe round-trips. The NIC does PCIe reads to read the descriptor and
data, but on receive the NIC does PCIe writes of data, length of data, and interrupt. PCIe reads incur a round
trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so
PCIe writes can be sent back-to-back.

529.e8 6.9 Communicating to the Outside World: Cluster Networking

1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size
(NIC RX).

0.6 – for the server “driver” to transmit the message with the requested object to
the app (Driver RX).

Now that we have seen how to measure the performance of network at a low
level of detail, let’s raise the perspective to see how to benchmark multiprocessors
of all kinds with much higher-level programs.

Elaboration There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers
at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second
in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles
the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per
second, and it is starting to be found on some motherboards. We applaud the standard
committee’s logical rate of bandwidth improvement, which has been about 2version number
gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using
faster versions of PCIe.

Elaboration While Ethernet is the foundation of cluster communication, clusters
commonly use higher-level protocols for reliable communication. Transmission Control
Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication,
is often used inside a warehouse-scale computer, due in part to its dependability. While
IP makes no delivery guarantees in the protocol, TCP does. The sender keeps the packet
sent until it gets the acknowledgment message back that it was received correctly from
the receiver. The receiver knows that the message was not corrupted along the way, by
double-checking the contents with the TCP CRC field. To ensure that IP delivers to the right
destination, the IP header includes a checksum to make sure the destination number
remains unchanged. The success of the Internet is due in large part to the elegance
and popularity of TCP/IP, which allows independent local-area networks to communicate
dependably. Given its importance in the Internet and in clusters, many have accelerated
TCP/IP, using techniques like those listed in this section [Regnier, 2004].

Elaboration Adding DMA is another path to the memory system—one that does not
go through the address translation mechanism or the cache hierarchy. This difference
generates some problems both in virtual memory and in caches. These problems are
usually solved with a combination of hardware techniques and software support. The
difficulties in having DMA in a virtual memory system arise because pages have both
a physical and a virtual address. DMA also creates problems for systems with caches,
because there can be two copies of a data item: one in the cache and one in memory.
Because the DMA issues memory requests directly to the memory rather than through
the processor cache, the value of a memory location seen by the DMA unit and the
processor may differ. Consider a read from a NIC that the DMA unit places directly
into memory. If some of the locations into which the DMA writes are in the cache, the
processor will receive the old value when it does a read. Similarly, if the cache is write-
back, the DMA may read a value directly from memory when a newer value is in the

 6.9 Communicating to the Outside World: Cluster Networking 529.e9

cache, and the value has not been written back. This is called the stale data problem or
coherence problem (see Chapter 5). Similar solutions for coherence are used with DMA.

Elaboration Virtual Machine support clearly can negatively impact networking
performance. As a result, microprocessor designers have been adding hardware
to reduce the performance overhead of virtual machines for networking in particular
and I/O in general. Intel offers Virtualization Technology for Directed I/O (VT-d) to help
virtualize I/O. It is an I/O memory management unit that enables guest virtual machines
to directly use I/O devices, such as Ethernet. It supports DMA remapping, which allows
the DMA to read or write the data directly in the I/O buffers of the guest virtual machine,
rather than into the host I/O buffers and then copy them into the guest I/O buffers. It
also supports interrupt remapping, which lets the virtual machine monitor route interrupt
requests directly to the proper virtual machine.

Two options for networking are using interrupts or polling, and using DMA or
using the processor via load and store instructions.

1. If we want the lowest latency for small packets, which combination is likely
best?

2. If we want the lowest latency for large packets, which combination is likely
best?

Check
Yourself

530 Chapter 6 Parallel Processors from Client to Cloud

After covering the performance of network at a low level of detail in this online
section, the next section shows how to benchmark multiprocessors of all kinds
with much higher-level programs.

 6.10 Multiprocessor Benchmarks and
Performance Models

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because
it is a highly visible way to try to determine which system is better. The results
affect not only the sales of commercial systems, but also the reputation of the
designers of those systems. Hence, all participants want to win the competition,
but they also want to be sure that if someone else wins, they deserve it because
they have a genuinely better system. This desire leads to rules to ensure that the
benchmark results are not simply engineering tricks for that benchmark, but are
instead advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you can’t change the benchmark.
The source code and data sets are fixed, and there is a single proper answer. Any
deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common exception
is to be able to increase the size of the problem so that you can run the benchmark
on systems with a widely different number of processors. That is, many benchmarks
allow weak scaling rather than require strong scaling, even though you must take
care when comparing results for programs running different problem sizes.

Figure 6.16 gives a summary of several parallel benchmarks, also described below:

n	 Linpack is a collection of linear algebra routines, and the routines for
performing Gaussian elimination constitute what is known as the Linpack
benchmark. The DGEMM routine in the example on page 209 represents a
small fraction of the source code of the Linpack benchmark, but it accounts
for most of the execution time for the benchmark. It allows weak scaling,
letting the user pick any size problem. Moreover, it allows the user to rewrite
Linpack in almost any form and in any language, as long as it computes the
proper result and performs the same number of floating point operations
for a given problem size. Twice a year, the 500 computers with the fastest
Linpack performance are published at www.top500.org. The first on this list
is considered by the press to be the world’s fastest computer.

n	 SPECrate is a throughput metric based on the SPEC CPU benchmarks,
such as SPEC CPU 2006 (see Chapter 1). Rather than report performance
of the individual programs, SPECrate runs many copies of the program
simultaneously. Thus, it measures task-level parallelism, as there is no
communication between the tasks. You can run as many copies of the
programs as you want, so this is again a form of weak scaling.

http://www.top500.org

 6.10 Multiprocessor Benchmarks and Performance Models 531

n	 SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory)
were efforts by researchers at Stanford University in the 1990s to put together
a parallel benchmark suite similar in goals to the SPEC CPU benchmark
suite. It includes both kernels and applications, including many from the
high-performance computing community. This benchmark requires strong
scaling, although it comes with two data sets.

Benchmark Scaling? Reprogram? Description

Linpack Weak Yes Dense matrix linear algebra [Dongarra, 1979]

SPECrate Weak No Independent job parallelism [Henning, 2007]

Stanford Parallel
Applications for
Shared Memory
SPLASH 2 [Woo

et al., 1995]

Strong
(although

offers
two problem

sizes)

No

Complex 1D FFT
Blocked LU Decomposition
Blocked Sparse Cholesky Factorization
Integer Radix Sort
Barnes-Hut
Adaptive Fast Multipole
Ocean Simulation
Hierarchical Radiosity
Ray Tracer
Volume Renderer
Water Simulation with Spatial Data Structure
Water Simulation without Spatial Data Structure

NAS Parallel
Benchmarks
[Bailey et al.,

1991]

Weak
Yes
(C or

Fortran only)

EP: embarrassingly parallel
MG: simplified multigrid

CG: unstructured grid for a conjugate gradient method

FT: 3-D partial differential equation solution using FFTs
IS: large integer sort

PARSEC
Benchmark Suite

[Bienia et al.,
2008]

Weak No

Blackscholes—Option pricing with Black-Scholes PDE
Bodytrack—Body tracking of a person
Canneal—Simulated cache-aware annealing to optimize routing
Dedup—Next-generation compression with data deduplication
Facesim—Simulates the motions of a human face
Ferret—Content similarity search server
Fluidanimate—Fluid dynamics for animation with SPH method
Freqmine—Frequent itemset mining
Streamcluster—Online clustering of an input stream
Swaptions—Pricing of a portfolio of swaptions
Vips—Image processing
x264—H.264 video encoding

Berkeley
Design

Patterns
[Asanovic et al.,

2006]

Strong or
Weak

Yes

Finite-State Machine
Combinational Logic
Graph Traversal
Structured Grid
Dense Matrix
Sparse Matrix
Spectral Methods (FFT)
Dynamic Programming
N-Body
MapReduce
Backtrack/Branch and Bound
Graphical Model Inference
Unstructured Grid

FIGURE 6.16 Examples of parallel benchmarks.

532 Chapter 6 Parallel Processors from Client to Cloud

n	 The NAS (NASA Advanced Supercomputing) parallel benchmarks were
another attempt from the 1990s to benchmark multiprocessors. Taken from
computational fluid dynamics, they consist of five kernels. They allow weak
scaling by defining a few data sets. Like Linpack, these benchmarks can be
rewritten, but the rules require that the programming language can only be C
or Fortran.

n	 The recent PARSEC (Princeton Application Repository for Shared Memory
Computers) benchmark suite consists of multithreaded programs that use
Pthreads (POSIX threads) and OpenMP (Open MultiProcessing; see Section
6.5). They focus on emerging computational domains and consist of nine
applications and three kernels. Eight rely on data parallelism, three rely on
pipelined parallelism, and one on unstructured parallelism.

n	 On the cloud front, the goal of the Yahoo! Cloud Serving Benchmark (YCSB)
is to compare performance of cloud data services. It offers a framework that
makes it easy for a client to benchmark new data services, using Cassandra
and HBase as representative examples [Cooper, 2010].

The downside of such traditional restrictions to benchmarks is that innovation is
chiefly limited to the architecture and compiler. Better data structures, algorithms,
programming languages, and so on often cannot be used, since that would give a
misleading result. The system could win because of, say, the algorithm, and not
because of the hardware or the compiler.

While these guidelines are understandable when the foundations of computing
are relatively stable—as they were in the 1990s and the first half of this decade—
they are undesirable during a programming revolution. For this revolution to
succeed, we need to encourage innovation at all levels.

Researchers at the University of California at Berkeley have advocated one
approach. They identified 13 design patterns that they claim will be part of
applications of the future. Frameworks or kernels implement these design
patterns. Examples are sparse matrices, structured grids, finite-state machines,
map reduce, and graph traversal. By keeping the definitions at a high level, they
hope to encourage innovations at any level of the system. Thus, the system with the
fastest sparse matrix solver is welcome to use any data structure, algorithm, and
programming language, in addition to novel architectures and compilers.

Performance Models
A topic related to benchmarks is performance models. As we have seen with the
increasing architectural diversity in this chapter—multithreading, SIMD, GPUs—
it would be especially helpful if we had a simple model that offered insights into the
performance of different architectures. It need not be perfect, just insightful.

The 3Cs for cache performance from Chapter 5 is an example performance
model. It is not a perfect performance model, since it ignores potentially important

Pthreads A UNIX
API for creating and
manipulating threads. It is
structured as a library.

 6.10 Multiprocessor Benchmarks and Performance Models 533

factors like block size, block allocation policy, and block replacement policy.
Moreover, it has quirks. For example, a miss can be ascribed due to capacity in one
design, and to a conflict miss in another cache of the same size. Yet 3Cs model has
been popular for 25 years, because it offers insight into the behavior of programs,
helping both architects and programmers improve their creations based on insights
from that model.

To find such a model for parallel computers, let’s start with small kernels,
like those from the 13 Berkeley design patterns in Figure 6.16. While there are
versions with different data types for these kernels, floating point is popular in
several implementations. Hence, peak floating-point performance is a limit on the
speed of such kernels on a given computer. For multicore chips, peak floating-point
performance is the collective peak performance of all the cores on the chip. If there
were multiple microprocessors in the system, you would multiply the peak per chip
by the total number of chips.

The demands on the memory system can be estimated by dividing this peak
floating-point performance by the average number of floating-point operations per
byte accessed:

Floating-Point Operations/Sec
Floating-PointOperations/Byte

= BBytes/Sec

The ratio of floating-point operations per byte of memory accessed is called the
arithmetic intensity. It can be calculated by taking the total number of floating-
point operations for a program divided by the total number of data bytes transferred
to main memory during program execution. Figure 6.17 shows the arithmetic
intensity of several of the Berkeley design patterns from Figure 6.16.

arithmetic intensity
The ratio of floating-
point operations in a
program to the number
of data bytes accessed by
a program from main
memory.

A r i t h m e t i c I n t e n s i t y

O(N) O(log(N)) O(1)

Sparse
Matrix
(SpMV)

Structured
Grids
(Stencils,
PDEs)

Structured
Grids
(Lattice
Methods)

Spectral
Methods
(FFTs)

Dense
Matrix
(BLAS3)

N-body
(Particle
Methods)

FIGURE 6.17 Arithmetic intensity, specified as the number of floating-point operations
to run the program divided by the number of bytes accessed in main memory [Williams,
Waterman, and Patterson, 2009]. Some kernels have an arithmetic intensity that scales with problem
size, such as Dense Matrix, but there are many kernels with arithmetic intensities independent of problem
size. For kernels in this former case, weak scaling can lead to different results, since it puts much less demand
on the memory system.

534 Chapter 6 Parallel Processors from Client to Cloud

The Roofline Model
This simple model ties floating-point performance, arithmetic intensity, and memory
performance together in a two-dimensional graph [Williams, Waterman, and
Patterson, 2009]. Peak floating-point performance can be found using the hardware
specifications mentioned above. The working sets of the kernels we consider here
do not fit in on-chip caches, so peak memory performance may be defined by the
memory system behind the caches. One way to find the peak memory performance
is the Stream benchmark. (See the Elaboration on page 373 in Chapter 5.)

Figure 6.18 shows the model, which is done once for a computer, not for each
kernel. The vertical Y-axis is achievable floating-point performance from 0.5 to
64.0 GFLOPs/second. The horizontal X-axis is arithmetic intensity, varying from
1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the
graph is a log-log scale.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we draw a vertical line through that point, the performance of the kernel
on that computer must lie somewhere along that line. We can plot a horizontal line
showing peak floating-point performance of the computer. Obviously, the actual
floating-point performance can be no higher than the horizontal line, since that is
a hardware limit.

Arithmetic Intensity: FLOPs/Byte Ratio

A
tta

in
ab

le
 G

F
LO

P
s/

se
co

nd

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1/8 1/4 1/2 1 2 4 8 16

peak floating-point performance

pe
ak

 m
em

or
y B

W
 (s

tre
am

)

Kernel 1
(Memory
Bandwidth
limited)

Kernel 2
(Computation
limited)

FIGURE 6.18 Roofline Model [Williams, Waterman, and Patterson, 2009]. This example has
a peak floating-point performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the
Stream benchmark. (Since Stream is actually four measurements, this line is the average of the four.) The
dotted vertical line in color on the left represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/
byte. It is limited by memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. The dotted
vertical line to the right represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited
only computationally to 16 GFLOPS/s. (These data are based on the AMD Opteron X2 (Revision F) using
dual cores running at 2 GHz in a dual socket system.)

 6.10 Multiprocessor Benchmarks and Performance Models 535

How could we plot the peak memory performance, which is measured in bytes/
second? Since the X-axis is FLOPs/byte and the Y-axis FLOPs/second, bytes/second
is just a diagonal line at a 45-degree angle in this figure. Hence, we can plot a third
line that gives the maximum floating-point performance that the memory system
of that computer can support for a given arithmetic intensity. We can express the
limits as a formula to plot the line in the graph in Figure 6.18:

 Attainable GFLOPs/sec = Min (Peak Memory BW Arithmetic Inte × nnsity, Peak
Floating Point Performance)-

The horizontal and diagonal lines give this simple model its name and indicate its
value. The “roofline” sets an upper bound on performance of a kernel depending on
its arithmetic intensity. Given a roofline of a computer, you can apply it repeatedly,
since it doesn’t vary by kernel.

If we think of arithmetic intensity as a pole that hits the roof, either it hits
the slanted part of the roof, which means performance is ultimately limited by
memory bandwidth, or it hits the flat part of the roof, which means performance is
computationally limited. In Figure 6.18, kernel 1 is an example of the former, and
kernel 2 is an example of the latter.

Note that the “ridge point,” where the diagonal and horizontal roofs meet, offers
an interesting insight into the computer. If it is far to the right, then only kernels
with very high arithmetic intensity can achieve the maximum performance of
that computer. If it is far to the left, then almost any kernel can potentially hit the
maximum performance.

Comparing Two Generations of Opterons
The AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron
X2 with two cores. To simplify board design, they use the same socket. Hence, they
have the same DRAM channels and thus the same peak memory bandwidth. In
addition to doubling the number of cores, the Opteron X4 also has twice the peak
floating-point performance per core: Opteron X4 cores can issue two floating-
point SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one.
As the two systems we’re comparing have similar clock rates—2.2 GHz for Opteron
X2 versus 2.3 GHz for Opteron X4—the Opteron X4 has about four times the peak
floating-point performance of the Opteron X2 with the same DRAM bandwidth.
The Opteron X4 also has a 2MiB L3 cache, which is not found in the Opteron X2.

In Figure 6.19 the roofline models for both systems are compared. As we would
expect, the ridge point moves to the right, from 1 in the Opteron X2 to 5 in the
Opteron X4. Hence, to see a performance gain in the next generation, kernels need
an arithmetic intensity higher than 1, or their working sets must fit in the caches
of the Opteron X4.

The roofline model gives an upper bound to performance. Suppose your
program is far below that bound. What optimizations should you perform, and in
what order?

536 Chapter 6 Parallel Processors from Client to Cloud

To reduce computational bottlenecks, the following two optimizations can help
almost any kernel:

1. Floating-point operation mix. Peak floating-point performance for a computer
typically requires an equal number of nearly simultaneous additions and
multiplications. That balance is necessary either because the computer
supports a fused multiply-add instruction (see the Elaboration on page 214
in Chapter 3) or because the floating-point unit has an equal number of
floating-point adders and floating-point multipliers. The best performance
also requires that a significant fraction of the instruction mix is floating-
point operations and not integer instructions.

2. Improve instruction-level parallelism and apply SIMD. For modern archi-
tectures, the highest performance comes when fetching, executing, and
committing three to four instructions per clock cycle (see Section 4.10). The
goal for this step is to improve the code from the compiler to increase ILP. One
way is by unrolling loops, as we saw in Section 4.12. For the x86 architectures,
a single AVX instruction can operate on four double precision operands, so
they should be used whenever possible (see Sections 3.7 and 3.8).

To reduce memory bottlenecks, the following two optimizations can help:

1. Software prefetching. Usually the highest performance requires keeping many
memory operations in flight, which is easier to do by performing predicting
accesses via software prefetch instructions rather than waiting until the data
are required by the computation.

2. Memory affinity. Microprocessors today include a memory controller on
the same chip with the microprocessor, which improves performance of the
memory hierarchy. If the system has multiple chips, this means that some
addresses go to the DRAM that is local to one chip, and the rest require
accesses over the chip interconnect to access the DRAM that is local to
another chip. This split results in non-uniform memory accesses, which we
described in Section 6.5. Accessing memory through another chip lowers
performance. This second optimization tries to allocate data and the threads
tasked to operate on that data to the same memory-processor pair, so that
the processors rarely have to access the memory of the other chips.

The roofline model can help decide which of these two optimizations to
perform and the order in which to perform them. We can think of each of these
optimizations as a “ceiling” below the appropriate roofline, meaning that you
cannot break through a ceiling without performing the associated optimization.

The computational roofline can be found from the manuals, and the memory
roofline can be found from running the Stream benchmark. The computational
ceilings, such as floating-point balance, can also come from the manuals for
that computer. A memory ceiling, such as memory affinity, requires running
experiments on each computer to determine the gap between them. The good
news is that this process only need be done once per computer, for once someone
characterizes a computer’s ceilings, everyone can use the results to prioritize their
optimizations for that computer.

Figure 6.20 adds ceilings to the roofline model in Figure 6.18, showing the
computational ceilings in the top graph and the memory bandwidth ceilings on the
bottom graph. Although the higher ceilings are not labeled with both optimizations,
they are implied in this figure; to break through the highest ceiling, you need to
have already broken through all the ones below.

The width of the gap between the ceiling and the next higher limit is the reward
for trying that optimization. Thus, Figure 6.20 suggests that optimization 2, which
improves ILP, has a large benefit for improving computation on that computer, and
optimization 4, which improves memory affinity, has a large benefit for improving
memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. The
arithmetic intensity of a kernel determines the optimization region, which in turn
suggests which optimizations to try. Note that the computational optimizations
and the memory bandwidth optimizations overlap for much of the arithmetic
intensity. Three regions are shaded differently in Figure 6.21 to indicate the
different optimization strategies. For example, Kernel 2 falls in the blue trapezoid
on the right, which suggests working only on the computational optimizations.
Kernel 1 falls in the blue-gray parallelogram in the middle, which suggests trying
both types of optimizations. Moreover, it suggests starting with optimizations 2
and 4. Note that the Kernel 1 vertical lines fall below the floating-point imbalance
optimization, so optimization 1 may be unnecessary. If a kernel fell in the gray
triangle on the lower left, it would suggest trying just memory optimizations.

Actual FLOPbyte ratio
A

tta
in

ab
le

 G
F

LO
P

s/
s

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

0.5
1/8 1/4 1/2 168421

Opteron X4 (Barcelona)

Opteron X2

FIGURE 6.19 Roofline models of two generations of Opterons. The Opteron X2 roofline, which
is the same as in Figure 6.18, is in black, and the Opteron X4 roofline is in color. The bigger ridge point of
Opteron X4 means that kernels that were computationally bound on the Opteron X2 could be memory-
performance bound on the Opteron X4.

 6.10 Multiprocessor Benchmarks and Performance Models 537

2. Memory affinity. Microprocessors today include a memory controller on
the same chip with the microprocessor, which improves performance of the
memory hierarchy. If the system has multiple chips, this means that some
addresses go to the DRAM that is local to one chip, and the rest require
accesses over the chip interconnect to access the DRAM that is local to
another chip. This split results in non-uniform memory accesses, which we
described in Section 6.5. Accessing memory through another chip lowers
performance. This second optimization tries to allocate data and the threads
tasked to operate on that data to the same memory-processor pair, so that
the processors rarely have to access the memory of the other chips.

The roofline model can help decide which of these two optimizations to
perform and the order in which to perform them. We can think of each of these
optimizations as a “ceiling” below the appropriate roofline, meaning that you
cannot break through a ceiling without performing the associated optimization.

The computational roofline can be found from the manuals, and the memory
roofline can be found from running the Stream benchmark. The computational
ceilings, such as floating-point balance, can also come from the manuals for
that computer. A memory ceiling, such as memory affinity, requires running
experiments on each computer to determine the gap between them. The good
news is that this process only need be done once per computer, for once someone
characterizes a computer’s ceilings, everyone can use the results to prioritize their
optimizations for that computer.

Figure 6.20 adds ceilings to the roofline model in Figure 6.18, showing the
computational ceilings in the top graph and the memory bandwidth ceilings on the
bottom graph. Although the higher ceilings are not labeled with both optimizations,
they are implied in this figure; to break through the highest ceiling, you need to
have already broken through all the ones below.

The width of the gap between the ceiling and the next higher limit is the reward
for trying that optimization. Thus, Figure 6.20 suggests that optimization 2, which
improves ILP, has a large benefit for improving computation on that computer, and
optimization 4, which improves memory affinity, has a large benefit for improving
memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. The
arithmetic intensity of a kernel determines the optimization region, which in turn
suggests which optimizations to try. Note that the computational optimizations
and the memory bandwidth optimizations overlap for much of the arithmetic
intensity. Three regions are shaded differently in Figure 6.21 to indicate the
different optimization strategies. For example, Kernel 2 falls in the blue trapezoid
on the right, which suggests working only on the computational optimizations.
Kernel 1 falls in the blue-gray parallelogram in the middle, which suggests trying
both types of optimizations. Moreover, it suggests starting with optimizations 2
and 4. Note that the Kernel 1 vertical lines fall below the floating-point imbalance
optimization, so optimization 1 may be unnecessary. If a kernel fell in the gray
triangle on the lower left, it would suggest trying just memory optimizations.

538 Chapter 6 Parallel Processors from Client to Cloud

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1/8 1/4 1/2 1 2 4 8 16

peak floating-point performance

1. Fl. Pt. imbalance

2. Without ILP or SIMD

AMD Opteron

pe
ak

 m
em

or
y B

W
 (s

tre
am

)

Arithmetic Intensity: FLOPs/Byte Ratio

A
tta

in
ab

le
 G

F
LO

P
s/

se
co

nd

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1/8 1/4 1/2 1 2 4 8 16

AMD Opteron

pe
ak

 m
em

or
y B

W
 (s

tre
am

)

Arithmetic Intensity: FLOPs/Byte Ratio

A
tta

in
ab

le
 G

F
LO

P
s/

se
co

nd

3.
 w

/o
ut

 S
W

 p
re

fe
tch

ing

4.
 w

/o
ut

 M
em

or
y A

ffin
ity

peak floating-point performance

FIGURE 6.20 Roofline model with ceilings. The top graph shows the computational “ceilings” of
8 GFLOPs/sec if the floating-point operation mix is imbalanced and 2 GFLOPs/sec if the optimizations to
increase ILP and SIMD are also missing. The bottom graph shows the memory bandwidth ceilings of 11 GB/
sec without software prefetching and 4.8 GB/sec if memory affinity optimizations are also missing.

 6.10 Multiprocessor Benchmarks and Performance Models 539

Thus far, we have been assuming that the arithmetic intensity is fixed, but that is
not really the case. First, there are kernels where the arithmetic intensity increases
with problem size, such as for Dense Matrix and N-body problems (see Figure
6.17). Indeed, this can be a reason that programmers have more success with weak
scaling than with strong scaling. Second, the effectiveness of the memory hierarchy
affects the number of accesses that go to memory, so optimizations that improve
cache performance also improve arithmetic intensity. One example is improving
temporal locality by unrolling loops and then grouping together statements with
similar addresses. Many computers have special cache instructions that allocate
data in a cache but do not first fill the data from memory at that address, since it
will soon be over-written. Both these optimizations reduce memory traffic, thereby
moving the arithmetic intensity pole to the right by a factor of, say, 1.5. This shift
right could put the kernel in a different optimization region.

While the examples above show how to help programmers improve performance,
architects can also use the model to decide where they should optimize hardware to
improve the performance of the kernels that they think will be important.

The next section uses the roofline model to demonstrate the performance
difference between a multicore microprocessor and a GPU and to see whether
these differences reflect performance of real programs.

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1 2 4 8 16

pe
ak

 m
em

or
y B

W
 (s

tre
am

)

Arithmetic Intensity: FLOPs/Byte Ratio

A
tta

in
ab

le
 G

F
LO

P
s/

se
co

nd

Kernel 1 Kernel 2

2. Without ILP or SIMD

4.
 w

/o
ut

 M
em

or
y A

ffin
ity

1. Fl. Pt. imbalance

3.
 w

/o
ut

 S
W

 p
re

fe
tch

ing

peak floating-point performance

1/8 1/4 1/2

FIGURE 6.21 Roofline model with ceilings, overlapping areas shaded, and the two kernels
from Figure 6.18. Kernels whose arithmetic intensity land in the blue trapezoid on the right should focus
on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the lower
left should focus on memory bandwidth optimizations. Those that land in the blue-gray parallelogram in
the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try optimizing
ILP and SIMD, memory affinity, and software prefetching. Kernel 2 falls in the trapezoid on the right, so try
optimizing ILP and SIMD and the balance of floating-point operations.

540 Chapter 6 Parallel Processors from Client to Cloud

Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize.
Clearly, a programmer can optimize in any order, but following this sequence reduces the
chances of wasting effort on an optimization that has no benefit due to other constraints.
Like the 3Cs model, as long as the roofline model delivers on insights, a model can
have assumptions that may prove optimistic. For example, roofline assumes the load is
balanced between all processors.

Elaboration: An alternative to the Stream benchmark is to use the raw DRAM
bandwidth as the roofline. While the raw bandwidth definitely is a hard upper bound,
actual memory performance is often so far from that boundary that it’s not that useful.
That is, no program can go close to that bound. The downside to using Stream is that
very careful programming may exceed the Stream results, so the memory roofline may
not be as hard a limit as the computational roofline. We stick with Stream because few
programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: Although the roofline model shown is for multicore processors, it clearly
would work for a uniprocessor as well.

6.11

 Real Stuff: Benchmarking and Rooflines
of the Intel Core i7 960 and the NVIDIA
Tesla GPU

A group of Intel researchers published a paper [Lee et al., 2010] comparing a
quad-core Intel Core i7 960 with multimedia SIMD extensions to the previous
generation GPU, the NVIDIA Tesla GTX 280. Figure 6.22 lists the characteristics
of the two systems. Both products were purchased in Fall 2009. The Core i7 is
in Intel’s 45-nanometer semiconductor technology while the GPU is in TSMC’s
65-nanometer technology. Although it might have been fairer to have a comparison
by a neutral party or by both interested parties, the purpose of this section is not to
determine how much faster one product is than another, but to try to understand
the relative value of features of these two contrasting architecture styles.

The rooflines of the Core i7 960 and GTX 280 in Figure 6.23 illustrate the
differences in the computers. Not only does the GTX 280 have much higher
memory bandwidth and double-precision floating-point performance, but also its
double-precision ridge point is considerably to the left. The double-precision ridge
point is 0.6 for the GTX 280 versus 3.1 for the Core i7. As mentioned above, it is
much easier to hit peak computational performance the further the ridge point of

True or false: The main drawback with conventional approaches to benchmarks
for parallel computers is that the rules that ensure fairness also slow software
innovation.

Check
Yourself

 6.11 Real Stuff: Benchmarking and Rooflines of the Intel Core i7 960 and the NVIDIA Tesla GPU 541

the roofline is to the left. For single-precision performance, the ridge point moves
far to the right for both computers, so it’s considerably harder to hit the roof of
single-precision performance. Note that the arithmetic intensity of the kernel is
based on the bytes that go to main memory, not the bytes that go to cache memory.
Thus, as mentioned above, caching can change the arithmetic intensity of a kernel
on a particular computer, if most references really go to the cache. Note also that
this bandwidth is for unit-stride accesses in both architectures. Real gather-scatter
addresses can be slower on the GTX 280 and on the Core i7, as we shall see.

The researchers selected the benchmark programs by analyzing the
computational and memory characteristics of four recently proposed benchmark
suites and then “formulated the set of throughput computing kernels that capture
these characteristics.” Figure 6.24 shows the performance results, with larger
numbers meaning faster. The Rooflines help explain the relative performance in
this case study.

Given that the raw performance specifications of the GTX 280 vary from 2.5×
slower (clock rate) to 7.5× faster (cores per chip) while the performance varies

Core i7-
960

Number of processing elements (cores or SMs)

Clock frequency (GHz)

Die size

Technology

Power (chip, not module)

Transistors

Memory brandwith (GBytes/sec)

Single-precision SIMD width

Double-precision SIMD width

Peak single-precision scalar FLOPS (GFLOPs/sec)

Peak single-precision SIMD FLOPS (GFLOPs/sec)

(SP 1 add or multiply)

(SP 1 instruction fused multiply-adds)

(Rare SP dual issue fused multiply-add and multiply)

Peak double-precision SIMD FLOPS (GFLOPs/sec)

4

3.2

263

Intel 45 nm

130

700 M

32

4

2

26

102

N.A.

N.A.

N.A.

51

30

1.3

576

TSMC 65 nm

130

1400 M

141

8

1

117

311 to 933

(311)

(622)

(933)

78

15

1.4

520

TSMC 40 nm

167

3030 M

177

32

16

63

515 or 1344

(515)

(1344)

N.A.

515

7.5

0.41

2.2

1.6

1.0

2.0

4.4

2.0

0.5

4.6

3.0–9.1

(3.0)

(6.1)

(9.1)

1.5

3.8

0.44

2.0

1.0

1.3

4.4

5.5

8.0

8.0

2.5

6.6–13.1

(6.6)

(13.1)

–

10.1

GTX 280 GTX 480
Ratio

280/i7
Ratio

480/i7

FIGURE 6.22 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the ratios of the
Tesla GTX 280 and the Fermi GTX 480 to Core i7. Although the case study is between the Tesla 280 and i7, we include the Fermi 480 to show
its relationship to the Tesla 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 6.23 because
these are DRAM pin bandwidths and those in Figure 6.23 are at the processors as measured by a benchmark program. (From Table 2 in Lee
et al. [2010].)

542 Chapter 6 Parallel Processors from Client to Cloud

128

64

32

16

8

4

2

1

128

64

32

16

8

4

2

1

Core i7 960
(Nehalem)

1024

512

256

128

64

32

16

8

1 2

Arithmetic intensity
4 8 16 321/8 1/4 1/2

1 2

Arithmetic intensity
4 8 16 321/8 1/4 1/2 1 2

Arithmetic intensity
4 8 16 32

32

1/8 1/4 1/2

1 2
Arithmetic intensity

4 8 161/8 1/4 1/2

Core i7 960
(Nehalem)

NVIDIA GTX280

1024

512

256

128

64

32

8

16

44

NVIDIA GTX280

G
F

LO
P

s/
s

G
F

LO
P

s/
s

G
F

LO
P

s/
s

G
F

LO
P

s/
s

51.2 GF/s
Double Precision

Stre
am

 =
 16

.4
GB/s Stre

am
=12

7GB/s

Peak = 78 GF/s
Double Precision

78 GF/s
Double Precision

Stre
am

=12
7GB/s

624 GF/s
Single Precision

Stre
am

 =
 16

.4
GB/s

102.4 GF/s
Single Precision

51.2 GF/s
Double Precision

FIGURE 6.23 Roofline model [Williams, Waterman, and Patterson, 2009]. These rooflines show double-precision floating-point
performance in the top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also in the bottom row
to give perspective.) The Core i7 960 on the left has a peak DP FP performance of 51.2 GFLOPs/sec, a SP FP peak of 102.4 GFLOPs/sec, and
a peak memory bandwidth of 16.4 GBytes/sec. The NVIDIA GTX 280 has a DP FP peak of 78 GFLOPs/sec, SP FP peak of 624 GFLOPs/sec,
and 127 GBytes/sec of memory bandwidth. The dashed vertical line on the left represents an arithmetic intensity of 0.5 FLOP/byte. It is limited
by memory bandwidth to no more than 8 DP GFLOPs/sec or 8 SP GFLOPs/sec on the Core i7. The dashed vertical line to the right has an
arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 51.2 DP GFLOPs/sec and 102.4 SP GFLOPs/sec on the Core i7 and
78 DP GFLOPs/sec and 624 SP GFLOPs/sec on the GTX 280. To hit the highest computation rate on the Core i7 you need to use all four cores
and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use fused multiply-add instructions on all
multithreaded SIMD processors.

 6.11 Real Stuff: Benchmarking and Rooflines of the Intel Core i7 960 and the NVIDIA Tesla GPU 543

from 2.0× slower (Solv) to 15.2× faster (GJK), the Intel researchers decided to find
the reasons for the differences:

n	 Memory bandwidth. The GPU has 4.4× the memory bandwidth, which helps
explain why LBM and SAXPY run 5.0 and 5.3× faster; their working sets are
hundreds of megabytes and hence don’t fit into the Core i7 cache. (So as to
access memory intensively, they purposely did not use cache blocking as in
Chapter 5.) Hence, the slope of the rooflines explains their performance. SpMV
also has a large working set, but it only runs 1.9× faster because the double-
precision floating point of the GTX 280 is only 1.5× as fast as the Core i7.

n	 Compute bandwidth. Five of the remaining kernels are compute bound:
SGEMM, Conv, FFT, MC, and Bilat. The GTX is faster by 3.9, 2.8, 3.0, 1.8, and
5.7×, respectively. The first three of these use single-precision floating-point
arithmetic, and GTX 280 single precision is 3 to 6× faster. MC uses double
precision, which explains why it’s only 1.8× faster since DP performance
is only 1.5× faster. Bilat uses transcendental functions, which the GTX
280 supports directly. The Core i7 spends two-thirds of its time calculating
transcendental functions for Bilat, so the GTX 280 is 5.7× faster. This
observation helps point out the value of hardware support for operations that
occur in your workload: double-precision floating point and perhaps even
transcendentals.

Kernel Units Core i7-960 GTX 280 GTX 280/
i7-960

Million pixels/sec

SGEMM GFLOPs/sec

Billion paths/secMC

Million pixels/secConv

GFLOPs/secFFT

GBytes/secSAXPY

Million lookups/secLBM

Frames/secSolv

GFLOPs/secSpMV

Frames/secGJK

Million elements/secSort

Frames/secRC

Million queries/secSearch

Million pixels/sec

83

94

0.8

1250

71.4

16.8

85

103

4.9

67

250

5

50

1517

3.9

5.7

1.8

2.8

3.0

5.3

5.0

0.5

1.9

15.2

0.8

1.6

1.8

1.7

364

475

1.4

3500

213

88.8

426

52

9.1

1020

198

8.1

90

2583Hist

Bilat

FIGURE 6.24 Raw and relative performance measured for the two platforms. In this study,
SAXPY is just used as a measure of memory bandwidth, so the right unit is GBytes/sec and not GFLOP/sec.
(Based on Table 3 in [Lee et al., 2010].)

544 Chapter 6 Parallel Processors from Client to Cloud

n	 Cache benefits. Ray casting (RC) is only 1.6× faster on the GTX because
cache blocking with the Core i7 caches prevents it from becoming memory
bandwidth bound (see Sections 5.4 and 5.14), as it is on GPUs. Cache blocking
can help Search, too. If the index trees are small so that they fit in the cache,
the Core i7 is twice as fast. Larger index trees make them memory bandwidth
bound. Overall, the GTX 280 runs search 1.8× faster. Cache blocking also
helps Sort. While most programmers wouldn’t run Sort on a SIMD processor,
it can be written with a 1-bit Sort primitive called split. However, the split
algorithm executes many more instructions than a scalar sort does. As a
result, the Core i7 runs 1.25× as fast as the GTX 280. Note that caches also
help other kernels on the Core i7, since cache blocking allows SGEMM, FFT,
and SpMV to become compute bound. This observation re-emphasizes the
importance of cache blocking optimizations in Chapter 5.

n	 Gather-Scatter. The multimedia SIMD extensions are of little help if the data are
scattered throughout main memory; optimal performance comes only when
accesses to data are aligned on 16-byte boundaries. Thus, GJK gets little benefit
from SIMD on the Core i7. As mentioned above, GPUs offer gather-scatter
addressing that is found in a vector architecture but omitted from most SIMD
extensions. The memory controller even batches accesses to the same DRAM
page together (see Section 5.2). This combination means the GTX 280 runs GJK
a startling 15.2× as fast as the Core i7, which is larger than any single physical
parameter in Figure 6.22. This observation reinforces the importance of gather-
scatter to vector and GPU architectures that is missing from SIMD extensions.

n	 Synchronization. The performance of synchronization is limited by atomic
updates, which are responsible for 28% of the total runtime on the Core i7
despite its having a hardware fetch-and-increment instruction. Thus, Hist is only
1.7× faster on the GTX 280. Solv solves a batch of independent constraints in
a small amount of computation followed by barrier synchronization. The Core
i7 benefits from the atomic instructions and a memory consistency model that
ensures the right results even if not all previous accesses to memory hierarchy
have completed. Without the memory consistency model, the GTX 280
version launches some batches from the system processor, which leads to the
GTX 280 running 0.5× as fast as the Core i7. This observation points out how
synchronization performance can be important for some data parallel problems.

It is striking how often weaknesses in the Tesla GTX 280 that were uncovered by
kernels selected by Intel researchers were already being addressed in the successor
architecture to Tesla: Fermi has faster double-precision floating-point performance,
faster atomic operations, and caches. It was also interesting that the gather-scatter
support of vector architectures that predate the SIMD instructions by decades was
so important to the effective usefulness of these SIMD extensions, which some
had predicted before the comparison. The Intel researchers noted that six of the 14
kernels would exploit SIMD better with more efficient gather-scatter support on the
Core i7. This study certainly establishes the importance of cache blocking as well.

 6.12 Going Faster: Multiple Processors and Matrix Multiply 545

Now that we have seen a wide range of results of benchmarking different
multiprocessors, let’s return to our DGEMM example to see in detail how much we
have to change the C code to exploit multiple processors.

 6.12 Going Faster: Multiple Processors and
Matrix Multiply

This section is the final and largest step in our incremental performance journey of
adapting DGEMM to the underlying hardware of the Intel Core i7 (Sandy Bridge).
Each Core i7 has eight cores, and the computer we have been using has two Core
i7s. Thus, we have 16 cores on which to run DGEMM.

Figure 6.25 shows the OpenMP version of DGEMM that utilizes those cores.
Note that line 30 is the single line added to Figure 5.48 to make this code run on
multiple processors: an OpenMP pragma that tells the compiler to use multiple
threads in the outermost loop. It tells the computer to spread the work of the
outermost loop across all the threads.

Figure 6.26 plots a classic multiprocessor speed-up graph, showing the
performance improvement versus a single thread as the number of threads increase.
This graph makes it easy to see the challenges of strong scaling versus weak scaling.
When everything fits in the first-level data cache, as is the case for 32 × 32 matrices,
adding threads actually hurts performance. The 16-threaded version of DGEMM
is almost half as fast as the single-threaded version in this case. In contrast, the two
largest matrices get a 14 × speedup from 16 threads, and hence the classic two “up
and to the right” lines in Figure 6.26.

Figure 6.27 shows the absolute performance increase as we increase the number
of threads from one to 16. DGEMM now operates at 174 GLOPS for 960 × 960
matrices. As our unoptimized C version of DGEMM in Figure 3.22 ran this code
at just 0.8 GFLOPS, the optimizations in Chapters 3 to 6 that tailor the code to the
underlying hardware result in a speed-up of over 200 times!

Next up is our warnings of the fallacies and pitfalls of multiprocessing. The
computer architecture graveyard is filled with parallel processing projects that have
ignored them.

Elaboration: These results are with Turbo mode turned off. We are using a dual chip
system in this system, so not surprisingly, we can get the full Turbo speed-up (3.3/2.6 =
1.27) with either one thread (only one core on one of the chips) or two threads (one core
per chip). As we increase the number of threads and hence the number of active cores,
the benefit of Turbo mode decreases, as there is less of the power budget to spend on
the active cores. For four threads the average Turbo speed-up is 1.23, for eight it is 1.13,
and for 16 it is 1.11.

546 Chapter 6 Parallel Processors from Client to Cloud

Elaboration: Although the Sandy Bridge supports two hardware threads per core, we
do not get more performance from 32 threads. The reason is that a single AVX hardware
is shared between the two threads multiplexed onto one core, so assigning two threads
per core actually hurts performance due to the multiplexing overhead.

#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk,
 double *A, double *B, double *C)
{
 for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)
 for (int j = sj; j < sj+BLOCKSIZE; j++) {
 __m256d c[4];
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_load_pd(C+i+x*4+j*n);
 /* c[x] = C[i][j] */
 for(int k = sk; k < sk+BLOCKSIZE; k++)
 {
 __m256d b = _mm256_broadcast_sd(B+k+j*n);
 /* b = B[k][j] */
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
 }

 for (int x = 0; x < UNROLL; x++)
 _mm256_store_pd(C+i+x*4+j*n, c[x]);
 /* C[i][j] = c[x] */
 }
}

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
 for (int sj = 0; sj < n; sj += BLOCKSIZE)
 for (int si = 0; si < n; si += BLOCKSIZE)
 for (int sk = 0; sk < n; sk += BLOCKSIZE)
 do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

FIGURE 6.25 OpenMP version of DGEMM from Figure 5.48. Line 30 is the only OpenMP code, making
the outermost for loop operate in parallel. This line is the only difference from Figure 5.48.

–

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 4 8

Threads

12 16

S
p
e
e
d
-u

p
 r

e
la

ti
v
e
 t

o
 o

n
e
 c

o
re

960 X 960

480 X 480

160 X 160

32 X 32

FIGURE 6.26 Performance improvements relative to a single thread as the number of
threads increase. The most honest way to present such graphs is to make performance relative to the best
version of a single processor program, which we did. This plot is relative to the performance of the code in
Figure 5.48 without including OpenMP pragmas.

14 12 11 11 8
13

20

31

61 60

12

22

43

85

169

12

23

44

87

174

-

50

100

150

200

1 2 4 8 16

G
FL

O
Ps

Threads

32x32 160x160 480x480 960x960

FIGURE 6.27 DGEMM performance versus the number of threads for four matrix sizes.
The performance improvement compared unoptimized code in Figure 3.22 for the 960 × 960 matrix with 16
threads is an astounding 212 times faster!

548 Chapter 6 Parallel Processors from Client to Cloud

 6.13 Fallacies and Pitfalls

The many assaults on parallel processing have uncovered numerous fallacies and
pitfalls. We cover four here.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.
In 1987, the head of a research organization claimed that a multiprocessor

machine had broken Amdahl’s Law. To try to understand the basis of the media
reports, let’s see the quote that gave us Amdahl’s Law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the
same magnitude.
This statement must still be true; the neglected portion of the program must

limit performance. One interpretation of the law leads to the following lemma:
portions of every program must be sequential, so there must be an economic upper
bound to the number of processors—say, 100. By showing linear speed-up with
1000 processors, this lemma is disproved; hence the claim that Amdahl’s Law was
broken.

The approach of the researchers was just to use weak scaling: rather than going
1000 times faster on the same data set, they computed 1000 times more work in
comparable time. For their algorithm, the sequential portion of the program was
constant, independent of the size of the input, and the rest was fully parallel—
hence, linear speed-up with 1000 processors.

Amdahl’s Law obviously applies to parallel processors. What this research does
point out is that one of the main uses of faster computers is to run larger problems.
Just be sure that users really care about those problems versus being a justification
to buying an expensive computer by finding a problem that simply keeps lots of
processors busy.

Fallacy: Peak performance tracks observed performance.
The supercomputer industry once used this metric in marketing, and the

fallacy is exacerbated with parallel machines. Not only are marketers using the
nearly unattainable peak performance of a uniprocessor node, but also they are
then multiplying it by the total number of processors, assuming perfect speed-up!
Amdahl’s Law suggests how difficult it is to reach either peak; multiplying the two
together multiplies the sins. The roofline model helps put peak performance in
perspective.

Pitfall: Not developing the software to take advantage of, or optimize for, a
multiprocessor architecture.
There is a long history of parallel software lagging behind parallel hardware,

possibly because the software problems are much harder. We give one example to
show the subtlety of the issues, but there are many examples we could choose!

For over a decade
prophets have voiced
the contention that
the organization of a
single computer has
reached its limits and
that truly significant
advances can be made
only by interconnection
of a multiplicity of
computers in such a
manner as to permit
cooperative solution.
…Demonstration is
made of the continued
validity of the single
processor approach …
Gene Amdahl, “Validity
of the single processor
approach to achieving
large scale computing
capabilities,” Spring Joint
Computer Conference,
1967

 6.13 Fallacies and Pitfalls 549

One frequently encountered problem occurs when software designed for a
uniprocessor is adapted to a multiprocessor environment. For example, the Silicon
Graphics operating system originally protected the page table with a single lock,
assuming that page allocation is infrequent. In a uniprocessor, this does not
represent a performance problem. In a multiprocessor, it can become a major
performance bottleneck for some programs. Consider a program that uses a large
number of pages that are initialized at start-up, which UNIX does for statically
allocated pages. Suppose the program is parallelized so that multiple processes
allocate the pages. Because page allocation requires the use of the page table, which
is locked whenever it is in use, even an OS kernel that allows multiple threads in the
OS will be serialized if the processes all try to allocate their pages at once (which is
exactly what we might expect at initialization time!).

This page table serialization eliminates parallelism in initialization and has a
significant impact on overall parallel performance. This performance bottleneck
persists even for task-level parallelism. For example, suppose we split the parallel
processing program apart into separate jobs and run them, one job per processor,
so that there is no sharing between the jobs. (This is exactly what one user did,
since he reasonably believed that the performance problem was due to unintended
sharing or interference in his application.) Unfortunately, the lock still serializes all
the jobs—so even the independent job performance is poor.

This pitfall indicates the kind of subtle but significant performance bugs
that can arise when software runs on multiprocessors. Like many other key
software components, the OS algorithms and data structures must be rethought
in a multiprocessor context. Placing locks on smaller portions of the page table
effectively eliminated the problem.

Fallacy: You can get good vector performance without providing memory
bandwidth.

As we saw in the Roofline model, memory bandwidth is quite important to all
architectures. DAXPY requires 1.5 memory references per floating-point operation,
and this ratio is typical of many scientific codes. Even if the floating-point
operations took no time, a Cray-1 could not increase the DAXPY performance of
the vector sequence used, since it was memory limited. The Cray-1 performance on
Linpack jumped when the compiler used blocking to change the computation so
that values could be kept in the vector registers. This approach lowered the number
of memory references per FLOP and improved the performance by nearly a factor
of two! Thus, the memory bandwidth on the Cray-1 became sufficient for a loop
that formerly required more bandwidth, which is just what the Roofline model
would predict.

550 Chapter 6 Parallel Processors from Client to Cloud

 6.14 Concluding Remarks

The dream of building computers by simply aggregating processors has been
around since the earliest days of computing. Progress in building and using effective
and efficient parallel processors, however, has been slow. This rate of progress has
been limited by difficult software problems as well as by a long process of evolving
the architecture of multiprocessors to enhance usability and improve efficiency.
We have discussed many of the software challenges in this chapter, including the
difficulty of writing programs that obtain good speed-up due to Amdahl’s Law. The
wide variety of different architectural approaches and the limited success and short
life of many of the parallel architectures of the past have compounded the software
difficulties. We discuss the history of the development of these multiprocessors
in online Section 6.15. To go into even greater depth on topics in this chapter,
see Chapter 4 of Computer Architecture: A Quantitative Approach, Fifth Edition for
more on GPUs and comparisons between GPUs and CPUs and Chapter 6 for more
on WSCs.

As we said in Chapter 1, despite this long and checkered past, the information
technology industry has now tied its future to parallel computing. Although it is
easy to make the case that this effort will fail like many in the past, there are reasons
to be hopeful:

n	 Clearly, software as a service (SaaS) is growing in importance, and
clusters have proven to be a very successful way to deliver such services.
By providing redundancy at a higher level, including geographically
distributed datacenters, such services have delivered 24 × 7 × 365
availability for customers around the world.

n	 We believe that Warehouse-Scale Computers are changing the goals and
principles of server design, just as the needs of mobile clients are changing the
goals and principles of microprocessor design. Both are revolutionizing the
software industry as well. Performance per dollar and performance per joule
drive both mobile client hardware and the WSC hardware, and parallelism is
the key to delivering on those sets of goals.

n	 SIMD and vector operations are a good match to multimedia applications,
which are playing a larger role in the post-PC era. They share the advantage
of being easier for the programmer than classic parallel MIMD programming
and being more energy-efficient than MIMD. To put into perspective the
importance of SIMD versus MIMD, Figure 6.28 plots the number of cores
for MIMD versus the number of 32-bit and 64-bit operations per clock
cycle in SIMD mode for x86 computers over time. For x86 computers, we
expect to see two additional cores per chip about every 2 years and the SIMD
width to double about every 4 years. Given these assumptions, over the
next decade the potential speed-up from SIMD parallelism is twice that of

We are dedicating all
of our future product
development to
multicore designs. We
believe this is a key
inflection point for the
industry. …This is not
a race. This is a sea
change in computing…
Paul Otellini, Intel
President, Intel
Developers Forum, 2004

 6.14 Concluding Remarks 551

MIMD parallelism. Given the effectiveness of SIMD for multimedia and its
increasing importance in the post-PC era, that emphasis may be appropriate.
Hence, it’s as least as important to understand SIMD parallelism as MIMD
parallelism, even though the latter has received much more attention.

n	 The use of parallel processing in domains such as scientific and engineering
computation is popular. This application domain has an almost limitless
thirst for more computation. It also has many applications that have lots of
natural concurrency. Once again, clusters dominate this application area. For
example, using the 2012 Top 500 report, clusters are responsible for more
than 80% of the 500 fastest Linpack results.

n	 All desktop and server microprocessor manufacturers are building
multiprocessors to achieve higher performance, so, unlike in the past, there
is no easy path to higher performance for sequential applications. As we said
earlier, sequential programs are now slow programs. Hence, programmers
who need higher performance must parallelize their codes or write new
parallel processing programs.

2003
1

10

100

P
ot

en
tia

l p
ar

al
le

l s
pe

ed
-u

p

1000

2007 2011 2015 2019 2023

MIMD*SIMD (32 b)

SIMD (32 b)

MIMD*SIMD (64 b)

MIMD

SIMD (64 b)

FIGURE 6.28 Potential speed-up via parallelism from MIMD, SIMD, and both MIMD and
SIMD over time for x86 computers. This figure assumes that two cores per chip for MIMD will be
added every 2 years and the number of operations for SIMD will double every 4 years.

552 Chapter 6 Parallel Processors from Client to Cloud

n	 In the past, microprocessors and multiprocessors were subject to
different definitions of success. When scaling uniprocessor performance,
microprocessor architects were happy if single thread performance went up
by the square root of the increased silicon area. Thus, they were pleased with
sublinear performance in terms of resources. Multiprocessor success used
to be defined as linear speed-up as a function of the number of processors,
assuming that the cost of purchase or cost of administration of n processors
was n times as much as one processor. Now that parallelism is happening on-
chip via multicore, we can use the traditional microprocessor metric of being
successful with sublinear performance improvement.

n	 The success of just-in-time runtime compilation and autotuning makes it
feasible to think of software adapting itself to take advantage of the increasing
number of cores per chip, which provides flexibility that is not available when
limited to static compilers.

n	 Unlike in the past, the open source movement has become a critical portion
of the software industry. This movement is a meritocracy, where better
engineering solutions can win the mind share of the developers over legacy
concerns. It also embraces innovation, inviting change to old software and
welcoming new languages and software products. Such an open culture could
be extremely helpful during this time of rapid change.

To motivate readers to embrace this revolution, we demonstrated the potential
of parallelism concretely for matrix multiply on the Intel Core i7 (Sandy Bridge) in
the Going Faster sections of Chapters 3 to 6:

n	 Data-level parallelism in Chapter 3 improved performance by a factor of 3.85
by executing four 64-bit floating-point operations in parallel using the 256-
bit operands of the AVX instructions, demonstrating the value of SIMD.

n	 Instruction-level parallelism in Chapter 4 pushed performance up by another
factor of 2.3 by unrolling loops four times to give the out-of-order execution
hardware more instructions to schedule.

n	 Cache optimizations in Chapter 5 improved performance of matrices that
didn’t fit into the L1 data cache by another factor of 2.0 to 2.5 by using cache
blocking to reduce cache misses.

n	 Thread-level parallelism in this chapter improved performance of matrices
that don’t fit into a single L1 data cache by another factor of 4 to 14 by utilizing
all 16 cores of our multicore chips, demonstrating the value of MIMD. We
did this by adding a single line using an OpenMP pragma.

Using the ideas in this book and tailoring the software to this computer added
24 lines of code to DGEMM. For the matrix sizes of 32 × 32, 160 × 160, 480 × 480,
and 960 × 960, the overall performance speed-up from these ideas realized in those
two-dozen lines of code is factors of 8, 39, 129, and 212!

 6.16 Exercises 553

This parallel revolution in the hardware/software interface is perhaps the
greatest challenge facing the field in the last 60 years. You can also think of it as an
outstanding opportunity, as our Going Faster sections demonstrate. This revolution
will provide many new research and business prospects inside and outside the IT
field, and the companies that dominate the multicore era may not be the same
ones that dominated the uniprocessor era. After understanding the underlying
hardware trends and learning to adapt software to them, perhaps you will be one
of the innovators who will seize the opportunities that are certain to appear in the
uncertain times ahead. We look forward to benefiting from your inventions!

 Historical Perspective and Further
Reading

This section online gives the rich and often disastrous history of multiprocessors
over the last 50 years.

References
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears. Benchmarking
cloud serving systems with YCSB, In: Proceedings of the 1st ACM Symposium
on Cloud computing, June 10–11, 2010, Indianapolis, Indiana, USA,
doi:10.1145/1807128.1807152.

G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell,
L. Cline, and A. Foong. TCP onloading for data center servers. IEEE Computer,
37(11):48–58, 2004.

 6.16 Exercises

6.1 First, write down a list of your daily activities that you typically do on a
weekday. For instance, you might get out of bed, take a shower, get dressed, eat
breakfast, dry your hair, brush your teeth. Make sure to break down your list so you
have a minimum of 10 activities.

6.1.1 [5] <§6.2> Now consider which of these activities is already exploiting
some form of parallelism (e.g., brushing multiple teeth at the same time, versus one
at a time, carrying one book at a time to school, versus loading them all into your
backpack and then carry them “in parallel”). For each of your activities, discuss if
they are already working in parallel, but if not, why they are not.

6.15

 6.15 Historical Perspective and Further Reading 553.e1

 Historical Perspective and Further
Reading

There is a tremendous amount of history in multiprocessors; in this section, we
divide our discussion by both time period and architecture. We start with the
SIMD approach and the Illiac IV. We then turn to a short discussion of some other
early experimental multiprocessors and progress to a discussion of some of the
great debates in parallel processing. Next we describe the historical roots of the
present multiprocessors and conclude by discussing recent advances.

SIMD Computers: Attractive Idea, Many Attempts, No
Lasting Successes

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously degrading
the power or efficiency of the system. The options consist of recentralizing one of the
three major components.… Centralizing the [control unit] gives rise to the basic
organization of [an] … array processor such as the Illiac IV.

Bouknight et al. [1972]

The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that
multiprocessor, as in more recent SIMD multiprocessors, is to have a single
instruction that operates on many data items at once, using many functional units
(see Figure e6.15.1).

Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. Actual performance was at best 15 MFLOPS, versus initial
predictions of 1000 MFLOPS for the full system [Hord, 1982]. Delivered to NASA
Ames Research in 1972, the computer required three more years of engineering
before it was usable.

These events slowed the investigation of SIMD, with Danny Hillis [1989]
resuscitating this style in the Connection Machine, which had 65,636 1-bit
processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and
address calculations that do not need parallel operation. The SIMD instructions are
broadcast to all the execution units, each of which has its own set of registers. For
flexibility, individual execution units can be disabled during an SIMD instruction.
In addition, massively parallel SIMD multiprocessors rely on interconnection or
communication networks to exchange data between processing elements.

6.15

553.e2 6.15 Historical Perspective and Further Reading

SIMD works best in dealing with arrays in for loops. Hence, to have the
opportunity for massive parallelism in SIMD, there must be massive amounts of
data, or data parallelism. SIMD is at its weakest in case statements, in which each
execution unit must perform a different operation on its data, depending on what
data it has. The execution units with the wrong data are disabled so that the proper
units can continue. Such situations essentially run at 1/nth performance, where n
is the number of cases.

The basic tradeoff in SIMD multiprocessors is performance of a processor
versus the number of processors. Recent multiprocessors emphasize a large degree
of parallelism over performance of the individual processors. The Connection
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while the
Illiac IV had 64 64-bit processors.

FIGURE e6.15.1 The Illiac IV control unit followed by its 64 processing elements. It was
perhaps the most infamous of supercomputers. The project started in 1965 and ran its first real application in
1976. The 64 processors used a 13-MHz clock, and their combined main memory size was 1 MB: 64 × 16 KB.
The Illiac IV was the first machine to teach us that software for parallel machines dominates hardware issues.
Photo courtesy of NASA Ames Research Center.

 6.15 Historical Perspective and Further Reading 553.e3

After being resurrected in the 1980s, originally by Thinking Machines and then
by MasPar, the SIMD model has once again been put to bed as a general-purpose
multiprocessor architecture, for two main reasons. First, it is too inflexible. A
number of important problems cannot use such a style of multiprocessor, and
the architecture does not scale down in a competitive fashion; that is, small-
scale SIMD multiprocessors often have worse cost performance than that of the
alternatives. Second, SIMD cannot take advantage of the tremendous performance
and cost advantages of microprocessor technology. Instead of leveraging this low-
cost technology, designers of SIMD multiprocessors must build custom processors
for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose
alternatives, this style of architecture will continue to have a role in special-
purpose designs. Many special-purpose tasks are highly data parallel and require
a limited set of functional units. Thus, designers can build in support for certain
operations, as well as hardwired interconnection paths among functional units.
Such organizations are often called array processors, and they are useful for tasks
like image and signal processing.

Multimedia Extensions as SIMD Extensions to
Instruction Sets
Many recent architectures have laid claim to being the first to offer multimedia
extensions, in which a set of new instructions takes advantage of a single wide
ALU that can be partitioned so that it will act as several narrower ALUs operating
in parallel. It’s unlikely that any appeared before 1957, however, when the Lincoln
Lab’s TX-2 computer offered instructions that operated on the ALU as either one
36-bit operation, two 18-bit operations, or four 9-bit operations. Ivan Sutherland,
considered the Father of Computer Graphics, built his historic Sketchpad system
on the TX-2. Sketchpad did, in fact, take advantage of these SIMD instructions,
despite TX-2 appearing before invention of the term SIMD.

Other Early Experiments
It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability.

Two of the best-documented multiprocessor projects were undertaken in the
1970s at Carnegie Mellon University. The first of these was C.mmp, which consisted
of 16 PDP-11s connected by a crossbar switch to 16 memory units. It was among
the first multiprocessors with more than a few processors, and it had a shared
memory programming model. Much of the focus of the research in the C.mmp
project was on software, especially in the OS area. A later multiprocessor, Cm*, was

553.e4 6.15 Historical Perspective and Further Reading

a cluster-based multiprocessor with a distributed memory and a nonuniform access
time. The absence of caches and a long remote access latency made data placement
critical. Many of the ideas in these multiprocessors would be reused in the 1980s,
when the microprocessor made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing
The turning away from the conventional organization came in the middle 1960s,
when the law of diminishing returns began to take effect in the effort to increase
the operational speed of a computer.… Electronic circuits are ultimately limited
in their speed of operation by the speed of light … and many of the circuits were
already operating in the nanosecond range.

W. Jack Bouknight et al.
The Illiac IV System [1972]

… sequential computers are approaching a fundamental physical limit on their
potential computational power. Such a limit is the speed of light …

Angel L. DeCegama
The Technology of Parallel Processing, Volume I [1989]

… today’s multiprocessors … are nearing an impasse as technologies approach the
speed of light. Even if the components of a sequential processor could be made to work
this fast, the best that could be expected is no more than a few million instructions
per second.

David Mitchell
The Transputer: The Time Is Now [1989]

The quotes above give the classic arguments for abandoning the current form of
computing, and Amdahl [1967] gave the classic reply in support of continued focus
on the IBM 360 architecture. Arguments for the advantages of parallel execution can
be traced back to the 19th century [Menabrea, 1842]! Despite this, the effectiveness
of the multiprocessor in reducing the latency of individual important programs is
still being explored. Aside from these debates about the advantages and limitations
of parallelism, several hot debates have focused on how to build multiprocessors.

From today’s perspective, it is clear that the speed of light was not the brick wall; the
brick wall was, instead, the power consumption of CMOS as the clock rates increased.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions
for 1995. We included these predictions in the first edition of the book, when the
outcome was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a tera FLOPS—one million
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K to
32K nodes or a Connection Multiprocessor with several million processing elements.

 6.15 Historical Perspective and Further Reading 553.e5

To put this prediction in perspective, each year the Gordon Bell Prize acknowledges
advances in parallelism, including the fastest real program (highest MFLOPS).
In 1989, the winner used an eight-processor Cray Y-MP to run at 1680 MFLOPS.
On the basis of these numbers, multiprocessors and programs would have to have
improved by a factor of 3.6 each year for the fastest program to achieve 1 TFLOPS
in 1995. In 1999, the first Gordon Bell prize winner crossed the 1 TFLOPS bar.
Using a 5832-processor IBM RS/6000 SST system designed specially for Livermore
Laboratories, they achieved 1.18 TFLOPS on a shock wave simulation. This ratio
represents a year-to-year improvement of 1.93, which is still quite impressive.

What has been recognized since the 1990s is that although we may have the
technology to build a TFLOPS multiprocessor, it is not clear that the machine is
cost-effective, except perhaps for a few very specialized and critically important
applications related to national security. We estimated in 1990 that achieving 1
TFLOPS would require a machine with about 5000 processors and would cost about
$100 million. The 5832-processor IBM system at Livermore cost $110 million.
As might be expected, improvements in the performance of individual micro-
processors both in cost and performance directly affect the cost and performance
of large-scale multiprocessors, but a 5000-processor system will cost more than
5000 times the price of a desktop system using the same processor. Since that time,
much faster multiprocessors have been built, but the major improvements have
increasingly come from the processors in the past 5 years, rather than fundamental
breakthroughs in parallel architecture.

The second Bell prediction concerned the number of data streams in super-
computers shipped in 1995. Danny Hillis believed that although supercomputers
with a small number of data streams might be the best sellers, the biggest
multiprocessors would be multiprocessors with many data streams, and these
would perform the bulk of the computations. Bell bet Hillis that in the last quarter of
calendar year 1995, more sustained MFLOPS would be shipped in multiprocessors
using few data streams (<100) rather than many data streams (>1000). This bet
concerned only supercomputers, defined as multiprocessors costing more than $1
million and used for scientific applications. Sustained MFLOPS was defined for
this bet as the number of floating-point operations per month, so availability of
multiprocessors affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams, so
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microprocessor-
based multiprocessors (<20 processors) were becoming dominant.

In 1995, a survey of the 500 highest-performance multiprocessors in use
(based on Linpack ratings), called the Top 500, showed that the largest number
of multiprocessors were bus-based shared memory multiprocessors! By 2005,

553.e6 6.15 Historical Perspective and Further Reading

various clusters or multicomputers played a large role. For example, in the top 25
systems, 11 were custom clusters, such as the IBM Blue Gene system or the Cray
XT3, 10 were clusters of shared memory multiprocessors (both using distributed
and centralized memory), and the remaining four were clusters built using PCs
with an off-the-shelf interconnect.

More Recent Advances and Developments
With the primary exception of the parallel vector multiprocessors and more
recently of the IBM Blue Gene design, all other modern MIMD computers have
been built from off-the-shelf microprocessors using a bus and logically central
memory or an interconnection network and a distributed memory. A number of
experimental multiprocessors built in the 1980s further refined and enhanced the
concepts that form the basis for many of today’s multiprocessors.

The Development of Bus-Based Coherent Multiprocessors

Although very large mainframes were built with multiple processors in the 1960s
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the key was that the smaller size of the microprocessor allowed
the memory bus to replace the interconnection network hardware and that
portable operating systems meant that multiprocessor projects no longer required
the invention of a new operating system. In this paper, Bell defined the terms
multiprocessor and multicomputer and set the stage for two different approaches
to building larger-scale multiprocessors. The first bus-based multiprocessor with
snooping caches was the Synapse N + 1 in 1984.

The early 1990s saw the beginning of an expansion of such systems with the
use of very wide, high-speed buses (the SGI Challenge system used a 256-bit,
packet-oriented bus supporting up to eight processor boards and 32 processors)
and later the use of multiple buses and crossbar interconnects, for example, in the
Sun SPARCCenter and Enterprise systems. In 2001, the Sun Enterprise servers
represented the primary example of large-scale (>16 processors), symmetric
multiprocessors in active use.

Toward Large-Scale Multiprocessors

In the effort to build large-scale multiprocessors, two different directions
were explored: message-passing multicomputers and scalable shared memory
multiprocessors. Although there had been many attempts to build mesh and
hypercube-connected multiprocessors, one of the first multiprocessors to
successfully bring together all the pieces was the Cosmic Cube built at Caltech [Seitz,
1985]. It introduced important advances in routing and interconnect technology
and substantially reduced the cost of the interconnect, which helped make the
multicomputer viable. The Intel iPSC 860, a hypercube-connected collection of i860s,

 6.15 Historical Perspective and Further Reading 553.e7

was based on these ideas. More recent multiprocessors, such as the Intel Paragon, have
used networks with lower dimensionality and higher individual links. The Paragon
also employed a separate i860 as a communications controller in each node, although
a number of users have found it better to use both i860 processors for computation
as well as communication. The Thinking Multiprocessors CM-5 made use of off-the-
shelf microprocessors. It provided user-level access to the communication channel,
significantly improving communication latency. In 1995, these two multiprocessors
represented the state of the art in message-passing multicomputers.

Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit
all their work on one computer, or who needed a backup machine in case of
failure of the primary machine [Pfister, 1998]. Tandem introduced a 16-node
cluster in 1975. Digital followed with VAX clusters, introduced in 1984. They
were originally independent computers that shared I/O devices, requiring a
distributed operating system to coordinate activity. Soon they had communication
links between computers, in part so that the computers could be geographically
distributed to increase availability in case of a disaster at a single site. Users log on
to the cluster and are unaware of which machine they are using. DEC (now HP)
sold more than 25,000 clusters by 1993. Other early companies were Tandem (now
HP) and IBM (still IBM). Today, virtually every company has cluster products.
Most of these products are aimed at availability, with performance scaling as a
secondary benefit.

Scientific computing on clusters emerged as a competitor to MPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1-GFLOPS
computer for less than $50,000. In 1994, a 16-node cluster built from off-the-shelf
PCs using 80486s achieved that goal. This emphasis led to a variety of software
interfaces to make it easier to submit, coordinate, and debug large programs or a
large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low-latency research was the VI interface standard, which
has been embraced by Infiniband, discussed below.) Low latency then proved useful
in other applications. For example, in 1997 a cluster of 100 UltraSPARC desktop
computers at U.C. Berkeley, connected by 160 MB/sec per link Myrinet switches,
was used to set world records in database sort (sorting 8.6 GB of data originally on
disk in 1 minute) and in cracking an encrypted message (taking just 3.5 hours to
decipher a 40-bit DES key).

This research project, called Network of Workstations, also developed the
Inktomi search engine, which led to a start-up company with the same name.

553.e8 6.15 Historical Perspective and Further Reading

Google followed the example of Inktomi to build search engines from clusters
of desktop computers rather than large-scale SMPs, which was the strategy of
the leading search engine, Alta Vista, that Google took over. In 2013, virtually all
Internet services rely on clusters to serve their millions of customers.

Clusters are also very popular with scientists. One reason is their low cost, which
enables individual scientists or small groups to own a cluster dedicated to their
programs. Such clusters can get results faster than waiting in the long job queues of
the shared MPPs at supercomputer centers, which can stretch to weeks.

For those interested in learning more, Pfister [1998] has written an entertaining
book on clusters.

Recent Trends in Large-Scale Multiprocessors

In the mid-to-late 1990s, it became clear that the hoped-for growth in the market
for ultralarge-scale parallel computing was unlikely to occur. Without this market
growth, it became increasingly obvious that the high-end parallel computing
market was too small to support the costs of highly customized hardware and
software designed for a small market. Perhaps the most important trend to come
out of this observation was that clustering would be used to reach the highest levels
of performance. There are now three general classes of large-scale multiprocessors:

1. Clusters that integrate standard desktop motherboards using interconnection
technology, such as Myrinet or Infiniban

2. Multicomputers built from standard microprocessors configured into
processing elements and connected with a custom interconnect, such as the
IBM Blue Gene

3. Clusters of small-scale shared memory computers, possibly with vector
support, including the Earth Simulator

The IBM Blue Gene is the most interesting of these designs, since its rationale
parallels the underlying causes of the recent trend toward multicore in uniprocessor
architectures. Blue Gene started as a research project within IBM aimed at the
protein sequencing and folding problem. The Blue Gene designers observed that
power was becoming an increasing concern in large-scale multiprocessors and that
the performance/watt of processors from the embedded space was much better
than those in the high-end uniprocessor space. If parallelism was the route to high
performance, why not start with the most efficient building block and simply have
more of them?

Thus, Blue Gene is constructed using a custom chip that includes an embedded
PowerPC microprocessor offering half the performance of a high-end PowerPC,
but at a much smaller fraction of the area and the power. This allows more system
functions, including the global interconnect, to be integrated onto the same die.

 6.15 Historical Perspective and Further Reading 553.e9

The result is a highly replicable and efficient building block, allowing Blue Gene to
reach much larger processor counts more efficiently. Instead of using stand-alone
microprocessors or standard desktop boards as building blocks, Blue Gene uses
processor cores. No doubt such an approach provides much greater efficiency.
Whether the market can support the cost of a customized design and special
software remains an open question.

In 2006, a Blue Gene processor at Lawrence Livermore with 32K processors held a
factor of 2.6 lead in Linpack performance over the third-place system, which consisted
of 20 SGI Altix 512-processor systems interconnected with Infiniband as a cluster.

Blue Gene’s predecessor was an experimental machine, QCDOD, which
pioneered the concept of a machine using a lower-power embedded microprocessor
and tightly integrated interconnect to drive down the cost and power consumption
of a node.

Looking Further
There is an almost unbounded amount of information on multiprocessors and
multicomputers: conferences, journal papers, and even books seem to appear faster
than any single person can absorb the ideas. No doubt many of these papers will
go unnoticed—not unlike the past. Most of the major architecture conferences
contain papers on multiprocessors. An annual conference, Supercomputing XY
(where X and Y are the last two digits of the year), brings together users, architects,
software developers, and vendors and publishes the proceedings in book, CD-
ROM, and online (see www.scXY.org) form. Two major journals, Journal of Parallel
and Distributed Computing and the IEEE Transactions on Parallel and Distributed
Systems, contain papers on all aspects of parallel processing. Several books focusing
on parallel processing are included in the following references, with Culler et al.
[1998] being the most recent, large-scale effort. For years, Eugene Miya of NASA
Ames has collected an online bibliography of parallel processing papers. The
bibliography, which now contains more than 35,000 entries, is available online at:
www.ira.uka.de/bibliography/Parallel/Eugene/index.html.

Asanovic et al. [2006] surveyed the wide-ranging challenges for the industry in
this multicore challenge. That report may be helpful in understanding the depth of
the various challenges.

In addition to documenting the discovery of concepts now used in practice,
these references also provide descriptions of many ideas that have been explored
and found wanting, as well as ideas whose time has just not yet come. Given the
move toward multicore and multiprocessors as the future of high-performance
computer architecture, we expect that many new approaches will be explored in
the years ahead. A few of them will manage to solve the hardware and software
problems that have been the key to using multiprocessing for the past 40 years!

http://www.scXY.org
http://www.ira.uka.de/bibliography/Parallel/Eugene/index.html

553.e10 6.15 Historical Perspective and Further Reading

Further Reading

Almasi, G. S. and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings, Redwood City, CA.

A textbook covering parallel computers.

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving large scale computing
capabilities,” Proc. AFIPS Spring Joint Computer Conf., Atlantic City, NJ (April), 483–85.

Written in response to the claims of the Illiac IV, this three-page article describes Amdahl’s law and gives the
classic reply to arguments for abandoning the current form of computing.

Andrews, G. R. [1991]. Concurrent Programming: Principles and Practice, Benjamin/Cummings, Redwood
City, CA.

A text that gives the principles of parallel programming.

Archibald, J. and J. -L. Baer [1986]. “Cache coherence protocols: Evaluation using a multiprocessor simulation
model”, ACM Trans. on Computer Systems 4 4 (November), 273–98.

Classic survey paper of shared-bus cache coherence protocols.

Arpaci-Dusseau, A., R. Arpaci-Dusseau, D. Culler, J. Hellerstein, and D. Patterson [1997]. “High-performance
sorting on networks of workstations,” Proc. ACM SIG MOD/PODS Conference on Management of Data,
Tucson, AZ (May), 12–15.

How a world record sort was performed on a cluster, including architecture critique of the workstation and
network interface. By April 1, 1997, they pushed the record to 8.6 GB in 1 minute and 2.2 seconds to sort 100 MB.

Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. [2006]. “The landscape of parallel computing research: A view from Berkeley.”
Tech. Rep. UCB/EECS-2006-183, EECS Department, University of California, Berkeley (December 18).

Nicknamed the “Berkeley View,” this report lays out the landscape of the multicore challenge.

Bailey, D. H., E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. [1991]. “The NAS
parallel benchmarks—summary and preliminary results,” Proceedings of the 1991 ACM/IEEE conference on
Super-computing (August).

Describes the NAS parallel benchmarks.

Bell, C. G. [1985]. “Multis: A new class of multiprocessor computers”, Science 228(April 26), 462–467.

Distinguishes shared address and nonshared address multiprocessors based on micro processors.

Bienia, C., S. Kumar, J. P. Singh, and K. Li [2008]. “The PARSEC benchmark suite: characterization and
architectural implications,” Princeton University Technical Report TR-81 1-008 (January).

Describes the PARSEC parallel benchmarks. Also see http://parsec.cs.princeton.edu/.

Bouknight, W. J., Denenberg, S. A., McIntyre, D. E., Randall, J. M., Sameh, A. H., and Slotnick, D. L. [1972].
The Illiac IV system, Proceedings of the IEEE, 60(4), 369–388.

This describes the most infamous SIMD supercomputer.

Culler, D. E. and J. P. Singh, with A. Gupta [1998]. Parallel Computer Architecture, Morgan Kaufmann, San
Francisco.

A textbook on parallel computers.

http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref4
http://parsec.cs.princeton.edu/
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref5

 6.15 Historical Perspective and Further Reading 553.e11

Dongarra, J. J., J. R. Bunch, G. B. Moler, G. W. Stewart [1979]. LINPACK Users’ Guide, Society for Industrial
Mathematics.

The original document describing Linpack, which became a widely used parallel bench mark.

Falk, H. [1976]. “Reaching for the gigaflop”, IEEE Spectrum 13: 10 (October), 65–70.

Chronicles the sad story of the Illiac IV: four times the cost and less than one-tenth the performance of original
goals.

Flynn, M. J. [1966]. “Very high-speed computing systems”, Proc. IEEE 54 12 (December), 1901–09.

Classic article showing SISD/SIMD/MISD/MIMD classifications.

Hennessy, J. and D. Patterson [2003]. Chapters 6 and 8 in Computer Architecture: A Quantitative Approach,
third edition, Morgan Kaufmann Publishers, San Francisco.

A more in-depth coverage of a variety of multiprocessor and cluster topics, including programs and measurements.

Henning, J. L. [2007]. “SPEC CPU suite growth: an historical perspective”, Computer Architecture News Vol.
35, no. 1 (March).

Gives the history of SPEC, including the use of SPECrate to measure performance on independent jobs, which is
being used as a parallel benchmark.

Hillis, W. D. [1989]. The connection machine. The MIT Press.

PhD Dissertation that makes case for 1-bit SIMD computer.

Hord, R. M. [1982]. The Illiac-IV, the First Supercomputer, Computer Science Press, Rockville, MD.

A historical accounting of the Illiac IV project.

Hwang, K. [1993]. Advanced Computer Architecture with Parallel Programming, McGraw-Hill, New York.

Another textbook covering parallel computers.

Kozyrakis, C. and D. Patterson [2003]. “Scalable vector processors for embedded systems”, IEEE Micro 23:6
(November–December), 36–45.

Examination of a vector architecture for the MIPS instruction set in media and signal processing.

Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage”, Bibliothèque Universelle
de Genève (October).

Certainly the earliest reference on multiprocessors, this mathematician made this comment while translating
papers on Babbage’s mechanical computer.

Pfister, G. F. [1998]. In Search of Clusters: The Coming Battle in Lowly Parallel Computing, second edition,
Prentice Hall, Upper Saddle River, NJ.

An entertaining book that advocates clusters and is critical of NUMA multiprocessors.

Regnier, G., S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, and A. Foong [2004]. TCP onloading
for data center servers. Computer, 37(11), 48–58.

A paper describing benefits of doing TCP/IP inside servers vs. external hardware.

Seitz, C. [1985]. “The Cosmic Cube”, Comm. ACM 28 1 (January), 22–31.

A tutorial article on a parallel processor connected via a hypertree. The Cosmic Cube is the ancestor of the Intel
supercomputers.

http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref16
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref16
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref17
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref17
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref18

553.e12 6.15 Historical Perspective and Further Reading

Slotnick, D. L. [1982]. “The conception and development of parallel processors—a personal memoir”, Annals
of the History of Computing 4: 1 (January), 20–30.

Recollections of the beginnings of parallel processing by the architect of the Illiac I V.

Williams, S., J. Carter, L. Oliker, J. Shalf, and K. Yelick [2008]. “Lattice Boltzmann simulation optimization on
leading multicore platforms,” International Parallel & Distributed Processing Symposium (IPDPS).

Paper containing the results of the four multicores for LBMHD.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007]. “Optimization of sparse matrix-
vector multiplication on emerging multicore platforms,” Supercomputing (SC).

Paper containing the results of the four multicores for SPmV.

Williams, S. [2008]. Autotuning Performance of Multicore Computers, Ph.D. Dissertation, U.C. Berkeley.

Dissertation containing the roofline model.

Woo, S. C., M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The SPLASH-2 programs: characterization and
methodological considerations,” Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA ’95), May, 24–36.

Paper describing the second version of the Stanford parallel benchmarks.

http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref19
http://refhub.elsevier.com/B978-0-12-812275-4.00038-5/sbref19

554 Chapter 6 Parallel Processors from Client to Cloud

6.1.2 [5] <§6.2> Next, consider which of the activities could be carried out
concurrently (e.g., eating breakfast and listening to the news). For each of your
activities, describe which other activity could be paired with this activity.

6.1.3 [5] <§6.2> For Exercise 6.1.2, what could we change about current systems
(e.g., showers, clothes, TVs, cars) so that we could perform more tasks in parallel?

6.1.4 [5] <§6.2> Estimate how much shorter time it would take to carry out these
activities if you tried to carry out as many tasks in parallel as possible.

6.2 You are trying to bake three blueberry pound cakes. Cake ingredients are as
follows:

1 cup butter, softened
1 cup sugar
4 large eggs
1 teaspoon vanilla extract
1/2 teaspoon salt
1/4 teaspoon nutmeg
1 1/2 cups flour
1 cup blueberries

The recipe for a single cake is as follows:

Step 1: Preheat oven to 325°F (160°C). Grease and flour your cake pan.

Step 2: In large bowl, beat together with a mixer butter and sugar at medium
speed until light and fluffy. Add eggs, vanilla, salt and nutmeg. Beat until
thoroughly blended. Reduce mixer speed to low and add flour, 1/2 cup at a time,
beating just until blended.

Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. Bake
for 60 minutes.

6.2.1 [5] <§6.2> Your job is to cook three cakes as efficiently as possible.
Assuming that you only have one oven large enough to hold one cake, one large
bowl, one cake pan, and one mixer, come up with a schedule to make three cakes as
quickly as possible. Identify the bottlenecks in completing this task.

6.2.2 [5] <§6.2> Assume now that you have three bowls, three cake pans and
three mixers. How much faster is the process now that you have additional resources?

6.2.3 [5] <§6.2> Assume now that you have two friends that will help you cook,
and that you have a large oven that can accommodate all three cakes. How will this
change the schedule you arrived at in Exercise 6.2.1 above?

6.2.4 [5] <§6.2> Compare the cake-making task to computing three iterations
of a loop on a parallel computer. Identify data-level parallelism and task-level
parallelism in the cake-making loop.

 6.16 Exercises 555

6.3 Many computer applications involve searching through a set of data and
sorting the data. A number of efficient searching and sorting algorithms have been
devised in order to reduce the runtime of these tedious tasks. In this problem we
will consider how best to parallelize these tasks.

6.3.1 [10] <§6.2> Consider the following binary search algorithm (a classic
divide and conquer algorithm) that searches for a value X in a sorted N-element
array A and returns the index of matched entry:

BinarySearch(A[0..N−1], X) {
 low = 0
 high = N −1
 while (low <= high) {
 mid = (low + high) / 2
 if (A[mid] >X)
 high = mid −1
 else if (A[mid] <X)
 low = mid + 1
 else
 return mid // found
 }
 return −1 // not found
}

Assume that you have Y cores on a multi-core processor to run BinarySearch.
Assuming that Y is much smaller than N, express the speed-up factor you might
expect to obtain for values of Y and N. Plot these on a graph.

6.3.2 [5] <§6.2> Next, assume that Y is equal to N. How would this affect your
conclusions in your previous answer? If you were tasked with obtaining the best
speed-up factor possible (i.e., strong scaling), explain how you might change this
code to obtain it.

6.4 Consider the following piece of C code:

for (j=2;j<=1000;j++)
 D[j] = D[j−1]+D[j−2];

The RISC-V code corresponding to the above fragment is:

 li x5, 8000
 add x12, x10, x5
 addi x11, x10, 16
LOOP: fld f0, -16(x11)
 fld f1, -8(x11)

 fadd.d f2, f0, f1
 fsd f2, 0(x11)
 addi x11, x11, 8
 ble x11, x12, LOOP

556 Chapter 6 Parallel Processors from Client to Cloud

The latency of an instruction is the number of cycles that must come between that
instruction and an instruction using the result. Assume floating point instructions
have the following associated latencies (in cycles):

fadd.d fld fsd

4 6 1

6.4.1 [10] <§6.2> How many cycles does it take to execute this code?

6.4.2 [10] <§6.2> Re-order the code to reduce stalls. Now, how many cycles does
it take to execute this code? (Hint: You can remove additional stalls by changing the
offset on the fsd instruction.)

6.4.3 [10] <§6.2> When an instruction in a later iteration of a loop depends
upon a data value produced in an earlier iteration of the same loop, we say that
there is a loop-carried dependence between iterations of the loop. Identify the loop-
carried dependences in the above code. Identify the dependent program variable
and assembly-level registers. You can ignore the loop induction variable j.

6.4.4 [15] <§6.2> Rewrite the code by using registers to carry the data between
iterations of the loop (as opposed to storing and re-loading the data from main
memory). Show where this code stalls and calculate the number of cycles required
to execute. Note that for this problem you will need to use the assembler pseudo-
instruction “fmv.d rd, rs1”, which writes the value of floating-point register
rs1 into floating-point register rd. Assume that fmv.d executes in a single cycle.

6.4.5 [10] <§6.2> Loop unrolling was described in Chapter 4. Unroll and
optimize the loop above so that each unrolled loop handles three iterations of
the original loop. Show where this code stalls and calculate the number of cycles
required to execute.

6.4.6 [10] <§6.2> The unrolling from Exercise 6.4.5. works nicely because we
happen to want a multiple of three iterations. What happens if the number of
iterations is not known at compile time? How can we efficiently handle a number
of iterations that isn’t a multiple of the number of iterations per unrolled loop?

6.4.7 [15] <§6.2> Consider running this code on a two-node distributed
memory message passing system. Assume that we are going to use message passing
as described in Section 6.7, where we introduce a new operation send (x, y) that
sends to node x the value y, and an operation receive() that waits for the value
being sent to it. Assume that send operations take one cycle to issue (i.e., later
instructions on the same node can proceed on the next cycle), but take several
cycles to be received on the receiving node. Receive instructions stall execution on
the node where they are executed until they receive a message. Can you use such a
system to speed up the code for this exercise? If so, what is the maximum latency
for receiving information that can be tolerated? If not, why not?

 6.16 Exercises 557

6.5 Consider the following recursive mergesort algorithm (another classic divide
and conquer algorithm). Mergesort was first described by John Von Neumann in
1945. The basic idea is to divide an unsorted list x of m elements into two sublists
of about half the size of the original list. Repeat this operation on each sublist, and
continue until we have lists of size 1 in length. Then starting with sublists of length
1, “merge” the two sublists into a single sorted list.

Mergesort(m)
 var list left, right, result
 if length(m) ≤ 1
 return m
 else
 var middle = length(m) / 2
 for each x in m up to middle
 add x to left
 for each x in m after middle
 add x to right
 left = Mergesort(left)
 right = Mergesort(right)
 result = Merge(left, right)
 return result

The merge step is carried out by the following code:

Merge(left,right)
 var list result
 while length(left) >0 and length(right) > 0
 if first(left) ≤ first(right)
 append first(left) to result
 left = rest(left)
 else
 append first(right) to result
 right = rest(right)
 if length(left) >0
 append rest(left) to result
 if length(right) >0
 append rest(right) to result
 return result

6.5.1 [10] <§6.2> Assume that you have Y cores on a multicore processor to run
Mergesort. Assuming that Y is much smaller than length (m), express the speed-up
factor you might expect to obtain for values of Y and length (m). Plot these on a graph.

6.5.2 [10] <§6.2> Next, assume that Y is equal to length (m). How would this
affect your conclusions in your previous answer? If you were tasked with obtaining
the best speed-up factor possible (i.e., strong scaling), explain how you might
change this code to obtain it.

558 Chapter 6 Parallel Processors from Client to Cloud

6.6 Matrix multiplication plays an important role in a number of applications.
Two matrices can only be multiplied if the number of columns of the first matrix is
equal to the number of rows in the second.

Let’s assume we have an m × n matrix A and we want to multiply it by an n × p
matrix B. We can express their product as an m × p matrix denoted by AB (or A·B).
If we assign C = AB, and ci,j denotes the entry in C at position (i, j), then for each

element i and j with 1≤ i ≤ m and 1≤ j ≤ p c a bi j i k k, j
k

n

, ,
=1
∑ . Now we want to

see if we can parallelize the computation of C. Assume that matrices are laid out in
memory sequentially as follows: a1,1, a2,1, a3,1, a4,1, …, etc.

6.6.1 [10] <§6.5> Assume that we are going to compute C on both a single-core
shared-memory machine and a four-core shared-memory machine. Compute
the speed-up we would expect to obtain on the four-core machine, ignoring any
memory issues.

6.6.2 [10] <§6.5> Repeat Exercise 6.6.1, assuming that updates to C incur a cache
miss due to false sharing when consecutive elements are in a row (i.e., index i) are
updated.

6.6.3 [10] <§6.5> How would you fix the false sharing issue that can occur?

6.7 Consider the following portions of two different programs running at the
same time on four processors in a symmetric multicore processor (SMP). Assume
that before this code is run, both x and y are 0.

Core 1: x = 2;

Core 2: y = 2;

Core 3: w = x + y + 1;

Core 4: z = x + y;

6.7.1 [10] <§6.5> What are all the possible resulting values of w,x,y, and z?
For each possible outcome, explain how we might arrive at those values. You will
need to examine all possible interleavings of instructions.

6.7.2 [5] <§6.5> How could you make the execution more deterministic so that
only one set of values is possible?

6.8 The dining philosopher’s problem is a classic problem of synchronization and
concurrency. The general problem is stated as philosophers sitting at a round table
doing one of two things: eating or thinking. When they are eating, they are not
thinking, and when they are thinking, they are not eating. There is a bowl of pasta
in the center. A fork is placed in between each philosopher. The result is that each
philosopher has one fork to her left and one fork to her right. Given the nature of
eating pasta, the philosopher needs two forks to eat, and can only use the forks on
her immediate left and right. The philosophers do not speak to one another.

 6.16 Exercises 559

6.8.1 [10] <§6.7> Describe the scenario where none of philosophers ever eats
(i.e., starvation). What is the sequence of events that happen that lead up to this
problem?

6.8.2 [10] <§6.7> Describe how we can solve this problem by introducing the
concept of a priority. Can we guarantee that we will treat all the philosophers fairly?
Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers.
Nobody can pick up a fork until the waiter says they can. The waiter has global
knowledge of all forks. Further, if we impose the policy that philosophers will
always request to pick up their left fork before requesting to pick up their right
fork, then we can guarantee to avoid deadlock.

6.8.3 [10] <§6.7> We can implement requests to the waiter as either a queue of
requests or as a periodic retry of a request. With a queue, requests are handled in
the order they are received. The problem with using the queue is that we may not
always be able to service the philosopher whose request is at the head of the queue
(due to the unavailability of resources). Describe a scenario with five philosophers
where a queue is provided, but service is not granted even though there are forks
available for another philosopher (whose request is deeper in the queue) to eat.

6.8.4 [10] <§6.7> If we implement requests to the waiter by periodically repeating
our request until the resources become available, will this solve the problem
described in Exercise 6.8.3? Explain.

6.9 Consider the following three CPU organizations:

CPU SS: A two-core superscalar microprocessor that provides out-of-order issue
capabilities on two function units (FUs). Only a single thread can run on each core
at a time.

CPU MT: A fine-grained multithreaded processor that allows instructions from
two threads to be run concurrently (i.e., there are two functional units), though
only instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from two threads to be run
concurrently (i.e., there are two functional units), and instructions from either or
both threads can be issued to run on any cycle.

Assume we have two threads X and Y to run on these CPUs that include the
following operations:

Thread X Thread Y

A1 – takes three cycles to execute B1 – take two cycles to execute

A2 – no dependences B2 – conflicts for a functional unit with B1

A3 – conflicts for a functional unit with A1 B3 – depends on the result of B2

A4 – depends on the result of A3 B4 – no dependences and takes two cycles to execute

560 Chapter 6 Parallel Processors from Client to Cloud

Assume all instructions take a single cycle to execute unless noted otherwise or
they encounter a hazard.

6.9.1 [10] <§6.4> Assume that you have one SS CPU. How many cycles will it
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.2 [10] <§6.4> Now assume you have two SS CPUs. How many cycles will it
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.3 [10] <§6.4> Assume that you have one MT CPU. How many cycles will it
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.4 [10] <§6.4> Assume you have one SMT CPU. How many cycles will it take
to execute the two threads? How many issue slots are wasted due to hazards?

6.10 Virtualization software is being aggressively deployed to reduce the costs of
managing today’s high-performance servers. Companies like VMWare, Microsoft,
and IBM have all developed a range of virtualization products. The general concept,
described in Chapter 5, is that a hypervisor layer can be introduced between the
hardware and the operating system to allow multiple operating systems to share
the same physical hardware. The hypervisor layer is then responsible for allocating
CPU and memory resources, as well as handling services typically handled by the
operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted
operating system and application software. This will require us to rethink how
multi-core and multiprocessor systems will be designed in the future to support
the sharing of CPUs and memories by a number of operating systems concurrently.

6.10.1 [30] <§6.4> Select two hypervisors on the market today, and compare
and contrast how they virtualize and manage the underlying hardware (CPUs and
memory).

6.10.2 [15] <§6.4> Discuss what changes may be necessary in future multi-core
CPU platforms in order to better match the resource demands placed on these
systems. For instance, can multithreading play an effective role in alleviating the
competition for computing resources?

6.11 We would like to execute the loop below as efficiently as possible. We have
two different machines, a MIMD machine and a SIMD machine.

for (i=0; i<2000; i++)
 for (j=0; j<3000; j++)

 X_array[i][j] = Y_array[j][i] + 200;

6.11.1 [10] <§6.3> For a four CPU MIMD machine, show the sequence of
RISC-V instructions that you would execute on each CPU. What is the speed-up
for this MIMD machine?

 6.16 Exercises 561

6.11.2 [20] <§6.3> For an eight-wide SIMD machine (i.e., eight parallel SIMD
functional units), write an assembly program in using your own SIMD extensions
to RISC-V to execute the loop. Compare the number of instructions executed on
the SIMD machine to the MIMD machine.

6.12 A systolic array is an example of an MISD machine. A systolic array is a
pipeline network or “wavefront” of data processing elements. Each of these elements
does not need a program counter since execution is triggered by the arrival of data.
Clocked systolic arrays compute in “lock-step” with each processor undertaking
alternate compute and communication phases.

6.12.1 [10] <§6.3> Consider proposed implementations of a systolic array
(you can find these on the Internet or in technical publications). Then attempt to
program the loop provided in Exercise 6.11 using this MISD model. Discuss any
difficulties you encounter.

6.12.2 [10] <§6.3> Discuss the similarities and differences between an MISD
and SIMD machines. Answer this question in terms of data-level parallelism.

6.13 Assume we want to execute the DAXPY loop shown on page 501 in RISC-V
vector assembly on the NVIDIA 8800 GTX GPU described in this chapter. In
this problem, we will assume that all math operations are performed on single-
precision floating-point numbers (we will rename the loop SAXPY). Assume that
instructions take the following number of cycles to execute.

Loads Stores Add.S Mult.S

5 2 3 4

6.13.1 [20] <§6.6> Describe how you will constructs warps for the SAXPY loop
to exploit the eight cores provided in a single multiprocessor.

6.14 Download the CUDA Toolkit and SDK from https://developer.nvidia.com/
cuda-toolkit. Make sure to use the “emurelease” (Emulation Mode) version of the
code. (You will not need actual NVIDIA hardware for this assignment.) Build the
example programs provided in the SDK, and confirm that they run on the emulator.

6.14.1 [90] <§6.6> Using the “template” SDK sample as a starting point, write a
CUDA program to perform the following vector operations:

1) a − b (vector-vector subtraction)

2) a · b (vector dot product)

The dot product of two vectors a = [a1, a2, …, an] and b = [b1, b2, …, bn] is defined as:

a b a b a b a b a b
i

n

i i n n⋅ = = + + +
=
∑

1
1 1 2 2 �

Submit code for each program that demonstrates each operation and verifies the
correctness of the results.

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

562 Chapter 6 Parallel Processors from Client to Cloud

6.14.2 [90] <§6.6> If you have GPU hardware available, complete a performance
analysis on your program, examining the computation time for the GPU and a CPU
version of your program for a range of vector sizes. Explain any results you see.

6.15 AMD has recently announced integrating a graphics processing unit with
their x86 cores into a single package (though with different clocks for each of the
cores). This is an example of a heterogeneous multiprocessor system. One of the
key design points is to allow for fast data communication between the CPU and the
GPU. Before AMD’s Fusion architecture, communications were needed between
discrete CPU and GPU chips. Presently, the plan is to use multiple (at least 16) PCI
express channels to facilitate intercommunication.

6.15.1 [25] <§6.6> Compare the bandwidth and latency associated with these
two interconnect technologies.

6.16 Refer to Figure 6.14b, which shows an n-cube interconnect topology
of order 3 that interconnects eight nodes. One attractive feature of an n-cube
interconnection network topology is its ability to sustain broken links and still
provide connectivity.

6.16.1 [10] <§6.8> Develop an equation that computes how many links in the
n-cube (where n is the order of the cube) can fail and we can still guarantee an
unbroken link will exist to connect any node in the n-cube.

6.16.2 [10] <§6.8> Compare the resiliency to failure of n-cube to a fully
connected interconnection network. Plot a comparison of reliability as a function
of the added number of links for the two topologies.

6.17 Benchmarking is a field of study that involves identifying representative
workloads to run on specific computing platforms in order to be able to objectively
compare performance of one system to another. In this exercise we will compare
two classes of benchmarks: the Whetstone CPU benchmark and the PARSEC
Benchmark suite. Select one program from PARSEC. All programs should be freely
available on the Internet. Consider running multiple copies of Whetstone versus
running the PARSEC Benchmark on any of the systems described in Section 6.11.

6.17.1 [60] <§6.10> What is inherently different between these two classes of
workload when run on these multi-core systems?

6.17.2 [60] <§6.10> In terms of the Roofline Model, how dependent will the
results you obtain when running these benchmarks be on the amount of sharing
and synchronization present in the workload used?

6.18 When performing computations on sparse matrices, latency in the memory
hierarchy becomes much more of a factor. Sparse matrices lack the spatial locality
in the datastream typically found in matrix operations. As a result, new matrix
representations have been proposed.

 6.16 Exercises 563

One of the earliest sparse matrix representations is the Yale Sparse Matrix Format.
It stores an initial sparse m × n matrix, M in row form using three one-dimensional
arrays. Let R be the number of nonzero entries in M. We construct an array A
of length R that contains all nonzero entries of M (in left-to-right top-to-bottom
order). We also construct a second array IA of length m+1 (i.e., one entry per row,
plus one). IA(i) contains the index in A of the first nonzero element of row i. Row i
of the original matrix extends from A(IA(i)) to A(IA(i+1)−1). The third array, JA,
contains the column index of each element of A, so it also is of length R.

6.18.1 [15] <§6.10> Consider the sparse matrix X below and write C code that
would store this code in Yale Sparse Matrix Format.

Row 1 [1, 2, 0, 0, 0, 0]
Row 2 [0, 0, 1, 1, 0, 0]
Row 3 [0, 0, 0, 0, 9, 0]
Row 4 [2, 0, 0, 0, 0, 2]
Row 5 [0, 0, 3, 3, 0, 7]
Row 6 [1, 3, 0, 0, 0, 1]

6.18.2 [10] <§6.10> In terms of storage space, assuming that each element in
matrix X is single-precision floating point, compute the amount of storage used to
store the matrix above in Yale Sparse Matrix Format.

6.18.3 [15] <§6.10> Perform matrix multiplication of matrix X by matrix Y
shown below.

[2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase
the number of times this loop is executed to get good resolution in your timing
measurement. Compare the runtime of using a naïve representation of the matrix,
and the Yale Sparse Matrix Format.

6.18.4 [15] <§6.10> Can you find a more efficient sparse matrix representation
(in terms of space and computational overhead)?

6.19 In future systems, we expect to see heterogeneous computing platforms
constructed out of heterogeneous CPUs. We have begun to see some appear in the
embedded processing market in systems that contain both floating-point DSPs and
microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate-speed multi-core CPU (with a floating-point unit) that can
execute multiple instructions per cycle.

CPU B—A fast single-core integer CPU (i.e., no floating-point unit) that can
execute a single instruction per cycle.

CPU C—A slow vector CPU (with floating-point capability) that can execute
multiple copies of the same instruction per cycle.

564 Chapter 6 Parallel Processors from Client to Cloud

Assume that our processors run at the following frequencies:

CPU A CPU B CPU C

1 GHz 3 GHz 250 MHz

CPU A can execute two instructions per cycle, CPU B can execute one
instruction per cycle, and CPU C can execute eight instructions (through the
same instruction) per cycle. Assume all operations can complete execution in a
single cycle of latency without any hazards.
All three CPUs have the ability to perform integer arithmetic, though CPU B
cannot perform floating point arithmetic. CPU A and B have an instruction set
similar to a RISC-V processor. CPU C can only perform floating point add and
subtract operations, as well as memory loads and stores. Assume all CPUs have
access to shared memory and that synchronization has zero cost.
The task at hand is to compare two matrices X and Y that each contain 1024 × 1024
floating-point elements. The output should be a count of the number of indices
where the value in X was larger or equal to the value in Y.

6.19.1 [10] <§6.11> Describe how you would partition the problem on the three
different CPUs to obtain the best performance.

6.19.2 [10] <§6.11> What kind of instruction would you add to the vector CPU
C to obtain better performance?

6.20 This question looks at the amount of queuing that is occurring in the system
given a maximum transaction processing rate, and the latency observed on average
for a transaction. The latency includes both the service time (which is computed by
the maximum rate) and the queue time.
Assume a quad-core computer system can process database queries at a steady
state maximum rate of rate requests per second. Also assume that each transaction
takes, on average, lat ms to process. For each of the pairs in the table, answer the
following questions:

Average Transaction Latency Maximum transaction processing rate

1 ms 5000/sec

2 ms 5000/sec

1 ms 10,000/sec

2 ms 10,000/sec

For each of the pairs in the table, answer the following questions:

6.20.1 [10] <§6.11> On average, how many requests are being processed at any
given instant?

6.20.2 [10] <§6.11> If we move to an eight-core system, ideally, what will happen
to the system throughput (i.e., how many queries/second will the computer process)?

6.20.3 [10] <§6.11> Discuss why we rarely obtain this kind of speed-up by
simply increasing the number of cores.

 6.16 Exercises 565

§6.1, page 494: False. Task-level parallelism can help sequential applications and
sequential applications can be made to run on parallel hardware, although it is
more challenging.
§6.2, page 499: False. Weak scaling can compensate for a serial portion of the
program that would otherwise limit scalability, but not so for strong scaling.
§6.3, page 504: True, but they are missing useful vector features like gather-scatter
and vector length registers that improve the efficiency of vector architectures.
(As an elaboration in this section mentions, the AVX2 SIMD extensions offers
indexed loads via a gather operation but not scatter for indexed stores. The Haswell
generation x86 microprocessor is the first to support AVX2.)
§6.4, page 509: 1. True. 2. True.
§6.5, page 513: False. Since the shared address is a physical address, multiple
tasks each in their own virtual address spaces can run well on a shared memory
multiprocessor.
§6.6, page 521: False. Graphics DRAM chips are prized for their higher bandwidth.
§6.7, page 526: 1. False. Sending and receiving a message is an implicit
synchronization, as well as a way to share data. 2. True.
§6.8, page 528: True.
§6.10, page 540: True. We likely need innovation at all levels of the hardware and
software stack for parallel computing to succeed.

Answers to
Check Yourself

The Basics of Logic
Design
 A.1 Introduction A-3
 A.2 Gates, Truth Tables, and Logic

Equations A-4
 A.3 Combinational Logic A-9
 A.4 Using a Hardware Description

Language A-20
 A.5 Constructing a Basic Arithmetic Logic

Unit A-26
 A.6 Faster Addition: Carry Lookahead A-37
 A.7 Clocks A-47

A
A P P E N D I X

I always loved that
word, Boolean.

Claude Shannon
 IEEE Spectrum, April 1992
(Shannon’s master’s thesis showed
that the algebra invented by George
Boole in the 1800s could represent the
workings of electrical switches.)

 A.8 Memory Elements: Flip-Flops, Latches, and Registers A-49
 A.9 Memory Elements: SRAMs and DRAMs A-57
 A.10 Finite-State Machines A-66
 A.11 Timing Methodologies A-71
 A.12 Field Programmable Devices A-77
 A.13 Concluding Remarks A-78
 A.14 Exercises A-79

 A.1 Introduction

This appendix provides a brief discussion of the basics of logic design. It does not
replace a course in logic design, nor will it enable you to design significant working
logic systems. If you have little or no exposure to logic design, however, this
appendix will provide sufficient background to understand all the material in this
book. In addition, if you are looking to understand some of the motivation behind
how computers are implemented, this material will serve as a useful introduction.
If your curiosity is aroused but not sated by this appendix, the references at the end
provide several additional sources of information.

Section A.2 introduces the basic building blocks of logic, namely, gates. Section
A.3 uses these building blocks to construct simple combinational logic systems,
which contain no memory. If you have had some exposure to logic or digital
systems, you will probably be familiar with the material in these first two sections.
Section A.5 shows how to use the concepts of Sections A.2 and A.3 to design an
ALU for the RISC-V processor. Section A.6 shows how to make a fast adder, and

A-4 Appendix A The Basics of Logic Design

may be safely skipped if you are not interested in this topic. Section A.7 is a short
introduction to the topic of clocking, which is necessary to discuss how memory
elements work. Section A.8 introduces memory elements, and Section A.9 extends
it to focus on random access memories; it describes both the characteristics that
are important to understanding how they are used, as discussed in Chapter 4, and
the background that motivates many of the aspects of memory hierarchy design
discussed in Chapter 5. Section A.10 describes the design and use of finite-state
machines, which are sequential logic blocks. If you intend to read Appendix C,
you should thoroughly understand the material in Sections A.2 through A.10. If
you intend to read only the material on control in Chapter 4, you can skim the
appendices; however, you should have some familiarity with all the material except
Section A.11. Section A.11 is intended for those who want a deeper understanding
of clocking methodologies and timing. It explains the basics of how edge-triggered
clocking works, introduces another clocking scheme, and briefly describes the
problem of synchronizing asynchronous inputs.

Throughout this appendix, where it is appropriate, we also include segments
to demonstrate how logic can be represented in Verilog, which we introduce in
Section A.4. A more extensive and complete Verilog tutorial is available online on
the Companion Web site for this book.

 A.2 Gates, Truth Tables, and Logic Equations

The electronics inside a modern computer are digital. Digital electronics operate
with only two voltage levels of interest: a high voltage and a low voltage. All other
voltage values are temporary and occur while transitioning between the values.
(As we discuss later in this section, a possible pitfall in digital design is sampling
a signal when it not clearly either high or low.) The fact that computers are digital
is also a key reason they use binary numbers, since a binary system matches the
underlying abstraction inherent in the electronics. In various logic families, the
values and relationships between the two voltage values differ. Thus, rather than
refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are
asserted; or signals that are (logically) false, or 0, or are deasserted. The values 0
and 1 are called complements or inverses of one another.

Logic blocks are categorized as one of two types, depending on whether they
contain memory. Blocks without memory are called combinational; the output of
a combinational block depends only on the current input. In blocks with memory,
the outputs can depend on both the inputs and the value stored in memory, which
is called the state of the logic block. In this section and the next, we will focus

asserted signal A signal
that is (logically) true,
or 1.

deasserted signal
A signal that is (logically)
false, or 0.

 A.2 Gates, Truth Tables, and Logic Equations A-5

only on combinational logic. After introducing different memory elements in
Section A.8, we will describe how sequential logic, which is logic including state,
is designed.

Truth Tables
Because a combinational logic block contains no memory, it can be completely
specified by defining the values of the outputs for each possible set of input values.
Such a description is normally given as a truth table. For a logic block with n
inputs, there are 2n entries in the truth table, since there are that many possible
combinations of input values. Each entry specifies the value of all the outputs for
that particular input combination.

Truth Tables

Consider a logic function with three inputs, A, B, and C, and three outputs, D,
E, and F. The function is defined as follows: D is true if at least one input is true,
E is true if exactly two inputs are true, and F is true only if all three inputs are
true. Show the truth table for this function.

The truth table will contain 23 = 8 entries. Here it is:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Truth tables can completely describe any combinational logic function; however,
they grow in size quickly and may not be easy to understand. Sometimes we want
to construct a logic function that will be 0 for many input combinations, and we
use a shorthand of specifying only the truth table entries for the nonzero outputs.
This approach is used in Chapter 4 and Appendix C.

combinational logic
A logic system whose
blocks do not contain
memory and hence
compute the same output
given the same input.

sequential logic
A group of logic elements
that contain memory
and hence whose value
depends on the inputs
as well as the current
contents of the memory.

ANSWER

EXAMPLE

A-6 Appendix A The Basics of Logic Design

Boolean Algebra
Another approach is to express the logic function with logic equations. This
is done with the use of Boolean algebra (named after Boole, a 19th-century
mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in
typical formulations, there are three operators:

■	 The OR operator is written as +, as in A + B. The result of an OR operator is
1 if either of the variables is 1. The OR operation is also called a logical sum,
since its result is 1 if either operand is 1.

■	 The AND operator is written as · , as in A · B. The result of an AND operator
is 1 only if both inputs are 1. The AND operator is also called logical product,
since its result is 1 only if both operands are 1.

■	 The unary operator NOT is written as A. The result of a NOT operator is 1 only if
the input is 0. Applying the operator NOT to a logical value results in an inversion
or negation of the value (i.e., if the input is 0 the output is 1, and vice versa).

There are several laws of Boolean algebra that are helpful in manipulating logic
equations.

■	 Identity law: A + 0 = A and A · 1 = A

■	 Zero and One laws: A + 1 = 1 and A · 0 = 0

■	 Inverse laws: A A 1 and A A⋅ � 0

■	 Commutative laws: A + B = B + A and A · B = B · A

■	 Associative laws: A + (B + C) = (A + B) + C and A · (B · C) = (A · B) · C

■	 Distributive laws: A · (B + C) = (A · B) + (A · C) and
A + (B · C) = (A + B) · (A + C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that
are discussed in more depth in the exercises.

Any set of logic functions can be written as a series of equations with an output
on the left-hand side of each equation and a formula consisting of variables and the
three operators above on the right-hand side.

 A.2 Gates, Truth Tables, and Logic Equations A-7

Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the
previous example.

Here’s the equation for D:

D A B C

F is equally simple:

F A B C� ⋅ ⋅

E is a little tricky. Think of it in two parts: what must be true for E to be true
(two of the three inputs must be true), and what cannot be true (all three
cannot be true). Thus we can write E as

E A B A C B C A B C(() () ()) ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅

We can also derive E by realizing that E is true only if exactly two of the inputs
are true. Then we can write E as an OR of the three possible terms that have
two true inputs and one false input:

E A B C A C B B C A() () ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Proving that these two expressions are equivalent is explored in the exercises.

In Verilog, we describe combinational logic whenever possible using the assign
statement, which is described beginning on page A-23. We can write a definition for
E using the Verilog exclusive-OR operator as assign E = (A & (B ^ C)) | (B & C
& ~A), which is yet another way to describe this function. D and F have even simpler
representations, which are just like the corresponding C code: assign D = A | B | C and
assign F = A & B & C.

ANSWER

EXAMPLE

A-8 Appendix A The Basics of Logic Design

Gates
Logic blocks are built from gates that implement basic logic functions. For example,
an AND gate implements the AND function, and an OR gate implements the OR
function. Since both AND and OR are commutative and associative, an AND or an
OR gate can have multiple inputs, with the output equal to the AND or OR of all
the inputs. The logical function NOT is implemented with an inverter that always
has a single input. The standard representation of these three logic building blocks
is shown in Figure A.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles”
to the inputs or outputs of a gate to cause the logic value on that input line or
output line to be inverted. For example, Figure A.2.2 shows the logic diagram for
the function A B� , using explicit inverters on the left and bubbled inputs and
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and
inversion; several of the exercises give you the opportunity to try implementing
some common logic functions with gates. In the next section, we’ll see how an
implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that
gate is inverting. The two common inverting gates are called NOR and NAND and
correspond to inverted OR and AND gates, respectively. NOR and NAND gates are
called universal, since any logic function can be built using this one gate type. The
exercises explore this concept further.

gate A device that
implements basic logic
functions, such as AND
or OR.

NOR gate An inverted
OR gate.

NAND gate An inverted
AND gate.

Are the following two logical expressions equivalent? If not, find a setting of the
variables to show they are not:

■	 () () ()A B C A C B B C A⋅ ⋅ ⋅ ⋅ ⋅ ⋅� �

■	 B A C C A⋅ ⋅ ⋅()�

Check
Yourself

FIGURE A.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from
left to right. The signals to the left of each symbol are the inputs, while the output appears on the right. The
AND and OR gates both have two inputs. Inverters have a single input.

A
B

A
B

FIGURE A.2.2 Logic gate implementation of A B+ using explicit inverts on the left and
bubbled inputs and outputs on the right. This logic function can be simplified to A B� or in Verilog,
A & ~ B.

 A.3 Combinational Logic A-9

 A.3 Combinational Logic

In this section, we look at a couple of larger logic building blocks that we use
heavily, and we discuss the design of structured logic that can be automatically
implemented from a logic equation or truth table by a translation program. Last,
we discuss the notion of an array of logic blocks.

Decoders
One logic block that we will use in building larger components is a decoder. The
most common type of decoder has an n-bit input and 2n outputs, where only one
output is asserted for each input combination. This decoder translates the n-bit
input into a signal that corresponds to the binary value of the n-bit input. The
outputs are thus usually numbered, say, Out0, Out1, …, Out2n −1. If the value of
the input is i, then Outi will be true and all other outputs will be false. Figure A.3.1
shows a 3-bit decoder and the truth table. This decoder is called a 3-to-8 decoder
since there are three inputs and eight (23) outputs. There is also a logic element
called an encoder that performs the inverse function of a decoder, taking 2n inputs
and producing an n-bit output.

decoder A logic block
that has an n-bit input and
2n outputs, where only
one output is asserted for
each input combination.

stuptuOstupnI

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

a. A 3-bit decoder

FIGURE A.3.1 A 3-bit decoder has three inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the
output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the decoder says that the
input signal is 3 bits wide.

A-10 Appendix A The Basics of Logic Design

Multiplexors
One basic logic function that we use quite often in Chapter 4 is the multiplexor.
A multiplexor might more properly be called a selector, since its output is one of
the inputs that is selected by a control. Consider the two-input multiplexor. The
left side of Figure A.3.2 shows this multiplexor has three inputs: two data values
and a selector (or control) value. The selector value determines which of the
inputs becomes the output. We can represent the logic function computed by a
two-input multiplexor, shown in gate form on the right side of Figure A.3.2, as
C A S B S() ()⋅ ⋅ .

Multiplexors can be created with an arbitrary number of data inputs. When
there are only two inputs, the selector is a single signal that selects one of the inputs
if it is true (1) and the other if it is false (0). If there are n data inputs, there will
need to be log2 n selector inputs. In this case, the multiplexor basically consists of
three parts:

1. A decoder that generates n signals, each indicating a different input value

2. An array of n AND gates, each combining one of the inputs with a signal
from the decoder

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we often label the data inputs
numerically (i.e., 0, 1, 2, 3, …, n −1) and interpret the data selector inputs as a
binary number. Sometimes, we make use of a multiplexor with undecoded selector
signals.

Multiplexors are easily represented combinationally in Verilog by using if
expressions. For larger multiplexors, case statements are more convenient, but care
must be taken to synthesize combinational logic.

selector value Also
called control value. The
control signal that is used
to select one of the input
values of a multiplexor
as the output of the
multiplexor.

M
u
x

1

0

C

S

B

A
A

B

S

C

FIGURE A.3.2 A two-input multiplexor on the left and its implementation with gates on
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input
(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when
they are wider than two inputs. We show how to do this beginning on page A-23.

 A.3 Combinational Logic A-11

Two-Level Logic and PLAs
As pointed out in the previous section, any logic function can be implemented with
only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic
function can be written in a canonical form, where every input is either a true or
complemented variable and there are only two levels of gates—one being AND and
the other OR—with a possible inversion on the final output. Such a representation
is called a two-level representation, and there are two forms, called sum of products
and product of sums. A sum-of-products representation is a logical sum (OR) of
products (terms using the AND operator); a product of sums is just the opposite.
In our earlier example, we had two equations for the output E:

E A B A C B C A B C(() () ()) ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅

and

E A B C A C B B C A() () ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅

This second equation is in a sum-of-products form: it has two levels of logic and
the only inversions are on individual variables. The first equation has three levels
of logic.

Elaboration: We can also write E as a product of sums:

E A B C A C B B C A() () ()⋅ ⋅

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the
exercises.

In this text, we use the sum-of-products form. It is easy to see that any logic
function can be represented as a sum of products by constructing such a
representation from the truth table for the function. Each truth table entry for
which the function is true corresponds to a product term. The product term
consists of a logical product of all the inputs or the complements of the inputs,
depending on whether the entry in the truth table has a 0 or 1 corresponding to
this variable. The logic function is the logical sum of the product terms where the
function is true. This is more easily seen with an example.

sum of products A form
of logical representation
that employs a logical sum
(OR) of products (terms
joined using the AND
operator).

A-12 Appendix A The Basics of Logic Design

Sum of Products

Show the sum-of-products representation for the following truth table for D.

Inputs Outputs

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

There are four product terms, since the function is true (1) for four different
input combinations. These are:

A B C
A B C
A B C
A B C

⋅ ⋅
⋅ ⋅
⋅ ⋅
⋅ ⋅

Thus, we can write the function for D as the sum of these terms:

D A B C A B C A B C A B C() () () ()⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Note that only those truth table entries for which the function is true generate
terms in the equation.

We can use this relationship between a truth table and a two-level representation
to generate a gate-level implementation of any set of logic functions. A set of logic
functions corresponds to a truth table with multiple output columns, as we saw in
the example on page A-5. Each output column represents a different logic function,
which may be directly constructed from the truth table.

The sum-of-products representation corresponds to a common structured-logic
implementation called a programmable logic array (PLA). A PLA has a set of
inputs and corresponding input complements (which can be implemented with a
set of inverters), and two stages of logic. The first stage is an array of AND gates that
form a set of product terms (sometimes called minterms); each product term can
consist of any of the inputs or their complements. The second stage is an array of
OR gates, each of which forms a logical sum of any number of the product terms.
Figure A.3.3 shows the basic form of a PLA.

ANSWER

programmable logic
array (PLA)
A structured-logic
element composed
of a set of inputs and
corresponding input
complements and two
stages of logic: the first
generates product terms
of the inputs and input
complements, and the
second generates sum
terms of the product
terms. Hence, PLAs
implement logic functions
as a sum of products.

minterms Also called
product terms. A set
of logic inputs joined
by conjunction (AND
operations); the product
terms form the first logic
stage of the programmable
logic array (PLA).

EXAMPLE

 A.3 Combinational Logic A-13

A PLA can directly implement the truth table of a set of logic functions with
multiple inputs and outputs. Since each entry where the output is true requires
a product term, there will be a corresponding row in the PLA. Each output
corresponds to a potential row of OR gates in the second stage. The number of OR
gates corresponds to the number of truth table entries for which the output is true.
The total size of a PLA, such as that shown in Figure A.3.3, is equal to the sum of
the size of the AND gate array (called the AND plane) and the size of the OR gate
array (called the OR plane). Looking at Figure A.3.3, we can see that the size of
the AND gate array is equal to the number of inputs times the number of different
product terms, and the size of the OR gate array is the number of outputs times the
number of product terms.

A PLA has two characteristics that help make it an efficient way to implement a
set of logic functions. First, only the truth table entries that produce a true value for
at least one output have any logic gates associated with them. Second, each different
product term will have only one entry in the PLA, even if the product term is used
in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defined in the example on page A-5. Show
a PLA implementation of this example for D, E, and F.

AND gates

OR gates

Product terms

Outputs

Inputs

FIGURE A.3.3 The basic form of a PLA consists of an array of AND gates followed by an
array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or
inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms.

EXAMPLE

A-14 Appendix A The Basics of Logic Design

Here is the truth table we constructed earlier:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Since there are seven unique product terms with at least one true value in the
output section, there will be seven columns in the AND plane. The number of
rows in the AND plane is three (since there are three inputs), and there are also
three rows in the OR plane (since there are three outputs). Figure A.3.4 shows
the resulting PLA, with the product terms corresponding to the truth table
entries from top to bottom.

Rather than drawing all the gates, as we do in Figure A.3.4, designers often show
just the position of AND gates and OR gates. Dots are used on the intersection of a
product term signal line and an input line or an output line when a corresponding
AND gate or OR gate is required. Figure A.3.5 shows how the PLA of Figure A.3.4
would look when drawn in this way. The contents of a PLA are fixed when the PLA
is created, although there are also forms of PLA-like structures, called PLAs, that
can be programmed electronically when a designer is ready to use them.

ROMs
Another form of structured logic that can be used to implement a set of logic
functions is a read-only memory (ROM). A ROM is called a memory because it
has a set of locations that can be read; however, the contents of these locations are
fixed, usually at the time the ROM is manufactured. There are also programmable
ROMs (PROMs) that can be programmed electronically, when a designer knows
their contents. There are also erasable PROMs; these devices require a slow erasure
process using ultraviolet light, and thus are used as read-only memories, except
during the design and debugging process.

A ROM has a set of input address lines and a set of outputs. The number of
addressable entries in the ROM determines the number of address lines: if the

read-only memory
(ROM) A memory
whose contents are
designated at creation
time, after which the
contents can only be read.
ROM is used as structured
logic to implement a
set of logic functions by
using the terms in the
logic functions as address
inputs and the outputs as
bits in each word of the
memory.

programmable ROM
(PROM) A form of
read-only memory that
can be programmed
when a designer knows its
contents.

ANSWER

 A.3 Combinational Logic A-15

ROM contains 2m addressable entries, called the height, then there are m input
lines. The number of bits in each addressable entry is equal to the number of output
bits and is sometimes called the width of the ROM. The total number of bits in the
ROM is equal to the height times the width. The height and width are sometimes
collectively referred to as the shape of the ROM.

A
B
C

E

F

Outputs
D

Inputs

FIGURE A.3.4 The PLA for implementing the logic function described in the example.

A ROM can encode a collection of logic functions directly from the truth table.
For example, if there are n functions with m inputs, we need a ROM with m address
lines (and 2m entries), with each entry being n bits wide. The entries in the input
portion of the truth table represent the addresses of the entries in the ROM, while
the contents of the output portion of the truth table constitute the contents of the
ROM. If the truth table is organized so that the sequence of entries in the input
portion constitutes a sequence of binary numbers (as have all the truth tables
we have shown so far), then the output portion gives the ROM contents in order
as well. In the example starting on page A-13, there were three inputs and three
outputs. This leads to a ROM with 23 = 8 entries, each 3 bits wide. The contents of
those entries in increasing order by address are directly given by the output portion
of the truth table that appears on page A-14.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full
output word for every possible input combination. A PLA is only partially decoded.
This means that a ROM will always contain more entries. For the earlier truth table
on page A-14, the ROM contains entries for all eight possible inputs, whereas the
PLA contains only the seven active product terms. As the number of inputs grows,

A-16 Appendix A The Basics of Logic Design

the number of entries in the ROM grows exponentially. In contrast, for most real
logic functions, the number of product terms grows much more slowly (see the
examples in Appendix C). This difference makes PLAs generally more efficient
for implementing combinational logic functions. ROMs have the advantage of
being able to implement any logic function with the matching number of inputs
and outputs. This advantage makes it easier to change the ROM contents if the logic
function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also
translate small blocks of combinational logic into a collection of gates that can
be placed and wired automatically. Although some small collections of gates are
usually not area-efficient, for small logic functions they have less overhead than the
rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a common
choice is a field programming device; we describe these devices in Section A.12.

A

B

C

Inputs

AND plane

OR plane

D

E

F

Outputs

FIGURE A.3.5 A PLA drawn using dots to indicate the components of the product terms
and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the
width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the
input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding
product term appears in the corresponding output.

 A.3 Combinational Logic A-17

Don’t Cares
Often in implementing some combinational logic, there are situations where we do
not care what the value of some output is, either because another output is true or
because a subset of the input combinations determines the values of the outputs.
Such situations are referred to as don’t cares. Don’t cares are important because they
make it easier to optimize the implementation of a logic function.

There are two types of don’t cares: output don’t cares and input don’t cares, both
of which can be represented in a truth table. Output don’t cares arise when we don’t
care about the value of an output for some input combination. They appear as Xs in
the output portion of a truth table. When an output is a don’t care for some input
combination, the designer or logic optimization program is free to make the output
true or false for that input combination. Input don’t cares arise when an output
depends on only some of the inputs, and they are also shown as Xs, though in the
input portion of the truth table.

Don’t Cares

Consider a logic function with inputs A, B, and C defined as follows:

■	 If A or C is true, then output D is true, whatever the value of B.

■	 If A or B is true, then output E is true, whatever the value of C.

■	 Output F is true if exactly one of the inputs is true, although we don’t care
about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don’t cares.
How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

EXAMPLE

ANSWER

A-18 Appendix A The Basics of Logic Design

This requires seven product terms without optimization. The truth table
written with output don’t cares looks like this:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 X

1 0 0 1 1 X

1 0 1 1 1 X

1 1 0 1 1 X

1 1 1 1 1 X

If we also use the input don’t cares, this truth table can be further simplified
to yield the following:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

X 1 1 1 1 X

1 X X 1 1 X

This simplified truth table requires a PLA with four minterms, or it can be
implemented in discrete gates with one two-input AND gate and three OR gates
(two with three inputs and one with two inputs). This compares to the original
truth table that had seven minterms and would have required four AND gates.

Logic minimization is critical to achieving efficient implementations. One tool
useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps
represent the truth table graphically, so that product terms that may be combined
are easily seen. Nevertheless, hand optimization of significant logic functions
using Karnaugh maps is impractical, both because of the size of the maps and their
complexity. Fortunately, the process of logic minimization is highly mechanical and
can be performed by design tools. In the process of minimization, the tools take
advantage of the don’t cares, so specifying them is important. The textbook references
at the end of this appendix provide further discussion on logic minimization,
Karnaugh maps, and the theory behind such minimization algorithms.

Arrays of Logic Elements
Many of the combinational operations to be performed on data have to be done
to an entire word (64 bits) of data. Thus we often want to build an array of logic

 A.3 Combinational Logic A-19

elements, which we can represent simply by showing that a given operation will
happen to an entire collection of inputs. Inside a machine, much of the time we
want to select between a pair of buses. A bus is a collection of data lines that is
treated together as a single logical signal. (The term bus is also used to indicate a
shared collection of lines with multiple sources and uses.)

For example, in the RISC-V instruction set, the result of an instruction that is
written into a register can come from one of two sources. A multiplexor is used to
choose which of the two buses (each 64 bits wide) will be written into the Result
register. The 1-bit multiplexor, which we showed earlier, will need to be replicated
64 times.

We indicate that a signal is a bus rather than a single 1-bit line by showing it with
a thicker line in a figure. Most buses are 64 bits wide; those that are not are explicitly
labeled with their width. When we show a logic unit whose inputs and outputs are
buses, this means that the unit must be replicated a sufficient number of times to
accommodate the width of the input. Figure A.3.6 shows how we draw a multiplexor
that selects between a pair of 64-bit buses and how this expands in terms of 1-bit-
wide multiplexors. Sometimes we need to construct an array of logic elements
where the inputs for some elements in the array are outputs from earlier elements.
For example, this is how a multibit-wide ALU is constructed. In such cases, we must
explicitly show how to create wider arrays, since the individual elements of the array
are no longer independent, as they are in the case of a 64-bit-wide multiplexor.

bus In logic design, a
collection of data lines
that is treated together
as a single logical signal;
also, a shared collection
of lines with multiple
sources and uses.

M
u
x

C

Select

64

64

64

B

A
M
u
x

Select

B63

A63

C63

M
u
x

B62

A62

C62

M
u
x

B0

A0

C0

...

...

a. A 64-bit wide 2-to-1 multiplexor b. The 64-bit wide multiplexor is actually
an array of 64 1-bit multiplexors

FIGURE A.3.6 A multiplexor is arrayed 64 times to perform a selection between two
64-bit inputs. Note that there is still only one data selection signal used for all 64 1-bit multiplexors.

A-20 Appendix A The Basics of Logic Design

 A.4 Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done
using a hardware description language. Such a language serves two purposes.
First, it provides an abstract description of the hardware to simulate and debug the
design. Second, with the use of logic synthesis and hardware compilation tools, this
description can be compiled into the hardware implementation.

In this section, we introduce the hardware description language Verilog and
show how it can be used for combinational design. In the rest of the appendix,
we expand the use of Verilog to include design of sequential logic. In the optional
sections of Chapter 4 that appear online, we use Verilog to describe processor
implementations. In the optional section from Chapter 5 that appears online, we
use system Verilog to describe cache controller implementations. System Verilog
adds structures and some other useful features to Verilog.

Verilog is one of the two primary hardware description languages; the other
is VHDL. Verilog is somewhat more heavily used in industry and is based on C,
as opposed to VHDL, which is based on Ada. The reader generally familiar with
C will find the basics of Verilog, which we use in this appendix, easy to follow.

hardware description
language
A programming language
for describing hardware,
used for generating
simulations of a hardware
design and also as input
to synthesis tools that can
generate actual hardware.

Readers already familiar with VHDL should find the concepts simple, provided
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural definition of a digital
system. A behavioral specification describes how a digital system functionally
operates. A structural specification describes the detailed organization of a digital
system, usually using a hierarchical description. A structural specification can be
used to describe a hardware system in terms of a hierarchy of basic elements such
as gates and switches. Thus, we could use Verilog to describe the exact contents of
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog
or VHDL to structurally describe only the datapath, relying on logic synthesis to
generate the control from a behavioral description. In addition, most CAD systems
provide extensive libraries of standardized parts, such as ALUs, multiplexors,
register files, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that
the specification be written with an eye toward the eventual synthesis and the
desired outcome. For our simple designs, this primarily means making clear what
we expect to be implemented in combinational logic and what we expect to require
in sequential logic. In most of the examples we use in this section and the remainder
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
There are two primary datatypes in Verilog:

1. A wire specifies a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not
necessarily correspond to an actual register in an implementation, although
it often will.

A register or wire, named X, that is 64 bits wide is declared as an array: reg
[63:0] X or wire [63:0] X, which also sets the index of 0 to designate the
least significant bit of the register. Because we often want to access a subfield of a
register or wire, we can refer to a contiguous set of bits of a register or wire with the
notation [starting bit: ending bit], where both indices must be constant
values.

An array of registers is used for a structure like a register file or memory. Thus,
the declaration

reg [63:0] registerfile[0:31]

specifies a variable registerfile that is equivalent to a RISC-V registerfile, where
register 0 is the first. When accessing an array, we can refer to a single element, as
in C, using the notation registerfile[regnum].

Verilog One of the two
most common hardware
description languages.

VHDL One of the two
most common hardware
description languages.

behavioral
specification Describes
how a digital system
operates functionally.

structural
specification Describes
how a digital system is
organized in terms of a
hierarchical connection of
elements.

hardware synthesis
tools Computer-aided
design software that
can generate a gate-
level design based on
behavioral descriptions of
a digital system.

wire In Verilog, specifies
a combinational signal.

reg In Verilog, a register.

Parity is a function in which the output depends on the number of 1s in the input.
For an even parity function, the output is 1 if the input has an even number of ones.
Suppose a ROM is used to implement an even parity function with a 4-bit input.
Which of A, B, C, or D represents the contents of the ROM?

Address A B C D

0 0 1 0 1

1 0 1 1 0

2 0 1 0 1

3 0 1 1 0

4 0 1 0 1

5 0 1 1 0

6 0 1 0 1

7 0 1 1 0

8 1 0 0 1

9 1 0 1 0

10 1 0 0 1

11 1 0 1 0

12 1 0 0 1

13 1 0 1 0

14 1 0 0 1

15 1 0 1 0

Check
Yourself

 A.4 Using a Hardware Description Language A-21

Readers already familiar with VHDL should find the concepts simple, provided
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural definition of a digital
system. A behavioral specification describes how a digital system functionally
operates. A structural specification describes the detailed organization of a digital
system, usually using a hierarchical description. A structural specification can be
used to describe a hardware system in terms of a hierarchy of basic elements such
as gates and switches. Thus, we could use Verilog to describe the exact contents of
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog
or VHDL to structurally describe only the datapath, relying on logic synthesis to
generate the control from a behavioral description. In addition, most CAD systems
provide extensive libraries of standardized parts, such as ALUs, multiplexors,
register files, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that
the specification be written with an eye toward the eventual synthesis and the
desired outcome. For our simple designs, this primarily means making clear what
we expect to be implemented in combinational logic and what we expect to require
in sequential logic. In most of the examples we use in this section and the remainder
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
There are two primary datatypes in Verilog:

1. A wire specifies a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not
necessarily correspond to an actual register in an implementation, although
it often will.

A register or wire, named X, that is 64 bits wide is declared as an array: reg
[63:0] X or wire [63:0] X, which also sets the index of 0 to designate the
least significant bit of the register. Because we often want to access a subfield of a
register or wire, we can refer to a contiguous set of bits of a register or wire with the
notation [starting bit: ending bit], where both indices must be constant
values.

An array of registers is used for a structure like a register file or memory. Thus,
the declaration

reg [63:0] registerfile[0:31]

specifies a variable registerfile that is equivalent to a RISC-V registerfile, where
register 0 is the first. When accessing an array, we can refer to a single element, as
in C, using the notation registerfile[regnum].

Verilog One of the two
most common hardware
description languages.

VHDL One of the two
most common hardware
description languages.

behavioral
specification Describes
how a digital system
operates functionally.

structural
specification Describes
how a digital system is
organized in terms of a
hierarchical connection of
elements.

hardware synthesis
tools Computer-aided
design software that
can generate a gate-
level design based on
behavioral descriptions of
a digital system.

wire In Verilog, specifies
a combinational signal.

reg In Verilog, a register.

A-22 Appendix A The Basics of Logic Design

The possible values for a register or wire in Verilog are

■	 0 or 1, representing logical false or true

■	 X, representing unknown, the initial value given to all registers and to any
wire not connected to something

■	 Z, representing the high-impedance state for tristate gates, which we will not
discuss in this appendix

Constant values can be specified as decimal numbers as well as binary, octal, or
hexadecimal. We often want to say exactly how large a constant field is in bits. This
is done by prefixing the value with a decimal number specifying its size in bits. For
example:

■	 4’b0100 specifies a 4-bit binary constant with the value 4, as does 4’d4.

■	 −8’h4 specifies an 8-bit constant with the value −4 (in two’s complement
representation)

Values can also be concatenated by placing them within { } separated by commas.
The notation {x{bitfield}} replicates bitfield x times. For example:

■	 {32{2’b01}} creates a 64-bit value with the pattern 0101 … 01.

■	 {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A
and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C, including
the arithmetic operators (+, −, *. /), the logical operators (&, |, ~), the comparison
operators (= =, ! =, >, < , < =, > =), the shift operators (<<, >>), and C’s
conditional operator (?, which is used in the form condition ? expr1 :expr2
and returns expr1 if the condition is true and expr2 if it is false). Verilog adds
a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying
the logical operator to all the bits of an operand. For example, &A returns the value
obtained by ANDing all the bits of A together, and ̂ A returns the reduction obtained
by using exclusive OR on all the bits of A.

Which of the following define exactly the same value?

1. 8’bimoooo

2. 8’hF0

3. 8’d240

4. {{4{1’b1}},{4{1’b0}}}

5. {4’b1,4’b0)

Check
Yourself

 A.4 Using a Hardware Description Language A-23

Structure of a Verilog Program
A Verilog program is structured as a set of modules, which may represent anything
from a collection of logic gates to a complete system. Modules are similar to classes
in C++, although not nearly as powerful. A module specifies its input and output
ports, which describe the incoming and outgoing connections of a module. A
module may also declare additional variables. The body of a module consists of:

■	 initial constructs, which can initialize reg variables

■	 Continuous assignments, which define only combinational logic

■	 always constructs, which can define either sequential or combinational
logic

■	 Instances of other modules, which are used to implement the module being
defined

Representing Complex Combinational Logic in Verilog
A continuous assignment, which is indicated with the keyword assign, acts like
a combinational logic function: the output is continuously assigned the value, and
a change in the input values is reflected immediately in the output value. Wires
may only be assigned values with continuous assignments. Using continuous
assignments, we can define a module that implements a half-adder, as Figure A.4.1
shows.

Assign statements are one sure way to write Verilog that generates combinational
logic. For more complex structures, however, assign statements may be awkward or
tedious to use. It is also possible to use the always block of a module to describe
a combinational logic element, although care must be taken. Using an always
block allows the inclusion of Verilog control constructs, such as if-then-else, case
statements, for statements, and repeat statements, to be used. These statements are
similar to those in C with small changes.

An always block specifies an optional list of signals on which the block is
sensitive (in a list starting with @). The always block is re-evaluated if any of the

FIGURE A.4.1 A Verilog module that defines a half-adder using continuous assignments.

A-24 Appendix A The Basics of Logic Design

listed signals changes value; if the list is omitted, the always block is constantly re-
evaluated. When an always block is specifying combinational logic, the sensitivity
list should include all the input signals. If there are multiple Verilog statements to
be executed in an always block, they are surrounded by the keywords begin and
end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin
 Verilog statements including assignments and other
control statements end

Reg variables may only be assigned inside an always block, using a procedural
assignment statement (as distinguished from continuous assignment we saw
earlier). There are, however, two different types of procedural assignments. The
assignment operator = executes as it does in C; the right-hand side is evaluated,
and the left-hand side is assigned the value. Furthermore, it executes like the
normal C assignment statement: that is, it is completed before the next statement
is executed. Hence, the assignment operator = has the name blocking assignment.
This blocking can be useful in the generation of sequential logic, and we will return
to it shortly. The other form of assignment (nonblocking) is indicated by <=. In
nonblocking assignment, all right-hand sides of the assignments in an always
group are evaluated and the assignments are done simultaneously. As a first
example of combinational logic implemented using an always block, Figure A.4.2
shows the implementation of a 4-to-1 multiplexor, which uses a case construct to
make it easy to write. The case construct looks like a C switch statement. Figure
A.4.3 shows a definition of a RISC-V ALU, which also uses a case statement.

Since only reg variables may be assigned inside always blocks, when we want to
describe combinational logic using an always block, care must be taken to ensure
that the reg does not synthesize into a register. A variety of pitfalls are described in
the elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic,
but other Verilog structures, even when in always blocks, can yield unexpected results
during logic synthesis. The most common problem is creating sequential logic by
implying the existence of a latch or register, which results in an implementation that is
both slower and more costly than perhaps intended. To ensure that the logic that you
intend to be combinational is synthesized that way, make sure you do the following:

1. Place all combinational logic in a continuous assignment or an always block.

2. Make sure that all the signals used as inputs appear in the sensitivity list of an
always block.

3. Ensure that every path through an always block assigns a value to the exact
same set of bits.

The last of these is the easiest to overlook; read through the example in Figure
A.5.15 to convince yourself that this property is adhered to.

sensitivity list The list of
signals that specifies when
an always block should
be re-evaluated.

blocking assignment In
Verilog, an assignment
that completes before
the execution of the next
statement.

nonblocking
assignment An
assignment that continues
after evaluating the right-
hand side, assigning the
left-hand side the value
only after all right-hand
sides are evaluated.

 A.4 Using a Hardware Description Language A-25

FIGURE A.4.2 A Verilog definition of a 4-to-1 multiplexor with 64-bit inputs, using a case
statement. The case statement acts like a C switch statement, except that in Verilog only the code
associated with the selected case is executed (as if each case state had a break at the end) and there is no
fall-through to the next statement.

FIGURE A.4.3 A Verilog behavioral definition of a RISC-V ALU. This could be synthesized using a module library containing basic
arithmetic and logical operations.

A-26 Appendix A The Basics of Logic Design

 A.5 Constructing a Basic Arithmetic
Logic Unit

The arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical operations
like AND and OR. This section constructs an ALU from four hardware building
blocks (AND and OR gates, inverters, and multiplexors) and illustrates how
combinational logic works. In the next section, we will see how addition can be
sped up through more clever designs.

Because the RISC-V registers are 64 bits wide, we need a 64-bit-wide ALU.
Let’s assume that we will connect 64 1-bit ALUs to create the desired ALU. We’ll
therefore start by constructing a 1-bit ALU.

A 1-Bit ALU
The logical operations are easiest, because they map directly onto the hardware
components in Figure A.2.1.

The 1-bit logical unit for AND and OR looks like Figure A.5.1. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value
of Operation is 0 or 1. The line that controls the multiplexor is shown in color
to distinguish it from the lines containing data. Notice that we have renamed the
control and output lines of the multiplexor to give them names that reflect the
function of the ALU.

The next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. There must be a second output to
pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. This input is called CarryIn.
Figure A.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what
addition is supposed to do, we can specify the outputs of this “black box” based on
its inputs, as Figure A.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do CarryOut.
Figure A.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut b CarryIn a CarryIn a b a b CarryIn() () () ()⋅ ⋅ ⋅ ⋅ ⋅

Assuming all values are initially zero, what are the values of A and B after executing
this Verilog code inside an always block?

C = 1;
A <= C;
B = C;

Check
Yourself

ALU n. [Arthritic
Logic Unit or (rare)
Arithmetic Logic Unit]
A random-number
generator supplied
as standard with all
computer systems.
Stan Kelly-Bootle, The
Devil’s DP Dictionary,
1981

 A.5 Constructing a Basic Arithmetic Logic Unit A-27

Operation

1

0

Result

a

b

FIGURE A.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE A.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it
has three inputs and two outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

stuptuOstupnI

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE A.5.3 Input and output specification for a 1-bit adder.

A-28 Appendix A The Basics of Logic Design

If a · b · CarryIn is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

CarryOut b CarryIn a CarryIn a b() () ()⋅ ⋅ ⋅

Figure A.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates correspond
exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE A.5.4 Values of the inputs when CarryOut is a 1.

a

b

CarryIn

CarryOut

FIGURE A.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic
for the Sum output given in the equation on this page.

The Sum bit is set when exactly one input is 1 or when all three inputs are 1. The
Sum results in a complex Boolean equation (recall that a means NOT a):

Sum a b CarryIn a b CarryIn a b CarryIn a b CarryIn() () () (⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅))

The drawing of the logic for the Sum bit in the adder black box is left as an exercise
for the reader.

 A.5 Constructing a Basic Arithmetic Logic Unit A-29

Figure A.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more
simple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

FIGURE A.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure A.5.5).

A 64-Bit ALU
Now that we have completed the 1-bit ALU, the full 64-bit ALU is created by
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure A.5.7
shows a 64-bit ALU. Just as a single stone can cause ripples to radiate to the shores
of a quiet lake, a single carry out of the least significant bit (Result0) can ripple all
the way through the adder, causing a carry out of the most significant bit (Result63).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page A-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and b, as Figure A.5.8 shows.

Suppose we connect 64 of these 1-bit ALUs, as we did in Figure A.5.7. The added
multiplexor gives the option of b or its inverted value, depending on Binvert, but

a0

Operation

CarryIn
ALU0

CarryOutb0

CarryIn

a1 CarryIn
ALU1

CarryOutb1

Result0

Result1

a2 CarryIn
ALU2

CarryOutb2

a63 CarryIn
ALU63

b63

Result2

Result63

...
...

...

FIGURE A.5.7 A 64-bit ALU constructed from 64 1-bit ALUs. CarryOut of the less significant bit
is connected to the CarryIn of the more significant bit. This organization is called ripple carry.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

FIGURE A.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

 A.5 Constructing a Basic Arithmetic Logic Unit A-31

this is only one step in negating a two’s complement number. Notice that the least
significant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a b a b a b a b1 1() ()

The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for
integer computer arithmetic.

We also wish to add a NOR function. Instead of adding a separate gate for NOR,
we can reuse much of the hardware already in the ALU, like we did for subtract. The
insight comes from the following truth about NOR:

()a b a b⋅

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure
A.5.9 shows that change.

Tailoring the 64-Bit ALU to RISC-V
These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most RISC-V instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set less than instruction (slt).
Recall that the operation produces 1 if rs1 < rs2, and 0 otherwise. Consequently,
slt will set all but the least significant bit to 0, with the least significant bit set
according to the comparison. For the ALU to perform slt, we first need to expand
the three-input multiplexor in Figure A.5.9 to add an input for the slt result. We
call that new input Less and use it only for slt.

The top drawing of Figure A.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 63 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least significant bit for set less
than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b since

 () ()() ()a b a b b b a b< ⇒ + < ⇒ <0 0

We want the least significant bit of a set less than operation to be a 1 if a < b;
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following
this line of argument, we need only connect the sign bit from the adder output to
the least significant bit to get set less than. (Alas, this argument only holds if the
subtraction does not overflow; we will explore a complete implementation in the
exercises.)

A-32 Appendix A The Basics of Logic Design

Unfortunately, the Result output from the most significant ALU bit in the top of
Figure A.5.10 for the slt operation is not the output of the adder; the ALU output
for the slt operation is obviously the input value Less.

Thus, we need a new 1-bit ALU for the most significant bit that has an extra
output bit: the adder output. The bottom drawing of Figure A.5.10 shows the
design, with this new adder output line called Set. As long as we need a special
ALU for the most significant bit, we added the overflow detection logic since it is
also associated with that bit. Figure A.5.11 shows the 64-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert to
a single control line called Bnegate.

To further tailor the ALU to the RISC-V instruction set, we must support
conditional branch instructions such as Branch if Equal (beq), which branches if
two registers are equal. The easiest way to test equality with the ALU is to subtract
b from a and then test to see if the result is 0, since

()a b a b0 ⇒

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

FIGURE A.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a

and b. By

selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b.

 A.5 Constructing a Basic Arithmetic Logic Unit A-33

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2�

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

FIGURE A.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b, and
(bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure A.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise A.24 at the end of this appendix to see how
to calculate overflow with fewer inputs.)

A-34 Appendix A The Basics of Logic Design

Thus, if we add hardware to test if the result is 0, we can test for equality. The
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Zero Result Result Result Result Result63 62)(� 2 1 0

Figure A.5.12 shows the revised 64-bit ALU. We can think of the combination of
the 1-bit Ainvert line, the 1-bit Bnegate line, and the 2-bit Operation lines as 4-bit
control lines for the ALU, telling it to perform add, subtract, AND, OR, NOR, or

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a63 CarryIn
ALU63
Less

b63

Result2

Result63

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

FIGURE A.5.11 A 64-bit ALU constructed from the 63 copies of the 1-bit ALU in the top of
Figure A.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 0
except for the least significant bit, which is connected to the Set output of the most significant bit. If the ALU
performs a − b and we select the input 3 in the multiplexor in Figure A.5.10, then Result = 0 … 001 if a < b,
and Result = 0 … 000 otherwise.

 A.5 Constructing a Basic Arithmetic Logic Unit A-35

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a63 CarryIn
ALU63
Less

b63

Result2

Result63

...
...

...

Bnegate

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn
...

...
Zero

FIGURE A.5.12 The final 64-bit ALU. This adds a Zero detector to Figure A.5.11.

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
0111 set less than
1100 NOR

FIGURE A.5.13 The values of the three ALU control lines, Ainvert, Bnegate, and Operation,
and the corresponding ALU operations.

set less than. Figure A.5.13 shows the ALU control lines and the corresponding
ALU operation.

Finally, now that we have seen what is inside a 64-bit ALU, we will use the
universal symbol for a complete ALU, as shown in Figure A.5.14.

A-36 Appendix A The Basics of Logic Design

ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

FIGURE A.5.14 The symbol commonly used to represent an ALU, as shown in Figure
A.5.12. This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

FIGURE A.5.15 A Verilog behavioral definition of a RISC-V ALU.

Defining the RISC-V ALU in Verilog
Figure A.5.15 shows how a combinational RISC-V ALU might be specified in
Verilog; such a specification would probably be compiled using a standard parts
library that provided an adder, which could be instantiated. For completeness, we
show the ALU control for RISC-V in Figure A.5.16, which is used in Chapter 4,
where we build a Verilog version of the RISC-V datapath.

 A.6 Faster Addition: Carry Lookahead A-37

The next question is, “How quickly can this ALU add two 64-bit operands?”
We can determine the a and b inputs, but the CarryIn input depends on the
operation in the adjacent 1-bit adder. If we trace all the way through the chain of
dependencies, we connect the most significant bit to the least significant bit, so
the most significant bit of the sum must wait for the sequential evaluation of all 64
1-bit adders. This sequential chain reaction is too slow to be used in time-critical
hardware. The next section explores how to speed-up addition. This topic is not
crucial to understanding the rest of the appendix and may be skipped.

FIGURE A.5.16 The RISC-V ALU control: a simple piece of combinational control logic.

Suppose you wanted to add the operation NOT (a AND b), called NAND. How
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since
()a b a b⋅ and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add
new logic to calculate NAND.

Check
Yourself

 A.6 Faster Addition: Carry Lookahead

The key to speeding up addition is determining the carry in to the high-order bits
sooner. There are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log2 of the number of bits in the adder. These

A-38 Appendix A The Basics of Logic Design

anticipatory signals are faster because they go through fewer gates in sequence, but
it takes many more gates to anticipate the proper carry.

A key to understanding fast-carry schemes is to remember that, unlike software,
hardware executes in parallel whenever inputs change.

Fast Carry Using “Infinite” Hardware
As we mentioned earlier, any equation can be represented in two levels of logic.
Since the only external inputs are the two operands and the CarryIn to the least
significant bit of the adder, in theory we could calculate the CarryIn values to all
the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1,
so the formula is

CarryIn b CarryIn a CarryIn a b2 1 1 1 1 1 1() () ()⋅ ⋅ ⋅

Similarly, CarryIn1 is defined as

CarryIn b CarryIn a CarryIn a b1 0 0 0 0 0 0() () ()⋅ ⋅ ⋅

Using the shorter and more traditional abbreviation of ci for CarryIni, we can
rewrite the formulas as

c b c a c a b
c b c a c a b
2 1 1 1 1 1 1
1 0 0 0 0 0 0

() () ()
() () ()
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Substituting the definition of c1 for the first equation results in this formula:

c a a b a a c a b c
b a b b a c

2 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0

() () ()
() ()
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ (() ()b b c a b1 0 0 1 1⋅ ⋅ ⋅

You can imagine how the equation expands as we get to higher bits in the adder;
it grows rapidly with the number of bits. This complexity is reflected in the cost of
the hardware for fast carry, making this simple scheme prohibitively expensive for
wide adders.

Fast Carry Using the First Level of Abstraction: Propagate
and Generate
Most fast-carry schemes limit the complexity of the equations to simplify the
hardware, while still making substantial speed improvements over ripple carry.
One such scheme is a carry-lookahead adder. In Chapter 1, we said computer
systems cope with complexity by using levels of abstraction. A carry-lookahead
adder relies on levels of abstraction in its implementation.

 A.6 Faster Addition: Carry Lookahead A-39

Let’s factor our original equation as a first step:

c b c a c a b
a b a b c

i i i i i i i
i i i i i

1 () () ()
() ()
⋅ ⋅ ⋅
⋅ ⋅

If we were to rewrite the equation for c2 using this formula, we would see some
repeated patterns:

c a b a b a b a b c2 1 1 1 1 0 0 0 0 0() () (() ())⋅ ⋅ ⋅ ⋅ ⋅

Note the repeated appearance of (ai · bi) and (ai + bi) in the formula above. These
two important factors are traditionally called generate (gi) and propagate (pi):

g a b
p a b

i i i
i i i

⋅

Using them to define ci + 1, we get

c g p ci i i i1 ⋅

To see where the signals get their names, suppose gi is 1. Then

c g p c p ci i i i i i1 1 1⋅ ⋅

That is, the adder generates a CarryOut (ci + 1) independent of the value of
CarryIn (ci). Now suppose that gi is 0 and pi is 1. Then

c g p c c ci i i i i i1 0 1⋅ ⋅

That is, the adder propagates CarryIn to a CarryOut. Putting the two together,
CarryIni + 1 is a 1 if either gi is 1 or both pi is 1 and CarryIni is 1.

As an analogy, imagine a row of dominoes set on edge. The end domino can be
tipped over by pushing one far away, provided there are no gaps between the two.
Similarly, a carry out can be made true by a generate far away, provided all the
propagates between them are true.

Relying on the definitions of propagate and generate as our first level of
abstraction, we can express the CarryIn signals more economically. Let’s show it
for 4 bits:

c g p c
c g p g p p c
c g p g p p

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

()
() ()
() (

⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅ gg p p p c

c g p g p p g p p p g
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ()

() () ()
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(()p p p p c3 2 1 0 0⋅ ⋅ ⋅ ⋅

A-40 Appendix A The Basics of Logic Design

These equations just represent common sense: CarryIni is a 1 if some earlier adder
generates a carry and all intermediary adders propagate a carry. Figure A.6.1 uses
plumbing to try to explain carry lookahead.

Even this simplified form leads to large equations and, hence, considerable logic
even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction
First, we consider this 4-bit adder with its carry-lookahead logic as a single building
block. If we connect them in ripple carry fashion to form a 16-bit adder, the add
will be faster than the original with a little more hardware.

To go faster, we’ll need carry lookahead at a higher level. To perform carry
lookahead for 4-bit adders, we need to propagate and generate signals at this higher
level. Here they are for the four 4-bit adder blocks:

P p p p p
P p p p p
P p p p p
P p p p

0 3 2 1 0
1 7 6 5 4
2 11 10 9 8
3 15 14 13

�

�

�

�

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ p12

That is, the “super” propagate signal for the 4-bit abstraction (Pi) is true only if each
of the bits in the group will propagate a carry.

For the “super” generate signal (Gi), we care only if there is a carry out of the
most significant bit of the 4-bit group. This obviously occurs if generate is true
for that most significant bit; it also occurs if an earlier generate is true and all the
intermediate propagates, including that of the most significant bit, are also true:

G g p g p p g p p p g
G g p g p p

0 3 3 2 3 2 1 3 2 1 0
1 7 7 6 7 6

() () ()
() (
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

g p p p g
G g p g p p g p p

5 7 6 5 4
2 11 11 10 11 10 9 11 10

) ()
() () (pp g

G g p g p p g p p p g
9 8

3 15 15 14 15 14 13 15 14 13 12
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
)

() () ()

Figure A.6.2 updates our plumbing analogy to show P0 and G0.
Then the equations at this higher level of abstraction for the carry in for each

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure A.6.3) are very similar to
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page A-40:

C G P c
C G P G P P c
C G P G P P

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

()
() ()
() (

⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅ GG P P P c

C G P G P P G P P P G
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ()

() () ()
(

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

PP P P P c3 2 1 0 0⋅ ⋅ ⋅ ⋅)

 A.6 Faster Addition: Carry Lookahead A-41

c4

p3

p2

p1

p0

g3

g2

g1

g0

c0

c2

p1

p0

g1

g0

c0

c1

p0

g0

c0

FIGURE A.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using
water pipes and valves. The wrenches are turned to open and close valves. Water is shown in color. The
output of the pipe (ci + 1) will be full if either the nearest generate value (gi) is turned on or if the i propagate
value (pi) is on and there is water further upstream, either from an earlier generate or a propagate with water
behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all
propagates.

A-42 Appendix A The Basics of Logic Design

Figure A.6.3 shows 4-bit adders connected with such a carry-lookahead unit.
The exercises explore the speed differences between these carry schemes, different
notations for multibit propagate and generate signals, and the design of a 64-bit
adder.

G0

p3

p2

p1

g3

g2

g1

g0

P0
p3

p2

p1

p0

FIGURE A.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0.
P0 is open only if all four propagates (pi) are open, while water flows in G0 only if at least one generate (gi) is
open and all the propagates downstream from that generate are open.

 A.6 Faster Addition: Carry Lookahead A-43

a4 CarryIn

ALU1
 P1
 G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
 P0
 G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1
gi + 1

C1

Result4–7

a8 CarryIn

ALU2
 P2
 G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2
gi + 2

C2

Result8–11

a12 CarryIn

ALU3
 P3
 G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3
gi + 3

C3

Result12–15

ci + 4
C4

CarryOut

FIGURE A.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the
carries come from the carry-lookahead unit, not from the 4-bit ALUs.

A-44 Appendix A The Basics of Logic Design

Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a: 0001 1010 0011 0011two

b: 1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi (ai·bi) and
propagate pi (ai + bi):

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P
P
P
P

3 1 1 1 1 1
2 1 1 1 1 1
1 1 1 1 1 1
0 1 0 1 1 0

� �

� �

� �

� �

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

The “super” generates are more complex, so use the following equations:

G g p g p p g p p p g0 3 3 2 3 2 1 3 2 1 0
0 1 0 1 0 1 1

() () ()
() () (
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 00 1 1 0 0 0 0 0
1 7 7 6 7 6 5 7 6 5 4

0

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

)
() () ()G g p g p p g p p p g

(() () ()
() (

1 0 1 1 1 1 1 1 0 0 0 1 0 1
2 11 11 10 11 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅G g p g p p 00 9 11 10 9 8

0 1 0 1 1 0 1 1 1 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
g p p p g) ()

() () ()
GG g p g p p g p p p g3 15 15 14 15 14 13 15 14 13 12

0 1 0
() () ()

()
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ (() ()1 1 0 1 1 1 0 0 0 0 0 0⋅ ⋅ ⋅ ⋅ ⋅

Finally, CarryOut15 is

C G P G P P G P P P G
P P P P c

4 3 3 2 3 2 1 3 2 1 0
3 2 1 0 0

0

() () ()
()
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

(() () () ()1 0 1 1 1 1 1 1 0 1 1 1 0 0
0 0 1 0 0 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Hence, there is a carry out when adding these two 16-bit numbers.

EXAMPLE

ANSWER

 A.6 Faster Addition: Carry Lookahead A-45

The reason carry lookahead can make carries faster is that all logic begins
evaluating the moment the clock cycle begins, and the result will not change once
the output of each gate stops changing. By taking the shortcut of going through
fewer gates to send the carry in signal, the output of the gates will stop changing
sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the
relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate
takes the same time for a signal to pass through it. Time is estimated by simply
counting the number of gates along the path through a piece of logic. Compare
the number of gate delays for paths of two 16-bit adders, one using ripple carry
and one using two-level carry lookahead.

Figure A.5.5 on page A-28 shows that the carry out signal takes two gate
delays per bit. Then the number of gate delays between a carry in to the least
significant bit and the carry out of the most significant is 32 × 2 = 64.

For carry lookahead, the carry out of the most significant bit is just C4,
defined in the example. It takes two levels of logic to specify C4 in terms of
Pi and Gi (the OR of several AND terms). Pi is specified in one level of logic
(AND) using pi, and Gi is specified in two levels using pi and gi, so the worst
case for this next level of abstraction is two levels of logic. pi and gi are each
one level of logic, defined in terms of ai and bi. If we assume one gate delay for
each level of logic in these equations, the worst case is 2 + 2 + 1 = 5 gate delays.

Hence, for the path from carry in to carry out, the 16-bit addition by a
carry-lookahead adder is six times faster, using this very simple estimate of
hardware speed.

Summary
Carry lookahead offers a faster path than waiting for the carries to ripple through
all 32 1-bit adders. This faster path is paved by two signals, generate and propagate.

EXAMPLE

ANSWER

A-46 Appendix A The Basics of Logic Design

The former creates a carry regardless of the carry input, and the latter passes a carry
along. Carry lookahead also gives another example of how abstraction is important
in computer design to cope with complexity.

Using the simple estimate of hardware speed above with gate delays, what is the
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate
delays and 64-bit adds are seven gate delays.

2. They are about the same speed, since 64-bit adds need more levels of logic in
the 16-bit adder.

3. Eight-bit adds are faster than 64 bits, even with carry lookahead.

Check
Yourself

Elaboration: We have now accounted for all but one of the arithmetic and logical
operations for the core RISC-V instruction set: the ALU in Figure A.5.14 omits support of
shift instructions. It would be possible to widen the ALU multiplexor to include a left shift
by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a
barrel shifter, which can shift from 1 to 63 bits in no more time than it takes to add two
64-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page A-28 can
be expressed more simply by using a more powerful gate than AND and OR. An exclusive
OR gate is true if the two operands disagree; that is,

x y and y≠ ⇒ == ⇒1 0x

In some technologies, exclusive OR is more efficient than two levels of AND and OR
gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum a b CarryIn� ⊕ ⊕

Also, we have drawn the ALU the traditional way, using gates. Computers are designed
today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters
take advantage of these switches and have many fewer multiplexors than shown in our
designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of generate
and propagate symbols breaks down when you have more than two levels. An alternate
notation that scales is g

i..j
 and p

i..j
 for the generate and propagate signals for bits i to j.

Thus, g1..1 is generated for bit 1, g4..1 is for bits 4 to 1, and g16..1 is for bits 16 to 1.

 A.7 Clocks A-47

 A.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss
briefly the topic of clocks. This short section introduces the topic and is similar
to the discussion found in Section 4.2. More details on clocking and timing
methodologies are presented in Section A.11.

Clocks are needed in sequential logic to decide when an element that contains
state should be updated. A clock is simply a free-running signal with a fixed cycle
time; the clock frequency is simply the inverse of the cycle time. As shown in Figure
A.7.1, the clock cycle time or clock period is divided into two portions: when the
clock is high and when the clock is low. In this text, we use only edge-triggered
clocking. This means that all state changes occur on a clock edge. We use an
edge-triggered methodology because it is simpler to explain. Depending on the
technology, it may or may not be the best choice for a clocking methodology.

edge-triggered
clocking A clocking
scheme in which all state
changes occur on a clock
edge.

clocking
methodology The
approach used to
determine when data are
valid and stable relative to
the clock.

Clock period Rising edge

Falling edge

FIGURE A.7.1 A clock signal oscillates between high and low values. The clock period is the
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and
causes state to be changed.

In an edge-triggered methodology, either the rising edge or the falling edge of
the clock is active and causes state changes to occur. As we will see in the next
section, the state elements in an edge-triggered design are implemented so that the
contents of the state elements only change on the active clock edge. The choice of
which edge is active is influenced by the implementation technology and does not
affect the concepts involved in designing the logic.

The clock edge acts as a sampling signal, causing the value of the data input to a
state element to be sampled and stored in the state element. Using an edge trigger
means that the sampling process is essentially instantaneous, eliminating problems
that could occur if signals were sampled at slightly different times.

The major constraint in a clocked system, also called a synchronous system, is
that the signals that are written into state elements must be valid when the active

state element
A memory element.

synchronous system A
memory system that
employs clocks and where
data signals are read only
when the clock indicates
that the signal values are
stable.

A-48 Appendix A The Basics of Logic Design

clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value
will not change again until the inputs change. Since combinational circuits cannot
have feedback, if the inputs to a combinational logic unit are not changed, the
outputs will eventually become valid.

Figure A.7.2 shows the relationship among the state elements and the
combinational logic blocks in a synchronous, sequential logic design. The state
elements, whose outputs change only after the clock edge, provide valid inputs
to the combinational logic block. To ensure that the values written into the state
elements on the active clock edge are valid, the clock must have a long enough
period so that all the signals in the combinational logic block stabilize, and then the
clock edge samples those values for storage in the state elements. This constraint
sets a lower bound on the length of the clock period, which must be long enough
for all state element inputs to be valid.

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock
signal, since we are assuming that all state elements are updated on the same clock
edge. Some state elements will be written on every clock edge, while others will be
written only under certain conditions (such as a register being updated). In such
cases, we will have an explicit write signal for that state element. The write signal
must still be gated with the clock so that the update occurs only on the clock edge if
the write signal is active. We will see how this is done and used in the next section.

One other advantage of an edge-triggered methodology is that it is possible
to have a state element that is used as both an input and output to the same
combinational logic block, as shown in Figure A.7.3. In practice, care must be
taken to prevent races in such situations and to ensure that the clock period is long
enough; this topic is discussed further in Section A.11.

Now that we have discussed how clocking is used to update state elements, we
can discuss how to construct the state elements.

State
element

1

State
element

2
Combinational logic

Clock cycle

FIGURE A.7.2 The inputs to a combinational logic block come from a state element, and
the outputs are written into a state element. The clock edge determines when the contents of the
state elements are updated.

 A.7 Memory Elements: Flip-Flops, Latches, and Registers A-49

Elaboration Occasionally, designers find it useful to have a small number of state
elements that change on the opposite clock edge from the majority of the state elements.
Doing so requires extreme care, because such an approach has effects on both the
inputs and the outputs of the state element. Why then would designers ever do this?
Consider the case where the amount of combinational logic before and after a state
element is small enough so that each could operate in one-half clock cycle, rather than
the more usual full clock cycle. Then the state element can be written on the clock edge
corresponding to a half clock cycle, since the inputs and outputs will both be usable
after one-half clock cycle. One common place where this technique is used is in register
files, where simply reading or writing the register file can often be done in half the normal
clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead.

 A.8 Memory Elements: Flip-Flops, Latches,
and Registers

In this section and the next, we discuss the basic principles behind memory
elements, starting with flip-flops and latches, moving on to register files, and
finishing with memories. All memory elements store state: the output from any
memory element depends both on the inputs and on the value that has been stored
inside the memory element. Thus all logic blocks containing a memory element
contain state and are sequential.

register file A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

State
element

Combinational logic

FIGURE A.7.3 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to undetermined
data values. Of course, the clock cycle must still be long enough so that the input values are stable when
the active clock edge occurs.

R

S

Q

Q

FIGURE A.8.1 A pair of cross-coupled NOR gates can store an internal value. The value
stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or
Q is asserted, Q will be deasserted and vice versa.

A-50 Appendix A The Basics of Logic Design

The simplest type of memory elements are unclocked; that is, they do not have
any clock input. Although we only use clocked memory elements in this text, an
unclocked latch is the simplest memory element, so let’s look at this circuit first.
Figure A.8.1 shows an S-R latch (set-reset latch), built from a pair of NOR gates
(OR gates with inverted outputs). The outputs Q and Q represent the value of the
stored state and its complement. When neither S nor R are asserted, the cross-
coupled NOR gates act as inverters and store the previous values of Q and Q.

For example, if the output, Q, is true, then the bottom inverter produces a false
output (which is Q), which becomes the input to the top inverter, which produces
a true output, which is Q, and so on. If S is asserted, then the output Q will be
asserted and Q will be deasserted, while if R is asserted, then the output Q will be
asserted and Q will be deasserted. When S and R are both deasserted, the last values
of Q and Q will continue to be stored in the cross-coupled structure. Asserting S
and R simultaneously can lead to incorrect operation: depending on how S and R
are deasserted, the latch may oscillate or become metastable (this is described in
more detail in Section A.11).

This cross-coupled structure is the basis for more complex memory elements
that allow us to store data signals. These elements contain additional gates used to
store signal values and to cause the state to be updated only in conjunction with a
clock. The next section shows how these elements are built.

Flip-Flops and Latches
Flip-flops and latches are the simplest memory elements. In both flip-flops and
latches, the output is equal to the value of the stored state inside the element.
Furthermore, unlike the S-R latch described above, all the latches and flip-flops we
will use from this point on are clocked, which means that they have a clock input
and the change of state is triggered by that clock. The difference between a flip-flop
and a latch is the point at which the clock causes the state to actually change. In a
clocked latch, the state is changed whenever the appropriate inputs change and the
clock is asserted, whereas in a flip-flop, the state is changed only on a clock edge.
Since throughout this text we use an edge-triggered timing methodology where
state is only updated on clock edges, we need only use flip-flops. Flip-flops are often
built from latches, so we start by describing the operation of a simple clocked latch
and then discuss the operation of a flip-flop constructed from that latch.

For computer applications, the function of both flip-flops and latches is to
store a signal. A D latch or D flip-flop stores the value of its data input signal in
the internal memory. Although there are many other types of latch and flip-flop,
the D type is the only basic building block that we will need. A D latch has two
inputs and two outputs. The inputs are the data value to be stored (called D) and
a clock signal (called C) that indicates when the latch should read the value on
the D input and store it. The outputs are simply the value of the internal state (Q)

flip-flop A memory
element for which the
output is equal to the
value of the stored state
inside the element and for
which the internal state is
changed only on a clock
edge.

latch A memory element
in which the output is
equal to the value of the
stored state inside the
element and the state is
changed whenever the
appropriate inputs change
and the clock is asserted.

D flip-flop A flip-flop
with one data input
that stores the value of
that input signal in the
internal memory when
the clock edge occurs.

 A.7 Memory Elements: Flip-Flops, Latches, and Registers A-51

and its complement (Q). When the clock input C is asserted, the latch is said to be
open, and the value of the output (Q) becomes the value of the input D. When the
clock input C is deasserted, the latch is said to be closed, and the value of the output
(Q) is whatever value was stored the last time the latch was open.

Figure A.8.2 shows how a D latch can be implemented with two additional gates
added to the cross-coupled NOR gates. Since when the latch is open the value of Q
changes as D changes, this structure is sometimes called a transparent latch. Figure
A.8.3 shows how this D latch works, assuming that the output Q is initially false
and that D changes first.

As mentioned earlier, we use flip-flops as the basic building block, rather than
latches. Flip-flops are not transparent: their outputs change only on the clock edge.
A flip-flop can be built so that it triggers on either the rising (positive) or falling
(negative) clock edge; for our designs we can use either type. Figure A.8.4 shows
how a falling-edge D flip-flop is constructed from a pair of D latches. In a D flip-
flop, the output is stored when the clock edge occurs. Figure A.8.5 shows how this
flip-flop operates.

C

D

Q

Q

FIGURE A.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other
input is 0. Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is
asserted, in which case the value of input D replaces the value of Q and is stored. The value of input D must
be stable when the clock signal C changes from asserted to deasserted.

D

C

Q

FIGURE A.8.3 Operation of a D latch, assuming the output is initially deasserted. When
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.

A-52 Appendix A The Basics of Logic Design

Here is a Verilog description of a module for a rising-edge D flip-flop, assuming
that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);
 input clock, D;
 output reg Q;
 output Qbar;
 assign Qbar= ~ Q;
 always @(posedge clock)
 Q=D;
endmodule

Because the D input is sampled on the clock edge, it must be valid for a period
of time immediately before and immediately after the clock edge. The minimum
time that the input must be valid before the clock edge is called the setup time; the

D

C

D
latch

D

C

Q
D

latch

D

C

Q Q

Q Q

FIGURE A.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open and
follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is closed, but
the second latch, called the slave, is open and gets its input from the output of the master latch.

D

C

Q

FIGURE A.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output is
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores
the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure A.8.3. In a
clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when
C transitions.

setup time The
minimum time that the
input to a memory device
must be valid before the
clock edge.

 A.7 Memory Elements: Flip-Flops, Latches, and Registers A-53

minimum time during which it must be valid after the clock edge is called the hold
time. Thus the inputs to any flip-flop (or anything built using flip-flops) must be valid
during a window that begins at time tsetup before the clock edge and ends at thold after
the clock edge, as shown in Figure A.8.6. Section A.11 talks about clocking and timing
constraints, including the propagation delay through a flip-flop, in more detail.

We can use an array of D flip-flops to build a register that can hold a multibit datum,
such as a byte or word. We used registers throughout our datapaths in Chapter 4.

Register Files
One structure that is central to our datapath is a register file. A register file consists
of a set of registers that can be read and written by supplying a register number to be
accessed. A register file can be implemented with a decoder for each read or write
port and an array of registers built from D flip-flops. Because reading a register
does not change any state, we need only supply a register number as an input, and
the only output will be the data contained in that register. For writing a register we
will need three inputs: a register number, the data to write, and a clock that controls
the writing into the register. In Chapter 4, we used a register file that has two read
ports and one write port. This register file is drawn as shown in Figure A.8.7. The
read ports can be implemented with a pair of multiplexors, each of which is as wide
as the number of bits in each register of the register file. Figure A.8.8 shows the
implementation of two register read ports for a 64-bit-wide register file.

Implementing the write port is slightly more complex, since we can only change
the contents of the designated register. We can do this by using a decoder to generate
a signal that can be used to determine which register to write. Figure A.8.9 shows
how to implement the write port for a register file. It is important to remember that
the flip-flop changes state only on the clock edge. In Chapter 4, we hooked up write
signals for the register file explicitly and assumed the clock shown in Figure A.8.9
is attached implicitly.

What happens if the same register is read and written during a clock cycle?
Because the write of the register file occurs on the clock edge, the register will be

hold time The minimum
time during which the
input must be valid after
the clock edge.

D

C

Setup time Hold time

FIGURE A.8.6 Setup and hold time requirements for a D flip-flop with a falling-edge trigger.
The input must be stable for a period of time before the clock edge, as well as after the clock edge. The
minimum time the signal must be stable before the clock edge is called the setup time, while the minimum
time the signal must be stable after the clock edge is called the hold time. Failure to meet these minimum
requirements can result in a situation where the output of the flip-flop may not be predictable, as described
in Section A.11. Hold times are usually either 0 or very small and thus not a cause of worry.

A-54 Appendix A The Basics of Logic Design

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

FIGURE A.8.7 A register file with two read ports and one write port has five inputs and
two outputs. The control input Write is shown in color.

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

FIGURE A.8.8 The implementation of two read ports for a register file with n registers
can be done with a pair of n-to-1 multiplexors, each 64 bits wide. The register read number
signal is used as the multiplexor selector signal. Figure A.8.9 shows how the write port is implemented.

 A.7 Memory Elements: Flip-Flops, Latches, and Registers A-55

valid during the time it is read, as we saw earlier in Figure A.7.2. The value returned
will be the value written in an earlier clock cycle. If we want a read to return the
value currently being written, additional logic in the register file or outside of it is
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a
clock, how to describe when a value is written into a register, and how to specify
sequential control. Let us start by specifying a clock. A clock is not a predefined
object in Verilog; instead, we generate a clock by using the Verilog notation #n
before a statement; this causes a delay of n simulation time steps before the execu-
tion of the statement. In most Verilog simulators, it is also possible to generate
a clock as an external input, allowing the user to specify at simulation time the
number of clock cycles during which to run a simulation.

The code in Figure A.8.10 implements a simple clock that is high or low for one
simulation unit and then switches state. We use the delay capability and blocking
assignment to implement the clock.

Write

0
1

n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

FIGURE A.8.9 The write port for a register file is implemented with a decoder that is used
with the write signal to generate the C input to the registers. All three inputs (the register
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct
data are written into the register file.

A-56 Appendix A The Basics of Logic Design

Next, we must be able to specify the operation of an edge-triggered register. In
Verilog, this is done by using the sensitivity list on an always block and specifying
as a trigger either the positive or negative edge of a binary variable with the
notation posedge or negedge, respectively. Hence, the following Verilog code
causes register A to be written with the value b at the positive edge clock:

reg clock;
always #1 clock = ~clock;

FIGURE A.8.10 A specification of a clock.

FIGURE A.8.11 A RISC-V register file written in behavioral Verilog. This register file writes on
the rising clock edge.

Throughout this chapter and the Verilog sections of Chapter 4, we will assume
a positive edge-triggered design. Figure A.8.11 shows a Verilog specification of
a RISC-V register file that assumes two reads and one write, with only the write
being clocked.

 A.9 Memory Elements: SRAMs and DRAMs A-57

 A.9 Memory Elements: SRAMs and DRAMs

Registers and register files provide the basic building blocks for small memories,
but larger amounts of memory are built using either SRAMs (static random
access memories) or DRAMs (dynamic random access memories). We first discuss
SRAMs, which are somewhat simpler, and then turn to DRAMs.

SRAMs
SRAMs are simply integrated circuits that are memory arrays with (usually) a single
access port that can provide either a read or a write. SRAMs have a fixed access
time to any datum, though the read and write access characteristics often differ.
An SRAM chip has a specific configuration in terms of the number of addressable
locations, as well as the width of each addressable location. For example, a 4M × 8
SRAM provides 4M entries, each of which is 8 bits wide. Thus it will have 22 address
lines (since 4M = 222), an 8-bit data output line, and an 8-bit single data input line.
As with ROMs, the number of addressable locations is often called the height, with
the number of bits per unit called the width. For a variety of technical reasons, the
newest and fastest SRAMs are typically available in narrow configurations: × 1 and
× 4. Figure A.9.1 shows the input and output signals for a 2M × 16 SRAM.

static random access
memory (SRAM)
A memory where data
are stored statically
(as in flip-flops) rather
than dynamically (as
in DRAM). SRAMs are
faster than DRAMs,
but less dense and more
expensive per bit.

In the Verilog for the register file in Figure A.8.11, the output ports corresponding to
the registers being read are assigned using a continuous assignment, but the register
being written is assigned in an always block. Which of the following is the reason?

a. There is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

Check
Yourself

SRAM
2M � 16

Dout[15–0]

Address
21

Din[15–0]
16

Chip select

Output enable

Write enable

16

FIGURE A.9.1 A 32K × 8 SRAM showing the 21 address lines (32K = 215) and 16 data
inputs, the three control lines, and the 16 data outputs.

A-58 Appendix A The Basics of Logic Design

To initiate a read or write access, the Chip select signal must be made active. For
reads, we must also activate the Output enable signal that controls whether or not
the datum selected by the address is actually driven on the pins. The Output enable
is useful for connecting multiple memories to a single-output bus and using Output
enable to determine which memory drives the bus. The SRAM read access time is
usually specified as the delay from the time that Output enable is true and the
address lines are valid until the time that the data are on the output lines. Typical
read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS
parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical
largest parts, which in 2004 had more than 32 million bits of data. The demand for
low-power SRAMs for consumer products and digital appliances has grown greatly
in the past 5 years; these SRAMs have much lower stand-by and access power,
but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to
the synchronous DRAMs, which we discuss in the next section—have also been
developed.

For writes, we must supply the data to be written and the address, as well as
signals to cause the write to occur. When both the Write enable and Chip select
are true, the data on the data input lines are written into the cell specified by the
address. There are setup-time and hold-time requirements for the address and data
lines, just as there were for D flip-flops and latches. In addition, the Write enable
signal is not a clock edge but a pulse with a minimum width requirement. The time
to complete a write is specified by the combination of the setup times, the hold
times, and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register file because,
unlike a register file where a 32-to-1 multiplexor might be practical, the 64K-to-
1 multiplexor that would be needed for a 64K × 1 SRAM is totally impractical.
Rather than use a giant multiplexor, large memories are implemented with a shared
output line, called a bit line, which multiple memory cells in the memory array can
assert. To allow multiple sources to drive a single line, a three-state buffer (or tristate
buffer) is used. A three-state buffer has two inputs—a data signal and an Output
enable—and a single output, which is in one of three states: asserted, deasserted,
or high impedance. The output of a tristate buffer is equal to the data input signal,
either asserted or deasserted, if the Output enable is asserted, and is otherwise in a
high-impedance state that allows another three-state buffer whose Output enable is
asserted to determine the value of a shared output.

Figure A.9.2 shows a set of three-state buffers wired to form a multiplexor with
a decoded input. It is critical that the Output enable at most one of the three-state
buffers be asserted; otherwise, the three-state buffers may try to set the output line
differently. By using three-state buffers in the individual cells of the SRAM, each
cell that corresponds to a particular output can share the same output line. The use
of a set of distributed three-state buffers is a more efficient implementation than a
large centralized multiplexor. The three-state buffers are incorporated into the flip-
flops that form the basic cells of the SRAM. Figure A.9.3 shows how a small 4 × 2
SRAM might be built, using D latches with an input called Enable that controls the
three-state output.

 A.9 Memory Elements: SRAMs and DRAMs A-59

The design in Figure A.9.3 eliminates the need for an enormous multiplexor;
however, it still requires a very large decoder and a correspondingly large number
of word lines. For example, in a 4M × 8 SRAM, we would need a 22-to-4M decoder
and 4M word lines (which are the lines used to enable the individual flip-flops)!
To circumvent this problem, large memories are organized as rectangular arrays
and use a two-step decoding process. Figure A.9.4 shows how a 4M × 8 SRAM
might be organized internally using a two-step decode. As we will see, the two-level
decoding process is quite important in understanding how DRAMs operate.

Recently we have seen the development of both synchronous SRAMs (SSRAMs)
and synchronous DRAMs (SDRAMs). The key capability provided by synchronous
RAMs is the ability to transfer a burst of data from a series of sequential addresses
within an array or row. The burst is defined by a starting address, supplied in the
usual fashion, and a burst length. The speed advantage of synchronous RAMs
comes from the ability to transfer the bits in the burst without having to specify
additional address bits. Instead, a clock is used to transfer the successive bits in the
burst. The elimination of the need to specify the address for the transfers within
the burst significantly improves the rate for transferring the block of data. Because
of this capability, synchronous SRAMs and DRAMs are rapidly becoming the
RAMs of choice for building memory systems in computers. We discuss the use of
synchronous DRAMs in a memory system in more detail in the next section and
in Chapter 5.

Select 0

Data 0

Enable

OutIn

Select 1

Data 1

Enable

OutIn

Select 2

Data 2

Enable

OutIn

Select 3

Data 3

Enable

OutIn

Output

FIGURE A.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four
Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance
output that allows a three-state buffer whose Output enable is asserted to drive the shared output line.

A-60 Appendix A The Basics of Logic Design

latch

D

C

Enable

Q

D

0

2-to-4
decoder

Write enable

Din[1]

latch

D

C

Enable

Q

D

Din[1]

Dout[1] Dout[0]

latch

D

C

Enable

Q

D

1

latch

D

C

Enable

Q

D

latch

D

C

Enable

Q

D

2

latch

D

C

Enable

Q

D

latch

D

C

Enable

Q

D

3

latch

D

C

Enable

Q

D

Address

FIGURE A.9.3 The basic structure of a 4 × 2 SRAM consists of a decoder that selects which pair of cells to activate.
The activated cells use a three-state output connected to the vertical bit lines that supply the requested data. The address that selects the cell is
sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted,
but they could easily be added with a few AND gates.

12
to

4096
decoder

Address
[21–10]

4096

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

4K �
1024

SRAM

Mux

Dout7

Mux

Dout6

Mux

Dout5

Mux

Dout4

Mux

Dout3

Mux

Dout2

Mux

Dout1

Mux

Dout0

1024Address
[9–0]

FIGURE A.9.4 Typical organization of a 4M × 8 SRAM as an array of 4K × 1024 arrays. The first decoder generates the
addresses for eight 4K × 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit-wide array. This is a much easier
design than a single-level decode that would need either an enormous decoder or a gigantic multiplexor. In practice, a modern SRAM of this
size would probably use an even larger number of blocks, each somewhat smaller.

A-62 Appendix A The Basics of Logic Design

DRAMs
In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates,
and as long as power is applied, the value can be kept indefinitely. In a dynamic
RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single
transistor is then used to access this stored charge, either to read the value or to
overwrite the charge stored there. Because DRAMs use only a single transistor per
bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs
require four to six transistors per bit. Because DRAMs store the charge on a
capacitor, it cannot be kept indefinitely and must periodically be refreshed. That is
why this memory structure is called dynamic, as opposed to the static storage in a
SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge can
be kept for several milliseconds, which might correspond to close to a million clock
cycles. Today, single-chip memory controllers often handle the refresh function
independently of the processor. If every bit had to be read out of the DRAM and
then written back individually, with large DRAMs containing multiple megabytes,
we would constantly be refreshing the DRAM, leaving no time for accessing it.
Fortunately, DRAMs also use a two-level decoding structure, and this allows us
to refresh an entire row (which shares a word line) with a read cycle followed
immediately by a write cycle. Typically, refresh operations consume 1% to 2% of
the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles
available for reading and writing data.

Elaboration: How does a DRAM read and write the signal stored in a cell? The
transistor inside the cell is a switch, called a pass transistor, that allows the value stored
on the capacitor to be accessed for either reading or writing. Figure A.9.5 shows how
the single-transistor cell looks. The pass transistor acts like a switch: when the signal
on the word line is asserted, the switch is closed, connecting the capacitor to the bit
line. If the operation is a write, then the value to be written is placed on the bit line. If
the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will
be discharged. Reading is slightly more complex, since the DRAM must detect a very
small charge stored in the capacitor. Before activating the word line for a read, the bit
line is charged to the voltage that is halfway between the low and high voltage. Then, by
activating the word line, the charge on the capacitor is read out onto the bit line. This
causes the bit line to move slightly toward the high or low direction, and this change is
detected with a sense amplifier, which can detect small changes in voltage.

 A.9 Memory Elements: SRAMs and DRAMs A-63

Word line

Pass transistor

Capacitor

Bit line

FIGURE A.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
contents and a transistor used to access the cell.

Address[10–0]

Row
decoder

11-to-2048

2048 � 2048
array

Column latches

Mux

Dout

FIGURE A.9.6 A 4M × 1 DRAM is built with a 2048 × 2048 array. The row access uses 11 bits to
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048
latches. The RAS and CAS signals control whether the address lines are sent to the row decoder or column
multiplexor.

A-64 Appendix A The Basics of Logic Design

DRAMs use a two-level decoder consisting of a row access followed by a column
access, as shown in Figure A.9.6. The row access chooses one of a number of rows
and activates the corresponding word line. The contents of all the columns in the
active row are then stored in a set of latches. The column access then selects the
data from the column latches. To save pins and reduce the package cost, the same
address lines are used for both the row and column address; a pair of signals called
RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the
DRAM that either a row or column address is being supplied. Refresh is performed
by simply reading the columns into the column latches and then writing the same
values back. Thus, an entire row is refreshed in one cycle. The two-level addressing
scheme, combined with the internal circuitry, makes DRAM access times much
longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access
times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the
first customer samples of 1 GB DRAMs became available in the first quarter of
2004. The much lower cost per bit makes DRAM the choice for main memory,
while the faster access time makes SRAM the choice for caches.

You might observe that a 64M × 4 DRAM actually accesses 8K bits on every
row access and then throws away all but four of those during a column access.
DRAM designers have used the internal structure of the DRAM as a way to provide
higher bandwidth out of a DRAM. This is done by allowing the column address to
change without changing the row address, resulting in an access to other bits in the
column latches. To make this process faster and more precise, the address inputs
were clocked, leading to the dominant form of DRAM in use today: synchronous
DRAM or SDRAM.

Since about 1999, SDRAMs have been the memory chip of choice for most
cache-based main memory systems. SDRAMs provide fast access to a series of bits
within a row by sequentially transferring all the bits in a burst under the control
of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called
double data rate because they transfer data on both the rising and falling edge of
an externally supplied clock, were the most heavily used form of SDRAMs. As we
discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth
available out of main memory to match the needs of the processor and caches.

Error Correction
Because of the potential for data corruption in large memories, most computer
systems use some sort of error-checking code to detect possible corruption of data.
One simple code that is heavily used is a parity code. In a parity code the number
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and

 A.9 Memory Elements: SRAMs and DRAMs A-65

even otherwise. When a word is written into memory, the parity bit is also written
(1 for odd, 0 for even). Then, when the word is read out, the parity bit is read and
checked. If the parity of the memory word and the stored parity bit do not match,
an error has occurred.

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there
are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the
parity will match the data with two errors. (Actually, a 1-bit parity scheme can
detect any odd number of errors; however, the probability of having three errors is
much lower than the probability of having two, so, in practice, a 1-bit parity code is
limited to detecting a single bit of error.) Of course, a parity code cannot tell which
bit in a data item is in error.

A 1-bit parity scheme is an error detection code; there are also error correction
codes (ECC) that will detect and allow correction of an error. For large main
memories, many systems use a code that allows the detection of up to 2 bits of error
and the correction of a single bit of error. These codes work by using more bits to
encode the data; for example, the typical codes used for main memories require 7
or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look
at the data plus the parity bit, no 1-bit change is sufficient to generate another legal
combination of the data plus parity. For example, if we change a bit in the data, the parity
will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data
bit and the parity bit), the parity will match the data and the error cannot be detected.
Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which
has the property that any legal combination of the bits in the error correction code and
the data has at least 3 bits differing from any other combination. Suppose we have such
a code and we have one error in the data. In that case, the code plus data will be one bit
away from a legal combination, and we can correct the data to that legal combination.
If we have two errors, we can recognize that there is an error, but we cannot correct
the errors. Let’s look at an example. Here are the data words and a distance-3 error
correction code for a 4-bit data item.

Data Word Code bits Data Code bits

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111

error detection code A
code that enables the
detection of an error in
data, but not the precise
location and, hence,
correction of the error.

A-66 Appendix A The Basics of Logic Design

To see how this works, let’s choose a data word, say 0110, whose error correction
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100,
and 0111. Now look at the data item with the same code (011), which is the entry with
the value 0001. If the error correction decoder received one of the four possible data
words with an error, it would have to choose between correcting to 0110 or 0001. While
these four words with error have only 1 bit changed from the correct pattern of 0110,
they each have 2 bits that are different from the alternate correction of 0001. Hence,
the error correction mechanism can easily choose to correct to 0110, since a single
error is a much higher probability. To see that two errors can be detected, simply notice
that all the combinations with 2 bits changed have a different code. The one reuse of
the same code is with 3 bits different, but if we correct a 2-bit error, we will correct to
the wrong value, since the decoder will assume that only a single error has occurred. If
we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we
need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth,
an error correction code treats the combination of code and data as a single word in
a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the
same fashion as errors in the data bits.

While the above example requires n −1 bits for n bits of data, the number of bits
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a
128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming,
who described a method for creating such codes.

 A.10 Finite-State Machines

As we saw earlier, digital logic systems can be classified as combinational or
sequential. Sequential systems contain state stored in memory elements internal to
the system. Their behavior depends both on the set of inputs supplied and on the
contents of the internal memory, or state of the system. Thus, a sequential system
cannot be described with a truth table. Instead, a sequential system is described as
a finite-state machine (or often just state machine). A finite-state machine has a set
of states and two functions, called the next-state function and the output function.
The set of states corresponds to all the possible values of the internal storage.
Thus, if there are n bits of storage, there are 2n states. The next-state function is a
combinational function that, given the inputs and the current state, determines the
next state of the system. The output function produces a set of outputs from the
current state and the inputs. Figure A.10.1 shows this diagrammatically.

The state machines we discuss here and in Chapter 4 are synchronous. This means
that the state changes together with the clock cycle, and a new state is computed
once every clock. Thus, the state elements are updated only on the clock edge. We
use this methodology in this section and throughout Chapter 4, and we do not
usually show the clock explicitly. We use state machines throughout Chapter 4 to
control the execution of the processor and the actions of the datapath.

next-state function A
combinational function
that, given the inputs
and the current state,
determines the next state
of a finite-state machine.

finite-state machine
A sequential logic
function consisting of a
set of inputs and outputs,
a next-state function that
maps the current state and
the inputs to a new state,
and an output function
that maps the current
state and possibly the
inputs to a set of asserted
outputs.

 A.10 Finite-State Machines A-67

To illustrate how a finite-state machine operates and is designed, let’s look at a
simple and classic example: controlling a traffic light. (Chapters 4 and 5 contain more
detailed examples of using finite-state machines to control processor execution.)
When a finite-state machine is used as a controller, the output function is often
restricted to depend on just the current state. Such a finite-state machine is called
a Moore machine. This is the type of finite-state machine we use throughout this
book. If the output function can depend on both the current state and the current
input, the machine is called a Mealy machine. These two machines are equivalent
in their capabilities, and one can be turned into the other mechanically. The basic
advantage of a Moore machine is that it can be faster, while a Mealy machine may
be smaller, since it may need fewer states than a Moore machine. In Chapter 5, we
discuss the differences in more detail and show a Verilog version of finite-state
control using a Mealy machine.

Our example concerns the control of a traffic light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green
and red lights; adding the yellow light is left for an exercise. We want the lights to
cycle no faster than 30 seconds in each direction, so we will use a 0.033-Hz clock
so that the machine cycles between states at no faster than once every 30 seconds.
There are two output signals:

■	 NSlite: When this signal is asserted, the light on the north-south road is
green; when this signal is deasserted, the light on the north-south road is red.

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

FIGURE A.10.1 A state machine consists of internal storage that contains the state and
two combinational functions: the next-state function and the output function. Often, the
output function is restricted to take only the current state as its input; this does not change the capability of
a sequential machine, but does affect its internals.

A-68 Appendix A The Basics of Logic Design

■	 EWlite: When this signal is asserted, the light on the east-west road is green;
when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

■	 NScar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the north-south road (going north or south).

■	 EWcar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the east-west road (going east or west).

The traffic light should change from one direction to the other only if a car is
waiting to go in the other direction; otherwise, the light should continue to show
green in the same direction as the last car that crossed the intersection.

To implement this simple traffic light we need two states:

■	 NSgreen: The traffic light is green in the north-south direction.

■	 EWgreen: The traffic light is green in the east-west direction.

We also need to create the next-state function, which can be specified with a table:

Inputs

NScar EWcar Next state

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Notice that we didn’t specify in the algorithm what happens when a car
approaches from both directions. In this case, the next-state function given above
changes the state to ensure that a steady stream of cars from one direction cannot
lock out a car in the other direction.

The finite-state machine is completed by specifying the output function.
Before we examine how to implement this finite-state machine, let’s look at

a graphical representation, which is often used for finite-state machines. In this
representation, nodes are used to indicate states. Inside the node we place a list of
the outputs that are active for that state. Directed arcs are used to show the next-state
function, with labels on the arcs specifying the input condition as logic functions.
Figure A.10.2 shows the graphical representation for this finite-state machine.

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1

 A.10 Finite-State Machines A-69

NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWcar NScar

FIGURE A.10.2 The graphical representation of the two-state traffic light controller. We
simplified the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen
in the next-state table is () ()NScar EWcar NScar EWcar⋅ ⋅� , which is equivalent to EWcar.

A finite-state machine can be implemented with a register to hold the current
state and a block of combinational logic that computes the next-state function and
the output function. Figure A.10.3 shows how a finite-state machine with 4 bits of
state, and thus up to 16 states, might look. To implement the finite-state machine
in this way, we must first assign state numbers to the states. This process is called
state assignment. For example, we could assign NSgreen to state 0 and EWgreen to
state 1. The state register would contain a single bit. The next-state function would
be given as

NextState CurrentState EWcar CurrentState NScar() ()⋅⋅

where CurrentState is the contents of the state register (0 or 1) and NextState is the
output of the next-state function that will be written into the state register at the
end of the clock cycle. The output function is also simple:

NSlite CurrentState
EWlite CurrentState

�

�

The combinational logic block is often implemented using structured logic,
such as a PLA. A PLA can be constructed automatically from the next-state and
output function tables. In fact, there are computer-aided design (CAD) programs

A-70 Appendix A The Basics of Logic Design

Combinational logic

Outputs

State register

Inputs

Next state

FIGURE A.10.3 A finite-state machine is implemented with a state register that holds
the current state and a combinational logic block to compute the next state and output
functions. The latter two functions are often split apart and implemented with two separate blocks of logic,
which may require fewer gates.

that take either a graphical or textual representation of a finite-state machine and
produce an optimized implementation automatically. In Chapters 4 and 5, finite-
state machines were used to control processor execution. Appendix C discusses
the detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure A.10.4 shows a
Verilog version designed for synthesis. Note that for this simple control function,
a Mealy machine is not useful, but this style of specification is used in Chapter 5 to
implement a control function that is a Mealy machine and has fewer states than the
Moore machine controller.

 A.11 Timing Methodologies A-71

 A.11 Timing Methodologies

Throughout this appendix and in the rest of the text, we use an edge-triggered
timing methodology. This timing methodology has an advantage in that it is
simpler to explain and understand than a level-triggered methodology. In this
section, we explain this timing methodology in a little more detail and also
introduce level-sensitive clocking. We conclude this section by briefly discussing

FIGURE A.10.4 A Verilog version of the traffic light controller.

What is the smallest number of states in a Moore machine for which a Mealy
machine could have fewer states?

a. Two, since there could be a one-state Mealy machine that might do the same
thing.

b. Three, since there could be a simple Moore machine that went to one of two
different states and always returned to the original state after that. For such a
simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine
over a Moore machine.

Check
Yourself

A-72 Appendix A The Basics of Logic Design

the issue of asynchronous signals and synchronizers, an important problem for
digital designers.

The purpose of this section is to introduce the major concepts in clocking
methodology. The section makes some important simplifying assumptions; if you
are interested in understanding timing methodology in more detail, consult one of
the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain
and has fewer rules required for correctness. In particular, if we assume that all
clocks arrive at the same time, we are guaranteed that a system with edge-triggered
registers between blocks of combinational logic can operate correctly without races
if we simply make the clock long enough. A race occurs when the contents of a
state element depend on the relative speed of different logic elements. In an edge-
triggered design, the clock cycle must be long enough to accommodate the path
from one flip-flop through the combinational logic to another flip-flop where it
must satisfy the setup-time requirement. Figure A.11.1 shows this requirement for
a system using rising edge-triggered flip-flops. In such a system the clock period
(or cycle time) must be at least as large as

t t tprop combinational setup� �

for the worst-case values of these three delays, which are defined as follows:

■	 tprop is the time for a signal to propagate through a flip-flop; it is also sometimes
called clock-to-Q.

■	 tcombinational is the longest delay for any combinational logic (which by definition
is surrounded by two flip-flops).

■	 tsetup is the time before the rising clock edge that the input to a flip-flop must
be valid.

Flip-flop

D

C

Q
Combinational

logic block Flip-flop

D

C

Q

tprop tcombinational tsetup

FIGURE A.11.1 In an edge-triggered design, the clock must be long enough to allow
signals to be valid for the required setup time before the next clock edge. The time for a
flip-flop input to propagate to the flip-flip outputs is tprop; the signal then takes tcombinational to travel through the
combinational logic and must be valid tsetup before the next clock edge.

 A.11 Timing Methodologies A-73

We make one simplifying assumption: the hold-time requirements are satisfied,
which is almost never an issue with modern logic.

One additional complication that must be considered in edge-triggered designs
is clock skew. Clock skew is the difference in absolute time between when two state
elements see a clock edge. Clock skew arises because the clock signal will often
use two different paths, with slightly different delays, to reach two different state
elements. If the clock skew is large enough, it may be possible for a state element to
change and cause the input to another flip-flop to change before the clock edge is
seen by the second flip-flop.

Figure A.11.2 illustrates this problem, ignoring setup time and flip-flop
propagation delay. To avoid incorrect operation, the clock period is increased to
allow for the maximum clock skew. Thus, the clock period must be longer than

t t t tprop combinational setup skew� � �

With this constraint on the clock period, the two clocks can also arrive in the
opposite order, with the second clock arriving tskew earlier, and the circuit will work

clock skew The
difference in absolute time
between the times when
two state elements see a
clock edge.

Flip-flop

D

C

Q
Combinational
logic block with
delay time of ∆

Flip-flop

D

C

Q

Clock arrives
at time t

Clock arrives
after t + ∆

FIGURE A.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the difference
in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the input to the second flip-
flop before the clock arrives at the second flip-flop.

correctly. Designers reduce clock-skew problems by carefully routing the clock
signal to minimize the difference in arrival times. In addition, smart designers also
provide some margin by making the clock a little longer than the minimum; this
allows for variation in components as well as in the power supply. Since clock skew
can also affect the hold-time requirements, minimizing the size of the clock skew
is important.

Edge-triggered designs have two drawbacks: they require extra logic and they
may sometimes be slower. Just looking at the D flip-flop versus the level-sensitive
latch that we used to construct the flip-flop shows that edge-triggered design
requires more logic. An alternative is to use level-sensitive clocking. Because state
changes in a level-sensitive methodology are not instantaneous, a level-sensitive
scheme is slightly more complex and requires additional care to make it operate
correctly.

level-sensitive
clocking A timing
methodology in which
state changes occur
at either high or low
clock levels but are not
instantaneous as such
changes are in edge-
triggered designs.

A-74 Appendix A The Basics of Logic Design

Level-Sensitive Timing
In level-sensitive timing, the state changes occur at either high or low levels, but
they are not instantaneous as they are in an edge-triggered methodology. Because of
the noninstantaneous change in state, races can easily occur. To ensure that a level-
sensitive design will also work correctly if the clock is slow enough, designers use two-
phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping
clock signals. Since the two clocks, typically called ϕ1 and ϕ2, are nonoverlapping, at
most one of the clock signals is high at any given time, as Figure A.11.3 shows. We
can use these two clocks to build a system that contains level-sensitive latches but is
free from any race conditions, just as the edge-triggered designs were.

Nonoverlapping
periods

Φ1

Φ2

FIGURE A.11.3 A two-phase clocking scheme showing the cycle of each clock and the
nonoverlapping periods.

Latch

D

C

Q
Combinational

logic blockΦ1

Latch

D

C

Q
Combinational

logic blockΦ2

Latch

D

C
Φ1

FIGURE A.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock
phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational inputs has a stable input
during ϕ2, and its output is latched by ϕ2. The second (rightmost) combinational block operates in just the opposite fashion, with stable inputs
during ϕ1. Thus, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. The
size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

One simple way to design such a system is to alternate the use of latches that are
open on ϕ1 with latches that are open on ϕ2. Because both clocks are not asserted
at the same time, a race cannot occur. If the input to a combinational block is a ϕ1
clock, then its output is latched by a ϕ2 clock, which is open only during ϕ2 when
the input latch is closed and hence has a valid output. Figure A.11.4 shows how
a system with two-phase timing and alternating latches operates. As in an edge-
triggered design, we must pay attention to clock skew, particularly between the two

 A.11 Timing Methodologies A-75

clock phases. By increasing the amount of nonoverlap between the two phases, we
can reduce the potential margin of error. Thus, the system is guaranteed to operate
correctly if each phase is long enough and if there is large enough nonoverlap
between the phases.

Asynchronous Inputs and Synchronizers
By using a single clock or a two-phase clock, we can eliminate race conditions
if clock-skew problems are avoided. Unfortunately, it is impractical to make an
entire system function with a single clock and still keep the clock skew small.
While the CPU may use a single clock, I/O devices will probably have their own
clock. An asynchronous device may communicate with the CPU through a series
of handshaking steps. To translate the asynchronous input to a synchronous signal
that can be used to change the state of a system, we need to use a synchronizer,
whose inputs are the asynchronous signal and a clock and whose output is a signal
synchronous with the input clock.

Our first attempt to build a synchronizer uses an edge-triggered D flip-flop,
whose D input is the asynchronous signal, as Figure A.11.5 shows. Because we
communicate with a handshaking protocol, it does not matter whether we detect
the asserted state of the asynchronous signal on one clock or the next, since the
signal will be held asserted until it is acknowledged. Thus, you might think that this
simple structure is enough to sample the signal accurately, which would be the case
except for one small problem.

metastability
A situation that occurs if
a signal is sampled when
it is not stable for the
required setup and hold
times, possibly causing
the sampled value to
fall in the indeterminate
region between a high and
low value.

Flip-flop
D

C

Q

Clock

Asynchronous input Synchronous output

FIGURE A.11.5 A synchronizer built from a D flip-flop is used to sample an asynchronous
signal to produce an output that is synchronous with the clock. This “synchronizer” will not
work properly!

The problem is a situation called metastability. Suppose the asynchronous
signal is transitioning between high and low when the clock edge arrives. Clearly,
it is not possible to know whether the signal will be latched as high or low. That
problem we could live with. Unfortunately, the situation is worse: when the signal
that is sampled is not stable for the required setup and hold times, the flip-flop may
go into a metastable state. In such a state, the output will not have a legitimate high
or low value, but will be in the indeterminate region between them. Furthermore,

A-76 Appendix A The Basics of Logic Design

the flip-flop is not guaranteed to exit this state in any bounded amount of time.
Some logic blocks that look at the output of the flip-flop may see its output as 0,
while others may see it as 1. This situation is called a synchronizer failure.

In a purely synchronous system, synchronizer failure can be avoided by ensuring
that the setup and hold times for a flip-flop or latch are always met, but this is
impossible when the input is asynchronous. Instead, the only solution possible is
to wait long enough before looking at the output of the flip-flop to ensure that
its output is stable, and that it has exited the metastable state, if it ever entered it.
How long is long enough? Well, the probability that the flip-flop will stay in the
metastable state decreases exponentially, so after a very short time the probability
that the flip-flop is in the metastable state is very low; however, the probability
never reaches 0! So designers wait long enough such that the probability of a
synchronizer failure is very low, and the time between such failures will be years or
even thousands of years.

For most flip-flop designs, waiting for a period that is several times longer than
the setup time makes the probability of synchronization failure very low. If the
clock rate is longer than the potential metastability period (which is likely), then a
safe synchronizer can be built with two D flip-flops, as Figure A.11.6 shows. If you
are interested in reading more about these problems, look into the references.

synchronizer failure
A situation in which
a flip-flop enters a
metastable state and
where some logic blocks
reading the output of the
flip-flop see a 0 while
others see a 1.

propagation time The
time required for an input
to a flip-flop to propagate
to the outputs of the flip-
flop.

Suppose we have a design with very large clock skew—longer than the register
propagation time. Is it always possible for such a design to slow the clock down
enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the
design will work, even if the skew is very large.

b. No, since it is possible that two registers see the same clock edge far enough
apart that a register is triggered, and its outputs propagated and seen by a
second register with the same clock edge.

Flip-flop

D

C

Q

Clock

Asynchronous input
Flip-flop

D

C

Q Synchronous output

FIGURE A.11.6 This synchronizer will work correctly if the period of metastability that
we wish to guard against is less than the clock period. Although the output of the first flip-flop
may be metastable, it will not be seen by any other logic element until the second clock, when the second D
flip-flop samples the signal, which by that time should no longer be in a metastable state.

Check
Yourself

 A.12 Field Programmable Devices A-77

 A.12 Field Programmable Devices

Within a custom or semicustom chip, designers can make use of the flexibility of the
underlying structure to easily implement combinational or sequential logic. How
can a designer who does not want to use a custom or semicustom IC implement
a complex piece of logic taking advantage of the very high levels of integration
available? The most popular component used for sequential and combinational
logic design outside of a custom or semicustom IC is a field programmable
device (FPD). An FPD is an integrated circuit containing combinational logic, and
possibly memory devices, that are configurable by the end user.

FPDs generally fall into two camps: programmable logic devices (PLDs),
which are purely combinational, and field programmable gate arrays (FPGAs),
which provide both combinational logic and flip-flops. PLDs consist of two forms:
simple PLDs (SPLDs), which are usually either a PLA or a programmable array
logic (PAL), and complex PLDs, which allow more than one logic block as well as
configurable interconnections among blocks. When we speak of a PLA in a PLD,
we mean a PLA with user programmable and-plane and or-plane. A PAL is like a
PLA, except that the or-plane is fixed.

Before we discuss FPGAs, it is useful to talk about how FPDs are configured.
Configuration is essentially a question of where to make or break connections.
Gate and register structures are static, but the connections can be configured.
Notice that by configuring the connections, a user determines what logic functions
are implemented. Consider a configurable PLA: by determining where the
connections are in the and-plane and the or-plane, the user dictates what logical
functions are computed in the PLA. Connections in FPDs are either permanent
or reconfigurable. Permanent connections involve the creation or destruction of
a connection between two wires. Current FPLDs all use an antifuse technology,
which allows a connection to be built at programming time that is then permanent.
The other way to configure CMOS FPLDs is through a SRAM. The SRAM is
downloaded at power-on, and the contents control the setting of switches, which
in turn determines which metal lines are connected. The use of SRAM control
has the advantage in that the FPD can be reconfigured by changing the contents
of the SRAM. The disadvantages of the SRAM-based control are two-fold: the
configuration is volatile and must be reloaded on power-on, and the use of active
transistors for switches slightly increases the resistance of such connections.

FPGAs include both logic and memory devices, usually structured in a two-
dimensional array with the corridors dividing the rows and columns used for

field programmable
devices (FPD) An
integrated circuit
containing combinational
logic, and possibly
memory devices, that are
configurable by the end
user.

programmable logic
device (PLD)
An integrated circuit
containing combinational
logic whose function is
configured by the end
user.

field programmable
gate array (FPGA)
A configurable integrated
circuit containing both
combinational logic
blocks and flip-flops.

simple programmable
logic device
(SPLD) Programmable
logic device, usually
containing either a single
PAL or PLA.

programmable array
logic (PAL) Contains a
programmable and-plane
followed by a fixed or-
plane.

antifuse A structure in
an integrated circuit that
when programmed makes
a permanent connection
between two wires.

A-78 Appendix A The Basics of Logic Design

global interconnect between the cells of the array. Each cell is a combination of
gates and flip-flops that can be programmed to perform some specific function.
Because they are basically small, programmable RAMs, they are also called lookup
tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as
pieces of adders and RAM blocks that can be used to build register files. Some
FPGAs even contain 64-bit RISC-V cores!

In addition to programming each cell to perform a specific function, the
interconnections between cells are also programmable, allowing modern FPGAs
with hundreds of blocks and hundreds of thousands of gates to be used for complex
logic functions. Interconnect is a major challenge in custom chips, and this is even
more true for FPGAs, because cells do not represent natural units of decomposition
for structured design. In many FPGAs, 90% of the area is reserved for interconnect
and only 10% is for logic and memory blocks.

Just as you cannot design a custom or semicustom chip without CAD tools, you
also need them for FPDs. Logic synthesis tools have been developed that target
FPGAs, allowing the generation of a system using FPGAs from structural and
behavioral Verilog.

 A.13 Concluding Remarks

This appendix introduces the basics of logic design. If you have digested the
material in this appendix, you are ready to tackle the material in Chapters 4 and 5,
both of which use the concepts discussed in this appendix extensively.

Further Reading
There are a number of good texts on logic design. Here are some you might like to
look into.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood
Cliffs, NJ: Prentice Hall.
A thorough book on logic design using Verilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.
A general text on logic design.

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood
Cliffs, NJ: Prentice Hall.
A general text on logic design.

lookup tables (LUTs) In
a field programmable
device, the name given
to the cells because they
consist of a small amount
of logic and RAM.

 A.14 Exercises A-79

 A.14 Exercises

 A.1 [10] <§A.2> In addition to the basic laws we discussed in this section, there
are two important theorems, called DeMorgan’s theorems:

A B A B and A B A B⋅ ⋅

Prove DeMorgan’s theorems with a truth table of the form

A B A B A + B A · B A · B A + B

0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0

 A.2 [15] <§A.2> Prove that the two equations for E in the example starting on
page A-7 are equivalent by using DeMorgan’s theorems and the axioms shown on
page A-7.

 A.3 [10] <§A.2> Show that there are 2n entries in a truth table for a function with
n inputs.

 A.4 [10] <§A.2> One logic function that is used for a variety of purposes
(including within adders and to compute parity) is exclusive OR. The output of a
two-input exclusive OR function is true only if exactly one of the inputs is true.
Show the truth table for a two-input exclusive OR function and implement this
function using AND gates, OR gates, and inverters.

 A.5 [15] <§A.2> Prove that the NOR gate is universal by showing how to build
the AND, OR, and NOT functions using a two-input NOR gate.

 A.6 [15] <§A.2> Prove that the NAND gate is universal by showing how to build
the AND, OR, and NOT functions using a two-input NAND gate.

 A.7 [10] <§§A.2, A.3> Construct the truth table for a four-input odd-parity
function (see page A-65 for a description of parity).

 A.8 [10] <§§A.2, A.3> Implement the four-input odd-parity function with AND
and OR gates using bubbled inputs and outputs.

 A.9 [10] <§§A.2, A.3> Implement the four-input odd-parity function with a PLA.

A-80 Appendix A The Basics of Logic Design

 A.10 [15] <§§A.2, A.3> Prove that a two-input multiplexor is also universal by
showing how to build the NAND (or NOR) gate using a multiplexor.

 A.11 [5] <§§4.2, A.2, A.3> Assume that X consists of 3 bits, x2 x1 x0. Write four
logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

 A.12 [5] <§§4.2, A.2, A.3> Implement the four functions described in Exercise
A.11 using a PLA.

 A.13 [5] <§§4.2, A.2, A.3> Assume that X consists of 3 bits, x2 x1 x0, and Y
consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X <Y, where X and Y are thought of as unsigned binary numbers

■ X <Y, where X and Y are thought of as signed (two’s complement) numbers

■ X = Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show
how can you extend it to 6-bit comparison.

 A.14 [5] <§§A.2, A.3> Implement a switching network that has two data inputs
(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the
network is in pass-through mode, and C should equal A, and D should equal B. If
S equals 0, the network is in crossing mode, and C should equal B, and D should
equal A.

 A.15 [15] <§§A.2, A.3> Derive the product-of-sums representation for E shown
on page A-11 starting with the sum-of-products representation. You will need to
use DeMorgan’s theorems.

 A.16 [30] <§§A.2, A.3> Give an algorithm for constructing the sum-of-products
representation for an arbitrary logic equation consisting of AND, OR, and NOT.
The algorithm should be recursive and should not construct the truth table in the
process.

 A.17 [5] <§§A.2, A.3> Show a truth table for a multiplexor (inputs A, B, and S;
output C), using don’t cares to simplify the table where possible.

 A.14 Exercises A-81

 A.18 [5] <§A.3> What is the function implemented by the following Verilog
modules:

module FUNC1 (I0, I1, S, out);
 input I0, I1;
 input S;
 output out;
 out = S? I1: I0;
endmodule

module FUNC2 (out,ctl,clk,reset);
 output [7:0] out;
 input ctl, clk, reset;
 reg [7:0] out;
 always @(posedge clk)
 if (reset) begin
 out <= 8’b0 ;
 end
 else if (ctl) begin
 out <= out + 1;
 end
 else begin
 out <= out - 1;
 end
endmodule

 A.19 [5] <§A.4> The Verilog code on page A-53 is for a D flip-flop. Show the
Verilog code for a D latch.

 A.20 [10] <§§A.3, A.4> Write down a Verilog module implementation of a 2-to-
4 decoder (and/or encoder).

 A.21 [10] <§§A.3, A.4> Given the following logic diagram for an accumulator,
write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.

A-82 Appendix A The Basics of Logic Design

In

OutLoad
16

Adder

Register

Clk

Rst

Load

�

16

 A.22 [20] <§§B3, A.4, A.5> Section 3.3 presents basic operation and possible
implementations of multipliers. A basic unit of such implementations is a shift-
and-add unit. Show a Verilog implementation for this unit. Show how can you use
this unit to build a 32-bit multiplier.

 A.23 [20] <§§B3, A.4, A.5> Repeat Exercise A.22, but for an unsigned divider
rather than a multiplier.

 A.24 [15] <§A.5> The ALU supported set on less than (slt) using just the sign bit
of the adder. Let’s try a set on less than operation using the values − 7ten and 6ten. To
make it simpler to follow the example, let’s limit the binary representations to 4 bits:
1001two and 0110two.

1001two − 0110two = 1001two + 1010two = 0011two

This result would suggest that −7> 6, which is clearly wrong. Hence, we must
factor in overflow in the decision. Modify the 1-bit ALU in Figure A.5.10 on page
A-33 to handle slt correctly. Make your changes on a photocopy of this figure to
save time.

 A.25 [20] <§A.6> A simple check for overflow during addition is to see if the
CarryIn to the most significant bit is not the same as the CarryOut of the most
significant bit. Prove that this check is the same as in Figure 3.2.

 A.26 [5] <§A.6> Rewrite the equations on page A-44 for a carry-lookahead logic
for a 16-bit adder using a new notation. First, use the names for the CarryIn signals
of the individual bits of the adder. That is, use c4, c8, c12, … instead of C1, C2,
C3, …. In addition, let Pi,j; mean a propagate signal for bits i to j, and Gi,j; mean a
generate signal for bits i to j. For example, the equation

C G P G P P c2 1 1 0 1 0 0() ()⋅ ⋅ ⋅

 A.14 Exercises A-83

can be rewritten as

c G P G P P c08 7 4 7 4 3 0 7 4 3 0, , , , ,() ()⋅ ⋅ ⋅

This more general notation is useful in creating wider adders.

 A.27 [15] <§A.6> Write the equations for the carry-lookahead logic for a 64-
bit adder using the new notation from Exercise A.26 and using 16-bit adders as
building blocks. Include a drawing similar to Figure A.6.3 in your solution.

 A.28 [10] <§A.6> Now calculate the relative performance of adders. Assume that
hardware corresponding to any equation containing only OR or AND terms, such
as the equations for pi and gi on page A-40, takes one time unit T. Equations that
consist of the OR of several AND terms, such as the equations for c1, c2, c3, and
c4 on page A-40, would thus take two time units, 2T. The reason is it would take T
to produce the AND terms and then an additional T to produce the result of the
OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple
carry and carry lookahead. If the terms in equations are further defined by other
equations, then add the appropriate delays for those intermediate equations, and
continue recursively until the actual input bits of the adder are used in an equation.
Include a drawing of each adder labeled with the calculated delays and the path of
the worst-case delay highlighted.

 A.29 [15] <§A.6> This exercise is similar to Exercise A.28, but this time calculate
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit
groups that use carry lookahead, and the carry-lookahead scheme on page A-39.

 A.30 [15] <§A.6> This exercise is similar to Exercises A.28 and A.29, but this
time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple
carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use
carry lookahead, and the carry-lookahead scheme from Exercise A.27.

 A.31 [10] <§A.6> Instead of thinking of an adder as a device that adds two
numbers and then links the carries together, we can think of the adder as a
hardware device that can add three inputs together (ai, bi, ci) and produce two
outputs (s, ci + 1). When adding two numbers together, there is little we can do with
this observation. When we are adding more than two operands, it is possible to
reduce the cost of the carry. The idea is to form two independent sums, called S′
(sum bits) and C′ (carry bits). At the end of the process, we need to add C′ and S′
together using a normal adder. This technique of delaying carry propagation until
the end of a sum of numbers is called carry save addition. The block drawing on the
lower right of Figure A.14.1 (see below) shows the organization, with two levels of
carry save adders connected by a single normal adder.

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders
versus carry save with a carry-lookahead adder forming the final sum. (The time
unit T in Exercise A.28 is the same.)

A-84 Appendix A The Basics of Logic Design

 A.32 [20] <§A.6> Perhaps the most likely case of adding many numbers at once
in a computer would be when trying to multiply more quickly by using many
adders to add many numbers in a single clock cycle. Compared to the multiply
algorithm in Chapter 3, a carry save scheme with many adders could multiply more
than 10 times faster. This exercise estimates the cost and speed of a combinational
multiplier to multiply two positive 16-bit numbers. Assume that you have 16
intermediate terms M15, M14, …, M0, called partial products, that contain the
multiplicand ANDed with multiplier bits m15, m14, …, m0. The idea is to use
carry save adders to reduce the n operands into 2n/3 in parallel groups of three,
and do this repeatedly until you get two large numbers to add together with a
traditional adder.

s4 s3 s2 s1 s0

f0e0b0f1e1b1f2e2b2f3e3b3

a0a1a2a3

s5

c'3 s'3s'4 c'2 s'2 c'1 s'1 c'0 s'0

Carry save adder

E FBA

Carry save adder

Traditional adder

S

C' S'

s5 s0

b0a0

e0

f0

s1

b1a1

e1

f1

s2

b2a2

e2

f2

s3

b3a3

e3

f3

s4

E F

S

BA

Traditional adder

Traditional adder

Traditional adder

� � � �

� � � �

�

�

�

� � � �

� � �

� � �

� � � �

FIGURE A.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. The
details are shown on the left, with the individual signals in lowercase, and the corresponding higher-level
blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can
take n + 2 bits.

 A.14 Exercises A-85

First, show the block organization of the 16-bit carry save adders to add these 16
terms, as shown on the right in Figure A.14.1. Then calculate the delays to add
these 16 numbers. Compare this time to the iterative multiplication scheme in
Chapter 3 but only assume 16 iterations using a 16-bit adder that has full carry
lookahead whose speed was calculated in Exercise A.29.

 A.33 [10] <§A.6> There are times when we want to add a collection of numbers
together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit
full adders. Let’s ignore carry lookahead for now. You would likely connect the
1-bit adders in the organization at the top of Figure A.14.1. Below the traditional
organization is a novel organization of full adders. Try adding four numbers using
both organizations to convince yourself that you get the same answer.

 A.34 [5] <§A.6> First, show the block organization of the 16-bit carry save adders
to add these 16 terms, as shown in Figure A.14.1. Assume that the time delay
through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to
the organization at the top versus the organization at the bottom of Figure A.14.1.

 A.35 [5] <§A.8> Quite often, you would expect that given a timing diagram
containing a description of changes that take place on a data input D and a clock
input C (as in Figures A.8.3 and A.8.6 on pages A-52 and A-54, respectively), there
would be differences between the output waveforms (Q) for a D latch and a D flip-
flop. In a sentence or two, describe the circumstances (e.g., the nature of the inputs)
for which there would not be any difference between the two output waveforms.

 A.36 [5] <§A.8> Figure A.8.8 on page A-55 illustrates the implementation of the
register file for the RISC-V datapath. Pretend that a new register file is to be built,
but that there are only two registers and only one read port, and that each register
has only 2 bits of data. Redraw Figure A.8.8 so that every wire in your diagram
corresponds to only 1 bit of data (unlike the diagram in Figure A.8.8, in which
some wires are 5 bits and some wires are 32 bits). Redraw the registers using D flip-
flops. You do not need to show how to implement a D flip-flop or a multiplexor.

 A.37 [10] <§A.10> A friend would like you to build an “electronic eye” for use
as a fake security device. The device consists of three lights lined up in a row,
controlled by the outputs Left, Middle, and Right, which, if asserted, indicate that
a light should be on. Only one light is on at a time, and the light “moves” from
left to right and then from right to left, thus scaring away thieves who believe that
the device is monitoring their activity. Draw the graphical representation for the
finite-state machine used to specify the electronic eye. Note that the rate of the eye’s
movement will be controlled by the clock speed (which should not be too great)
and that there are essentially no inputs.

 A.38 [10] <§A.10> Assign state numbers to the states of the finite-state machine
you constructed for Exercise A.37 and write a set of logic equations for each of the
outputs, including the next-state bits.

A-86 Appendix A The Basics of Logic Design

 A.39 [15] <§§A.2, A.8, A.10> Construct a 3-bit counter using three D flip-
flops and a selection of gates. The inputs should consist of a signal that resets the
counter to 0, called reset, and a signal to increment the counter, called inc. The
outputs should be the value of the counter. When the counter has value 7 and is
incremented, it should wrap around and become 0.

 A.40 [20] <§A.10> A Gray code is a sequence of binary numbers with the property
that no more than 1 bit changes in going from one element of the sequence to
another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110,
111, 101, and 100. Using three D flip-flops and a PLA, construct a 3-bit Gray code
counter that has two inputs: reset, which sets the counter to 000, and inc, which
makes the counter go to the next value in the sequence. Note that the code is cyclic,
so that the value after 100 in the sequence is 000.

 A.41 [25] <§A.10> We wish to add a yellow light to our traffic light example on
page A-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock
cycle time), which is the duration of a yellow light. To prevent the green and red lights
from cycling too fast, we add a 30-second timer. The timer has a single input, called
TimerReset, which restarts the timer, and a single output, called TimerSignal, which
indicates that the 30-second period has expired. Also, we must redefine the traffic
signals to include yellow. We do this by defining two output signals for each light:
green and yellow. If the output NSgreen is asserted, the green light is on; if the output
NSyellow is asserted, the yellow light is on. If both signals are off, the red light is on. Do
not assert both the green and yellow signals at the same time, since American drivers
will certainly be confused, even if European drivers understand what this means! Draw
the graphical representation for the finite-state machine for this improved controller.
Choose names for the states that are different from the names of the outputs.

 A.42 [15] <§A.10> Write down the next-state and output-function tables for the
traffic light controller described in Exercise A.41.

 A.43 [15] <§§A.2, A.10> Assign state numbers to the states in the traffic light
example of Exercise A.41 and use the tables of Exercise A.42 to write a set of logic
equations for each of the outputs, including the next-state outputs.

 A.44 [15] <§§A.3, A.10> Implement the logic equations of Exercise A.43 as a
PLA.

§A.2, page A-8: No. If A = 1, C = 1, B = 0, the first is true, but the second is false.
§A.3, page A-20: C.
§A.4, page A-22: They are all exactly the same.
§A.4, page A-26: A = 0, B = 1.
§A.5, page A-37: 2.
§A.6, page A-46: 1.
§A.8, page A-57: c.
§A.10, page A-71: b.
§A.11, page A-76: b.

Answers to
Check Yourself

Index

Note: Online information is listed by print page number and a period followed by “e” with online page number (54.e1). Page references preceded
by a single letter with hyphen refer to appendices. Page references followed by “f,” “t,” and “b” refer to figures, tables, and boxes, respectively.

0-9, and symbols

1-bit ALU, A-26–A-29. See also
Arithmetic logic unit (ALU)

adder, A-27f
CarryOut, A-28
for most significant bit, A-33f
illustrated, A-29f
logical unit for AND/OR, A-27f
performing AND, OR, and addition,

A-31, A-33f
64-bit ALU, A-29–A-31. See also

Arithmetic logic unit (ALU)
from 63 copies of 1-bit ALU, A-34f
with 64 1-bit ALUs, A-30f
defining in Verilog, A-36–A-37
illustrated, A-35f
ripple carry adder, A-29

7090/7094 hardware, 227.e6

A

Absolute references, 127
Abstractions

hardware/software interface, 22
principle, 22
to simplify design, 11

Accumulator architectures, 162.e1–162.e2
Acronyms, 9
Active matrix, 18
add (add), 64f
addi (add immediate), 64f, 72, 84
Addition, 174–177. See also Arithmetic

binary, 174b–175b
floating-point, 198–201, 206
operands, 175
significands, 197b–198b
speed, 177b

Address interleaving, 372–373
Address select logic, C-24, C-25f
Address space, 420, 423b

extending, 469b
flat, 469

ID (ASID), 438
inadequate, 473.e5–473.e6
shared, 509–510
single physical, 509–510
virtual, 438

Address translation
for ARM cortex-A53, 460f
defined, 420–421
fast, 430–432
for Intel core i7, 460f
TLB for, 430–432

Address-control lines, C-26f
Addresses

base, 69
byte, 70
defined, 68
memory, 78b
virtual, 420–421, 440, 441b

Addressing
base, 118f
in branches, 115–117
displacement, 118
immediate, 118f
PC-relative, 115–116, 118f
register, 118f
RISC-V modes, 117–118
x86 modes, 151

Addressing modes
desktop architectures, D-5–D-6

Advanced Vector Extensions (AVX),
218–219

AGP, B-9–B-10
Algol-60, 162.e6
Aliasing, 436
Alignment restriction, 70
All-pairs N-body algorithm, B-65
Alpha architecture

bit count instructions, D-29
floating-point instructions, D-28–D-29
instructions, D-27–D-29
no divide, D-28
PAL code, D-28
unaligned load-store, D-28

VAX floating-point formats, D-29
ALU control, 251–253. See also

Arithmetic logic unit (ALU)
bits, 252–253, 252f
logic, C-6–C-7
mapping to gates, C-4–C-7
truth tables, C-5f

ALU control block, 255
defined, C-4–C-6
generating ALU control bits, C-6f

ALUOp, 252, C-6b–C-7b
bits, 252–253
control signal, 255

Amazon Web Services (AWS), 417b
AMD Opteron X4 (Barcelona), 535, 536f
AMD64, 148, 162.e5, 217
Amdahl’s law, 393, 495–496

corollary, 49
defined, 49
fallacy, 548

and (and), 64f
AND gates, A-12–A-13, C-7
AND operation, 90, A-6
andi (and immediate), 64f
Annual failure rate (AFR), 410–411

versus MTTF of disks, 410b–411b
Antidependence, 327
Antifuse, A-77
Apple computer, 54.e6
Apple iPad 2 A1395, 20f

logic board of, 20f
processor integrated circuit of, 21f

Application binary interface (ABI), 22
Application programming interfaces

(APIs)
defined, B-4
graphics, B-14

Architectural registers, 337–338
Arithmetic, 172

addition, 174–177
addition and subtraction, 174–177
division, 183–191
fallacies and pitfalls, 222–225

I-1

I-2 Index

floating-point, 191–216
historical perspective, 227
multiplication, 177–183
parallelism and, 216–217
Streaming SIMD Extensions and

advanced vector extensions in
x86, 217–218

subtraction, 174–177
subword parallelism, 216–217
subword parallelism and matrix

multiply, 218–222
Arithmetic instructions. See also

Instructions
desktop RISC, D-11f
embedded RISC, D-13f
logical, 243–244
operands, 67–74

Arithmetic intensity, 533–534
Arithmetic logic unit (ALU). See also

ALU control; Control units
1-bit, A-26–A-29
64-bit, A-29–A-31
before forwarding, 299f
branch datapath, 246–247
hardware, 176
memory-reference instruction

use, 237
for register values, 244
R-format operations, 245f
signed-immediate input, 302

ARM Cortex-A53, 236, 334–342
address translation for, 460f
caches in, 461f
data cache miss rates for, 462f
memory hierarchies of, 459
performance of, 462–464
specification, 335f
TLB hardware for, 460f

ARPAnet, 54.e9
Arrays, 407f

logic elements, A-18–A-20
multiple dimension, 212
pointers versus, 141–144
procedures for setting to zero, 141f

ASCII
binary numbers versus, 109b
character representation, 108f
defined, 108–109
symbols, 111

Assemblers, 125–127
defined, 14
function, 125–127

microcode, C-30
number acceptance, 126
object file, 126

Assembly language, 15f
defined, 14, 125
floating-point, 207f
illustrated, 15f
programs, 125
RISC-V, 64f, 85b–86b
translating into machine language,

85b–86b
Asserted signals, 242, A-4
Associativity

in caches, 397b–398b
degree, increasing, 396–398, 444
increasing, 401–402
set, tag size versus, 401b–402b

Atomic compare and swap, 123b
Atomic exchange, 122
Atomic fetch-and-increment, 123b
Atomic memory operation, B-21
Attribute interpolation, B-43–B-44
auipc’s effect, 156
Automobiles, computer application in, 4
Average memory access time (AMAT),

394
calculating, 394b

B

Bandwidth, 29–30
bisection, 527
external to DRAM, 390
memory, 390
network, 525–526

Barrier synchronization, B-18
defined, B-20
for thread communication, B-34

Base addressing, 69, 118
Base registers, 69
Basic block, 95b
Benchmarks, 530–540

defined, 46
Linpack, 227.e2–227.e3,

530
multiprocessor, 530–540
NAS parallel, 532
parallel, 531f
PARSEC suite, 532
SPEC CPU, 46–48
SPEC power, 48–49
SPECrate, 530
Stream, 540b

Biased notation, 81, 195
Binary numbers, 82

ASCII versus, 109b
conversion to decimal numbers, 77b
defined, 74

Bisection bandwidth, 527
Bit maps

defined, 18
goal, 18
storing, 18

Bit-Interleaved Parity (RAID 3), 458.e4
Bits

ALUOp, 252–253
defined, 14
dirty, 430b
guard, 214
patterns, 214b–215b
reference, 428b
rounding, 214
sign, 75
state, C-8–C-10
sticky, 214
valid, 376–378

Blocking assignment, A-24
Blocking factor, 406
Block-Interleaved Parity (RAID 4), 458.

e4–458.e5
Blocks

combinational, A-4–A-5
defined, 367–368
finding, 444–445
flexible placement, 394–398
least recently used (LRU), 401
locating in cache, 399–401
miss rate and, 383f
multiword, mapping addresses to,

382b–383b
placement locations, 443
placement strategies, 396
replacement selection, 401
replacement strategies, 446
spatial locality exploitation, 383
state, A-4–A-5
valid data, 376–378

Bonding, 28
Boolean algebra, A-6–A-7
Bounds check shortcut, 96
Branch datapath

ALU, 246–247
operations, 246–247

Branch if Equal (beq), A-32
Branch if greater than or equal, unsigned

(bgeu), 95–96

Arithmetic (Continued)

Index I-3

Branch if less than (blt) instruction,
95–96

Branch if less than, unsigned (bltu),
95–96

Branch instructions
pipeline impact, 308f

Branch not taken
assumption, 307–308
defined, 246

Branch prediction
buffers, 310
as control hazard solution, 274
defined, 273–274
dynamic, 274, 310–314
static, 324

Branch predictors
accuracy, 312
correlation, 312–313
information from, 312–313
tournament, 313–314

Branch table, 97–98
Branch taken

cost reduction, 308–309
defined, 246

Branch target
addresses, 246
buffers, 312

Branches. See also Conditional
branches

addressing in, 115–117
compiler creation, 93–94
decision, moving up, 308–309
delayed, 274, 308–310
ending, 95b
execution in ID stage, 309
pipelined, 310b
target address, 308–309

Branch-on-zero instruction, 260–261
Bubble Sort, 140
Bubbles, 305
Bus-based coherent multiprocessors,

553.e1
Buses, A-18–A-19
Bytes

addressing, 70
order, 70

C

C language
assignment, compiling into RISC-V,

65b
compiling, 144.e1–144.e2, 144–145

compiling assignment with registers,
67b–68b

compiling while loops in, 94b–95b
sort algorithms, 141f
translation hierarchy, 124f
translation to RISC-V assembly

language, 65
variables, 104b

C.mmp, 553.e3–553.e4
C + + language, 144.e26, 162.e7
Cache blocking and matrix multiply,

465–468
Cache coherence, 454–458

coherence, 454
consistency, 454
enforcement schemes, 456
implementation techniques, 459.

e10–459.e11
migration, 456
problem, 454, 455f, 458b
protocol example, 459.e11–459.e15
protocols, 456
replication, 456
snooping protocol, 456–458
snoopy, 459.e16
state diagram, 459.e15f

Cache coherency protocol, 459.e11–459.
e15

finite-state transition diagram, 459.e14f
functioning, 459.e13f
mechanism, 459.e13f
state diagram, 459.e15f
states, 459.e12
write-back cache, 459.e14f

Cache controllers, 459
coherent cache implementation

techniques, 459.e10–459.e11
implementing, 459.e1
snoopy cache coherence, 459.e16
SystemVerilog, 459.e1–459.e4

Cache hits, 460
Cache misses

block replacement on, 445–446
capacity, 447–448
compulsory, 447
conflict, 447
defined, 384
direct-mapped cache, 396
fully associative cache, 398
handling, 384–385
memory-stall clock cycles, 391
reducing with flexible block placement,

394–398

set-associative cache, 397
steps, 385
in write-through cache, 385

Cache performance, 390–410
calculating, 392b–393b
hit time and, 393–394
impact on processor performance,

392–393
Cache-aware instructions, 472
Caches, 375–390. See also Blocks

accessing, 378–384
in ARM cortex-A53, 461f
associativity in, 397b–398b
bits in, 382b
bits needed for, 382
contents illustration, 379f
defined, 19–22, 375–376
direct-mapped, 376, 377f, 382, 394
empty, 378
FSM for controlling, 449–454
fully associative, 395
GPU, B-38
inconsistent, 385
index, 380
in Intel Core i7, 461f
Intrinsity FastMATH example,

387–389
locating blocks in, 399–401
locations, 377f
multilevel, 390, 402–405
nonblocking, 460
physically addressed, 436–437
physically indexed, 436b–437b
physically tagged, 436b–437b
primary, 402, 409–410
secondary, 402, 409–410
set-associative, 395
simulating, 468b
size, 381–383
split, 389b
summary, 389–390
tag field, 380
tags, 459.e10–459.e11, 459.e1f
virtual memory and TLB integration,

435–437
virtually addressed, 436
virtually indexed, 436
virtually tagged, 436
write-back, 386–387, 446
write-through, 385, 387, 446
writes, 385–387

Callee, 99, 101
Caller, 99

I-4 Index

Capabilities, 473.e12
Capacity misses, 447
Carry lookahead, A-37–A-47

4-bit ALUs using, A-43f
adder, A-38
fast, with first level of abstraction,

A-38–A-40
fast, with “infinite” hardware, A-38
fast, with second level of abstraction,

A-40–A-45
plumbing analogy, A-41f, A-42f
ripple carry speed versus, A-45b
summary, A-45–A-47

Carry save adders, 183
CDC 6600, 54.e6, 347.e2
Cell phones, 6–7
Central processor unit (CPU). See also

Processors
classic performance equation, 36–40
defined, 19
execution time, 32–34
performance, 33–35
system, time, 32
time, 391
time measurements, 33–34
user, time, 32

Cg pixel shader program, B-15
Characters

ASCII representation, 108–109
in Java, 111–113

Chips, 19, 25–26
manufacturing process, 26

Classes
defined, 144.e14
packages, 144.e20

Clock cycles
defined, 33
memory-stall, 391
number of registers and, 67
worst-case delay and, 262

Clock cycles per instruction (CPI),
35–36, 272

one level of caching, 402
two levels of caching, 402

Clock rate
defined, 33
frequency switched as function of, 41
power and, 40

Clocking methodology, 241–243, A-47
edge-triggered, 241, A-47, A-72–A-73
level-sensitive, A-73–A-74, A-74–A-75
for predictability, 241

Clocks, A-47–A-49
edge, A-47, A-49b
in edge-triggered design, A-72f
skew, A-73
specification, A-56f
synchronous system, A-47–A-48

Cloud computing, 524–525
defined, 7

Cluster networking, 529.e3–529.e5, 529.
e6–529.e9, 529–530, 529.e1

Clusters, 553.e7–553.e8
defined, 492, 522, 553.e7
isolation, 523
organization, 491
scientific computing on, 553.e7

Cm*, 553.e3–553.e4
CMOS (complementary metal oxide

semiconductor), 41
Coarse-grained multithreading, 506–507
Cobol, 162.e6
Code generation, 144.e12
Code motion, 144.e6
Cold-start miss, 447
Collision misses, 447
Column major order, 405
Combinational blocks, A-4–A-5
Combinational control units, C-4–C-8
Combinational elements, 240
Combinational logic, 241, A-3–A-4,

A-9–A-20
arrays, A-18–A-19
decoders, A-9–A-10
defined, A-4–A-5
don’t cares, A-17–A-18
multiplexors, A-10
ROMs, A-14–A-16
two-level, A-11–A-14
Verilog, A-23–A-26

Commercial computer development, 54.
e3–54.e9

Commit units
buffer, 329
defined, 329
in update control, 334b

Common case fast, 11
Common subexpression elimination,

144.e5
Communication, 23–24

overhead, reducing, 44–45
thread, B-34

Compact code, 162.e3–162.e4
Compare and branch zero, 309

Comparisons
constant operands in, 72–74
signed versus unsigned, 95–96

Compilers, 125
branch creation, 94b
brief history, 162.e7–162.e8
conservative, 144.e6
defined, 14
front end, 144.e2
function, 14, 125
high-level optimizations, 144.e3–144.e4
ILP exploitation, 347.e4–347.e5
Just In Time (JIT), 133
optimization, 141, 162.e8
speculation, 323–324
structure, 144.e1f

Compiling
C assignment statements, 65b
C language, 94b–95b, 144–145, 144.

e1, 144.e2
floating-point programs, 208b–209b
if-then-else, 93b
in Java, 144.e18–144.e19
procedures, 100b–101b, 102b–103b
recursive procedures, 102b–103b
while loops, 94b–95b

Compressed sparse row (CSR) matrix,
B-55, B-56

Compulsory misses, 447–449
Computer architects, 11–13

abstraction to simplify design, 11
common case fast, 11
dependability via redundancy, 12
hierarchy of memories, 12
Moore’s law, 11
parallelism, 12
pipelining, 12
prediction, 12

Computers
application classes, traditional, 3
applications, 4
arithmetic for, 172
characteristics, 54.e12f
commercial development, 54.e3–54.e9
component organization, 17f
components, 17f
design measure, 53
desktop, 5
embedded, 5–6
first, 54.e2
in information revolution, 4
instruction representation, 81–89

Index I-5

performance measurement, 54.e1–54.e3
post-PC era, 6–7
servers, 5

Condition codes/flags, 96
Conditional branches

changing program counter with, 312b
compiling if-then-else into, 93b
defined, 92–93
desktop RISC, D-16f
embedded RISC, D-16f
implementation, 97b
in loops, 117
PA-RISC, D-34–D-36, D-35f
PC-relative addressing, 115–116
RISC, D-10–D-16
SPARC, D-10–D-12

Conditional move instructions, 313b–
314b

Conflict misses, 447
Constant memory, B-40
Constant operands, 72–74

frequent occurrence, 72
Content Addressable Memory (CAM),

400b–401b
Context switch, 438b
Control

ALU, 251–253
challenge, 315
finalizing, 261
forwarding, 300
FSM, C-8–C-22
implementation, optimizing, C-27
mapping to hardware, C-3–C-4,

C-4–C-8, C-8–C-22, C-22–C-28,
C-28–C-32, C-32–C-33

memory, C-26f
organizing, to reduce logic, C-31–C-32
pipelined, 290–294

Control and status register (CSR) access
instructions, 464–465

Control flow graphs, 144.e8, 144.e9
illustrated examples, 144.e8f, 144.e9f,

144.e11f
Control functions

ALU, mapping to gates, C-4–C-7
defining, 256
PLA, implementation, C-7, C-20
ROM, encoding, C-19
for single-cycle implementation,

261–262
Control hazards, 271–274, 307–315

branch delay reduction, 308–310

branch not taken assumption, 307–308
branch prediction as solution, 274
delayed decision approach, 274b
dynamic branch prediction, 310–314
logic implementation in Verilog, 345.

e8
pipeline stalls as solution, 272f
pipeline summary, 314–315
solutions, 272f
static multiple-issue processors and, 324

Control lines
asserted, 256
in datapath, 255f
execution/address calculation, 291
final three stages, 293f
instruction decode/register file read,

291
instruction fetch, 291
memory access, 291
setting of, 256
values, 291
write-back, 291

Control signals
ALUOp, 255
defined, 242
effect of, 256f
multi-bit, 256
pipelined datapaths with, 290–294
truth tables, C-14f

Control units, 239–240. See also
Arithmetic logic unit (ALU)

address select logic, C-24, C-25f
combinational, implementing,

C-4–C-8
with explicit counter, C-23f
illustrated, 257f
logic equations, C-11–C-12
main, designing, 253–256
as microcode, C-28f
next-state outputs, C-10, C-12b–C-13b
output, 251–253, C-10
RISC-V, C-10f

Cooperative thread arrays (CTAs), B-30
Coprocessors

defined, 212b
Core RISC-V instruction set

abstract view, 238f
desktop RISC, D-9f
implementation, 236–237
implementation illustration, 239f
overview, 237–240
subset, 236

Cores
defined, 43
number per chip, 43

Correlation predictor, 312–313
Cosmic Cube, 553.e6–553.e7
CPU, 9
Cray computers, 227.e4, 227.e5
Critical word first, 384
Crossbar networks, 527–528
CTSS (Compatible Time-Sharing

System), 473.e13
CUDA programming environment, 515,

B-5–B-6
barrier synchronization, B-18, B-34
development, B-17, B-17–B-18
hierarchy of thread groups, B-18
kernels, B-19, B-24
key abstractions, B-18
paradigm, B-19–B-22
parallel plus-scan template, B-61f
per-block shared memory, B-58
plus-reduction implementation,

B-63f
programs, B-6, B-24
scalable parallel programming with,

B-17–B-23
shared memories, B-18
threads, B-36

Cyclic redundancy check, 415b–416b
Cylinder, 374

D

D flip-flops, A-50–A-51, A-52
D latches, A-50–A-51, A-51
Data bits, 413f
Data flow analysis, 144.e8
Data hazards, 268–271, 294–307. See also

Hazards
forwarding, 268–269, 294–307
load-use, 269–271, 308
stalls and, 303–307

Data parallel problem decomposition,
B-17, B-18f

Data race, 121
Data selectors, 237–238
Data transfer instructions. See also

Instructions
defined, 68–69
load, 69
offset, 69
store, 70–71

I-6 Index

Datacenters, 7
Data-level parallelism, 500
Datapath elements

defined, 243
sharing, 248–249

Datapaths
branch, 246–247
building, 243–251
control signal truth tables, C-14f
control unit, 257f
defined, 19
design, 243
exception handling, 318f
for fetching instructions, 245f
for hazard resolution via forwarding,

302f
for memory instructions, 247
in operation for branch-if-equal

instruction, 260–261
in operation for load instruction, 259f
in operation for R-type instruction,

258f
operation of, 256–261
pipelined, 276–294
for RISC-V architecture, 249
for R-type instructions, 256–259
single, creating, 247–251
single-cycle, 275
static two-issue, 326f

Deasserted signals, 242, A-4
DEC PDP-8, 162.e2f
Decimal numbers

binary number conversion to, 77b
defined, 74

Decision-making instructions, 92–98
Decoders, A-9–A-10

two-level, A-64
Decoding machine language, 118–120
Defect, 26–27
Delayed branches, 274. See also Branches

as control hazard solution, 274
embedded RISCs and, D-23
reducing, 308–310

Delayed decision, 274b
DeMorgan’s theorems, A-11
Denormalized numbers, 216
Dependability via redundancy, 12
Dependable memory hierarchy, 410–416

failure, defining, 410–412
Dependences

between pipeline registers, 238–239
between pipeline registers and ALU

inputs, 297–298

bubble insertion and, 305
detection, 297b
name, 327
sequence, 295

Design
compromises and, 84
datapath, 243
digital, 345
logic, 240–243
main control unit, 253–256
memory hierarchy, challenges, 449f
pipelining instruction sets, 267

Desktop and server RISCs. See also
Reduced instruction set computer
(RISC) architectures

addressing modes, D-6
architecture summary, D-4f
arithmetic/logical instructions, D-11f
conditional branches, D-16
constant extension summary, D-9f
control instructions, D-11f
conventions equivalent to MIPS core,

D-12f
data transfer instructions, D-10f
features added to, D-45f
floating-point instructions, D-12f
instruction formats, D-7f
multimedia extensions, D-16–D-18
multimedia support, D-18f

Desktop computers, defined, 5
Device driver, 529.e4
DGEMM (Double precision General

Matrix Multiply), 218–219, 342,
344–345, 405, 530

cache blocked version of, 407f
optimized C version of, 220f, 342f, 466f
performance, 344f, 408f

Dicing, 27
Dies, 26–27
Digital design pipeline, 345
Digital signal-processing (DSP)

extensions, D-19
DIMMs (dual inline memory modules),

473.e4
Direct Data IO (DDIO), 529.e6
Direct memory access (DMA), 529.e2f,

529.e3
Direct3D, B-13
Direct-mapped caches. See also Caches

address portions, 399f
choice of, 400–401
defined, 376, 394
illustrated, 377f

memory block location, 395f
misses, 397b–398b
single comparator, 399
total number of bits, 382

Dirty bit, 430b
Dirty pages, 430b
Disk memory, 373–375
Displacement addressing, 118
Distributed Block-Interleaved Parity

(RAID 5), 458.e5–458.e6
Divide algorithm, 186b
Dividend, 184
Division, 183–191

algorithm, 185f
dividend, 184
divisor, 184

Divisor, 184
divu (Divide Unsigned). See also Arithmetic

faster, 188–189
floating-point, 206–212
hardware, 184–187
hardware, improved version, 187f
operands, 184
quotient, 184
remainder, 184
in RISC-V, 189
signed, 187–188
SRT, 189

Don’t cares, A-17–A-18
example, A-17b–A-18b
term, 253

Double data rate (DDR), 371–372
Double Data Rate (DDR) SDRAM,

371–372, A-64
Double precision. See also Single

precision
defined, 193
FMA, B-45, B-45–B-46
GPU, B-45, B-74b
representation, 212–214

Doubleword, 67, 151
Dual inline memory modules (DIMMs),

373
Dynamic branch prediction, 310–314. See

also Control hazards
branch prediction buffer, 310
loops and, 312b

Dynamic hardware predictors, 274
Dynamic multiple-issue processors, 322,

328–333. See also Multiple issue
pipeline scheduling, 329–333
superscalar, 328

Dynamic pipeline scheduling, 329–333

Index I-7

commit unit, 329
concept, 329
hardware-based speculation, 331–333
primary units, 330f
reorder buffer, 334b
reservation station, 329

Dynamic random access memory
(DRAM), 370–373, A-62–A-64

bandwidth external to, 390
cost, 23
defined, 19, A-62
DIMM, 473.e4
Double Date Rate (DDR), 371–372
early board, 473.e4f
GPU, B-37–B-38
growth of capacity, 25f
history, 473.e1
internal organization of, 372f
pass transistor, A-62b–A-64b
SIMM, 473.e4, 473.e5f
single-transistor, A-63f
size, 390
speed, 23–24
synchronous (SDRAM), 371–372,

A-59, A-64
two-level decoder, A-64

Dynamically linked libraries (DLLs),
130–132

defined, 130
lazy procedure linkage version, 130

E

Early restart, 384b
Edge-triggered clocking methodology,

241–242, A-47, A-72–A-73
advantage, A-48
clocks, A-72–A-73
drawbacks, A-73–A-74
illustrated, A-49f
rising edge/falling edge, A-47

EDSAC (Electronic Delay Storage
Automatic Calculator), 54.e2, 473.
e1, 473.e2f

Eispack, 227.e2–227.e3
Electrically erasable programmable read-

only memory (EEPROM), 373
Elements

combinational, 240
datapath, 243, 248–249
memory, A-49–A-57
state, 240, 242, 244f, A-47, A-49b

Embedded computers, 5–6

application requirements, 6
design, 5
growth, 54.e11

Embedded Microprocessor Benchmark
Consortium (EEMBC), 54.e11

Embedded RISCs. See also Reduced
instruction set computer (RISC)
architectures

addressing modes, D-6
architecture summary, D-4f
arithmetic/logical instructions,

D-14f
conditional branches, D-16
constant extension summary, D-9f
control instructions, D-15f
data transfer instructions, D-13f
delayed branch and, D-23
DSP extensions, D-19
general purpose registers, D-5
instruction conventions, D-15f
instruction formats, D-8f
multiply-accumulate approaches,

D-19f
Encoding

defined, C-31
RISC-V instruction, 85f, 119f
ROM control function, C-18
ROM logic function, A-15
x86 instruction, 153–154

ENIAC (Electronic Numerical
Integrator and Calculator), 54.
e2–54.e3, 473.e1

EPIC, 347.e4
Error correction, A-64–A-66
Error Detecting and Correcting Code

(RAID 2), 458.e4
Error detection, A-65–A-66
Error detection code, 412
Ethernet, 23–24
EX stage

load instructions, 282f
overflow exception detection, 317, 320f
store instructions, 284f

Exabyte, 6f
Exception enable, 439b
Exceptions, 315–321

association, 321b
datapath with controls for handling,

318f
defined, 193, 315
detecting, 315
event types and, 315
imprecise, 321b

interrupts versus, 315
pipelined computer example, 318b–

319b
in pipelined implementation, 317–321
precise, 321b
reasons for, 316–317
result due to overflow in add

instruction, 320f
in RISC-V architecture, 316–317
saving/restoring stage on, 440

Executable files
defined, 127–129

Execute or address calculation stage, 282
Execute/address calculation

control line, 291
load instruction, 282
store instruction, 282

Execution time
CPU, 32–34
pipelining and, 276
as valid performance measure, 50–51

Explicit counters, C-23–C-24, C-26f
Exponents, 192

F

Failures, synchronizer, A-75–A-76
Fallacies. See also Pitfalls

Amdahl’s law, 548
arithmetic, 222
assembly language for performance,

158b
commercial binary compatibility

importance, 158b
defined, 49
GPUs, B-72, B-75
low utilization uses little power, 50b
peak performance, 548b
pipelining, 345
powerful instructions mean higher

performance, 157
right shift, 222b

False sharing, 457
Fast carry

with first level of abstraction,
A-38–A-40

with “infinite” hardware, A-38
with second level of abstraction,

A-40–A-45
Fast Fourier Transforms (FFT), B-53
Fault avoidance, 411
Fault forecasting, 411
Fault tolerance, 411

I-8 Index

Fermi architecture, 515, 544
Field programmable devices (FPDs),

A-77–A-78
Field programmable gate arrays (FPGAs),

A-77
Fields

defined, 83
format, C-31
names, 83
RISC-V, 83–89

Files, register, 244, 249, A-49b, A-53–A-55
Fine-grained multithreading, 506
Finite-state machines (FSMs), 449–454,

A-66–A-71
control, C-8–C-22
controllers, 452f
for multicycle control, C-9f
for simple cache controller, 453–454
implementation, 451, A-69
Mealy, 452
Moore, 452b–453b
next-state function, 451, A-66
output function, A-66, A-68
state assignment, A-69
state register implementation, A-70f
style of, 452b–453b
synchronous, A-66
SystemVerilog, 459.e6f
traffic light example, A-67

Flash memory, 373
defined, 23

Flat address space, 469
Flip-flops

D flip-flops, A-50–A-51, A-52
defined, A-50–A-51

Floating point, 191–216
assembly language, 207f
backward step, 227.e3–227.e4
binary to decimal conversion, 197b
branch, 206
challenges, 226
diversity versus portability, 227.e2–227.

e3
division, 206
first dispute, 227.e1–227.e2
form, 192
fused multiply add, 214b
guard digits, 213b
history, 227.e2
IEEE 754 standard, 193–198
intermediate calculations, 212–213
operands, 207f

overflow, 192
packed format, 218
precision, 223
procedure with two-dimensional

matrices, 80b
programs, compiling, 79b–80b
registers, 212b
representation, 192–193
RISC-V instruction frequency for,

226f
RISC-V instructions, 206–212
rounding, 212–213
sign and magnitude, 192
SSE2 architecture, 217, 217f
subtraction, 206
underflow, 192
units, 213–214
in x86, 217f

Floating vectors, 227.e2
Floating-point addition, 198–201

arithmetic unit block diagram, 202f
binary, 199b–201b
illustrated, 200f
instructions, 206–212
steps, 198–199

Floating-point arithmetic (GPUs),
B-41–B-46

basic, B-42
double precision, B-45–B-46, B-74b
performance, B-44
specialized, B-42–B-44
supported formats, B-42
texture operations, B-44

Floating-point control and status register
(fcsr), 193

Floating-point instructions
desktop RISC, D-12f
SPARC, D-31–D-32

Floating-point multiplication, 201–206
binary, 205b–206b
illustrated, 204f
instructions, 206
significands, 201–205
steps, 201–205

Flow-sensitive information, 144.e13b–
144.e14b

Flushing instructions, 308–310
exceptions and, 319b

For loops, 142, 144.e25
inner, 144.e23
SIMD and, 553.e2

Format fields, C-31

Fortran, 162.e6
Forwarding, 294–307

ALU before, 299f
control, 300
datapath for hazard resolution, 302f
defined, 268–269
graphical representation, 269f
illustrations, 345.e20
multiple results and, 271
multiplexors, 300f
pipeline registers before, 299f
with two instructions, 268b–269b
Verilog implementation, 345.e3

Fractions, 192–193
Frame buffer, 18
Frame pointers, 104–105
Front end, 144.e2
Fully associative caches. See also Caches

block replacement strategies,
445–446

choice of, 445
defined, 395
memory block location, 395f
misses, 398

Fully connected networks, 527
Fused-multiply-add (FMA) operation,

214b, B-45

G

Game consoles, B-9
Gates, A-3–A-4, A-4–A-9

AND, A-12–A-13, C-7
delays, A-45
mapping ALU control function to,

C-4–C-7
NAND, A-8–A-9
NOR, A-8–A-9, A-49f

Gather-scatter, 503, 544
General Purpose GPUs (GPGPUs), B-5
General-purpose registers, 147

architectures, 162.e2f
embedded RISCs, D-5

Generate
defined, A-39
example, A-44b–A-45b
super, A-40

Gigabyte, 6f
Global common subexpression

elimination, 144.e5
Global memory, B-21, B-39
Global miss rates, 408b

Index I-9

Global optimization, 144.e4–144.e10
code, 144.e6
implementing, 144.e7

Global pointers, 104b
GPU computing. See also Graphics

processing units (GPUs)
defined, B-5–B-6
visual applications, B-6

GPU system architectures, B-7–B-12
graphics logical pipeline, B-10
heterogeneous, B-7–B-9
implications for, B-24–B-25
interfaces and drivers, B-9–B-10
unified, B-10–B-11

Graph coloring, 144.e11
Graphics displays

computer hardware support, 18
LCD, 18

Graphics logical pipeline, B-10
Graphics processing units (GPUs), 514–

521. See also GPU computing
as accelerators, 514
attribute interpolation, B-43–B-44
defined, 46, 498–499, B-3
evolution, B-5
fallacies and pitfalls, B-72–B-75
floating-point arithmetic, B-16,

B-41–B-46, B-74
GeForce 8-series generation, B-5
general computation, B-73b
General Purpose (GPGPUs), B-5
graphics mode, B-6
graphics trends, B-4
history, B-3–B-4
logical graphics pipeline, B-13–B-14
mapping applications to, B-55–B-72
memory, 514
multilevel caches and, 514
N-body applications, B-65–B-68
NVIDIA architecture, 515–517
parallel memory system, B-36–B-41
parallelism, 515, B-76
performance doubling, B-4
perspective, 519–521
programming, B-12–B-25
programming interfaces to, B-17
real-time graphics, B-13

Graphics shader programs, B-14–B-15
Gresham’s Law, 227, 227.e1
Grid computing, 525b–526b
Grids, B-19
GTX 280, 540–541

Guard digits
defined, 212–213
rounding with, 213b

H

Half precision, B-42
Halfwords, 112
Hamming, Richard, 412
Hamming distance, 412
Hamming Error Correction Code (ECC),

412–413
calculating, 412

Hard disks
access times, 23
defined, 23

Hardware
as hierarchical layer, 13f
language of, 14–16
operations, 63–67
supporting procedures in, 98–108
synthesis, A-21
translating microprograms to,

C-28–C-32
virtualizable, 418

Hardware description languages. See also
Verilog

defined, A-20
using, A-20–A-26
VHDL, A-20–A-21

Hardware multithreading, 506–509
coarse-grained, 506–507
options, 507f
simultaneous, 507

Hardware-based speculation, 331–333
Harvard architecture, 54.e3
Hazard detection units, 303

pipeline connections for, 306–307
Hazards. See also Pipelining

control, 271–274, 307–315
data, 268–271, 294–307
forwarding and, 302b
structural, 267–268, 284

Heap
allocating space on, 104–105
defined, 105

Heterogeneous systems, B-4–B-5
architecture, B-7–B-12
defined, B-3

Hexadecimal numbers, 82
binary number conversion to, 82f, 83b

Hierarchy of memories, 12

High-level languages, 14–16
benefits, 16
computer architectures, 162.e4
importance, 16

High-level optimizations, 144.e3–144.e4
Hit rate, 368
Hit time

cache performance and, 393–394
defined, 368–369

Hit under miss, 460
Hold time, A-52–A-53
Horizontal microcode, C-32
Hot-swapping, 458.e6–458.e7
Human genome project, 4

I

I/O, 529.e1–529.e2
on system performance, 458.e1b–458.

e2b
I/O benchmarks. See Benchmarks
IBM 360/85, 473.e5
IBM 701, 54.e4
IBM 7030, 347.e1
IBM ALOG, 227.e6
IBM Blue Gene, 553.e8–553.e9
IBM Personal Computer, 54.e7, 162.e5
IBM System/360 computers, 54.e5f, 227.

e5, 227.e6, 347.e1
IBM z/VM, 473.e12
ID stage

branch execution in, 309–310
load instructions, 282f
store instruction in, 281f

IEEE 754 floating-point standard, 227.
e7–227.e9, 193–198, 194f. See also
Floating point

first chips, 227.e7–227.e9
in GPU arithmetic, B-42
implementation, 227.e9
rounding modes, 213–214
today, 227.e9

If statements, 115–116
If-then-else, 93b
Imagination Technologies, 145
Immediate addressing, 118
Immediate instructions, 72
Imprecise interrupts, 347.e2–347.e3, 321b
Index-out-of-bounds check, 96
Induction variable elimination, 144.e6
Inheritance, 144.e14
In-order commit, 330–331

I-10 Index

Input devices, 16–17
Inputs, 253
Instances, 144.e14
Instruction count, 36, 38
Instruction decode/register file read stage

control line, 290–294
load instruction, 279
store instruction, 284

Instruction execution illustrations, 345.
e13–345.e20

clock cycle 9, 345.e25f
clock cycles 1 and 2, 345.e21f
clock cycles 3 and 4, 345.e22f
clock cycles 5 and 6, 345.e23f
clock cycles 7 and 8, 345.e24f
examples, 345.e15–345.e20
forwarding, 345.e20
no hazard, 345.e15
pipelines with stalls and forwarding,

345.e20
Instruction fetch stage

control line, 291
load instruction, 279
store instruction, 284

Instruction formats, 153
defined, 82
desktop/server RISC architectures,

D-7f
embedded RISC architectures, D-8f
I-type, 84
MIPS, 146f
RISC-V, 146f
R-type, 84, 253–254
SB-type, 115
S-type, 84–85
UJ-type, 115
U-type, 113–114
x86, 153–154

Instruction latency, 346–347
Instruction mix, 39–40, 54.e9
Instruction set architecture

branch address calculation, 246
defined, 22, 52
history, 162
maintaining, 52
protection and, 419
thread, B-31–B-34
virtual machine support, 418

Instruction sets, B-49
MIPS-32, 146f
RISC-V, 160
x86 growth, 162f

Instruction-level parallelism (ILP), 344–
345. See also Parallelism

compiler exploitation, 347.e4–347.e5
defined, 43b, 321–322
exploitation, increasing, 333
and matrix multiply, 342–345

Instructions, 60, D-25–D-27, D-40,
D-40–D-43. See also Arithmetic
instructions; MIPS; Operands

add immediate, 72–74
addition, 176
Alpha, D-27–D-29
arithmetic-logical, 243–244
ARM, D-36–D-38
assembly, 65
basic block, 95b
cache-aware, 472
conditional branch, 92–93, 93b
conditional move, 313b–314b
data transfer, 68
decision-making, 92–98
defined, 14, 62
desktop RISC conventions, D-12f
as electronic signals, 81–82
embedded RISC conventions, D-15f
encoding, 85f
fetching, 245f
floating-point, 206–212
floating-point (x86), 217f
flushing, 308–310
immediate, 72
introduction to, 62–63
left-to-right flow, 277
load, 69
logical operations, 89–92
M32R, D-40
memory access, B-33–B-34
memory-reference, 237
multiplication, 183
nop, 304–305
PA-RISC, D-34–D-36
performance, 35–36
pipeline sequence, 304f
PowerPC, D-12–D-13, D-32–D-34
PTX, B-31, B-32f
representation in computer, 81–89
restartable, 440–441
resuming, 440b–441b
R-type, 243–244, 248–249
SPARC, D-29–D-32
store, 71
store-conditional doubleword, 122–123
subtraction, 176
SuperH, D-39–D-40
thread, B-30–B-31
Thumb, D-38–D-39

vector, 500–502
as words, 62
x86, 146–155

Instructions per clock cycle (IPC), 322
Integrated circuits (ICs), 19. See also

specific chips
cost, 27
defined, 25
manufacturing process, 26
very large-scale (VLSIs), 25

Intel Core i7, 46–49, 236, 493, 540–545
address translation for, 460f
architectural registers, 337–338
caches in, 461f
memory hierarchies of, 459–464
microarchitecture, 337
performance of, 462
SPEC CPU benchmark, 46–48
SPEC power benchmark, 48–49
TLB hardware for, 460f

Intel Core i7 920, 337–340
microarchitecture, 337

Intel Core i7 960
benchmarking and rooflines of,

540–545
Intel Core i7 Pipelines, 334–342

memory components, 338f
performance, 340–342
program performance, 341b
specification, 335f

Intel IA-64 architecture, 162.e2f
Intel Paragon, 553.e6–553.e7
Intel Threading Building Blocks, B-60
Intel x86 microprocessors

clock rate and power for, 40f
Interference graphs, 144.e10
Interleaving, 390
Interprocedural analysis, 144.e13b–144.

e14b
Interrupt enable, 439b
Interrupt-driven I/O, 529.e3
Interrupts

defined, 193, 315
event types and, 315
exceptions versus, 315
imprecise, 347.e2–347.e3, 321b
precise, 321b
vectored, 316

Intrinsity FastMATH processor, 387–389
caches, 388f
data miss rates, 389f, 399f
read processing, 434f
TLB, 432–435
write-through processing, 434f

Index I-11

Inverted page tables, 429
Issue packets, 324–325
I-type, 87b

J

Java
bytecode, 132
bytecode architecture, 144.e10–144.e12
characters in, 111–113
compiling in, 144.e18–144.e19
goals, 132
interpreting, 132, 144–145, 144.e14
keywords, 144.e20
method invocation in, 144.e20
pointers, 144.e25–144.e26
primitive types, 144.e25
programs, starting, 132–133
reference types, 144.e25
sort algorithms, 141f
strings in, 111–113
translation hierarchy, 132f
while loop compilation in, 144.e17b–

144.e18b
Java Virtual Machine (JVM), 144.e15, 145
Jump-and-link register instruction (jalr),

97–99
Jump instructions, D-26

branch instruction versus, 250f
control and datapath for, 251
implementing, 237–240
instruction format, 250

Just In Time (JIT) compilers, 133, 552

K

Karnaugh maps, A-18
Kernel mode, 437
Kernels

CUDA, B-19, B-24
defined, B-19–B-22

Kilobyte, 6f

L

LAPACK, 223–224
Large-scale multiprocessors, 553.e6–553.

e7
Latches

D latch, A-50–A-51, A-51
defined, A-50–A-51

Latency
instruction, 346–347
memory, B-74b

pipeline, 276b
use, 325–327

lb (load byte), 64f
lbu (load byte, unsigned), 64f
ld (load doubleword), 64f
Leaf procedures. See also Procedures

defined, 102
example, 112f

Least recently used (LRU)
as block replacement strategy, 445–446
defined, 401
pages, 426–428

Least significant bits
defined, 74
SPARC, D-31

Left-to-right instruction flow, 277
Level-sensitive clocking, A-73–A-74,

A-74–A-75
defined, A-73–A-74
two-phase, A-74

lh (load halfword), 64f
lhu (load halfword, unsigned), 64f
Link, 529.e1–529.e2
Linkers, 127–129

defined, 127
executable files, 127–129
steps, 127

Linking object files, 128b–129b
Linpack, 227.e2–227.e3, 530
Liquid crystal displays (LCDs), 18
LISP, SPARC support, D-30
Live range, 144.e10
Livermore Loops, 54.e10
Load balancing, 497b–498b
Load byte, 109
Load doubleword, 69, 71–72
Load instructions. See also Store instructions

access, B-41
base register, 254
compiling with, 71b
datapath in operation for, 259f
defined, 69
EX stage, 282f
halfword unsigned, 112
ID stage, 281f
IF stage, 281f
load byte unsigned, 78
load half, 112
MEM stage, 283f
pipelined datapath in, 286f
signed, 78b
unit for implementing, 247f
unsigned, 78b
WB stage, 283f

Loaders, 130
Load-reserved doubleword, 122–123
Load-store architectures, 162.e2
Load upper immediate, 113–114
Load-use data hazard, 269–271, 308
Load-use stalls, 308
Load word, 113b
Load word unsigned, 113b
Local area networks (LANs), 24. See also

Networks
Local memory, B-21, B-40
Local miss rates, 408b
Local optimization, 144.e4. See also

Optimization
implementing, 144.e7

Locality
principle, 366–367
spatial, 366, 369b
temporal, 366, 369b

Lock synchronization, 121
Locks, 510–513
Logic

address select, C-24, C-25f
ALU control, C-6–C-7
combinational, 242, A-5, A-9–A-20
components, 241
control unit equations, C-11f
design, 240–243
equations, A-7b
minimization, A-18
programmable array (PAL), A-77
sequential, A-4–A-5, A-55–A-57
two-level, A-11–A-14

Logical operations, 89–92
AND, 90
desktop RISC, D-11f
embedded RISC, D-13f
NOT, 91
OR, 91
shifts, 90
xor, 91

Long instruction word (LIW), 347.e4
Lookup tables (LUTs), A-77–A-78
Loop unrolling

defined, 144.e3–144.e4, 327–328
for multiple-issue pipelines, 327b–328b
register renaming and, 327

Loops, 94–96
conditional branches in, 115–116
for, 142
prediction and, 312b
test, 142–143
while, compiling, 94b–95b

lr.d (load reserved), 64f

I-12 Index

lui (load upper immediate), 64f
lw (load word), 64f
lwu (load word, unsigned), 64f

M

M32R, D-15, D-40
Machine code, 82
Machine instructions, 82
Machine language, 15f

branch offset in, 116b–117b
decoding, 118–120
defined, 14, 82
illustrated, 15f
RISC-V, 87–89
SRAM, 19–22
translating RISC-V assembly language

into, 85b–86b
Main memory, 420. See also Memory

defined, 23
page tables, 429
physical addresses, 420

Mapping applications, B-55–B-72
Mark computers, 54.e3
Matrix multiply, 218–222, 545–548
Mealy machine, 452, A-67, A-70–A-71,

A-71b
Mean time to failure (MTTF), 410–411

versus AFR of disks, 410b–411b
improving, 411–412

Media Access Control (MAC) address,
529.e6

Megabyte, 6f
Memory

addresses, 78b
affinity, 538f
atomic, B-21
bandwidth, 371–372, 389b
cache, 19–22, 375–410
CAM, 400b–401b
constant, B-40
control, C-26
defined, 19
DRAM, 19, 371–373, A-62–A-64
flash, 23
global, B-21, B-39
GPU, 514
instructions, datapath for, 247
local, B-21, B-40
main, 23
nonvolatile, 22–23
operands, 68–72
parallel system, B-36–B-41

read-only (ROM), A-14–A-16
SDRAM, 371–372
secondary, 23
shared, B-17, B-39–B-40
spaces, B-39
SRAM, A-57–A-59
stalls, 392
technologies for building, 24–28
texture, B-40
virtual, 419–443
volatile, 22–23

Memory access instructions, B-33–B-34
Memory access stage

control line, 292f
load instruction, 282f
store instruction, 282

Memory bandwidth, 540–541, 549b
Memory consistency model, 458b
Memory elements, A-49–A-57

clocked, A-50
D flip-flop, A-50–A-51, A-52
D latch, A-51
DRAMs, A-62–A-64
flip-flop, A-50
hold time, A-52–A-53
latch, A-50
setup time, A-52–A-53, A-53f
SRAMs, A-57–A-59
unclocked, A-50

Memory hierarchies, 537
of ARM cortex-A53, 459–464
block (or line), 367–368
cache performance, 390–410
caches, 375–390
common framework, 443–449
defined, 367
design challenges, 449b
development, 473.e5–473.e7
exploiting, 364
of Intel Core i7, 459–464
level pairs, 368f
multiple levels, 367
overall operation of, 435b–436b
parallelism and, 458.e1–458.e2,

454–458
pitfalls, 468–472
program execution time and, 409
quantitative design parameters, 443f
redundant arrays and inexpensive

disks, 458
reliance on, 369
structure, 367f
structure diagram, 370f

variance, 409b
virtual memory, 419–443

Memory rank, 373
Memory technologies, 370–375

disk memory, 373–375
DRAM technology, 370–373
flash memory, 373
SRAM technology, 370–371

Memory-mapped I/O, 529.e2
Memory-stall clock cycles, 391
Message passing

defined, 521
multiprocessors, 521–526

Metastability, A-75–A-76
Methods

defined, 144.e14
invoking in Java, 144.e19–144.e20

Microarchitectures, 337
Intel Core i7 920, 337–340

Microcode
assembler, C-30
control unit as, C-28f
defined, C-27
dispatch ROMs, C-30, C-30f
horizontal, C-32
vertical, C-32

Microinstructions, C-31
Microprocessors

design shift, 493
multicore, 8, 43, 492–493

Microprograms
as abstract control representation,

C-30–C-31
field translation, C-28–C-29
translating to hardware, C-28–C-32

Migration, 456
Million instructions per second (MIPS),

51
Minterms

defined, A-12–A-13, C-20
in PLA implementation, C-20

MIP-map, B-44
MIPS and RISC-V

common features between, 145
MIPS-16

16-bit instruction set, D-41–D-42
immediate fields, D-41
instructions, D-40–D-43
MIPS core instruction changes,

D-42–D-43
PC-relative addressing, D-41

MIPS-32 instruction set, 145
MIPS-64 instructions, 145, D-25–D-27

Index I-13

conditional procedure call instructions,
D-27

constant shift amount, D-25
jump/call not PC-relative, D-26
move to/from control

registers, D-26
nonaligned data transfers, D-25
NOR, D-25
parallel single precision floating-point

operations, D-27
reciprocal and reciprocal square root,

D-27
SYSCALL, D-25
TLB instructions, D-26–D-27

Mirroring, 458.e4
Miss penalty

defined, 368–369
determination, 383–384
multilevel caches, reducing,

402–405
Miss rates

block size versus, 383–384
data cache, 444f
defined, 368
global, 408b
improvement, 383–384
Intrinsity FastMATH processor, 389
local, 408b
miss sources, 448
split cache, 389b

Miss under miss, 460
MMX (MultiMedia eXtension), 217
Moore machines, 452, A-67, A-70–A-71,

A-71b
Moore’s law, 529.e1–529.e2, 11, 371, 514,

B-72b
Most significant bit

1-bit ALU for, A-33f
defined, 74

MS-DOS, 473.e15
Multicore, 509–514
Multicore multiprocessors, 8, 43

defined, 8, 492–493
MULTICS (Multiplexed Information and

Computing Service), 473.e8
Multilevel caches. See also Caches

complications, 408b
defined, 390, 408b
miss penalty, reducing, 402–405
performance of, 402b–403b
summary, 409–410

Multimedia extensions
desktop/server RISCs, D-16–D-18

as SIMD extensions to instruction sets,
553.e3

vector versus, 501b–502b
Multiple dimension arrays, 212
Multiple instruction multiple data

(MIMD), 550–551
defined, 499–500
first multiprocessor, 553.e3–553.e4

Multiple instruction single data (MISD),
499–500

Multiple issue, 322
code scheduling, 326b–327b
dynamic, 322, 328–333
issue packets, 324–325
loop unrolling and, 327b–328b
processors, 322
static, 322, 324–328
throughput and, 332b

Multiple processors, 545–548
Multiple-clock-cycle pipeline diagrams,

286–287
five instructions, 288f
illustrated, 287–290

Multiplexors, A-10
controls, 451
in datapath, 255f
defined, 237–238
forwarding, control values, 300f
selector control, 251
two-input, A-10

Multiplicand, 178
Multiplication, 177–183. See also

Arithmetic
fast, hardware, 182
faster, 182–183
first algorithm, 180f
floating-point, 201–206
hardware, 178–182
instructions, 183
operands, 183
product, 183
sequential version, 178–182
signed, 182

Multiplier, 178
Multiply algorithm, 178–182
Multiply-add (MAD), B-42
Multiprocessors

benchmarks, 530–540
bus-based coherent, 553.e6
defined, 492
historical perspective, 553
large-scale, 553.e6–553.e7
message-passing, 521–526

multithreaded architecture, B-26–B-27,
B-36

organization, 491, 521
for performance, 549
shared memory, 492–493, 509–514
software, 493f
TFLOPS, 553.e5
UMA, 510

Multistage networks, 527–528
Multithreaded multiprocessor

architecture, B-25–B-36
conclusion, B-36
ISA, B-31–B-34
massive multithreading, B-25–B-26
multiprocessor, B-26–B-27
multiprocessor comparison, B-35–B-36
SIMT, B-27–B-29
special function units (SFUs), B-35
streaming processor (SP), B-34
thread instructions, B-30–B-31
threads/thread blocks management,

B-30
Multithreading, B-25–B-26

coarse-grained, 506–507
defined, 498–499
fine-grained, 506
hardware, 506–509
simultaneous (SMT), 507

Must-information, 144.e13b–144.e14b
Mutual exclusion, 121

N

Name dependence, 327
NAND gates, A-8–A-9
NAS (NASA Advanced Supercomputing),

532
N-body

all-pairs algorithm, B-65
GPU simulation, B-71
mathematics, B-65–B-66
multiple threads per body, B-68–B-72
optimization, B-67
performance comparison, B-69–B-70
results, B-70–B-72
shared memory use, B-67–B-68

Negation shortcut, 78–79
Nested procedures, 102–104

compiling recursive procedure
showing, 102b–103b

NetFPGA 10-Gigagit Ethernet card, 529.
e1f, 529.e2f

Network of Workstations, 553.e7–553.e8

I-14 Index

Network topologies, 526–529
implementing, 528–529
multistage, 529f

Networking, 529.e3–529.e4
operating system in, 529.e3–529.e5
performance improvement, 529.

e6–529.e9
Networks, 23–24

advantages, 23
bandwidth, 527
crossbar, 527–528
fully connected, 527
local area (LANs), 23–24
multistage, 527–528
wide area (WANs), 23–24

Newton’s iteration, 212b
Next state

nonsequential, C-24
sequential, C-23–C-24

Next-state function, 451, A-66
defined, 451
implementing, with sequencer,

C-22–C-28
Next-state outputs, C-12b–C-13b, C-27

example, C-12
implementation, C-12–C-13
logic equations, C-12b–C-13b
truth tables, C-13–C-15

No Redundancy (RAID 0), 458.e3
No write allocation, 386
Nonblocking assignment, A-24
Nonblocking caches, 334b, 460
Nonuniform memory access (NUMA),

510
Nonvolatile memory, 22–23
Nops, 304–305
NOR gates, A-8–A-9

cross-coupled, A-49f
D latch implemented with, A-51f

NOR operation, D-25
NOT operation, 91, A-6
Numbers

binary, 74
computer versus real-world, 215
decimal, 74, 77b
denormalized, 216
hexadecimal, 83
signed, 74–81
unsigned, 74–81

NVIDIA GeForce 8800, B-46–B-55
all-pairs N-body algorithm, B-71
dense linear algebra computations,

B-51–B-53

FFT performance, B-53
instruction set, B-49
performance, B-51
rasterization, B-50
ROP, B-50–B-51
scalability, B-51
sorting performance, B-54–B-55
special function approximation

statistics, B-43f
special function unit (SFU), B-50
streaming multiprocessor (SM),

B-48–B-49
streaming processor, B-49–B-50
streaming processor array (SPA), B-46
texture/processor cluster (TPC), B-47

NVIDIA GPU architecture, 515–517
NVIDIA GTX 280, 541f, 542f
NVIDIA Tesla GPU, 540–545

O

Object files, 128b–129b
debugging information, 127
header, 126
linking, 128b–129b
relocation information, 126
static data segment, 126
symbol table, 127
text segment, 126

Object-oriented languages. See also Java
brief history, 162.e7
defined, 144.e14, 145

One’s complement, 81, A-29
Opcodes

control line setting and, 256
defined, 83, 254

OpenGL, B-13
OpenMP (Open MultiProcessing),

512b–513b, 532
Operands, 67–74. See also Instructions

32-bit immediate, 113–114
adding, 175
arithmetic instructions, 67
compiling assignment when in

memory, 69b
constant, 72–74
division, 183–191
floating-point, 207f
memory, 68–72
multiplication, 177–183
RISC-V, 64f

Operating systems
brief history, 473.e8

defined, 13
encapsulation, 22
in networking, 529.e3–529.e5

Operations
atomic, implementing, 122
hardware, 63–67
logical, 89–92
x86 integer, 151–152

Optimization
class explanation, 144.e13f
compiler, 141f
control implementation, C-27
global, 144.e4–144.e10
high-level, 144.e3–144.e4
local, 144.e4–144.e10
manual, 144

or (inclusive or), 64f
OR operation, 176, A-6
ori (inclusive or immediate), 64f
Out-of-order execution

defined, 330
performance complexity, 408b–409b
processors, 334b

Output devices, 16–17
Overflow

defined, 75, 192
detection, 176
exceptions, 318f
floating-point, 193
occurrence, 175
saturation and, 177b
subtraction, 175

P

P + Q redundancy (RAID 6), 458.e6
Packed floating-point format, 218
Page faults, 426. See also Virtual memory

for data access, 461
defined, 420–421
handling, 422, 439–441
virtual address causing, 432–435

Page tables, 445
defined, 424–425
illustrated, 427f
indexing, 424–425
inverted, 429
levels, 429
main memory, 429
register, 424–425
storage reduction techniques, 429
updating, 424
VMM, 441b

Index I-15

Pages. See also Virtual memory
defined, 420–421
dirty, 430b
finding, 424–425
LRU, 426–428
offset, 421
physical number, 421
placing, 424–425
size, 422f
virtual number, 421

Parallel bus, 529.e1–529.e2
Parallel execution, 121
Parallel memory system, B-36–B-41.

See also Graphics processing units
(GPUs)

caches, B-38
constant memory, B-40
DRAM considerations, B-37–B-38
global memory, B-39
load/store access, B-41
local memory, B-40
memory spaces, B-39
MMU, B-38–B-39
ROP, B-41
shared memory, B-39–B-40
surfaces, B-41
texture memory, B-40

Parallel processing programs, 494–499
creation difficulty, 494–499
defined, 492
for message passing, 511b–513b
great debates in, 553.e4–553.e6
for shared address space, 511b–513b
use of, 549

Parallel reduction, B-62
Parallel scan, B-60–B-63

CUDA template, B-61f
inclusive, B-60
tree-based, B-62f

Parallel software, 493
Parallelism, 12, 43b, 321–334

and computers arithmetic, 216–217
data-level, 226, 500
debates, 553.e4–553.e6
GPUs and, 514, B-76
instruction-level, 43, 321–322, 333
memory hierarchies and, 458.e1–458.

e2, 454–458
multicore and, 509b
multiple issue, 322b
multithreading and, 507
performance benefits, 44
process-level, 492

redundant arrays and inexpensive
disks, 458

subword, D-17
task, B-24
task-level, 492
thread, B-22

Paravirtualization, 472
PA-RISC, D-14, D-17

branch vectored, D-35
conditional branches, D-34, D-35f
debug instructions, D-36
decimal operations, D-35
extract and deposit, D-35
instructions, D-34–D-36
load and clear instructions, D-36
multiply/add and multiply/subtract,

D-36
nullification, D-34
nullifying branch option, D-25
store bytes short, D-36
synthesized multiply and divide,

D-34–D-35
Parity, 458.e4

bits, 412–413
code, 420, A-64–A-65

PARSEC (Princeton Application
Repository for Shared Memory
Computers), 532

Pass transistor, A-62b–A-64b
PCI-Express (PCIe), 529.e1–529.e2,

B-7–B-8, 529
PC-relative addressing, 115–116, 118
Peak floating-point performance, 534
Pentium bug morality play, 224f
Performance, 28–40

assessing, 28
classic CPU equation, 36–40
components, 38f
CPU, 33–35
defining, 29–32
equation, using, 36–40
improving, 34b–35b
instruction, 35–36
measuring, 32–33, 54.e9
program, 9–10
ratio, 31
relative, 31b
response time, 30b
sorting, B-49–B-50
throughput, 30b
time measurement, 32

Personal computers (PCs), 7f
defined, 5

Personal mobile device (PMD)
defined, 6–7

Petabyte, 6f
Physical addresses, 420

mapping to, 420–421
space, 509, 511b–513b

Physically addressed caches, 436–437
Pipeline registers

before forwarding, 298–300
dependences, 297–298, 298f
forwarding unit selection, 302

Pipeline stalls, 270
avoiding with code reordering,

270b–271b
data hazards and, 303–307
insertion, 305f
load-use, 308
as solution to control hazards, 272f

Pipelined branches, 310b
Pipelined control, 290–294. See also

Control
control lines, 290–291
overview illustration, 306f
specifying, 291

Pipelined datapaths, 276–294
with connected control

signals, 294f
with control signals, 290–294
corrected, 286f
illustrated, 279f
in load instruction stages, 286f

Pipelined dependencies, 296f
Pipelines

branch instruction impact, 308f
effectiveness, improving, 347.e3–347.

e4
execute and address calculation stage,

280, 282
five-stage, 264, 280, 288b–290b
graphic representation, 269f, 286–290
instruction decode and register file

read stage, 278f, 282
instruction fetch stage, 279f, 282
instructions sequence, 304f
latency, 276b
memory access stage, 280, 282
multiple-clock-cycle diagrams,

286–287
performance bottlenecks, 332–333
single-clock-cycle diagrams, 286–287
stages, 264–265
static two-issue, 325f
write-back stage, 279, 284

I-16 Index

Pipelining, 12, 262–276
advanced, 333–334
benefits, 262
control hazards, 271–274
data hazards, 268–271
exceptions and, 317–321
execution time and, 276b
fallacies, 345–346
hazards, 267–271
instruction set design for, 267
laundry analogy, 263f
overview, 262–276
paradox, 263–264
performance improvement, 267
pitfall, 345–346
simultaneous executing instructions,

276b
speed-up formula, 265
structural hazards, 267–268, 284
summary, 314–315
throughput and, 276b

Pitfalls. See also Fallacies
address space extension, 384–385
arithmetic, 222–225
associativity, 469b
defined, 49
GPUs, B-74
ignoring memory system behavior,

468b
memory hierarchies, 468–472
out-of-order processor evaluation,

469b
performance equation subset, 50b
pipelining, 345–346
pointer to automatic variables, 159b
sequential word addresses, 159b
simulating cache, 468
software development with

multiprocessors, 548b
VMM implementation, 470–472

Pixel shader example, B-15–B-17
Pixels, 18
Pointers

arrays versus, 141–144
frame, 104–105
global, 104b
incrementing, 143
Java, 144.e25–144.e26
stack, 99, 102–104

Polling, 529.e6
Pop, 99
Power

clock rate and, 40
critical nature of, 53
efficiency, 333–334
relative, 41b–42b

PowerPC
algebraic right shift, D-33
branch registers, D-32–D-33
condition codes, D-12–D-13
instructions, D-12–D-13
instructions unique to, D-32–D-34
load multiple/store multiple, D-33
logical shifted immediate, D-33
rotate with mask, D-33

Precise interrupts, 321b
Prediction, 12

2-bit scheme, 312
accuracy, 312
dynamic branch, 310–314
loops and, 312b
steady-state, 312

Prefetching, 472, 536
Primitive types, 144.e25
Procedure calls

preservation across, 104
Procedures, 98–108

compiling, 100b–101b
compiling, showing nested procedure

linking, 100b–101b
execution steps, 98
frames, 104
leaf, 102
nested, 102b–103b
recursive, 107b
for setting arrays to zero, 141f
sort, 135–140
strcpy, 110b–111b
string copy, 110b–111b
swap, 134–135

Process identifiers, 438
Process-level parallelism, 492
Processors, 234

control, 19
as cores, 43
datapath, 19
defined, 17b, 19
dynamic multiple-issue, 322
multiple-issue, 322
out-of-order execution, 334b, 408b–

409b
performance growth, 44f
ROP, B-12, B-41
speculation, 323–324

static multiple-issue, 322, 324–328
streaming, B-34
superscalar, 328, 347.e4, 507–508
technologies for building, 24–28
two-issue, 325–327
vector, 499–500
VLIW, 324

Product, 178
Product of sums, A-11
Program counters (PCs), 243

changing with conditional branch,
313b–314b

defined, 99, 243
exception, 437, 439
incrementing, 243, 245f
instruction updates, 279

Program performance
elements affecting, 39t
understanding, 9

Programmable array logic (PAL), A-77
Programmable logic arrays (PLAs)

component dots illustration, A-16f
control function implementation, C-7f,

C-20
defined, A-12–A-13
example, A-13b–A-14b
illustrated, A-13f
ROMs and, A-15–A-16
size, C-20
truth table implementation, A-13

Programmable logic devices (PLDs),
A-77

Programmable ROMs (PROMs), A-14
Programming languages. See also specific

languages
brief history of, 162.e6–162.e7
object-oriented, 145
variables, 67

Programs
assembly language, 125
Java, starting, 132–133
parallel processing, 492
starting, 124–133
translating, 124–133

Propagate
defined, A-39
example, A-44b–A-45b
super, A-40

Protected keywords, 144.e20
Protection

defined, 420
implementing, 437–439

Index I-17

mechanisms, 473.e12
VMs for, 416–417

Protection group, 458.e4
Pseudoinstructions

defined, 125
summary, 126

Pthreads (POSIX threads), 532
PTX instructions, B-31, B-32f
Public keywords, 144.e20
Push

defined, 99
using, 102–104

Q

Quad words, 151
Quicksort, 403b–405b, 404f
Quotient, 184

R

Race, A-72–A-73
Radix sort, 403b–405b, 404f,

B-63–B-65
CUDA code, B-64f
implementation, B-63–B-65

RAID. See Redundant arrays of
inexpensive disks (RAID)

RAM, 9
Raster operation (ROP) processors, B-12,

B-41, B-50–B-51
fixed function, B-41

Raster refresh buffer, 18
Rasterization, B-50
Ray casting (RC), 544
Read-only memories (ROMs),

A-14–A-16
control entries, C-16b–C-18b
control function encoding, C-19
dispatch, C-25f
implementation, C-15–C-19
logic function encoding, A-15
overhead, C-18
PLAs and, A-15–A-16, A-16
programmable (PROM), A-14
total size, C-15–C-16

Read-stall cycles, 391
Read-write head, 373
Receive message routine, 521
Recursive procedures, 107b. See also

Procedures
clone invocation, 102

Reduced instruction set computer
(RISC) architectures, 162.e4, 347.
e3, D-3–D-5, D-5–D-9, D-9–D-16,
D-16–D-18, D-19, D-20–D-25,
D-25–D-27, D-27–D-29,
D-29–D-32, D-32–D-34,
D-34–D-36, D-36–D-38,
D-38–D-39, D-39–D-40, D-40,
D-40–D-43, D-43–D-45. See
also Desktop and server RISCs;
Embedded RISCs

group types, D-3–D-4
instruction set lineage, D-44f

Reduction, 511
Redundant arrays of inexpensive disks

(RAID), 458.e1–458.e2
history, 458.e6–458.e7
RAID 0, 458.e3
RAID 1, 458.e4
RAID 2, 458.e4
RAID 3, 458.e4
RAID 4, 458.e4–458.e5
RAID 5, 458.e5–458.e6
RAID 6, 458.e6
spread of, 458.e5
summary, 458.e6–458.e7
use statistics, 458.e6f

Reference bit, 428b
References

absolute, 127
types, 144.e25

Register addressing, 118f
Register allocation, 144.e10–144.e12
Register files, A-49b, A-53–A-55

in behavioral Verilog, A-56
defined, 244, A-49b, A-53
single, 249
two read ports implementation, A-54f
with two read ports/one write port,

A-54f
write port implementation, A-55f

Register-memory architecture, 162.e2
Registers, 148–151

architectural, 316, 337–338
base, 69
clock cycle time and, 67
compiling C assignment with, 67b–68b
defined, 67
destination, 254
floating-point, 212b
left half, 280
number specification, 244

page table, 424–425
pipeline, 297–298, 298f, 302
primitives, 67
renaming, 327
right half, 280
RISC-V conventions, 255f
spilling, 71
Status, 316
temporary, 68, 100
variables, 68

Relative performance, 31b
Relative power, 41b–42b
Reliability, 410–411
Remainder, defined, 184
Reorder buffers, 334b
Replication, 456
Requested word first, 384
Request-level parallelism, 524
Reservation stations

buffering operands in, 329
defined, 329

Response time, 30b
Restartable instructions, 440–441
Return address, 99
R-format

ALU operations, 245f
Ripple carry

adder, A-29
carry lookahead speed versus, A-45b

RISC-V, 62, 85–87
architecture, 190f
arithmetic instructions, 63
arithmetic/logical instructions not in,

D-21f, D-23f
assembly instruction, mapping,

81b–82b
common extensions to, D-20–D-25
compiling C assignment statements

into, 65b
compiling complex C assignment into,

66b
control instructions not in, D-21f
control registers, 439b
control unit, C-10
data transfer instructions not in, D-20f,

D-22f
divide in, 189
exceptions in, 316–317
fields, 83–89
floating-point instructions, 206–212
floating-point instructions not in,

D-22f

I-18 Index

instruction classes, 157f
instruction encoding, 85f, 119f
instruction formats, 120, 146f
instruction set, 62, 159–160, 226, 236,

D-9–D-16
machine language, 87–89
memory addresses, 70f
memory allocation for program and

data, 106f
multiply in, 183
Pseudo, 226f
register conventions, 107f
static multiple issue with, 324–328

Roofline model, 534–535, 536f, 537
with ceilings, 538f
computational roofline, 535, 537
illustrated, 534f
Opteron generations, 535
with overlapping areas shaded, 539f
peak floating-point performance, 538f
peak memory performance, 542f
with two kernels, 539f

Rotational delay. See Rotational latency
Rotational latency, 375
Rounding, 212–213

accurate, 212–213
bits, 214
with guard digits, 213b
IEEE 754 modes, 213–214

Row-major order, 211b–212b, 405
R-type, defined, 87b
R-type instructions, 248b–249b

datapath for, 256–259
datapath in operation for, 258f

RV32, 73b
RV64, 73b

S

Saturation, 177b
sb (store byte), 64f
SB-type instruction format, 115
sc.d (store conditional), 64f
SCALAPAK, 223–224
Scaling

strong, 497
weak, 497

Scientific notation
adding numbers in, 199
defined, 191
for reals, 191

sd (store doubleword), 64f

Search engines, 4
Secondary memory, 23
Sectors, 373–374
Seek, 374
Segmentation, 423b
Selector values, A-10
Semiconductors, 25–26
Send message routine, 521
Sensitivity list, A-23–A-24
Sequencers

explicit, C-32
implementing next-state function with,

C-22–C-28
Sequential logic, A-4
Servers, 458.e6. See also Desktop and

server RISCs
cost and capability, 5

Service accomplishment, 410–411
Service interruption, 410
Set-associative caches, 395. See also

Caches
address portions, 399f
block replacement strategies, 445
choice of, 444
four-way, 396f, 399
memory-block location, 395f
misses, 397b–398b
n-way, 395
two-way, 396f

Set less than instruction (slt), A-31
Setup time, A-52–A-53, A-53f
sh (store halfword), 64f
Shaders

defined, B-14
floating-point arithmetic, B-14
graphics, B-14–B-15
pixel example, B-15–B-17

Shading languages, B-14
Shadowing, 458.e4
Shared memory. See also Memory

as low-latency memory, B-21
caching in, B-58–B-60
CUDA, B-58
N-body and, B-66f
per-CTA, B-39
SRAM banks, B-40

Shared memory multiprocessors (SMP),
509–514

defined, 492–493, 509–510
single physical address space, 509
synchronization, 510–513

Shift left logical immediate (slli), 90
Shift right arithmetic (srai), 90

Shift right logical immediate (srli), 90
Sign and magnitude, 192
Sign bit, 77
Sign extension, 246

defined, 78b
shortcut, 78–79

Signals
asserted, 242, A-4
control, 242, 255
deasserted, 242, A-4

Signed division, 187–188
Signed multiplication, 182
Signed numbers, 74–81

sign and magnitude, 75
treating as unsigned, 96

Significands, 193–194
addition, 198–199
multiplication, 201–205

Silicon, 25–26
as key hardware technology, 53
crystal ingot, 26
defined, 25–26
wafers, 26

Silicon crystal ingot, 26
SIMD (Single Instruction Multiple Data),

498–499, 550–551
computers, 553.e1–553.e3
data vector, B-35
extensions, 553.e3
for loops and, 553.e2
massively parallel multiprocessors,

553.e1
small-scale, 553.e3
vector architecture, 500–502
in x86, 500

SIMMs (single inline memory modules),
473.e4, 473.e5f

Simple programmable logic devices
(SPLDs), A-77

Simplicity, 65–67
Simultaneous multithreading

(SMT), 507
support, 507f
thread-level parallelism, 507
unused issue slots, 507f

Single error correcting/Double error
correcting (SEC/DEC), 412–416

Single instruction single data (SISD), 500,
504–506

Single precision. See also Double
precision

binary representation, 196b
defined, 193

RISC-V (Continued)

Index I-19

Single-clock-cycle pipeline diagrams,
287–290

illustrated, 289f
Single-cycle datapaths. See also Datapaths

illustrated, 277f
instruction execution, 278f

Single-cycle implementation
control function for, 261
nonpipelined execution versus

pipelined execution, 266f
non-use of, 261–262
penalty, 262
pipelined performance versus, 264b–265b

Single-instruction multiple-thread
(SIMT), B-27–B-29

overhead, B-35
multithreaded warp scheduling, B-28f
processor architecture, B-28–B-29
warp execution and divergence,

B-29–B-30
Single-program multiple data (SPMD),

B-22
sll (shift left logical), 64f
slli (shift left logical immediate), 64f
Smalltalk-80, 162.e7
Smart phones, 7
Snooping protocol, 456–458
Snoopy cache coherence, 459.e16
Software optimization

via blocking, 405–409
Software

layers, 13f
multiprocessor, 492
parallel, 493
as service, 7, 524, 550
systems, 13

Sort algorithms, 141f
Sort procedure, 135–140. See also

Procedures
code for body, 136–138
full procedure, 139–140
passing parameters in, 138
preserving registers in, 138–139
procedure call, 138
register allocation for, 136

Sorting performance, B-54–B-55
Space allocation

on heap, 105–108
on stack, 104–105

SPARC
annulling branch, D-23–D-25
CASA, D-31–D-32
conditional branches, D-10–D-16

fast traps, D-30
floating-point operations, D-31
instructions, D-29–D-32
least significant bits, D-31f
multiple precision floating-point

results, D-32
nonfaulting loads, D-32
overlapping integer operations, D-31
quadruple precision floating-point

arithmetic, D-36
register windows, D-29–D-30
support for LISP and Smalltalk, D-30

Sparse matrices, B-55–B-58
Sparse Matrix-Vector multiply (SpMV),

B-55, B-57f, B-58
CUDA version, B-57f
serial code, B-57f
shared memory version, B-59f

Spatial locality, 366
large block exploitation of, 383
tendency, 369

SPEC, 54.e10–54.e11
CPU benchmark, 46–48
power benchmark, 48–49
SPEC89, 54.e10
SPEC92, 54.e11
SPEC95, 54.e11
SPEC2000, 54.e11
SPEC2006, 54.e11
SPECrate, 530
SPECratio, 47–48

Special function units (SFUs), B-35, B-50
defined, B-42–B-43

Speculation, 323–324
hardware-based, 331–333
implementation, 323
performance and, 323–324
problems, 323
recovery mechanism, 323

Speed-up challenge
balancing load, 497b–498b
bigger problem, 496b–497b

Spilling registers, 71b–72b, 99
Split algorithm, 544
Split caches, 389b
sra (shift right arithmetic), 64f
srai (shift right arithmetic immediate), 64f
srl (shift right logical), 64f
srli (shift right logical immediate), 64f
Stack architectures, 162.e3–162.e4
Stack pointers

adjustment, 102–104
defined, 99

values, 101f
Stacks

allocating space on, 104–105
for arguments, 99
defined, 99
pop, 99
push, 99, 102–104

Stalls, 270
avoiding with code reordering,

270b–271b
behavioral Verilog with detection, 345.

e3–345.e8
data hazards and, 303–307
illustrations, 345.e20
insertion into pipeline, 305f
load-use, 308
memory, 391
as solution to control hazard, 271
write-back scheme, 392
write buffer, 391

Standby spares, 458.e7
State

in 2-bit prediction scheme, 312
assignment, A-69, C-27
bits, C-8–C-10
exception, saving/restoring, 440
logic components, 241
specification of, 424b

State elements
clock and, 241
combinational logic and, 241
defined, 240–241, A-47
inputs, 241
register file, A-49b
in storing/accessing instructions, 244f

Static branch prediction, 324
Static data

segment, 105
Static multiple-issue processors, 322,

324–328. See also Multiple issue
control hazards and, 324–325
instruction sets, 324
with RISC-V ISA, 324–328

Static random access memories (SRAMs),
370–371, A-57–A-66

array organization, A-61f
basic structure, A-60f
defined, 19–22, A-57
fixed access time, A-57
large, A-58
read/write initiation, A-58
synchronous (SSRAMs), A-59
three-state buffers, A-58, A-59f

I-20 Index

Static variables, 104b
Steady-state prediction, 312
Sticky bits, 214
Store buffers, 334b
Store byte, 109
Store-conditional doubleword, 122–123
Store doubleword, 70–71
Store instructions. See also Load

instructions
access, B-41
base register, 254
compiling with, 71
conditional, 122–123
defined, 71b
EX stage, 284f
ID stage, 281f
IF stage, 281f
instruction dependency, 302b
MEM stage, 283f
unit for implementing, 247f
WB stage, 283f

Store word, 113b
Stored program concept, 63

as computer principle, 88b
illustrated, 88f
principles, 159–160

Strcpy procedure, 110b–111b. See also
Procedures

as leaf procedure, 111
pointers, 111

Stream benchmark, 540b
Streaming multiprocessor (SM), B-13
Streaming processors, B-34, B-49–B-50

array (SPA), B-41, B-46
Streaming SIMD Extension 2 (SSE2)

floating-point architecture, 217
Streaming SIMD Extensions (SSE) and

advanced vector extensions in x86,
217

Stretch computer, 347.e1, 347.e1f
Strings

defined, 109–111
in Java, 111–113
representation, 108f

Strip mining, 502b
Striping, 458.e3
Strong scaling, 497
Structural hazards, 267, 284
sub (subtract), 64f
Subnormals, 216
Subtraction, 174–177. See also Arithmetic

binary, 174b–175b

floating-point, 206
negative number, 176
overflow, 176

Subword parallelism, 216–217, 344f, D-17
and matrix multiply, 218–222

Sum of products, A-11, A-12b
Supercomputers, 347.e2

defined, 5
SuperH, D-15, D-39–D-40
Superscalars

defined, 347.e3–347.e4, 328
dynamic pipeline scheduling, 328–329
multithreading options, 494

Supervisor Exception Cause Register
(SCAUSE), 316

Supervisor exception program counter
(SEPC), 316, 364, 439

address capture, 319–321
defined, 317–319
in restart determination, 316

Supervisor exception return (sret), 437
Supervisor Page Table Base Register

(SPTBR), 427f
Supervisor Trap Vector (STVEC), 321b
Surfaces, B-41
sw (store word), 64f
Swap procedure, 134. See also Procedures

body code, 134–135
full, 135, 139–140
register allocation, 134

Swap space, 426
Symbol tables, 126
Synchronization, 121–124, 544

barrier, B-18, B-20, B-34
defined, 510–513
lock, 121
overhead, reducing, 44–45
unlock, 121

Synchronizers
from D flip-flop, A-75f
defined, A-75
failure, A-75–A-76

Synchronous DRAM (SRAM), 371, A-59,
A-64

Synchronous SRAM (SSRAM), A-59
Synchronous system, A-47–A-48
Syntax tree, 144.e2
System calls, defined, 364
Systems software, 13
SystemVerilog

cache controller, 459.e1–459.e4
cache data and tag modules, 459.e16

FSM, 459.e6f
simple cache block diagram, 459.e3f
type declarations, 459.e1f

T

Tablets, 7f
Tags

defined, 376
in locating block, 399
page tables and, 426
size of, 401b–402b

Tail call, 107
Task identifiers, 438
Task parallelism, B-24
Task-level parallelism, 492
Tebibyte (TiB), 5
Telsa PTX ISA, B-31

arithmetic instructions, B-33
barrier synchronization, B-34
GPU thread instructions, B-32f
memory access instructions, 208

Temporal locality, 366
tendency, 369

Temporary registers, 68, 100
Terabyte (TB), 6f

defined, 5
Texture memory, B-40
Texture/processor cluster (TPC), B-47
TFLOPS multiprocessor, 553.e4–553.e5
Thrashing, 442
Thread blocks, 518f

creation, B-23
defined, B-19
managing, B-30
memory sharing, B-20–B-21
synchronization, B-20–B-21

Thread parallelism, B-22
Threads

creation, B-23
CUDA, B-36
ISA, B-31–B-34
managing, B-30
memory latencies and, B-74b
multiple, per body, B-68–B-72
warps, B-27–B-28

Three Cs model, 447b
Three-state buffers, A-58, A-59f
Throughput

defined, 29–30
multiple issue and, 322
pipelining and, 264

Index I-21

Thumb, D-15f, D-38–D-39
Timing

asynchronous inputs, A-75–A-76
level-sensitive, A-74–A-75
methodologies, A-71–A-77
two-phase, A-74f

TLB misses, 431. See also Translation-
lookaside buffer (TLB)

handling, 439–441
occurrence, 439
problem, 442

Tomasulo’s algorithm, 347.e2
Touchscreen, 19
Tournament branch predicators, 313–314
Tracks, 373–374
Transfer time, 375
Transistors, 25
Translation-lookaside buffer (TLB),

430–432, 473.e5, D-26–D-27. See
also TLB misses

associativities, 432
illustrated, 431f
integration, 435
Intrinsity FastMATH, 432–435
typical values, 432

Transmit driver and NIC hardware
time versus receive driver and NIC
hardware time, 529.e7f

Tree-based parallel scan, B-62f
Truth tables, A-5

ALU control lines, C-5f
for control bits, 253
datapath control outputs, C-17f
datapath control signals, C-14f
defined, 253
example, A-5b
next-state output bits, C-15f
PLA implementation, A-13

Two’s complement representation, 76
advantage, 77
negation shortcut, 78b–79b
rule, 80b
sign extension shortcut, 79b–80b

Two-level logic, A-11–A-14
Two-phase clocking, A-74, A-74f
TX-2 computer, 553.e3

U

Unconditional branches, 93
Underflow, 192
Unicode

alphabets, 111
defined, 111
example alphabets, 112f

Unified GPU architecture, B-10–B-11
illustrated, B-11f
processor array, B-11–B-12

Uniform memory access (UMA), 510,
B-9

multiprocessors, 510
Units

commit, 329, 334b
control, 239–240, 251–253, C-4–C-8,

C-10f, C-12–C-13
defined, 213–214
floating point, 213–214
hazard detection, 303, 306–307
for load/store implementation, 247f
special function (SFUs), B-35,

B-42–B-43, B-50
UNIVAC I, 54.e3–54.e4, 54.e4f
UNIX, 162.e7, 473.e10, 473.e13, 473.e14

AT&T, 473.e14
Berkeley version (BSD), 473.e14
genius, 473.e16
history, 473.e13, 473.e14

Unlock synchronization, 121
Unsigned numbers, 74–81
Use latency

defined, 325–327
one-instruction, 325–327

V

Vacuum tubes, 25f
Valid bit, 376–378
Variables

C language, 104b
programming language, 67
register, 67
static, 104b
storage class, 104b
type, 104b

VAX architecture, 162.e3, 473.e6
Vector lanes, 502
Vector processors, 499–506. See also

Processors
conventional code comparison,

501b–502b
instructions, 501
multimedia extensions and, 500–502
scalar versus, 502–503

Vectored interrupts, 316

Verilog
behavioral definition of RISC-V ALU,

A-25f
behavioral definition with bypassing,

345.e4f
behavioral definition with stalls for

loads, 345.e6f
behavioral specification, 345.e1–345.

e3, A-21
behavioral specification of multicycle

MIPS design, 345.e12f
behavioral specification with

simulation, 345.e1–345.e3
behavioral specification with stall

detection, 345.e3–345.e8
behavioral specification with synthesis,

345.e8–345.e13
blocking assignment, A-24
branch hazard logic implementation,

345.e8
combinational logic, A-23–A-26
datatypes, A-21–A-23
defined, A-20–A-21
forwarding implementation, 345.e3
modules, A-23f
multicycle MIPS datapath, 345.e14f
nonblocking assignment, A-24
operators, A-22–A-23
program structure, A-23
reg, A-21
RISC-V ALU definition in,

A-36–A-37
sensitivity list, A-23–A-24
sequential logic specification,

A-55–A-57
structural specification, A-21
wire, A-21, A-22

Vertical microcode, C-32
Very large-scale integrated (VLSI)

circuits, 25
Very Long Instruction Word (VLIW)

defined, 324
first generation computers, 347.e4
processors, 324

VHDL, A-20–A-21
Video graphics array (VGA) controllers,

B-3–B-4
Virtual addresses

causing page faults, 440
defined, 420–421
mapping from, 420–421
size, 422–423

I-22 Index

Virtual machine monitors (VMMs)
defined, 416
implementing, 470b
laissez-faire attitude, 470
page tables, 441b
in performance improvement, 419
requirements, 418

Virtual machines (VMs), 416–419
benefits, 416–417
illusion, 441b
instruction set architecture support,

419
performance improvement, 419
for protection improvement, 416–417

Virtual memory, 419–443. See also Pages
address translation, 420–421, 430–432
integration, 435–437
for large virtual addresses, 428–429
mechanism, 442
motivations, 419–420
page faults, 420–421, 426
protection implementation, 437–439
segmentation, 423b
summary, 441–443
virtualization of, 441b
writes, 430

Virtualizable hardware, 418
Virtually addressed caches, 436
Visual computing, B-3
Volatile memory, 22

W

Wafers, 26
defects, 26–27
dies, 27–28
yield, 27

Warehouse Scale Computers (WSCs), 7,
521–526, 550

Warps, B-27–B-28
Weak scaling, 497
Wear levelling, 373
While loops, 94b–95b

Whirlwind, 473.e1
Wide area networks (WANs), 24. See also

Networks
Wide immediate operands, 113–114
Words

accessing, 68
defined, 67
double, 151
load, 69, 71
quad, 151
store, 71b

Working set, 442
World Wide Web, 4
Worst-case delay, 262
Write buffers

defined, 387
stalls, 383
write-back cache, 387

Write invalidate protocols, 456
Write serialization, 455–456
Write-back caches. See also Caches

advantages, 446
cache coherency protocol, 459.e4
complexity, 387
defined, 386, 446
stalls, 391
write buffers, 387

Write-back stage
control line, 292f
load instruction, 282
store instruction, 284

Writes
complications, 386b–387b
expense, 442
handling, 385–387
memory hierarchy handling of,

333–334
schemes, 386
virtual memory, 429
write-back cache, 386–387
write-through cache, 386–387

Write-stall cycles, 391
Write-through caches. See also Caches

advantages, 446
defined, 385, 446
tag mismatch, 386

X

x86, 146–155
Advanced Vector Extensions in,

217–218
brief history, 162.e5–162.e6
conclusion, 154–155
data addressing modes, 149–151
evolution, 96
first address specifier encoding, 155f
instruction encoding, 153–154
instruction formats, 154f
instruction set growth, 162f
instruction types, 152f
integer operations, 151–152
registers, 149–151
SIMD in, 498–499
Streaming SIMD Extensions in,

217–218
typical instructions/functions, 154f
typical operations, 153f
unique, D-36–D-38

Xerox Alto computer, 54.e7–54.e9
XMM, 217
xor (exclusive or), 64f
xori (exclusive or immediate), 64f

Y

Yahoo! Cloud Serving Benchmark
(YCSB), 532

Yield, 27
YMM, 218

Z

Zettabyte, 6f

A P P E N D I X Graphics and
Computing GPUs
John Nickolls
Director of Architecture
NVIDIA

David Kirk
Chief Scientist
NVIDIA

Imagination is more
important than
knowledge.
Albert Einstein

On Science, 1930s

B

 B.1 Introduction B-3

 B.1 Introduction

This appendix focuses on the GPU—the ubiquitous graphics processing unit
in every PC, laptop, desktop computer, and workstation. In its most basic form,
the GPU generates 2D and 3D graphics, images, and video that enable Window-
based operating systems, graphical user interfaces, video games, visual imaging
applications, and video. The modern GPU that we describe here is a highly parallel,
highly multithreaded multiprocessor optimized for visual computing. To provide
real-time visual interaction with computed objects via graphics, images, and video,
the GPU has a unified graphics and computing architecture that serves as both a
programmable graphics processor and a scalable parallel computing platform. PCs
and game consoles combine a GPU with a CPU to form heterogeneous systems.

A Brief History of GPU Evolution
Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were
performed by a video graphics array (VGA) controller. A VGA controller was
simply a memory controller and display generator connected to some DRAM. In
the 1990s, semiconductor technology advanced sufficiently that more functions
could be added to the VGA controller. By 1997, VGA controllers were beginning
to incorporate some three-dimensional (3D) acceleration functions, including

graphics processing
unit (GPU) A processor
optimized for 2D and 3D
graphics, video, visual
computing, and display.

visual computing A mix
of graphics processing
and computing that lets
you visually interact with
computed objects via
graphics, images, and
video.

heterogeneous
system A system
combining different
processor types. A PC is a
heterogeneous CPU–GPU
system.

B.1 Introduction B-3
B.2 GPU System Architectures B-7
B.3 Programming GPUs B-12
B.4 Multithreaded Multiprocessor Architecture B-25
B.5 Parallel Memory System B-36
B.6 Floating-point Arithmetic B-41
B.7 Real Stuff: The NVIDIA GeForce 8800 B-46
B.8 Real Stuff: Mapping Applications to GPUs B-55
B.9 Fallacies and Pitfalls B-72
B.10 Concluding Remarks B-76
B.11 Historical Perspective and Further Reading B-77

B-4 Appendix B Graphics and Computing GPUs

hardware for triangle setup and rasterization (dicing triangles into individual
pixels) and texture mapping and shading (applying “decals” or patterns to pixels
and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail of
the traditional high-end workstation graphics pipeline and, therefore, deserved a
new name beyond VGA controller. The term GPU was coined to denote that the
graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors
replaced fixed-function dedicated logic while maintaining the basic 3D graphics
pipeline organization. In addition, computations became more precise over time,
progressing from indexed arithmetic, to integer and fixed point, to single-precision
floating-point, and recently to double-precision floating-point. GPUs have become
massively parallel programmable processors with hundreds of cores and thousands
of threads.

Recently, processor instructions and memory hardware were added to support
general purpose programming languages, and a programming environment was
created to allow GPUs to be programmed using familiar languages, including C
and C++. This innovation makes a GPU a fully general-purpose, programmable,
manycore processor, albeit still with some special benefits and limitations.

GPU Graphics Trends
GPUs and their associated drivers implement the OpenGL and DirectX
models of graphics processing. OpenGL is an open standard for 3D graphics
programming available for most computers. DirectX is a series of Microsoft
multimedia programming interfaces, including Direct3D for 3D graphics. Since
these application programming interfaces (APIs) have well-defined behavior,
it is possible to build effective hardware acceleration of the graphics processing
functions defined by the APIs. This is one of the reasons (in addition to increasing
device density) why new GPUs are being developed every 12 to 18 months that
double the performance of the previous generation on existing applications.

Frequent doubling of GPU performance enables new applications that were
not previously possible. The intersection of graphics processing and parallel
computing invites a new paradigm for graphics, known as visual computing. It
replaces large sections of the traditional sequential hardware graphics pipeline
model with programmable elements for geometry, vertex, and pixel programs.
Visual computing in a modern GPU combines graphics processing and parallel
computing in novel ways that permit new graphics algorithms to be implemented,
and opens the door to entirely new parallel processing applications on pervasive
high-performance GPUs.

Heterogeneous System
Although the GPU is arguably the most parallel and most powerful processor in
a typical PC, it is certainly not the only processor. The CPU, now multicore and

application
programming interface
(API) A set of function
and data structure
definitions providing an
interface to a library of
functions.

 B.1 Introduction B-5

soon to be manycore, is a complementary, primarily serial processor companion
to the massively parallel manycore GPU. Together, these two types of processors
comprise a heterogeneous multiprocessor system.

The best performance for many applications comes from using both the CPU
and the GPU. This appendix will help you understand how and when to best split
the work between these two increasingly parallel processors.

GPU Evolves into Scalable Parallel Processor
GPUs have evolved functionally from hardwired, limited capability VGA controllers
to programmable parallel processors. This evolution has proceeded by changing
the logical (API-based) graphics pipeline to incorporate programmable elements
and also by making the underlying hardware pipeline stages less specialized and
more programmable. Eventually, it made sense to merge disparate programmable
pipeline elements into one unified array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel
processing all run on the same type of processor. This unification allows for
dramatic scalability. More programmable processor cores increase the total system
throughput. Unifying the processors also delivers very effective load balancing,
since any processing function can use the whole processor array. At the other end
of the spectrum, a processor array can now be built with very few processors, since
all of the functions can be run on the same processors.

Why CUDA and GPU Computing?
This uniform and scalable array of processors invites a new model of programming
for the GPU. The large amount of floating-point processing power in the GPU
processor array is very attractive for solving nongraphics problems. Given the large
degree of parallelism and the range of scalability of the processor array for graphics
applications, the programming model for more general computing must express
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a
parallel programming language and API, without using the traditional graphics
API and graphics pipeline model. This is in contrast to the earlier General Purpose
computation on GPU (GPGPU) approach, which involves programming the GPU
using a graphics API and graphics pipeline to perform nongraphics tasks.

Compute Unifed Device Architecture (CUDA) is a scalable parallel programming
model and software platform for the GPU and other parallel processors that allows
the programmer to bypass the graphics API and graphics interfaces of the GPU
and simply program in C or C++. The CUDA programming model has an SPMD
(single-program multiple data) software style, in which a programmer writes a
program for one thread that is instanced and executed by many threads in parallel
on the multiple processors of the GPU. In fact, CUDA also provides a facility for
programming multiple CPU cores as well, so CUDA is an environment for writing
parallel programs for the entire heterogeneous computer system.

GPU computing Using
a GPU for computing via
a parallel programming
language and API.

GPGPU Using a GPU
for general-purpose
computation via a
traditional graphics API
and graphics pipeline.

CUDA A scalable
parallel programming
model and language based
on C/C++. It is a parallel
programming platform
for GPUs and multicore
CPUs.

B-6 Appendix B Graphics and Computing GPUs

GPU Unifes Graphics and Computing
With the addition of CUDA and GPU computing to the capabilities of the GPU,
it is now possible to use the GPU as both a graphics processor and a computing
processor at the same time, and to combine these uses in visual computing
applications. The underlying processor architecture of the GPU is exposed in two
ways: first, as implementing the programmable graphics APIs, and second, as a
massively parallel processor array programmable in C/C++ with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary
that all of the SPMD thread programs are the same. The GPU can run graphics
shader programs for the graphics aspect of the GPU, processing geometry, vertices,
and pixels, and also run thread programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of
processing tasks. GPUs are excellent at graphics and visual computing as they were
specifically designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are “first cousins” of graphics, in that they
perform a lot of parallel work, as well as having a lot of regular problem structure.
In general, they are a good match to data-parallel problems (see Chapter 6),
particularly large problems, but less so for less regular, smaller problems.

GPU Visual Computing Applications
Visual computing includes the traditional types of graphics applications plus many
new applications. The original purview of a GPU was “anything with pixels,” but it
now includes many problems without pixels but with regular computation and/or
data structure. GPUs are effective at 2D and 3D graphics, since that is the purpose
for which they are designed. Failure to deliver this application performance would
be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the
processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™.
Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important
applications for GPUs. These can be implemented using the graphics APIs or as
computational programs, using CUDA to program the GPU in computing mode.
Using CUDA, image processing is simply another data-parallel array program. To
the extent that the data access is regular and there is good locality, the program
will be efficient. In practice, image processing is a very good application for GPUs.
Video processing, especially encode and decode (compression and decompression
according to some standard algorithms), is quite efficient.

The greatest opportunity for visual computing applications on GPUs is to “break
the graphics pipeline.” Early GPUs implemented only specific graphics APIs, albeit at
very high performance. This was wonderful if the API supported the operations that
you wanted to do. If not, the GPU could not accelerate your task, because early GPU
functionality was immutable. Now, with the advent of GPU computing and CUDA,
these GPUs can be programmed to implement a different virtual pipeline by simply
writing a CUDA program to describe the computation and data flow that is desired. So,
all applications are now possible, which will stimulate new visual computing approaches.

 B.2 GPU System Architectures B-7

 B.2 GPU System Architectures

In this section, we survey GPU system architectures in common use today. We
discuss system configurations, GPU functions and services, standard programming
interfaces, and a basic GPU internal architecture.

Heterogeneous CPU–GPU System Architecture
A heterogeneous computer system architecture using a GPU and a CPU can be
described at a high level by two primary characteristics: first, how many functional
subsystems and/or chips are used and what are their interconnection technologies
and topology; and second, what memory subsystems are available to these
functional subsystems. See Chapter 6 for background on the PC I/O systems and
chip sets.

The Historical PC (circa 1990)

Figure B.2.1 shows a high-level block diagram of a legacy PC, circa 1990. The north
bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU,
memory, and PCI bus. The south bridge contains legacy interfaces and devices:
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In
this system, the display was driven by a simple framebuffer subsystem known

CPU

North
Bridge

South
Bridge

Front Side Bus

PCI Bus

Framebuffer
Memory

VGA
Controller

Memory

UARTLAN
VGA

Display

FIGURE B.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory.

B-8 Appendix B Graphics and Computing GPUs

as a VGA (video graphics array) which was attached to the PCI bus. Graphics
subsystems with built-in processing elements (GPUs) did not exist in the PC
landscape of 1990.

Figure B.2.2 illustrates two confgurations in common use today. These are
characterized by a separate GPU (discrete GPU) and CPU with respective memory
subsystems. In Figure B.2.2a, with an Intel CPU, we see the GPU attached via a
16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate (peak of
8 GB/s in each direction). Similarly, in Figure B.2.2b, with an AMD CPU, the GPU

is attached to the chipset, also via PCI-Express with the same available bandwidth.
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less
available bandwidth than their access to the more directly attached memories. In
the case of the AMD system, the north bridge or memory controller is integrated
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA)
system, uses only CPU system memory, omitting GPU memory from the system.
These systems have relatively low-performance GPUs, since their achieved
performance is limited by the available system memory bandwidth and increased
latency of memory access, whereas dedicated GPU memory provides high
bandwidth and low latency.

A high-performance system variation uses multiple attached GPUs, typically
two to four working in parallel, with their displays daisy-chained. An example
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for
high-performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space.
With CPUs and GPUs, there are multiple address spaces. GPUs can access their
own physical local memory and the CPU system’s physical memory using virtual
addresses that are translated by an MMU on the GPU. The operating system kernel
manages the GPU’s page tables. A system physical page can be accessed using either
coherent or noncoherent PCI-Express transactions, determined by an attribute in
the GPU’s page table. The CPU can access GPU’s local memory through an address
range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360
resemble the PC system architectures previously described. Console systems are
designed to be shipped with identical performance and functionality over a lifespan
that can last five years or more. During this time, a system may be reimplemented
many times to exploit more advanced silicon manufacturing processes and thereby
to provide constant capability at ever lower costs. Console systems do not need
to have their subsystems expanded and upgraded the way PC systems do, so the
major internal system buses tend to be customized rather than standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D
[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor.
The APIs send commands, programs, and data to the GPU via a graphics device
driver optimized for the particular GPU.

PCI-Express (PCIe)
A standard system I/O
interconnect that uses
point-to-point links.
Links have a configurable
number of lanes and
bandwidth.

unified memory
architecture (UMA)
A system architecture in
which the CPU and GPU
share a common system
memory.

AGP An extended
version of the original PCI
I/O bus, which provided
up to eight times the
bandwidth of the original
PCI bus to a single card
slot. Its primary purpose
was to connect graphics
subsystems into PC
systems.

Front Side Bus

GPU
Memory

South
Bridge

North
Bridge

Intel
CPU

DDR2
Memory

x16 PCI-Express Link

x4 PCI-Express Link
derivative

128-bit
667 MT/s

display
GPU

128-bit
667 MT/s

internal bus

GPU
Memory

DDR2
Memory

x16 PCI-Express Link

Chipset

CPU
core

AMD
CPU

GPU

North
Bridge

HyperTransport 1.03

display

(a)

(b)

FIGURE B.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of
the components and interconnects in this figure.

 B.2 GPU System Architectures B-9

is attached to the chipset, also via PCI-Express with the same available bandwidth.
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less
available bandwidth than their access to the more directly attached memories. In
the case of the AMD system, the north bridge or memory controller is integrated
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA)
system, uses only CPU system memory, omitting GPU memory from the system.
These systems have relatively low-performance GPUs, since their achieved
performance is limited by the available system memory bandwidth and increased
latency of memory access, whereas dedicated GPU memory provides high
bandwidth and low latency.

A high-performance system variation uses multiple attached GPUs, typically
two to four working in parallel, with their displays daisy-chained. An example
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for
high-performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space.
With CPUs and GPUs, there are multiple address spaces. GPUs can access their
own physical local memory and the CPU system’s physical memory using virtual
addresses that are translated by an MMU on the GPU. The operating system kernel
manages the GPU’s page tables. A system physical page can be accessed using either
coherent or noncoherent PCI-Express transactions, determined by an attribute in
the GPU’s page table. The CPU can access GPU’s local memory through an address
range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360
resemble the PC system architectures previously described. Console systems are
designed to be shipped with identical performance and functionality over a lifespan
that can last five years or more. During this time, a system may be reimplemented
many times to exploit more advanced silicon manufacturing processes and thereby
to provide constant capability at ever lower costs. Console systems do not need
to have their subsystems expanded and upgraded the way PC systems do, so the
major internal system buses tend to be customized rather than standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D
[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor.
The APIs send commands, programs, and data to the GPU via a graphics device
driver optimized for the particular GPU.

PCI-Express (PCIe)
A standard system I/O
interconnect that uses
point-to-point links.
Links have a configurable
number of lanes and
bandwidth.

unified memory
architecture (UMA)
A system architecture in
which the CPU and GPU
share a common system
memory.

AGP An extended
version of the original PCI
I/O bus, which provided
up to eight times the
bandwidth of the original
PCI bus to a single card
slot. Its primary purpose
was to connect graphics
subsystems into PC
systems.

B-10 Appendix B Graphics and Computing GPUs

Graphics Logical Pipeline
The graphics logical pipeline is described in Section B.3. Figure B.2.3 illustrates
the major processing stages, and highlights the important programmable stages
(vertex, geometry, and pixel shader stages).

Input
Assembler

Vertex
Shader

Geometry
Shader

Setup &
Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

FIGURE B.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are white.

Mapping Graphics Pipeline to Unified GPU Processors
Figure B.2.4 shows how the logical pipeline comprising separate independent
programmable stages is mapped onto a physical distributed array of processors.

Basic Unified GPU Architecture
Unified GPU architectures are based on a parallel array of many programmable
processors. They unify vertex, geometry, and pixel shader processing and parallel
computing on the same processors, unlike earlier GPUs which had separate
processors dedicated to each processing type. The programmable processor array is
tightly integrated with fixed function processors for texture filtering, rasterization,
raster operations, anti-aliasing, compression, decompression, display, video
decoding, and high-definition video processing. Although the fixed-function
processors significantly outperform more general programmable processors in
terms of absolute performance constrained by an area, cost, or power budget, we
will focus on the programmable processors here.

Compared with multicore CPUs, manycore GPUs have a different architectural
design point, one focused on executing many parallel threads efficiently on many

Unified Processor
Array

Input
Assembler

Vertex
Shader

Setup &
Rasterizer

Raster Operations/
Output Merger

Geometry
Shader

Pixel
Shader

FIGURE B.2.4 Logical pipeline mapped to physical processors. The programmable shader
stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates
through the processors.

 B.2 GPU System Architectures B-11

processor cores. By using many simpler cores and optimizing for data-parallel
behavior among groups of threads, more of the per-chip transistor budget is
devoted to computation, and less to on-chip caches and overhead.

Processor Array
A unified GPU processor array contains many processor cores, typically organized
into multithreaded multiprocessors. Figure B.2.5 shows a GPU with an array of
112 streaming processor (SP) cores, organized as 14 multithreaded streaming
multiprocessors (SMs). Each SP core is highly multithreaded, managing 96
concurrent threads and their state in hardware. The processors connect with
four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant
caches, a multithreaded instruction unit, and a shared memory. This is the basic
Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unified
architecture in which the traditional graphics programs for vertex, geometry, and
pixel shading run on the unified SMs and their SP cores, and computing programs
run on the same processors.

GPU

Host CPU System Memory

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP SP

SP SP

SP SP

SP SP

SM

SP SP

SP SP

SP SP

SP SP

Vertex Work
Distribution

Input Assembler

Host Interface

Bridge

Pixel Work
Distribution

Viewport/Clip/
Setup/Raster/

ZCull

Compute Work
Distribution

SP

Shared
Memory

SP

SP SP

SP SP

SP

SM

SP

I-Cache

MT Issue

C-Cache

SFU SFU

Interconnection Network

Display Interface

Display

High-Definition
Video Processors

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

FIGURE B.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors
connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs),
instruction and constant caches, a multithreaded instruction unit, and a shared memory.

B-12 Appendix B Graphics and Computing GPUs

The processor array architecture is scalable to smaller and larger GPU
configurations by scaling the number of multiprocessors and the number of
memory partitions. Figure B.2.5 shows seven clusters of two SMs sharing a texture
unit and a texture L1 cache. The texture unit delivers filtered results to the SM
given a set of coordinates into a texture map. Because filter regions of support
often overlap for successive texture requests, a small streaming L1 texture cache is
effective to reduce the number of requests to the memory system. The processor
array connects with raster operation processors (ROPs), L2 texture caches, external
DRAM memories, and system memory via a GPU-wide interconnection network.
The number of processors and number of memories can scale to design balanced
GPU systems for different performance and market segments.

 B.3 Programming GPUs

Programming multiprocessor GPUs is qualitatively different than programming
other multiprocessors like multicore CPUs. GPUs provide two to three orders of
magnitude more thread and data parallelism than CPUs, scaling to hundreds of
processor cores and tens of thousands of concurrent threads. GPUs continue
to increase their parallelism, doubling it about every 12 to 18 months, enabled
by Moore’s law [1965] of increasing integrated circuit density and by improving
architectural efficiency. To span the wide price and performance range of different
market segments, different GPU products implement widely varying numbers of
processors and threads. Yet users expect games, graphics, imaging, and computing
applications to work on any GPU, regardless of how many parallel threads it
executes or how many parallel processor cores it has, and they expect more
expensive GPUs (with more threads and cores) to run applications faster. As a
result, GPU programming models and application programs are designed to scale
transparently to a wide range of parallelism.

The driving force behind the large number of parallel threads and cores in a
GPU is real-time graphics performance—the need to render complex 3D scenes
with high resolution at interactive frame rates, at least 60 frames per second.
Correspondingly, the scalable programming models of graphics shading languages
such as Cg (C for graphics) and HLSL (high-level shading language) are designed to
exploit large degrees of parallelism via many independent parallel threads and to
scale to any number of processor cores. The CUDA scalable parallel programming
model similarly enables general parallel computing applications to leverage large
numbers of parallel threads and scale to any number of parallel processor cores,
transparently to the application.

In these scalable programming models, the programmer writes code for a single
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale
transparently over a wide range of hardware parallelism. This simple paradigm
arose from graphics APIs and shading languages that describe how to shade one

 B.3 Programming GPUs B-13

vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly
increased their parallelism and performance since the late 1990s.

This section briefly describes programming GPUs for real-time graphics
applications using graphics APIs and programming languages. It then describes
programming GPUs for visual computing and general parallel computing
applications using the C language and the CUDA programming model.

Programming Real-Time Graphics
APIs have played an important role in the rapid, successful development of GPUs
and processors. There are two primary standard graphics APIs: OpenGL and
Direct3D, one of the Microsoft DirectX multimedia programming interfaces.
OpenGL, an open standard, was originally proposed and defined by Silicon
Graphics Incorporated. The ongoing development and extension of the OpenGL
standard [Segal and Akeley, 2006; Kessenich, 2006] is managed by Khronos, an
industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined
and evolved forward by Microsoft and partners. OpenGL and Direct3D are
similarly structured, and continue to evolve rapidly with GPU hardware advances.
They define a logical graphics processing pipeline that is mapped onto the GPU
hardware and processors, along with programming models and languages for the
programmable pipeline stages.

Logical Graphics Pipeline
Figure B.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a
similar graphics pipeline structure. The API and logical pipeline provide a streaming
dataflow infrastructure and plumbing for the programmable shader stages, shown in
blue. The 3D application sends the GPU a sequence of vertices grouped into geometric
primitives—points, lines, triangles, and polygons. The input assembler collects
vertices and primitives. The vertex shader program executes per-vertex processing,

OpenGL An open-
standard graphics API.

Direct3D A graphics
API defined by Microsoft
and partners.

Input
Assembler

Vertex
Shader

Geometry
Shader

Setup &
Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

Vertex
Buffer

Texture Texture Texture Render
Target

Sampler Sampler Sampler

Constant

Depth
Z-Buffer

Constant Constant

Stream
Buffer

Stream
Out

Index Buffer
Memory

Stencil

GPU

FIGURE B.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor.
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric
primitive, or pixel in a streaming dataflow fashion.

B-14 Appendix B Graphics and Computing GPUs

including transforming the vertex 3D position into a screen position and lighting the
vertex to determine its color. The geometry shader program executes per-primitive
processing and can add or drop primitives. The setup and rasterizer unit generates
pixel fragments (fragments are potential contributions to pixels) that are covered by
a geometric primitive. The pixel shader program performs per-fragment processing,
including interpolating per-fragment parameters, texturing, and coloring. Pixel
shaders make extensive use of sampled and filtered lookups into large 1D, 2D, or
3D arrays called textures, using interpolated floating-point coordinates. Shaders use
texture accesses for maps, functions, decals, images, and data. The raster operations
processing (or output merger) stage performs Z-buffer depth testing and stencil
testing, which may discard a hidden pixel fragment or replace the pixel’s depth with
the fragment’s depth, and performs a color blending operation that combines the
fragment color with the pixel color and writes the pixel with the blended color.

The graphics API and graphics pipeline provide input, output, memory objects,
and infrastructure for the shader programs that process each vertex, primitive, and
pixel fragment.

Graphics Shader Programs
Real-time graphics applications use many different shader programs to model
how light interacts with different materials and to render complex lighting and
shadows. Shading languages are based on a dataflow or streaming programming
model that corresponds with the logical graphics pipeline. Vertex shader programs
map the position of triangle vertices onto the screen, altering their position, color,
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w)
vertex position and computes a floating-point (x, y, z) screen position. Geometry
shader programs operate on geometric primitives (such as lines and triangles)
defined by multiple vertices, changing them or generating additional primitives.
Pixel fragment shaders each “shade” one pixel, computing a floating-point red,
green, blue, alpha (RGBA) color contribution to the rendered image at its pixel
sample (x, y) image position. Shaders (and GPUs) use floating-point arithmetic
for all pixel color calculations to eliminate visible artifacts while computing the
extreme range of pixel contribution values encountered while rendering scenes with
complex lighting, shadows, and high dynamic range. For all three types of graphics
shaders, many program instances can be run in parallel, as independent parallel
threads, because each works on independent data, produces independent results,
and has no side effects. Independent vertices, primitives, and pixels further enable
the same graphics program to run on differently sized GPUs that process different
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale
transparently to GPUs with different amounts of parallelism and performance.

Users program all three logical graphics threads with a common targeted high-
level language. HLSL (high-level shading language) and Cg (C for graphics) are
commonly used. They have C-like syntax and a rich set of library functions for
matrix operations, trigonometry, interpolation, and texture access and filtering,
but are far from general computing languages: they currently lack general memory

texture A 1D, 2D, or
3D array that supports
sampled and filtered
lookups with interpolated
coordinates.

shader A program that
operates on graphics data
such as a vertex or a pixel
fragment.

shading language
A graphics rendering
language, usually having
a dataflow or streaming
programming model.

 B.3 Programming GPUs B-15

access, pointers, file I/O, and recursion. HLSL and Cg assume that programs live
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel
fragment shader may expect the geometric normal and multiple texture coordinates
to have been interpolated from vertex values by upstream fixed-function stages and
can simply assign a value to the COLOR output parameter to pass it downstream to
be blended with a pixel at an implied (x, y) position.

The GPU hardware creates a new independent thread to execute a vertex,
geometry, or pixel shader program for every vertex, every primitive, and every pixel
fragment. In video games, the bulk of threads execute pixel shader programs, as
there are typically 10 to 20 times more pixel fragments than vertices, and complex
lighting and shadows require even larger ratios of pixel to vertex shader threads.
The graphics shader programming model drove the GPU architecture to efficiently
execute thousands of independent fine-grained threads on many parallel processor
cores.

Pixel Shader Example
Consider the following Cg pixel shader program that implements the “environment
mapping” rendering technique. For each pixel thread, this shader is passed five
parameters, including 2D floating-point texture image coordinates needed to
sample the surface color, and a 3D floating-point vector giving the refection of
the view direction off the surface. The other three “uniform” parameters do not
vary from one pixel instance (thread) to the next. The shader looks up color in
two texture images: a 2D texture access for the surface color, and a 3D texture
access into a cube map (six images corresponding to the faces of a cube) to obtain
the external world color corresponding to the refection direction. Then the final
four-component (red, green, blue, alpha) floating-point color is computed using a
weighted average called a “lerp” or linear interpolation function.

void refection(
 float2 texCoord : TEXCOORD0,
 float3 refection_dir : TEXCOORD1,
 out float4 color : COLOR,
 uniform float shiny,
 uniform sampler2D surfaceMap,
 uniform samplerCUBE envMap)
{
// Fetch the surface color from a texture
 float4 surfaceColor = tex2D(surfaceMap, texCoord);

// Fetch reflected color by sampling a cube map
 float4 reflectedColor = texCUBE(environmentMap, refection_dir);

// Output is weighted average of the two colors
 color = lerp(surfaceColor, refectedColor, shiny);
}

B-16 Appendix B Graphics and Computing GPUs

Although this shader program is only three lines long, it activates a lot of GPU
hardware. For each texture fetch, the GPU texture subsystem makes multiple
memory accesses to sample image colors in the vicinity of the sampling coordinates,
and then interpolates the final result with floating-point filtering arithmetic. The
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads
in parallel, deeply interleaving them to hide texture fetch and memory latency.

Cg focuses the programmer’s view to a single vertex or primitive or pixel,
which the GPU implements as a single thread; the shader program transparently
scales to exploit thread parallelism on the available processors. Being application-
specific, Cg provides a rich set of useful data types, library functions, and language
constructs to express diverse rendering techniques.

Figure B.3.2 shows skin rendered by a fragment pixel shader. Real skin appears
quite different from flesh-color paint because light bounces around a lot before
re-emerging. In this complex shader, three separate skin layers, each with unique
subsurface scattering behavior, are modeled to give the skin a visual depth and
translucency. Scattering can be modeled by a blurring convolution in a fattened
“texture” space, with red being blurred more than green, and blue blurred less. The
compiled Cg shader executes 1400 instructions to compute the color of one skin pixel.

FIGURE B.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.

 B.3 Programming GPUs B-17

As GPUs have evolved superior floating-point performance and very high
streaming memory bandwidth for real-time graphics, they have attracted highly
parallel applications beyond traditional graphics. At first, access to this power
was available only by couching an application as a graphics-rendering algorithm,
but this GPGPU approach was often awkward and limiting. More recently, the
CUDA programming model has provided a far easier way to exploit the scalable
high-performance floating-point and memory bandwidth of GPUs with the C
programming language.

Programming Parallel Computing Applications
CUDA, Brook, and CAL are programming interfaces for GPUs that are focused
on data parallel computation rather than on graphics. CAL (Compute Abstraction
Layer) is a low-level assembler language interface for AMD GPUs. Brook is a
streaming language adapted for GPUs by Buck et al. [2004]. CUDA, developed
by NVIDIA [2007], is an extension to the C and C+ + languages for scalable
parallel programming of manycore GPUs and multicore CPUs. The CUDA
programming model is described below, adapted from an article by Nickolls et al.
[2008].

With the new model the GPU excels in data parallel and throughput computing,
executing high-performance computing applications as well as graphics applications.

Data Parallel Problem Decomposition

To map large computing problems effectively to a highly parallel processing
architecture, the programmer or compiler decomposes the problem into many
small problems that can be solved in parallel. For example, the programmer
partitions a large result data array into blocks and further partitions each block into
elements, such that the result blocks can be computed independently in parallel,
and the elements within each block are computed in parallel. Figure B.3.3 shows
a decomposition of a result data array into a 3 × 2 grid of blocks, where each
block is further decomposed into a 5 × 3 array of elements. The two-level parallel
decomposition maps naturally to the GPU architecture: parallel multiprocessors
compute result blocks, and parallel threads compute result elements.

The programmer writes a program that computes a sequence of result data
grids, partitioning each result grid into coarse-grained result blocks that can be
computed independently in parallel. T0he program computes each result block
with an array of fine-grained parallel threads, partitioning the work among threads
so that each computes one or more result elements.

Scalable Parallel Programming with CUDA
The CUDA scalable parallel programming model extends the C and C++
languages to exploit large degrees of parallelism for general applications on highly
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows
that many sophisticated programs can be readily expressed with a few easily
understood abstractions. Since NVIDIA released CUDA in 2007, developers have

B-18 Appendix B Graphics and Computing GPUs

rapidly developed scalable parallel programs for a wide range of applications,
including seismic data processing, computational chemistry, linear algebra, sparse
matrix solvers, sorting, searching, physics models, and visual computing. These
applications scale transparently to hundreds of processor cores and thousands of
concurrent threads. NVIDIA GPUs with the Tesla unified graphics and computing
architecture (described in Sections B.4 and B.7) run CUDA C programs, and are
widely available in laptops, PCs, workstations, and servers. The CUDA model is
also applicable to other shared memory parallel processing architectures, including
multicore CPUs.

CUDA provides three key abstractions—a hierarchy of thread groups, shared
memories, and barrier synchronization—that provide a clear parallel structure to
conventional C code for one thread of the hierarchy. Multiple levels of threads,
memory, and synchronization provide fine-grained data parallelism and thread
parallelism, nested within coarse-grained data parallelism and task parallelism. The
abstractions guide the programmer to partition the problem into coarse subproblems
that can be solved independently in parallel, and then into finer pieces that can be
solved in parallel. The programming model scales transparently to large numbers of
processor cores: a compiled CUDA program executes on any number of processors,
and only the runtime system needs to know the physical processor count.

Step 1:

Sequence

Block
(0,0)

Block
(0,1)

Step 2:

Result Data Grid 1

Block
(1, 0)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Block (1, 1)

Elem
(0, 0)

Elem
(1, 0)

Elem
(2, 0)

Elem
(3, 0)

Elem
(4, 0)

Elem
(0, 1)

Elem
(1, 1)

Elem
(2, 1)

Elem
(3, 1)

Elem
(4, 1)

Elem
(0, 2)

Elem
(1, 2)

Elem
(2, 2)

Elem
(3, 2)

Elem
(4, 2)

Result Data Grid 2

FIGURE B.3.3 Decomposing result data into a grid of blocks of elements to be computed
in parallel.

 B.3 Programming GPUs B-19

The CUDA Paradigm

CUDA is a minimal extension of the C and C++ programming languages. The
programmer writes a serial program that calls parallel kernels, which may be simple
functions or full programs. A kernel executes in parallel across a set of parallel
threads. The programmer organizes these threads into a hierarchy of thread blocks
and grids of thread blocks. A thread block is a set of concurrent threads that can
cooperate among themselves through barrier synchronization and through shared
access to a memory space private to the block. A grid is a set of thread blocks that
may each be executed independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the number of threads per
block and the number of blocks comprising the grid. Each thread is given a unique
thread ID number threadIdx within its thread block, numbered 0, 1, 2, …,
blockDim-1, and each thread block is given a unique block ID number blockIdx
within its grid. CUDA supports thread blocks containing up to 512 threads. For
convenience, thread blocks and grids may have one, two, or three dimensions,
accessed via .x, .y, and .z index fields.

As a very simple example of parallel programming, suppose that we are given
two vectors x and y of n floating-point numbers each and that we wish to compute
the result of y = ax + y for some scalar value a. This is the so-called SAXPY kernel
defined by the BLAS linear algebra library. Figure B.3.4 shows C code for performing
this computation on both a serial processor and in parallel using CUDA.

The __global__ declaration specifier indicates that the procedure is a kernel
entry point. CUDA programs launch parallel kernels with the extended function
call syntax:

kernel<<<dimGrid, dimBlock>>>(… parameter list …);

where dimGrid and dimBlock are three-element vectors of type dim3 that specify
the dimensions of the grid in blocks and the dimensions of the blocks in threads,
respectively. Unspecified dimensions default to one.

In Figure B.3.4, we launch a grid of n threads that assigns one thread to each
element of the vectors and puts 256 threads in each block. Each individual thread
computes an element index from its thread and block IDs and then performs the
desired calculation on the corresponding vector elements. Comparing the serial and
parallel versions of this code, we see that they are strikingly similar. This represents
a fairly common pattern. The serial code consists of a loop where each iteration is
independent of all the others. Such loops can be mechanically transformed into
parallel kernels: each loop iteration becomes an independent thread. By assigning
a single thread to each output element, we avoid the need for any synchronization
among threads when writing results to memory.

The text of a CUDA kernel is simply a C function for one sequential thread.
Thus, it is generally straightforward to write and is typically simpler than writing
parallel code for vector operations. Parallelism is determined clearly and explicitly
by specifying the dimensions of a grid and its thread blocks when launching a
kernel.

kernel A program or
function for one thread,
designed to be executed
by many threads.

thread block A set
of concurrent threads
that execute the same
thread program and may
cooperate to compute a
result.

grid A set of thread
blocks that execute the
same kernel program.

B-20 Appendix B Graphics and Computing GPUs

Parallel execution and thread management is automatic. All thread creation,
scheduling, and termination is handled for the programmer by the underlying
system. Indeed, a Tesla architecture GPU performs all thread management directly
in hardware. The threads of a block execute concurrently and may synchronize
at a synchronization barrier by calling the __syncthreads() intrinsic. This
guarantees that no thread in the block can proceed until all threads in the block
have reached the barrier. After passing the barrier, these threads are also guaranteed
to see all writes to memory performed by threads in the block before the barrier.
Thus, threads in a block may communicate with each other by writing and reading
per-block shared memory at a synchronization barrier.

Since threads in a block may share memory and synchronize via barriers, they
will reside together on the same physical processor or multiprocessor. The number
of thread blocks can, however, greatly exceed the number of processors. The CUDA
thread programming model virtualizes the processors and gives the programmer the
flexibility to parallelize at whatever granularity is most convenient. Virtualization

synchronization
barrier Threads wait at
a synchronization barrier
until all threads in the
thread block arrive at the
barrier.

Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y = ax + y in parallel using CUDA:

__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i<n) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIGURE B.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY
(see Chapter 6). CUDA parallel threads replace the C serial loop—each thread computes the same result
as one loop iteration. The parallel code computes n results with n threads organized in blocks of 256 threads.

 B.3 Programming GPUs B-21

into threads and thread blocks allows intuitive problem decompositions, as the
number of blocks can be dictated by the size of the data being processed rather than
by the number of processors in the system. It also allows the same CUDA program
to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA
requires that thread blocks be able to execute independently. It must be possible to
execute blocks in any order, in parallel or in series. Different blocks have no means of
direct communication, although they may coordinate their activities using atomic
memory operations on the global memory visible to all threads—by atomically
incrementing queue pointers, for example. This independence requirement allows
thread blocks to be scheduled in any order across any number of cores, making
the CUDA model scalable across an arbitrary number of cores as well as across a
variety of parallel architectures. It also helps to avoid the possibility of deadlock.
An application may execute multiple grids either independently or dependently.
Independent grids may execute concurrently, given sufficient hardware resources.
Dependent grids execute sequentially, with an implicit interkernel barrier between
them, thus guaranteeing that all blocks of the first grid complete before any block
of the second, dependent grid begins.

Threads may access data from multiple memory spaces during their execution.
Each thread has a private local memory. CUDA uses local memory for thread-
private variables that do not fit in the thread’s registers, as well as for stack frames
and register spilling. Each thread block has a shared memory, visible to all threads
of the block, which has the same lifetime as the block. Finally, all threads have
access to the same global memory. Programs declare variables in shared and
global memory with the __shared__ and __device__ type qualifers. On a
Tesla architecture GPU, these memory spaces correspond to physically separate
memories: per-block shared memory is a low-latency on-chip RAM, while global
memory resides in the fast DRAM on the graphics board.

Shared memory is expected to be a low-latency memory near each processor,
much like an L1 cache. It can therefore provide high-performance communication
and data sharing among the threads of a thread block. Since it has the same lifetime
as its corresponding thread block, kernel code will typically initialize data in shared
variables, compute using shared variables, and copy shared memory results to
global memory. Thread blocks of sequentially dependent grids communicate via
global memory, using it to read input and write results.

Figure B.3.5 shows diagrams of the nested levels of threads, thread blocks,
and grids of thread blocks. It further shows the corresponding levels of memory
sharing: local, shared, and global memories for per-thread, per-thread-block, and
per-application data sharing.

A program manages the global memory space visible to kernels through calls
to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may
execute on a physically separate device, as is the case when running kernels on
the GPU. Consequently, the application must use cudaMemcpy() to copy data
between the allocated space and the host system memory.

atomic memory
operation A memory
read, modify, write
operation sequence that
completes without any
intervening access.

local memory Per-
thread local memory
private to the thread.

shared memory Per-
block memory shared by
all threads of the block.

global memory Per-
application memory
shared by all threads.

B-22 Appendix B Graphics and Computing GPUs

The CUDA programming model is similar in style to the familiar single-
program multiple data (SPMD) model—it expresses parallelism explicitly, and
each kernel executes on a fixed number of threads. However, CUDA is more flexible
than most realizations of SPMD, because each kernel call dynamically creates a
new grid with the right number of thread blocks and threads for that application
step. The programmer can use a convenient degree of parallelism for each kernel,
rather than having to design all phases of the computation to use the same number
of threads. Figure B.3.6 shows an example of an SPMD-like CUDA code sequence.
It first instantiates kernelF on a 2D grid of 3 × 2 blocks where each 2D thread
block consists of 5 × 3 threads. It then instantiates kernelG on a 1D grid of four
1D thread blocks with six threads each. Because kernelG depends on the results
of kernelF, they are separated by an interkernel synchronization barrier.

The concurrent threads of a thread block express fine-grained data parallelism and
thread parallelism. The independent thread blocks of a grid express coarse-grained
data parallelism. Independent grids express coarse-grained task parallelism. A
kernel is simply C code for one thread of the hierarchy.

single-program
multiple data
(SPMD) A style of
parallel programming
model in which all
threads execute the same
program. SPMD threads
typically coordinate with
barrier synchronization.

Thread

per-Thread Local Memory

Thread Block

per-Block
Shared Memory

Grid 0

. . .

Grid 1

. . .

Global Memory

Sequence

Inter-Grid Synchronization

FIGURE B.3.5 Nested granularity levels—thread, thread block, and grid—have
corresponding memory sharing levels—local, shared, and global. Per-thread local memory is
private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global
memory is shared by all threads.

 B.3 Programming GPUs B-23

Restrictions
For efficiency, and to simplify its implementation, the CUDA programming model
has some restrictions. Threads and thread blocks may only be created by invoking
a parallel kernel, not from within a parallel kernel. Together with the required
independence of thread blocks, this makes it possible to execute CUDA programs
with a simple scheduler that introduces minimal runtime overhead. In fact, the
Tesla GPU architecture implements hardware management and scheduling of
threads and thread blocks.

kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Sequence

Interkernel Synchronization Barrier

Block 2

Thread 5Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

kernelF<<<(3, 2), (5, 3)>>>(params);

kernelF 2D Grid is 3 2 thread blocks; each block is 5 3 threads

Block 1, 1

Thread 0, 0 Thread 1, 0 Thread 2, 0 Thread 3, 0 Thread 4, 0

Thread 0, 1 Thread 1, 1 Thread 2, 1 Thread 3, 1 Thread 4, 1

Thread 0, 2 Thread 1, 2 Thread 2, 2 Thread 3, 2 Thread 4, 2

Block 0, 1 Block 2, 1Block 1, 1

Block 0, 0 Block 2, 0Block 1, 0

kernelG<<<4, 6>>>(params);

Block 0 Block 2Block 1 Block 3

FIGURE B.3.6 Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel
synchronization barrier, followed by kernel G on a 1D grid of 1D thread blocks.

B-24 Appendix B Graphics and Computing GPUs

Task parallelism can be expressed at the thread block level but is difficult to
express within a thread block because thread synchronization barriers operate on
all the threads of the block. To enable CUDA programs to run on any number of
processors, dependencies among thread blocks within the same kernel grid are not
allowed—blocks must execute independently. Since CUDA requires that thread
blocks be independent and allows blocks to be executed in any order, combining
results generated by multiple blocks must in general be done by launching a second
kernel on a new grid of thread blocks (although thread blocks may coordinate their
activities using atomic memory operations on the global memory visible to all
threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion
is unattractive in a massively parallel kernel, because providing stack space for the
tens of thousands of threads that may be active would require substantial amounts
of memory. Serial algorithms that are normally expressed using recursion, such as
quicksort, are typically best implemented using nested data parallelism rather than
explicit recursion.

To support a heterogeneous system architecture combining a CPU and a
GPU, each with its own memory system, CUDA programs must copy data and
results between host memory and device memory. The overhead of CPU–GPU
interaction and data transfers is minimized by using DMA block transfer engines
and fast interconnects. Compute-intensive problems large enough to need a GPU
performance boost amortize the overhead better than small problems.

Implications for Architecture
The parallel programming models for graphics and computing have driven
GPU architecture to be different than CPU architecture. The key aspects of GPU
programs driving GPU processor architecture are:

■	 Extensive use of fine-grained data parallelism: Shader programs describe how
to process a single pixel or vertex, and CUDA programs describe how to
compute an individual result.

■	 Highly threaded programming model: A shader thread program processes a
single pixel or vertex, and a CUDA thread program may generate a single
result. A GPU must create and execute millions of such thread programs per
frame, at 60 frames per second.

■	 Scalability: A program must automatically increase its performance when
provided with additional processors, without recompiling.

■	 Intensive floating-point (or integer) computation.

■	 Support of high-throughput computations.

 B.4 Multithreaded Multiprocessor Architecture B-25

 B.4 Multithreaded Multiprocessor
Architecture

To address different market segments, GPUs implement scalable numbers of multi-
processors—in fact, GPUs are multiprocessors composed of multiprocessors.
Furthermore, each multiprocessor is highly multithreaded to execute many fine-
grained vertex and pixel shader threads efficiently. A quality basic GPU has two to
four multiprocessors, while a gaming enthusiast’s GPU or computing platform has
dozens of them. This section looks at the architecture of one such multithreaded
multiprocessor, a simplified version of the NVIDIA Tesla streaming multiprocessor
(SM) described in Section B.7.

Why use a multiprocessor, rather than several independent processors? The
parallelism within each multiprocessor provides localized high performance and
supports extensive multithreading for the fine-grained parallel programming
models described in Section B.3. The individual threads of a thread block execute
together within a multiprocessor to share data. The multithreaded multiprocessor
design we describe here has eight scalar processor cores in a tightly coupled
architecture, and executes up to 512 threads (the SM described in Section B.7
executes up to 768 threads). For area and power efficiency, the multiprocessor shares
large complex units among the eight processor cores, including the instruction
cache, the multithreaded instruction unit, and the shared memory RAM.

Massive Multithreading
GPU processors are highly multithreaded to achieve several goals:

■	 Cover the latency of memory loads and texture fetches from DRAM

■	 Support fine-grained parallel graphics shader programming models

■	 Support fine-grained parallel computing programming models

■	 Virtualize the physical processors as threads and thread blocks to provide
transparent scalability

■	 Simplify the parallel programming model to writing a serial program for one
thread

Memory and texture fetch latency can require hundreds of processor clocks,
because GPUs typically have small streaming caches rather than large working-set
caches like CPUs. A fetch request generally requires a full DRAM access latency
plus interconnect and buffering latency. Multithreading helps cover the latency with
useful computing—while one thread is waiting for a load or texture fetch to complete,
the processor can execute another thread. The fine-grained parallel programming
models provide literally thousands of independent threads that can keep many
processors busy despite the long memory latency seen by individual threads.

B-26 Appendix B Graphics and Computing GPUs

A graphics vertex or pixel shader program is a program for a single thread that
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a
single thread that computes a result. Graphics and computing programs instantiate
many parallel threads to render complex images and compute large result arrays.
To dynamically balance shifting vertex and pixel shader thread workloads, each
multiprocessor concurrently executes multiple different thread programs and
different types of shader programs.

To support the independent vertex, primitive, and pixel programming model of
graphics shading languages and the single-thread programming model of CUDA
C/C+ +, each GPU thread has its own private registers, private per-thread memory,
program counter, and thread execution state, and can execute an independent code
path. To efficiently execute hundreds of concurrent lightweight threads, the GPU
multiprocessor is hardware multithreaded—it manages and executes hundreds
of concurrent threads in hardware without scheduling overhead. Concurrent
threads within thread blocks can synchronize at a barrier with a single instruction.
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier
synchronization efficiently support very fine-grained parallelism.

Multiprocessor Architecture
A unified graphics and computing multiprocessor executes vertex, geometry, and
pixel fragment shader programs, and parallel computing programs. As Figure B.4.1
shows, the example multiprocessor consists of eight scalar processor (SP) cores each
with a large multithreaded register file (RF), two special function units (SFUs), a
multithreaded instruction unit, an instruction cache, a read-only constant cache,
and a shared memory.

The 16 KB shared memory holds graphics data buffers and shared computing
data. CUDA variables declared as __shared__ reside in the shared memory. To
map the logical graphics pipeline workload through the multiprocessor multiple
times, as shown in Section B.2, vertex, geometry, and pixel threads have independent
input and output buffers, and workloads arrive and depart independently of thread
execution.

Each SP core contains scalar integer and floating-point arithmetic units that
execute most instructions. The SP is hardware multithreaded, supporting up to
64 threads. Each pipelined SP core executes one scalar instruction per thread per
clock, which ranges from 1.2 GHz to 1.6 GHz in different GPU products. Each SP
core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its
assigned threads. Programs declare their register demand, typically 16 to 64 scalar
32-bit registers per thread. The SP can concurrently run many threads that use
a few registers or fewer threads that use more registers. The compiler optimizes
register allocation to balance the cost of spilling registers versus the cost of fewer
threads. Pixel shader programs often use 16 or fewer registers, enabling each SP to
run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled
CUDA programs often need 32 registers per thread, limiting each SP to 32 threads,
which limits such a kernel program to 256 threads per thread block on this example
multiprocessor, rather than its maximum of 512 threads.

 B.4 Multithreaded Multiprocessor Architecture B-27

The pipelined SFUs execute thread instructions that compute special functions
and interpolate pixel attributes from primitive vertex attributes. These instructions
can execute concurrently with instructions on the SPs. The SFU is described later.

The multiprocessor executes texture fetch instructions on the texture unit via the
texture interface, and uses the memory interface for external memory load, store,
and atomic access instructions. These instructions can execute concurrently with
instructions on the SPs. Shared memory access uses a low-latency interconnection
network between the SP processors and the shared memory banks.

Single-Instruction Multiple-Thread (SIMT)
To manage and execute hundreds of threads running several different programs
efficiently, the multiprocessor employs a single-instruction multiple-thread
(SIMT) architecture. It creates, manages, schedules, and executes concurrent threads
in groups of parallel threads called warps. The term warp originates from weaving,
the first parallel thread technology. The photograph in Figure B.4.2 shows a warp of
parallel threads emerging from a loom. This example multiprocessor uses a SIMT
warp size of 32 threads, executing four threads in each of the eight SP cores over four

Instruction Cache

Multithreaded Instruction Unit

Multithreaded Multiprocessor

Constant Cache

SFU SFU
SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

SP

RF

Shared Memory
Texture
Interface

Memory
Interface

Multiprocessor
Controller

Output
Interface

Interconnection Network

Input
Interface

Work Interface

FIGURE B.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. The
eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded
instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a
multibank shared memory.

warp The set of parallel
threads that execute the
same instruction together
in a SIMT architecture.

single-instruction
multiple-thread
(SIMT) A processor
architecture that applies
one instruction to
multiple independent
threads in parallel.

B-28 Appendix B Graphics and Computing GPUs

clocks. The Tesla SM multiprocessor described in Section B.7 also uses a warp size
of 32 parallel threads, executing four threads per SP core for efficiency on plentiful
pixel threads and computing threads. Thread blocks consist of one or more warps.

This example SIMT multiprocessor manages a pool of 16 warps, a total of 512
threads. Individual parallel threads composing a warp are the same type and start
together at the same program address, but are otherwise free to branch and execute
independently. At each instruction issue time, the SIMT multithreaded instruction
unit selects a warp that is ready to execute its next instruction, and then issues that
instruction to the active threads of that warp. A SIMT instruction is broadcast
synchronously to the active parallel threads of a warp; individual threads may be
inactive due to independent branching or predication. In this multiprocessor, each
SP scalar processor core executes an instruction for four individual threads of a
warp using four clocks, reflecting the 4:1 ratio of warp threads to cores.

SIMT processor architecture is akin to single-instruction multiple data (SIMD)
design, which applies one instruction to multiple data lanes, but differs in that
SIMT applies one instruction to multiple independent threads in parallel, not just

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

time

SIMT multithreaded
instruction scheduler

warp 1 instruction 43

warp 3 instruction 96

P
ho

to
: J

ud
y

S
ch

oo
nm

ak
er

FIGURE B.4.2 SIMT multithreaded warp scheduling. The scheduler selects a ready warp and issues
an instruction synchronously to the parallel threads composing the warp. Because warps are independent,
the scheduler may select a different warp each time.

 B.4 Multithreaded Multiprocessor Architecture B-29

to multiple data lanes. An instruction for a SIMD processor controls a vector of
multiple data lanes together, whereas an instruction for a SIMT processor controls
an individual thread, and the SIMT instruction unit issues an instruction to a warp
of independent parallel threads for efficiency. The SIMT processor finds data-level
parallelism among threads at runtime, analogous to the way a superscalar processor
finds instruction-level parallelism among instructions at runtime.

A SIMT processor realizes full efficiency and performance when all threads
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and
when all paths complete, the threads converge to the same execution path. For equal
length paths, a divergent if-else code block is 50% efficient. The multiprocessor
uses a branch synchronization stack to manage independent threads that diverge
and converge. Different warps execute independently at full speed regardless of
whether they are executing common or disjoint code paths. As a result, SIMT
GPUs are dramatically more efficient and flexible on branching code than earlier
GPUs, as their warps are much narrower than the SIMD width of prior GPUs.

In contrast with SIMD vector architectures, SIMT enables programmers
to write thread-level parallel code for individual independent threads, as well
as data-parallel code for many coordinated threads. For program correctness,
the programmer can essentially ignore the SIMT execution attributes of warps;
however, substantial performance improvements can be realized by taking care that
the code seldom requires threads in a warp to diverge. In practice, this is analogous
to the role of cache lines in traditional codes: cache line size can be safely ignored
when designing for correctness but must be considered in the code structure when
designing for peak performance.

SIMT Warp Execution and Divergence
The SIMT approach of scheduling independent warps is more flexible than the
scheduling of previous GPU architectures. A warp comprises parallel threads of
the same type: vertex, geometry, pixel, or compute. The basic unit of pixel fragment
shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads.
The multiprocessor controller packs the pixel quads into a warp. It similarly groups
vertices and primitives into warps, and packs computing threads into a warp. A
thread block comprises one or more warps. The SIMT design shares the instruction
fetch and issue unit efficiently across parallel threads of a warp, but requires a full
warp of active threads to get full performance efficiency.

This unified multiprocessor schedules and executes multiple warp types
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp
scheduler operates at less than the processor clock rate, because there are four thread
lanes per processor core. During each scheduling cycle, it selects a warp to execute
a SIMT warp instruction, as shown in Figure B.4.2. An issued warp-instruction
executes as four sets of eight threads over four processor cycles of throughput.
The processor pipeline uses several clocks of latency to complete each instruction.
If the number of active warps times the clocks per warp exceeds the pipeline

B-30 Appendix B Graphics and Computing GPUs

latency, the programmer can ignore the pipeline latency. For this multiprocessor, a
round-robin schedule of eight warps has a period of 32 cycles between successive
instructions for the same warp. If the program can keep 256 threads active per
multiprocessor, instruction latencies up to 32 cycles can be hidden from an
individual sequential thread. However, with few active warps, the processor pipeline
depth becomes visible and may cause processors to stall.

A challenging design problem is implementing zero-overhead warp scheduling
for a dynamic mix of different warp programs and program types. The instruction
scheduler must select a warp every four clocks to issue one instruction per clock
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are
independent, the only dependences are among sequential instructions from the
same warp. The scheduler uses a register dependency scoreboard to qualify warps
whose active threads are ready to execute an instruction. It prioritizes all such ready
warps and selects the highest priority one for issue. Prioritization must consider
warp type, instruction type, and the desire to be fair to all active warps.

Managing Threads and Thread Blocks
The multiprocessor controller and instruction unit manage threads and thread
blocks. The controller accepts work requests and input data and arbitrates access
to shared resources, including the texture unit, memory access path, and I/O
paths. For graphics workloads, it creates and manages three types of graphics
threads concurrently: vertex, geometry, and pixel. Each of the graphics work
types has independent input and output paths. It accumulates and packs each of
these input work types into SIMT warps of parallel threads executing the same
thread program. It allocates a free warp, allocates registers for the warp threads,
and starts warp execution in the multiprocessor. Every program declares its per-
thread register demand; the controller starts a warp only when it can allocate the
requested register count for the warp threads. When all the threads of the warp
exit, the controller unpacks the results and frees the warp registers and resources.

The controller creates cooperative thread arrays (CTAs) which implement
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA
when it can create all CTA warps and allocate all CTA resources. In addition to
threads and registers, a CTA requires allocating shared memory and barriers.
The program declares the required capacities, and the controller waits until it can
allocate those amounts before launching the CTA. Then it creates CTA warps at the
warp scheduling rate, so that a CTA program starts executing immediately at full
multiprocessor performance. The controller monitors when all threads of a CTA
have exited, and frees the CTA shared resources and its warp resources.

Thread Instructions
The SP thread processors execute scalar instructions for individual threads, unlike
earlier GPU vector instruction architectures, which executed four-component
vector instructions for each vertex or pixel shader program. Vertex programs

cooperative thread
array (CTA) A set
of concurrent threads
that executes the same
thread program and may
cooperate to compute
a result. A GPU CTA
implements a CUDA
thread block.

 B.4 Multithreaded Multiprocessor Architecture B-31

generally compute (x, y, z, w) position vectors, while pixel shader programs compute
(red, green, blue, alpha) color vectors. However, shader programs are becoming
longer and more scalar, and it is increasingly difficult to fully occupy even two
components of a legacy GPU four-component vector architecture. In effect, the
SIMT architecture parallelizes across 32 independent pixel threads, rather than
parallelizing the four vector components within a pixel. CUDA C/C++ programs
have predominantly scalar code per thread. Previous GPUs employed vector
packing (e.g., combining subvectors of work to gain efficiency) but that complicated
the scheduling hardware as well as the compiler. Scalar instructions are simpler
and compiler-friendly. Texture instructions remain vector-based, taking a source
coordinate vector and returning a filtered color vector.

To support multiple GPUs with different binary microinstruction formats, high-
level graphics and computing language compilers generate intermediate assembler-
level instructions (e.g., Direct3D vector instructions or PTX scalar instructions),
which are then optimized and translated to binary GPU microinstructions.
The NVIDIA PTX (parallel thread execution) instruction set definition [2007]
provides a stable target ISA for compilers, and provides compatibility over several
generations of GPUs with evolving binary microinstruction-set architectures. The
optimizer readily expands Direct3D vector instructions to multiple scalar binary
microinstructions. PTX scalar instructions translate nearly one to one with scalar
binary microinstructions, although some PTX instructions expand to multiple
binary microinstructions, and multiple PTX instructions may fold into one binary
microinstruction. Because the intermediate assembler-level instructions use virtual
registers, the optimizer analyzes data dependencies and allocates real registers. The
optimizer eliminates dead code, folds instructions together when feasible, and
optimizes SIMT branch diverge and converge points.

Instruction Set Architecture (ISA)
The thread ISA described here is a simplified version of the Tesla architecture
PTX ISA, a register-based scalar instruction set comprising floating-point, integer,
logical, conversion, special functions, flow control, memory access, and texture
operations. Figure B.4.3 lists the basic PTX GPU thread instructions; see the
NVIDIA PTX specification [2007] for details. The instruction format is:

opcode.type d, a, b, c;

where d is the destination operand, a, b, c are source operands, and .type is
one of:

 .type SpeciferType

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits .f16, .f32, .f64

B-32 Appendix B Graphics and Computing GPUs

Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64
add.type add.f32 d, a, b d = a + b;
sub.type sub.f32 d, a, b d = a – b;
mul.type mul.f32 d, a, b d = a * b;
mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d = 0 - a;
min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special
Function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic. type = .pred, .b32, .b64
and.type and.b32 d, a, b d = a & b;
or.type or.b32 d, a, b d = a | b;
xor.type xor.b32 d, a, b d = a ^ b;
not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory
Access

memory .space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64
ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type atom.global.add.u32 d,[a], b
atom.global.cas.b32 d,[a], b, c

atomic { d = *a;
 *a = op(*a, b); }

atomic read-modify-write
operation

atom .op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control
Flow

branch @p bra target if (p) goto
target;

conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

FIGURE B.4.3 Basic PTX GPU thread instructions.

 B.4 Multithreaded Multiprocessor Architecture B-33

Source operands are scalar 32-bit or 64-bit values in registers, an immediate
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are
registers, except for store to memory. Instructions are predicated by prefixing them
with @p or @!p, where p is a predicate register. Memory and texture instructions
transfer scalars or vectors of two to four components, up to 128 bits in total. PTX
instructions specify the behavior of one thread.

The PTX arithmetic instructions operate on 32-bit and 64-bit floating-point,
signed integer, and unsigned integer types. Recent GPUs support 64-bit double-
precision floating-point; see Section B.6. On current GPUs, PTX 64-bit integer
and logical instructions are translated to two or more binary microinstructions
that perform 32-bit operations. The GPU special function instructions are limited
to 32-bit floating-point. The thread control flow instructions are conditional
branch, function call and return, thread exit, and bar.sync (barrier
synchronization). The conditional branch instruction @p bra target uses a
predicate register p (or !p) previously set by a compare and set predicate setp
instruction to determine whether the thread takes the branch or not. Other
instructions can also be predicated on a predicate register being true or false.

Memory Access Instructions

The tex instruction fetches and filters texture samples from 1D, 2D, and 3D
texture arrays in memory via the texture subsystem. Texture fetches generally use
interpolated floating-point coordinates to address a texture. Once a graphics pixel
shader thread computes its pixel fragment color, the raster operations processor
blends it with the pixel color at its assigned (x, y) pixel position and writes the final
color to memory.

To support computing and C/C++ language needs, the Tesla PTX ISA
implements memory load/store instructions. It uses integer byte addressing with
register plus offset address arithmetic to facilitate conventional compiler code
optimizations. Memory load/store instructions are common in processors, but are
a significant new capability in the Tesla architecture GPUs, as prior GPUs provided
only the texture and pixel accesses required by the graphics APIs.

For computing, the load/store instructions access three read/write memory
spaces that implement the corresponding CUDA memory spaces in Section B.3:

■	 Local memory for per-thread private addressable temporary data
(implemented in external DRAM)

■	 Shared memory for low-latency access to data shared by cooperating threads
in the same CTA/thread block (implemented in on-chip SRAM)

■	 Global memory for large data sets shared by all threads of a computing
application (implemented in external DRAM)

The memory load/store instructions ld.global, st.global, ld.shared, st.
shared, ld.local, and st.local access the global, shared, and local memory
spaces. Computing programs use the fast barrier synchronization instruction bar.
sync to synchronize threads within a CTA/thread block that communicate with
each other via shared and global memory.

B-34 Appendix B Graphics and Computing GPUs

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT
warp together into a single memory block request when the addresses fall in the
same block and meet alignment criteria. Coalescing memory requests provides a
significant performance boost over separate requests from individual threads. The
multiprocessor’s large thread count, together with support for many outstanding
load requests, helps cover load-to-use latency for local and global memory
implemented in external DRAM.

The latest Tesla architecture GPUs also provide efficient atomic memory operations
on memory with the atom.op.u32 instructions, including integer operations add,
min, max, and, or, xor, exchange, and cas (compare-and-swap) operations,
facilitating parallel reductions and parallel data structure management.

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently
via shared memory and global memory by simply calling __syncthreads(); as
part of each interthread communication step. The synchronization intrinsic function
generates a single bar.sync instruction. However, implementing fast barrier
synchronization among up to 512 threads per CUDA thread block is a challenge.

Grouping threads into SIMT warps of 32 threads reduces the synchronization
difficulty by a factor of 32. Threads wait at a barrier in the SIMT thread scheduler so
they do not consume any processor cycles while waiting. When a thread executes
a bar.sync instruction, it increments the barrier’s thread arrival counter and the
scheduler marks the thread as waiting at the barrier. Once all the CTA threads
arrive, the barrier counter matches the expected terminal count, and the scheduler
releases all the threads waiting at the barrier and resumes executing threads.

Streaming Processor (SP)
The multithreaded streaming processor (SP) core is the primary thread instruction
processor in the multiprocessor. Its register file (RF) provides 1024 scalar 32-
bit registers for up to 64 threads. It executes all the fundamental floating-point
operations, including add.f32, mul.f32, mad.f32 (floating multiply-add), min.
f32, max.f32, and setp.f32 (floating compare and set predicate). The floating-
point add and multiply operations are compatible with the IEEE 754 standard
for single-precision FP numbers, including not-a-number (NaN) and infinity
values. The SP core also implements all of the 32-bit and 64-bit integer arithmetic,
comparison, conversion, and logical PTX instructions shown in Figure B.4.3.

The floating-point add and mul operations employ IEEE round-to-nearest-even
as the default rounding mode. The mad.f32 floating-point multiply-add operation
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. The SP flushes input denormal operands to sign-preserved-zero.
Results that underflow the target output exponent range are flushed to sign-
preserved-zero after rounding.

 B.4 Multithreaded Multiprocessor Architecture B-35

Special Function Unit (SFU)
Certain thread instructions can execute on the SFUs, concurrently with other
thread instructions executing on the SPs. The SFU implements the special function
instructions of Figure B.4.3, which compute 32-bit floating-point approximations
to reciprocal, reciprocal square root, and key transcendental functions. It also
implements 32-bit floating-point planar attribute interpolation for pixel shaders,
providing accurate interpolation of attributes such as color, depth, and texture
coordinates.

Each pipelined SFU generates one 32-bit floating-point special function result
per cycle; the two SFUs per multiprocessor execute special function instructions
at a quarter the simple instruction rate of the eight SPs. The SFUs also execute the
mul.f32 multiply instruction concurrently with the eight SPs, increasing the peak
computation rate up to 50% for threads with a suitable instruction mixture.

For functional evaluation, the Tesla architecture SFU employs quadratic
interpolation based on enhanced minimax approximations for approximating the
reciprocal, reciprocal square-root, log2x, 2x, and sin/cos functions. The accuracy of
the function estimates ranges from 22 to 24 mantissa bits. See Section B.6 for more
details on SFU arithmetic.

Comparing with Other Multiprocessors
Compared with SIMD vector architectures such as x86 SSE, the SIMT multiprocessor
can execute individual threads independently, rather than always executing them
together in synchronous groups. SIMT hardware finds data parallelism among
independent threads, whereas SIMD hardware requires the software to express
data parallelism explicitly in each vector instruction. A SIMT machine executes a
warp of 32 threads synchronously when the threads take the same execution path,
yet can execute each thread independently when they diverge. The advantage is
significant because SIMT programs and instructions simply describe the behavior
of a single independent thread, rather than a SIMD data vector of four or more
data lanes. Yet the SIMT multiprocessor has SIMD-like efficiency, spreading the
area and cost of one instruction unit across the 32 threads of a warp and across the
eight streaming processor cores. SIMT provides the performance of SIMD together
with the productivity of multithreading, avoiding the need to explicitly code SIMD
vectors for edge conditions and partial divergence.

The SIMT multiprocessor imposes little overhead because it is hardware
multithreaded with hardware barrier synchronization. That allows graphics
shaders and CUDA threads to express very fine-grained parallelism. Graphics and
CUDA programs use threads to express fine-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector
instructions. It is simpler and more productive to develop scalar single-thread code
than vector code, and the SIMT multiprocessor executes the code with SIMD-like
efficiency.

B-36 Appendix B Graphics and Computing GPUs

Coupling eight streaming processor cores together closely into a multiprocessor
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. The CUDA programming model
exploits the two-level hierarchy by providing individual threads for fine-grained
parallel computations, and by providing grids of thread blocks for coarse-grained
parallel operations. The same thread program can provide both fine-grained and
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must
use two different programming models to provide fine-grained and coarse-grained
operations: coarse-grained parallel threads on different cores, and SIMD vector
instructions for fine-grained data parallelism.

Multithreaded Multiprocessor Conclusion
The example GPU multiprocessor based on the Tesla architecture is highly
multithreaded, executing a total of up to 512 lightweight threads concurrently to
support fine-grained pixel shaders and CUDA threads. It uses a variation on SIMD
architecture and multithreading called SIMT (single-instruction multiple-thread)
to efficiently broadcast one instruction to a warp of 32 parallel threads, while
permitting each thread to branch and execute independently. Each thread executes
its instruction stream on one of the eight streaming processor (SP) cores, which are
multithreaded up to 64 threads.

The PTX ISA is a register-based load/store scalar ISA that describes the execution
of a single thread. Because PTX instructions are optimized and translated to binary
microinstructions for a specific GPU, the hardware instructions can evolve rapidly
without disrupting compilers and software tools that generate PTX instructions.

 B.5 Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important
determiner of the performance of a graphics system. Graphics workloads demand
very high transfer rates to and from memory. Pixel write and blend (read-modify-
write) operations, depth buffer reads and writes, and texture map reads, as well
as command and object vertex and attribute data reads, comprise the majority of
memory traffic.

Modern GPUs are highly parallel, as shown in Figure B.2.5. For example, the
GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically
requires a color read and write and a depth read and write of a 4-byte pixel. Usually
an average of two or three texels of four bytes each are read to generate the pixel’s
color. So for a typical case, there is a demand of 28 bytes times 32 pixels = 896 bytes
per clock. Clearly the bandwidth demand on the memory system is enormous.

 B.5 Parallel Memory System B-37

To supply these requirements, GPU memory systems have the following
characteristics:

■	 They are wide, meaning there are a large number of pins to convey data
between the GPU and its memory devices, and the memory array itself
comprises many DRAM chips to provide the full total data bus width.

■	 They are fast, meaning aggressive signaling techniques are used to maximize
the data rate (bits/second) per pin.

■	 GPUs seek to use every available cycle to transfer data to or from the memory
array. To achieve this, GPUs specifically do not aim to minimize latency to the
memory system. High throughput (utilization efficiency) and short latency
are fundamentally in conflict.

■	 Compression techniques are used, both lossy, of which the programmer must
be aware, and lossless, which is invisible to the application and opportunistic.

■	 Caches and work coalescing structures are used to reduce the amount of off-
chip traffic needed and to ensure that cycles spent moving data are used as
fully as possible.

DRAM Considerations
GPUs must take into account the unique characteristics of DRAM. DRAM chips
are internally arranged as multiple (typically four to eight) banks, where each bank
includes a power-of-2 number of rows (typically around 16,384), and each row
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of
timing requirements on their controlling processor. For example, dozens of cycles
are required to activate one row, but once activated, the bits within that row are
randomly accessible with a new column address every four clocks. Double-data
rate (DDR) synchronous DRAMs transfer data on both rising and falling edges
of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32
bidirectional data pins, so eight bytes can be read or written from the DRAM per
clock.

GPUs internally have a large number of generators of memory traffic. Different
stages of the logical graphics pipeline each have their own request streams: command
and vertex attribute fetch, shader texture fetch and load/store, and pixel depth and
color read-write. At each logical stage, there are often multiple independent units
to deliver the parallel throughput. These are each independent memory requestors.
When viewed at the memory system, there is an enormous number of uncorrelated
requests in flight. This is a natural mismatch to the reference pattern preferred by
the DRAMs. A solution is for the GPU’s memory controller to maintain separate
heaps of traffic bound for different DRAM banks, and wait until enough traffic for

B-38 Appendix B Graphics and Computing GPUs

a particular DRAM row is pending before activating that row and transferring all
the traffic at once. Note that accumulating pending requests, while good for DRAM
row locality and thus efficient use of the data bus, leads to longer average latency
as seen by the requestors whose requests spend time waiting for others. The design
must take care that no particular request waits too long, otherwise some processing
units can starve waiting for data and ultimately cause neighboring processors to
become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of
which comprises a fully independent memory controller and one or two DRAM
devices that are fully and exclusively owned by that partition. To achieve the best
load balance and therefore approach the theoretical performance of n partitions,
addresses are finely interleaved evenly across all memory partitions. The partition
interleaving stride is typically a block of a few hundred bytes. The number of
memory partitions is designed to balance the number of processors and other
memory requesters.

Caches
GPU workloads typically have very large working sets—on the order of hundreds
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not
practical to construct caches on chips large enough to hold anything close to the
full working set of a graphics application. Whereas CPUs can assume very high
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must
therefore cope with many misses in flight. While a CPU can reasonably be designed
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and
hits intermingled. We call this a streaming cache architecture.

GPU caches must deliver very high-bandwidth to their clients. Consider the case
of a texture cache. A typical texture unit may evaluate two bilinear interpolations for
each of four pixels per clock cycle, and a GPU may have many such texture units all
operating independently. Each bilinear interpolation requires four separate texels,
and each texel might be a 64-bit value. Four 16-bit components are typical. Thus,
total bandwidth is 2 × 4 × 4 × 64 = 2048 bits per clock. Each separate 64-bit texel
is independently addressed, so the cache needs to handle 32 unique addresses per
clock. This naturally favors a multibank and/or multiport arrangement of SRAM
arrays.

MMU
Modern GPUs are capable of translating virtual addresses to physical addresses.
On the GeForce 8800, all processing units generate memory addresses in a
40-bit virtual address space. For computing, load and store thread instructions use
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a
40-bit offset. A memory management unit performs virtual to physical address

 B.5 Parallel Memory System B-39

translation; hardware reads the page tables from local memory to respond to
misses on behalf of a hierarchy of translation lookaside buffers spread out among
the processors and rendering engines. In addition to physical page bits, GPU page
table entries specify the compression algorithm for each page. Page sizes range
from 4 to 128 kilobytes.

Memory Spaces
As introduced in Section B.3, CUDA exposes different memory spaces to allow the
programmer to store data values in the most performance-optimal way. For the
following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory
Global memory is stored in external DRAM; it is not local to any one physical
streaming multiprocessor (SM) because it is meant for communication among
different CTAs (thread blocks) in different grids. In fact, the many CTAs that
reference a location in global memory may not be executing in the GPU at the
same time; by design, in CUDA a programmer does not know the relative order
in which CTAs are executed. Because the address space is evenly distributed
among all memory partitions, there must be a read/write path from any streaming
multiprocessor to any DRAM partition.

Access to global memory by different threads (and different processors) is not
guaranteed to have sequential consistency. Thread programs see a relaxed memory
ordering model. Within a thread, the order of memory reads and writes to the same
address is preserved, but the order of accesses to different addresses may not be
preserved. Memory reads and writes requested by different threads are unordered.
Within a CTA, the barrier synchronization instruction bar.sync can be used
to obtain strict memory ordering among the threads of the CTA. The membar
thread instruction provides a memory barrier/fence operation that commits prior
memory accesses and makes them visible to other threads before proceeding.
Threads can also use the atomic memory operations described in Section B.4 to
coordinate work on memory they share.

Shared memory
Per-CTA shared memory is only visible to the threads that belong to that CTA,
and shared memory only occupies storage from the time a CTA is created to the
time it terminates. Shared memory can therefore reside on-chip. This approach has
many benefits. First, shared memory traffc does not need to compete with limited
off-chip bandwidth needed for global memory references. Second, it is practical to
build very high-bandwidth memory structures on-chip to support the read/write
demands of each streaming multiprocessor. In fact, the shared memory is closely
coupled to the streaming multiprocessor.

B-40 Appendix B Graphics and Computing GPUs

Each streaming multiprocessor contains eight physical thread processors. During
one shared memory clock cycle, each thread processor can process two threads’
worth of instructions, so 16 threads’ worth of shared memory requests must be
handled in each clock. Because each thread can generate its own addresses, and the
addresses are typically unique, the shared memory is built using 16 independently
addressable SRAM banks. For common access patterns, 16 banks are sufficient
to maintain throughput, but pathological cases are possible; for example, all 16
threads might happen to access a different address on one SRAM bank. It must be
possible to route a request from any thread lane to any bank of SRAM, so a 16-by-
16 interconnection network is required.

Local Memory
Per-thread local memory is private memory visible only to a single thread. Local
memory is architecturally larger than the thread’s register file, and a program
can compute addresses into local memory. To support large allocations of local
memory (recall the total allocation is the per-thread allocation times the number
of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off-chip, they are well-
suited to being cached on-chip.

Constant Memory
Constant memory is read-only to a program running on the SM (it can be written
via commands to the GPU). It is stored in external DRAM and cached in the SM.
Because commonly most or all threads in a SIMT warp read from the same address
in constant memory, a single address lookup per clock is sufficient. The constant
cache is designed to broadcast scalar values to threads in each warp.

Texture Memory
Texture memory holds large read-only arrays of data. Textures for computing have
the same attributes and capabilities as textures used with 3D graphics. Although
textures are commonly two-dimensional images (2D arrays of pixel values), 1D
(linear) and 3D (volume) textures are also available.

A compute program references a texture using a tex instruction. Operands
include an identifier to name the texture, and one, two, or three coordinates
based on the texture dimensionality. The floating-point coordinates include a
fractional portion that specifies a sample location, often in-between texel locations.
Noninteger coordinates invoke a bilinear weighted interpolation of the four closest
values (for a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize
throughput of texture fetches from thousands of concurrent threads. Some
programs use texture fetches as a way to cache global memory.

 B.6 Floating-point Arithmetic B-41

Surfaces
Surface is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats
are defined; for example, a pixel may be defined as four 8-bit RGBA integer
components, or four 16-bit floating-point components. A program kernel does
not need to know the surface type. A tex instruction recasts its result values as
floating-point, depending on the surface format.

Load/Store Access
Load/store instructions with integer byte addressing enable the writing and
compiling of programs in conventional languages like C and C++. CUDA
programs use load/store instructions to access memory.

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp
together into a single memory block request when the addresses fall in the same
block and meet alignment criteria. Coalescing individual small memory requests
into large block requests provides a significant performance boost over separate
requests. The large thread count, together with support for many outstanding load
requests, helps cover load-to-use latency for local and global memory implemented
in external DRAM.

ROP
As shown in Figure B.2.5, NVIDIA Tesla architecture GPUs comprise a scalable
streaming processor array (SPA), which performs all of the GPU’s programmable
calculations, and a scalable memory system, which comprises external DRAM
control and fixed function Raster Operation Processors (ROPs) that perform color
and depth framebuffer operations directly on memory. Each ROP unit is paired
with a specific memory partition. ROP partitions are fed from the SMs via an
interconnection network. Each ROP is responsible for depth and stencil tests and
updates, as well as color blending. The ROP and memory controllers cooperate
to implement lossless color and depth compression (up to 8:1) to reduce external
bandwidth demand. ROP units also perform atomic operations on memory.

 B.6 Floating-point Arithmetic

GPUs today perform most arithmetic operations in the programmable processor
cores using IEEE 754-compatible single precision 32-bit floating-point operations
(see Chapter 3). The fixed-point arithmetic of early GPUs was succeeded by 16-bit,
24-bit, and 32-bit floating-point, then IEEE 754-compatible 32-bit floating-point.

B-42 Appendix B Graphics and Computing GPUs

Some fixed-function logic within a GPU, such as texture-filtering hardware,
continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754-
compatible double-precision 64-bit floating-point instructions.

Supported Formats
The IEEE 754 standard for floating-point arithmetic specifies basic and storage
formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit
binary floating-point, commonly called single precision and double precision. The
standard also specifies a 16-bit binary storage floating-point format, half precision.
GPUs and the Cg shading language employ the narrow 16-bit half data format for
efficient data storage and movement, while maintaining high dynamic range. GPUs
perform many texture filtering and pixel blending computations at half precision
within the texture filtering unit and the raster operations unit. The OpenEXR high
dynamic-range image file format developed by Industrial Light and Magic [2003]
uses the identical half format for color component values in computer imaging and
motion picture applications.

Basic Arithmetic
Common single-precision floating-point operations in GPU programmable cores
include addition, multiplication, multiply-add, minimum, maximum, compare,
set predicate, and conversions between integer and floating-point numbers.
Floating-point instructions often provide source operand modifiers for negation
and absolute value.

The floating-point addition and multiplication operations of most GPUs today
are compatible with the IEEE 754 standard for single precision FP numbers,
including not-a-number (NaN) and infinity values. The FP addition and
multiplication operations use IEEE round-to-nearest-even as the default rounding
mode. To increase floating-point instruction throughput, GPUs often use a
compound multiply-add instruction (mad). The multiply-add operation performs
FP multiplication with truncation, followed by FP addition with round-to-nearest-
even. It provides two floating-point operations in one issuing cycle, without
requiring the instruction scheduler to dispatch two separate instructions, but the
computation is not fused and truncates the product before the addition. This makes
it different from the fused multiply-add instruction discussed in Chapter 3 and
later in this section. GPUs typically flush denormalized source operands to sign-
preserved zero, and they flush results that underflow the target output exponent
range to sign-preserved zero after rounding.

Specialized Arithmetic
GPUs provide hardware to accelerate special function computation, attribute
interpolation, and texture filtering. Special function instructions include cosine,

half precision A 16-bit
binary floating-point
format, with 1 sign bit,
5-bit exponent, 10-bit
fraction, and an implied
integer bit.

multiply-add (MAD)
A single floating-point
instruction that performs
a compound operation:
multiplication followed by
addition.

 B.6 Floating-point Arithmetic B-43

sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root.
Attribute interpolation instructions provide efficient generation of pixel attributes,
derived from plane equation evaluation. The special function unit (SFU)
introduced in Section B.4 computes special functions and interpolates planar
attributes [Oberman and Siu, 2005].

Several methods exist for evaluating special functions in hardware. It has been
shown that quadratic interpolation based on Enhanced Minimax Approximations
is a very efficient method for approximating functions in hardware, including
reciprocal, reciprocal square-root, log2x, 2x, sin, and cos.

We can summarize the method of SFU quadratic interpolation. For a binary
input operand X with n-bit significand, the significand is divided into two parts:
Xu is the upper part containing m bits, and Xl is the lower part containing n-m bits.
The upper m bits Xu are used to consult a set of three lookup tables to return three
finite-word coefficients C0, C1, and C2. Each function to be approximated requires
a unique set of tables. These coefficients are used to approximate a given function
f(X) in the range Xu ≤ X < Xu + 2−m by evaluating the expression:

f X C C X C X() 0 1 1 2 1
2

The accuracy of each of the function estimates ranges from 22 to 24 significand
bits. Example function statistics are shown in Figure B.6.1.

The IEEE 754 standard specifies exact-rounding requirements for division
and square root; however, for many GPU applications, exact compliance is not
required. Rather, for those applications, higher computational throughput is more
important than last-bit accuracy. For the SFU special functions, the CUDA math
library provides both a full accuracy function and a fast function with the SFU
instruction accuracy.

Another specialized arithmetic operation in a GPU is attribute interpolation.
Key attributes are usually specified for vertices of primitives that make up a scene
to be rendered. Example attributes are color, depth, and texture coordinates. These
attributes must be interpolated in the (x,y) screen space as needed to determine the

special function unit
(SFU) A hardware unit
that computes special
functions and interpolates
planar attributes.

Function
Input

interval
Accuracy

(good bits)
ULP*

error
% exactly
rounded Monotonic

1/x [1, 2) 24.02 0.98 87 Yes

1/sqrt(x) [1, 4) 23.40 1.52 78 Yes

2x [0, 1) 22.51 1.41 74 Yes

log2x [1, 2) 22.57 N/A** N/A Yes

sin/cos [0, /2) 22.47 N/A N/A No

*ULP: unit in the last place. **N/A: not applicable.

FIGURE B.6.1 Special function approximation statistics. For the NVIDIA GeForce 8800 special
function unit (SFU).

B-44 Appendix B Graphics and Computing GPUs

values of the attributes at each pixel location. The value of a given attribute U in an
(x, y) plane can be expressed using plane equations of the form:

U x,y A x B Y Cu u u()

where A, B, and C are interpolation parameters associated with each attribute U.
The interpolation parameters A, B, and C are all represented as single-precision
floating-point numbers.

Given the need for both a function evaluator and an attribute interpolator in a
pixel shader processor, a single SFU that performs both functions for efficiency can
be designed. Both functions use a sum of products operation to interpolate results,
and the number of terms to be summed in both functions is very similar.

Texture Operations

Texture mapping and filtering is another key set of specialized floating-point
arithmetic operations in a GPU. The operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and
t are single-precision floating-point numbers.

2. Compute the level of detail to identify the correct texture MIP-map level.

3. Compute the trilinear interpolation fraction.

4. Scale texture address (s, t) for the selected MIP-map level.

5. Access memory and retrieve desired texels (texture elements).

6. Perform filtering operation on texels.

Texture mapping requires a significant amount of floating-point computation
for full-speed operation, much of which is done at 16-bit half precision. As an
example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format
floating-point computation for texture mapping instructions, in addition to its
conventional IEEE single-precision floating-point instructions. For more details
on texture mapping and filtering, see Foley and van Dam [1995].

Performance
The floating-point addition and multiplication arithmetic hardware is fully
pipelined, and latency is optimized to balance delay and area. While pipelined,
the throughput of the special functions is less than the floating-point addition
and multiplication operations. Quarter-speed throughput for the special functions
is typical performance in modern GPUs, with one SFU shared by four SP cores.
In contrast, CPUs typically have significantly lower throughput for similar
functions, such as division and square root, albeit with more accurate results. The
attribute interpolation hardware is typically fully pipelined to enable full-speed
pixel shaders.

MIP-map A Latin
phrase multum in parvo,
or much in a small space.
A MIP-map contains
precalculated images of
different resolutions, used
to increase rendering
speed and reduce
artifacts.

 B.6 Floating-point Arithmetic B-45

Double precision
Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision
operations in hardware. Standard floating-point arithmetic operations in double
precision include addition, multiplication, and conversions between different
floating-point and integer formats. The 2008 IEEE 754 floating-point standard
includes specification for the fused-multiply-add (FMA) operation, as discussed
in Chapter 3. The FMA operation performs a floating-point multiplication
followed by an addition, with a single rounding. The fused multiplication and
addition operations retain full accuracy in intermediate calculations. This behavior
enables more accurate floating-point computations involving the accumulation
of products, including dot products, matrix multiplication, and polynomial
evaluation. The FMA instruction also enables efficient software implementations
of exactly rounded division and square root, removing the need for a hardware
division or square root unit.

A double-precision hardware FMA unit implements 64-bit addition,
multiplication, conversions, and the FMA operation itself. The architecture of a

Multiplier Array
53 x 53 Exp

Diff

B CA

Carry Propagate Adder

64

Alignment
shifter

Inversion

3-2 CSA 161 bits

Complementer

Normalizer

Rounder

53

Sum Carry Shifted
C

161

64 64

53 53

Sum Carry

FIGURE B.6.2 Double-precision fused-multiply-add (FMA) unit. Hardware to implement
floating-point A× B+ C for double precision.

B-46 Appendix B Graphics and Computing GPUs

double-precision FMA unit enables full-speed denormalized number support on
both inputs and outputs. Figure B.6.2 shows a block diagram of an FMA unit.

As shown in Figure B.6.2, the significands of A and B are multiplied to form a 106-
bit product, with the results left in carry-save form. In parallel, the 53-bit addend C is
conditionally inverted and aligned to the 106-bit product. The sum and carry results
of the 106-bit product are summed with the aligned addend through a 161-bit-
wide carry-save adder (CSA). The carry-save output is then summed together in
a carry-propagate adder to produce an unrounded result in nonredundant, two’s
complement form. The result is conditionally recomplemented, so as to return a
result in sign-magnitude form. The complemented result is normalized, and then it
is rounded to fit within the target format.

 B.7 Real Stuff: The NVIDIA GeForce 8800

The NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unified vertex
and pixel processor design that also supports parallel computing applications written
in C using the CUDA parallel programming model. It is the first implementation
of the Tesla unified graphics and computing architecture described in Section B.4
and in Lindholm et al. [2008]. A family of Tesla architecture GPUs addresses the
different needs of laptops, desktops, workstations, and servers.

Streaming Processor Array (SPA)
The GeForce 8800 GPU shown in Figure B.7.1 contains 128 streaming processor (SP)
cores organized as 16 streaming multiprocessors (SMs). Two SMs share a texture
unit in each texture/processor cluster (TPC). An array of eight TPCs makes up the
streaming processor array (SPA), which executes all graphics shader programs and
computing programs.

The host interface unit communicates with the host CPU via the PCI-Express
bus, checks command consistency, and performs context switching. The input
assembler collects geometric primitives (points, lines, triangles). The work
distribution blocks dispatch vertices, pixels, and compute thread arrays to the
TPCs in the SPA. The TPCs execute vertex and geometry shader programs and
computing programs. Output geometric data are sent to the viewport/clip/setup/
raster/zcull block to be rasterized into pixel fragments that are then redistributed
back into the SPA to execute pixel shader programs. Shaded pixels are sent across
the interconnection network for processing by the ROP units. The network also
routes texture memory read requests from the SPA to DRAM and reads data from
DRAM through a level-2 cache back to the SPA.

 B.7 Real Stuff: The NVIDIA GeForce 8800 B-47

Texture/Processor Cluster (TPC)
Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as
shown in Figure B.7.2.

The geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and
topology flow in the TPC.

The SMC controls multiple SMs, arbitrating the shared texture unit, load/store
path, and I/O path. The SMC serves three graphics workloads simultaneously:
vertex, geometry, and pixel.

The texture unit processes a texture instruction for one vertex, geometry, or pixel
quad, or four compute threads per cycle. Texture instruction sources are texture
coordinates, and the outputs are weighted samples, typically a four-component
(RGBA) floating-point color. The texture unit is deeply pipelined. Although it
contains a streaming cache to capture filtering locality, it streams hits mixed with
misses without stalling.

GPU

Host CPU System Memory

DRAM DRAM DRAM DRAM DRAM DRAM

ROP L2 ROP L2 ROP L2 ROP L2 ROP L2 ROP L2

TPC

SPA

TPC TPC TPC TPC TPC TPC TPC

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

Texture Unit
Tex L1

SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

Vertex Work
Distribution

Input Assembler

Host Interface

Bridge

Pixel Work
Distribution

Viewport/Clip/
Setup/Raster/

ZCull

Compute Work
Distribution

Interconnection Network

Interface

Display

High-Definition
Video Processors

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

FIGURE B.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8800 has 128 streaming processor
(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). The processors connect with six 64-bit-
wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs,
DRAM partitions, and other units.

B-48 Appendix B Graphics and Computing GPUs

Streaming Multiprocessor (SM)
The SM is a unified graphics and computing multiprocessor that executes vertex,
geometry, and pixel-fragment shader programs and parallel computing programs.
The SM consists of eight SP thread processor cores, two SFUs, a multithreaded
instruction fetch and issue unit (MT issue), an instruction cache, a read-only
constant cache, and a 16 KB read/write shared memory. It executes scalar
instructions for individual threads.

The GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of
36 GFLOPS per SM. To optimize power and area efficiency, some SM nondatapath
units operate at half the SP clock rate.

SMC

Geometry Controller

TPC

Texture Unit

Tex L1

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

I-Cache

MT Issue

C-Cache

SFU SFU

SM

SM SM

SP

SP

SP

SP SP

SP

SP

SP

FIGURE B.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each SM has eight streaming processor
(SP) cores, two SFUs, and a shared memory.

 B.7 Real Stuff: The NVIDIA GeForce 8800 B-49

To efficiently execute hundreds of parallel threads while running several different
programs, the SM is hardware multithreaded. It manages and executes up to 768
concurrent threads in hardware with zero scheduling overhead. Each thread has its
own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel,
or compute. The SIMT design, previously described in Section B.4, shares the SM
instruction fetch and issue unit efficiently across 32 threads but requires a full warp
of active threads for full performance efficiency.

The SM schedules and executes multiple warp types concurrently. Each issue
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction.
An issued warp instruction executes as four sets of eight threads over four processor
cycles. The SP and SFU units execute instructions independently, and by issuing
instructions between them on alternate cycles, the scheduler can keep both fully
occupied. A scoreboard qualifies each warp for issue each cycle. The instruction
scheduler prioritizes all ready warps and selects the one with highest priority for
issue. Prioritization considers warp type, instruction type, and “fairness” to all
warps executing in the SM.

The SM executes cooperative thread arrays (CTAs) as multiple concurrent warps
which access a shared memory region allocated dynamically for the CTA.

Instruction Set
Threads execute scalar instructions, unlike previous GPU vector instruction
architectures. Scalar instructions are simpler and compiler-friendly. Texture
instructions remain vector-based, taking a source coordinate vector and returning
a filtered color vector.

The register-based instruction set includes all the floating-point and integer
arithmetic, transcendental, logical, flow control, memory load/store, and texture
instructions listed in the PTX instruction table of Figure B.4.3. Memory load/store
instructions use integer byte addressing with register-plus-offset address arithmetic.
For computing, the load/store instructions access three read-write memory spaces:
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for data
shared by all threads. Computing programs use the fast barrier synchronization
bar.sync instruction to synchronize threads within a CTA that communicate
with each other via shared and global memory. The latest Tesla architecture GPUs
implement PTX atomic memory operations, which facilitate parallel reductions
and parallel data structure management.

Streaming Processor (SP)
The multithreaded SP core is the primary thread processor, as introduced in
Section B.4. Its register file provides 1024 scalar 32-bit registers for up to 96 threads
(more threads than in the example SP of Section B.4). Its floating-point add and

B-50 Appendix B Graphics and Computing GPUs

multiply operations are compatible with the IEEE 754 standard for single-precision
FP numbers, including not-a-number (NaN) and infinity. The add and multiply
operations use IEEE round-to-nearest-even as the default rounding mode. The SP
core also implements all of the 32-bit and 64-bit integer arithmetic, comparison,
conversion, and logical PTX instructions in Figure B.4.3. The processor is fully
pipelined, and latency is optimized to balance delay and area.

Special Function Unit (SFU)
The SFU supports computation of both transcendental functions and planar
attribute interpolation. As described in Section B.6, it uses quadratic interpolation
based on enhanced minimax approximations to approximate the reciprocal,
reciprocal square root, log2x, 2x, and sin/cos functions at one result per cycle. The
SFU also supports pixel attribute interpolation such as color, depth, and texture
coordinates at four samples per cycle.

Rasterization
Geometry primitives from the SMs go in their original round-robin input order
to the viewport/clip/setup/raster/zcull block. The viewport and clip units clip
the primitives to the view frustum and to any enabled user clip planes, and then
transform the vertices into screen (pixel) space.

Surviving primitives then go to the setup unit, which generates edge equations
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at
least partially inside the primitive. The zcull unit maintains a hierarchical z surface,
rejecting pixel tiles if they are conservatively known to be occluded by previously
drawn pixels. The rejection rate is up to 256 pixels per clock. Pixels that survive zcull
then go to a fine-rasterization stage that generates detailed coverage information
and depth values.

The depth test and update can be performed ahead of the fragment shader, or
after, depending on current state. The SMC assembles surviving pixels into warps
to be processed by an SM running the current pixel shader. The SMC then sends
surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System
Each ROP is paired with a specific memory partition. For each pixel fragment
emitted by a pixel shader program, ROPs perform depth and stencil testing and
updates, and in parallel, color blending and updates. Lossless color compression
(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth.
Each ROP has a peak rate of four pixels per clock and supports 16-bit floating-
point and 32-bit floating-point HDR formats. ROPs support double-rate-depth
processing when color writes are disabled.

 B.7 Real Stuff: The NVIDIA GeForce 8800 B-51

Antialiasing support includes up to 16× multisampling and supersampling. The
coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean
coverage at up to 16 samples and compresses redundant color, depth, and stencil
information into the memory footprint and a bandwidth of four or eight samples
for improved performance.

The DRAM memory data bus width is 384 pins, arranged in six independent
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and
graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of
about 16 GB/s per partition, or 96 GB/s.

The memory controllers support a wide range of DRAM clock rates, protocols,
device densities, and data bus widths. Texture and load/store requests can occur
between any TPC and any memory partition, so an interconnection network routes
requests and responses.

Scalability
The Tesla unified architecture is designed for scalability. Varying the number of
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for
different performance and cost targets in GPU market segments. Scalable link
interconnect (SLI) connects multiple GPUs, providing further scalability.

Performance
The GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz,
for a theoretical operation peak of 576 GFLOPS. The GeForce 8800 GTX has a 1.35 GHz
processor clock and a corresponding peak of 518 GFLOPS.

The following three sections compare the performance of a GeForce 8800 GPU
with a multicore CPU on three different applications—dense linear algebra, fast
Fourier transforms, and sorting. The GPU programs and libraries are compiled
CUDA C code. The CPU code uses the single-precision multithreaded Intel MKL
10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance
Dense linear algebra computations are fundamental in many applications. Volkov
and Demmel [2008] present GPU and CPU performance results for single-
precision dense matrix-matrix multiplication (the SGEMM routine) and LU,
QR, and Cholesky matrix factorizations. Figure B.7.3 compares GFLOPS rates on
SGEMM dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a
quad-core CPU. Figure B.7.4 compares GFLOPS rates on matrix factorization for a
GPU with a quad-core CPU.

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the
bulk of the work in matrix factorization, their performance sets an upper bound on
factorization rate. As the matrix order increases beyond 200 to 400, the factorization

B-52 Appendix B Graphics and Computing GPUs

210

180

150

120

90

60

30

0

G
F

LO
P

S

N
64 128 256 512 1024 2048 4096 8192

A:N�N, B:N�N A:N�64, B:64�N

GeForce 8800 GTX

Core2 Quad

FIGURE B.7.3 SGEMM dense matrix-matrix multiplication performance rates. The graph
shows single-precision GFLOPS rates achieved in multiplying square N×N matrices (solid lines) and thin
N ×64 and 64×N matrices (dashed lines). Adapted from Figure 6 of Volkov and Demmel [2008]. The black
lines are a 1.35 GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on
matrices in GPU memory. The blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux,
Intel MKL 10.0 on matrices in CPU memory.

LU Cholesky QR

Core2 Quad

210

180

150

120

90

60

30

0

Order of Matrix

G
F

LO
P

S

G
eF

or
ce

 8
80

0
G

TX
 +

 C
or

e2
 D

uo

64 128 256 512 1024 2048 4096 8192 16,384

FIGURE B.7.4 Dense matrix factorization performance rates. The graph shows GFLOPS rates
achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of Volkov
and Demmel [2008]. The black lines are for a 1.35 GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows
XP attached to a 2.67 GHz Intel Core2 Duo E6700 Windows XP, including all CPU–GPU data transfer times.
The blue lines are for a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0.

 B.7 Real Stuff: The NVIDIA GeForce 8800 B-53

problem becomes large enough that SGEMM can leverage the GPU parallelism and
overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak
multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3
times the quad-core CPU.

FFT Performance
Fast Fourier Transforms (FFTs) are used in many applications. Large transforms
and multidimensional transforms are partitioned into batches of smaller 1D
transforms.

Figure B.7.5 compares the in-place 1D complex single-precision FFT
performance of a 1.35 GHz GeForce 8800 GTX (dating from late 2006) with a
2.8 GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating
from late 2007). CPU performance was measured using the Intel Math Kernel
Library (MKL) 10.0 FFT with four threads. GPU performance was measured using
the NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency
FFTs. Both CPU and GPU throughput performance was measured using batched
FFTs; batch size was 224/n, where n is the transform size. Thus, the workload for
every transform size was 128 MB. To determine GFLOPS rate, the number of
operations per transform was taken as 5n log2 n.

80

GeForce 8800GTX Xeon 5462

70

G
F

LO
P

S

60

50

40

30

20

10

Number of Elements in One Transform

0

128
256 512

1024
2048

4096
8192

16,384
32,768

65,536

131,072

262,144

524, 288

1,048,576

2,097,152

4,194,304

FIGURE B.7.5 Fast Fourier transform throughput performance. The graph compares the
performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with a
quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600
FSB, Red Hat Linux, Intel MKL 10.0.

B-54 Appendix B Graphics and Computing GPUs

Sorting Performance
In contrast to the applications just discussed, sort requires far more substantial
coordination among parallel threads, and parallel scaling is correspondingly
harder to obtain. Nevertheless, a variety of well-known sorting algorithms can
be efficiently parallelized to run well on the GPU. Satish et al. [2008] detail the
design of sorting algorithms in CUDA, and the results they report for radix sort
are summarized below.

Figure B.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra
with an 8-core Intel Clovertown system, both of which date to early 2007. The
CPU cores are distributed between two physical sockets. Each socket contains a
multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All
sorting routines were designed to sort key-value pairs where both keys and values
are 32-bit integers. The primary algorithm being studied is radix sort, although
the quicksort-based parallel_sort() procedure provided by Intel’s Threading
Building Blocks is also included for comparison. Of the two CPU-based radix sort
codes, one was implemented using only the scalar instruction set and the other
utilizes carefully hand-tuned assembly language routines that take advantage of the
SSE2 SIMD vector instructions.

The graph itself shows the achieved sorting rate—defined as the number of
elements sorted divided by the time to sort—for a range of sequence sizes. It is

0

10

20

30

40

50

60

70

80

1000 10,000 100,000 1,000,000 10,000,000 100,000,000

M
ill

io
ns

Sequence Size

S
or

tin
g

R
at

e
(p

ai
rs

/s
ec

)

CPU quick sort CPU radix sort (scalar)

GPU radix sort CPU radix sort (SIMD)

FIGURE B.7.6 Parallel sorting performance. This graph compares sorting rates for parallel radix sort
implementations on a 1.5 GHz GeForce 8800 Ultra and an 8-core 2.33 GHz Intel Core2 Xeon E5345 system.

 B.8 Real Stuff: Mapping Applications to GPUs B-55

apparent from this graph that the GPU radix sort achieved the highest sorting
rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6
times faster than the quicksort-based routine and roughly two times faster than the
radix sort routines, all of which were using the eight available CPU cores. The CPU
radix sort performance varies widely, likely due to poor cache locality of its global
permutations.

 B.8 Real Stuff: Mapping Applications to GPUs

The advent of multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. Furthermore, their parallelism continues
to scale with Moore’s law. The challenge is to develop mainstream visual computing
and high-performance computing applications that transparently scale their
parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to GPUs with widely
varying numbers of cores.

This section presents examples of mapping scalable parallel computing
applications to the GPU using CUDA.

Sparse Matrices
A wide variety of parallel algorithms can be written in CUDA in a fairly
straightforward manner, even when the data structures involved are not simple
regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of an
important numerical building block that can be parallelized quite directly using the
abstractions provided by CUDA. The kernels we discuss below, when combined
with the provided CUBLAS vector routines, make writing iterative solvers such as
the conjugate gradient method straightforward.

A sparse n × n matrix is one in which the number of nonzero entries m is only
a small fraction of the total. Sparse matrix representations seek to store only the
nonzero elements of a matrix. Since it is fairly typical that a sparse n × n matrix
will contain only m= O(n) nonzero elements, this represents a substantial saving
in storage space and processing time.

One of the most common representations for general unstructured sparse
matrices is the compressed sparse row (CSR) representation. The m nonzero
elements of the matrix A are stored in row-major order in an array Av. A second
array Aj records the corresponding column index for each entry of Av. Finally, an
array Ap of n+ 1 elements records the extent of each row in the previous arrays; the
entries for row i in Aj and Av extend from index Ap[i] up to, but not including,
index Ap[i + 1]. This implies that Ap[0] will always be 0 and Ap[n] will always
be the number of nonzero elements in the matrix. Figure B.8.1 shows an example
of the CSR representation of a simple matrix.

B-56 Appendix B Graphics and Computing GPUs

Given a matrix A in CSR form and a vector x, we can compute a single row of
the product y = Ax using the multiply_row() procedure shown in Figure B.8.2.
Computing the full product is then simply a matter of looping over all rows and
computing the result for that row using multiply_row(), as in the serial C code
shown in Figure B.8.3.

This algorithm can be translated into a parallel CUDA kernel quite easily. We
simply spread the loop in csrmul_serial() over many parallel threads. Each
thread will compute exactly one row of the output vector y. The code for this kernel
is shown in Figure B.8.4. Note that it looks extremely similar to the serial loop
used in the csrmul_serial() procedure. There are really only two points of
difference. First, the row index for each thread is computed from the block and
thread indices assigned to each thread, eliminating the for-loop. Second, we have a
conditional that only evaluates a row product if the row index is within the bounds
of the matrix (this is necessary since the number of rows n need not be a multiple
of the block size used in launching the kernel).

3
0
0
1

A

a. Sample matrix A

0
0
2
0 0

4 1
1

0 0
1 0

=

Row 0

b. CSR representation of matrix

Row 2 Row 3
Av[7] =

=

=

Aj[7]

{ }

}

}

{

{Ap[5] 0

3

0 2 1 2 3 0 3

1 2 4 1 1 1

2 2 5 7

FIGURE B.8.1 Compressed sparse row (CSR) matrix.

float multiply_row(unsigned int rowsize,
 unsigned int *Aj, // column indices for row
 float *Av, // nonzero entries for row
 float *x) // the RHS vector
{
 float sum = 0;

 for(unsigned int column=0; column<rowsize; ++column)
 sum += Av[column] * x[Aj[column]];

 return sum;
}

FIGURE B.8.2 Serial C code for a single row of sparse matrix-vector multiply.

 B.8 Real Stuff: Mapping Applications to GPUs B-57

Assuming that the matrix data structures have already been copied to the GPU
device memory, launching this kernel will look like:

unsigned int blocksize = 128; // or any size up to 512
unsigned int nblocks = (num_rows + blocksize - 1) / blocksize;
csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);

void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
 for(unsigned int row=0; row<num_rows; ++row)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
 }
}

FIGURE B.8.3 Serial code for sparse matrix-vector multiply.

__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
 unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

 if(row<num_rows)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
 }
}

FIGURE B.8.4 CUDA version of sparse matrix-vector multiply.

B-58 Appendix B Graphics and Computing GPUs

The pattern that we see here is a very common one. The original serial
algorithm is a loop whose iterations are independent of each other. Such loops
can be parallelized quite easily by simply assigning one or more iterations of the
loop to each parallel thread. The programming model provided by CUDA makes
expressing this type of parallelism particularly straightforward.

This general strategy of decomposing computations into blocks of independent
work, and more specifically breaking up independent loop iterations, is not unique
to CUDA. This is a common approach used in one form or another by various
parallel programming systems, including OpenMP and Intel’s Threading Building
Blocks.

Caching in Shared Memory
The SpMV algorithms outlined above are fairly simplistic. There are a number of
optimizations that can be made in both the CPU and GPU codes that can improve
performance, including loop unrolling, matrix reordering, and register blocking.
The parallel kernels can also be reimplemented in terms of data parallel scan
operations presented by Sengupta et al. [2007].

One of the important architectural features exposed by CUDA is the presence of
the per-block shared memory, a small on-chip memory with very low latency. Taking
advantage of this memory can deliver substantial performance improvements. One
common way of doing this is to use shared memory as a software-managed cache
to hold frequently reused data. Modifcations using shared memory are shown in
Figure B.8.5.

In the context of sparse matrix multiplication, we observe that several rows of A
may use a particular array element x[i]. In many common cases, and particularly
when the matrix has been reordered, the rows using x[i] will be rows near row i.
We can therefore implement a simple caching scheme and expect to achieve some
performance benefit. The block of threads processing rows i through j will load
x[i] through x[j] into its shared memory. We will unroll the multiply_row()
loop and fetch elements of x from the cache whenever possible. The resulting
code is shown in Figure B.8.5. Shared memory can also be used to make other
optimizations, such as fetching Ap[row+1] from an adjacent thread rather than
refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared
memory, rather than an implicitly active hardware cache, it is fairly common to add
this sort of optimization. Although this can impose some additional development
burden on the programmer, it is relatively minor, and the potential performance
benefits can be substantial. In the example shown above, even this fairly simple
use of shared memory returns a roughly 20% performance improvement on
representative matrices derived from 3D surface meshes. The availability of an
explicitly managed memory in lieu of an implicit cache also has the advantage
that caching and prefetching policies can be specifically tailored to the application
needs.

 B.8 Real Stuff: Mapping Applications to GPUs B-59

__global__
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 const float *x, float *y)
{
 // Cache the rows of x[] corresponding to this block.
 __shared__ float cache[blocksize];

 unsigned int block_begin = blockIdx.x * blockDim.x;
 unsigned int block_end = block_begin + blockDim.x;
 unsigned int row = block_begin + threadIdx.x;

 // Fetch and cache our window of x[].
 if(row<num_rows) cache[threadIdx.x] = x[row];
 __syncthreads();

 if(row<num_rows)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];
 float sum = 0, x_j;

 for(unsigned int col=row_begin; col<row_end; ++col)
 {
 unsigned int j = Aj[col];

 // Fetch x_j from our cache when possible
 if(j>=block_begin && j<block_end)
 x_j = cache[j-block_begin];
 else
 x_j = x[j];

 sum += Av[col] * x_j;
 }

 y[row] = sum;
 }
}

FIGURE B.8.5 Shared memory version of sparse matrix-vector multiply.

B-60 Appendix B Graphics and Computing GPUs

These are fairly simple kernels whose purpose is to illustrate basic techniques
in writing CUDA programs, rather than how to achieve maximal performance.
Numerous possible avenues for optimization are available, several of which are
explored by Williams et al. [2007] on a handful of different multicore architectures.
Nevertheless, it is still instructive to examine the comparative performance of even
these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor, the csrmul_
serial() kernel runs at roughly 202 million nonzeros processed per second, for
a collection of Laplacian matrices derived from 3D triangulated surface meshes.
Parallelizing this kernel with the parallel_for construct provided by Intel’s
Threading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running
on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra,
the csrmul_kernel() and csrmul_cached() kernels achieve processing rates
of roughly 772 and 920 million nonzeros per second, corresponding to parallel
speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core.

Scan and Reduction
Parallel scan, also known as parallel prefix sum, is one of the most important
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a
of n elements:

[, , ,]a a an0 1 1… �

and a binary associative operator ⊕, the scan function computes the sequence:

scan(,) [,(), ,()]a a a a a a an⊕ ⊕ … ⊕ ⊕…⊕0 0 1 0 1 1

As an example, if we take ⊕ to be the usual addition operator, then applying scan
to the input array

a � []317 0 4 16 3

will produce the sequence of partial sums:

scan(,) []a 3 4 11111516 22 25

This scan operator is an inclusive scan, in the sense that element i of the output
sequence incorporates element ai of the input. Incorporating only previous elements
would yield an exclusive scan operator, also known as a prefix-sum operation.

The serial implementation of this operation is extremely simple. It is simply a
loop that iterates once over the entire sequence, as shown in Figure B.8.6.

At first glance, it might appear that this operation is inherently serial. However,
it can actually be implemented in parallel efficiently. The key observation is that

 B.8 Real Stuff: Mapping Applications to GPUs B-61

because addition is associative, we are free to change the order in which elements
are added together. For instance, we can imagine adding pairs of consecutive
elements in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An
implementation of their algorithm in CUDA is shown in Figure B.8.7. It assumes
that the input array x[] contains exactly one element per thread of the thread
block. It performs log2 n iterations of a loop collecting partial sums together.

To understand the action of this loop, consider Figure B.8.8, which illustrates
the simple case for n=8 threads and elements. Each level of the diagram represents
one step of the loop. The lines indicate the location from which the data are being
fetched. For each element of the output (i.e., the final row of the diagram) we are
building a summation tree over the input elements. The edges highlighted in blue
show the form of this summation tree for the final element. The leaves of this tree
are all the initial elements. Tracing back from any output element shows that it
incorporates all input values up to and including itself.

template<class T>
__host__ T plus_scan(T *x, unsigned int n)
{
 for(unsigned int i=1; i<n; ++i)
 x[i] = x[i-1] + x[i];
}

FIGURE B.8.6 Template for serial plus-scan.

template<class T>
__device__ T plus_scan(T *x)
{
 unsigned int i = threadIdx.x;
 unsigned int n = blockDim.x;

 for(unsigned int offset=1; offset<n; offset *= 2)
 {
 T t;

 if(i>=offset) t = x[i-offset];
 __syncthreads();

 if(i>=offset) x[i] = t + x[i];
 __syncthreads();
 }
 return x[i];
}

FIGURE B.8.7 CUDA template for parallel plus-scan.

B-62 Appendix B Graphics and Computing GPUs

While simple, this algorithm is not as efficient as we would like. Examining
the serial implementation, we see that it performs O(n) additions. The parallel
implementation, in contrast, performs O(n log n) additions. For this reason, it
is not work efficient, since it does more work than the serial implementation to
compute the same result. Fortunately, there are other techniques for implementing
scan that are work-efficient. Details on more efficient implementation techniques
and the extension of this per-block procedure to multiblock arrays are provided by
Sengupta et al. [2007].

In some instances, we may only be interested in computing the sum of all
elements in an array, rather than the sequence of all prefix sums returned by scan.
This is the parallel reduction problem. We could simply use a scan algorithm to
perform this computation, but reduction can generally be implemented more
efficiently than scan.

Figure B.8.9 shows the code for computing a reduction using addition. In this
example, each thread simply loads one element of the input sequence (i.e., it initially
sums a subsequence of length 1). At the end of the reduction, we want thread 0 to
hold the sum of all elements initially loaded by the threads of its block. The loop in
this kernel implicitly builds a summation tree over the input elements, much like
the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this block.
If we want the final value of the location pointed to by total to contain the total of all
elements in the array, we must combine the partial sums of all the blocks in the grid.
One strategy to do this would be to have each block write its partial sum into a second
array and then launch the reduction kernel again, repeating the process until we had
reduced the sequence to a single value. A more attractive alternative supported by
the Tesla GPU architecture is to use the atomicAdd() primitive, an efficient atomic

x[0]

x[0]

x[0]

x[0]

x[1]

x[1]

x[1]

x[1]

x[2]

x[2]

x[2]

x[2]

x[3]

x[3]

x[3]

x[3]

x[4]

x[4]

x[4]

x[4]

x[5]

x[5]

x[5]

x[6]

x[6]

x[6]

x[5] x[6] x[7]

x[7] x [i] + = x [i – 1] ;

x [i] + = x [i – 2] ;

x [i] + = x [i – 4] ;

x[7]

x[7]

FIGURE B.8.8 Tree-based parallel scan data references.

 B.8 Real Stuff: Mapping Applications to GPUs B-63

read-modify-write primitive supported by the memory subsystem. This eliminates
the need for additional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and
highlights the importance of per-block shared memory and low-cost barriers in
making cooperation among threads efficient. This degree of data shuffling among
threads would be prohibitively expensive if done in off-chip global memory.

Radix Sort
One important application of scan primitives is in the implementation of sorting
routines. The code in Figure B.8.10 implements a radix sort of integers across a
single thread block. It accepts as input an array values containing one 32-bit
integer for each thread of the block. For efficiency, this array should be stored in
per-block shared memory, but this is not required for the sort to behave correctly.

This is a fairly simple implementation of radix sort. It assumes the availability of
a procedure partition_by_bit() that will partition the given array such that

__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 // Each block loads its elements into shared memory, padding
 // with 0 if N is not a multiple of blocksize
 __shared__ int x[blocksize];
 x[tid] = (i<N) ? input[i] : 0;
 __syncthreads();

 // Every thread now holds 1 input value in x[]
 //
 // Build summation tree over elements.
 for(int s=blockDim.x/2; s>0; s=s/2)
 {
 if(tid < s) x[tid] += x[tid + s];
 __syncthreads();
 }

 // Thread 0 now holds the sum of all input values
 // to this block. Have it add that sum to the running total
 if(tid == 0) atomicAdd(total, x[tid]);
}

FIGURE B.8.9 CUDA implementation of plus-reduction.

B-64 Appendix B Graphics and Computing GPUs

all values with a 0 in the designated bit will come before all values with a 1 in that
bit. To produce the correct output, this partitioning must be stable.

Implementing the partitioning procedure is a simple application of scan. Thread
i holds the value xi and must calculate the correct output index at which to write
this value. To do so, it needs to calculate (1) the number of threads j < i for which
the designated bit is 1 and (2) the total number of bits for which the designated bit
is 0. The CUDA code for partition_by_bit() is shown in Figure B.8.11.

__device__ void partition_by_bit(unsigned int *values,
 unsigned int bit)
{
 unsigned int i = threadIdx.x;
 unsigned int size = blockDim.x;
 unsigned int x_i = values[i];
 unsigned int p_i = (x_i >> bit) & 1;

 values[i] = p_i;
 __syncthreads();

 // Compute number of T bits up to and including p_i.
 // Record the total number of F bits as well.
 unsigned int T_before = plus_scan(values);
 unsigned int T_total = values[size-1];
 unsigned int F_total = size - T_total;
 __syncthreads();

 // Write every x_i to its proper place
 if(p_i)
 values[T_before-1 + F_total] = x_i;
 else
 values[i - T_before] = x_i;
}

FIGURE B.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort.

__device__ void radix_sort(unsigned int *values)
{
 for(int bit=0; bit<32; ++bit)
 {
 partition_by_bit(values, bit);
 __syncthreads();
 }
}

FIGURE B.8.10 CUDA code for radix sort.

 B.8 Real Stuff: Mapping Applications to GPUs B-65

A similar strategy can be applied for implementing a radix sort kernel that sorts
an array of large length, rather than just a one-block array. The fundamental step
remains the scan procedure, although when the computation is partitioned across
multiple kernels, we must double-buffer the array of values rather than doing the
partitioning in place. Details on performing radix sorts on large arrays efficiently
are provided by Satish et al. [2008].

N-Body Applications on a GPU1

Nyland et al. [2007] describe a simple yet useful computational kernel with excellent
GPU performance—the all-pairs N-body algorithm. It is a time-consuming
component of many scientific applications. N-body simulations calculate the
evolution of a system of bodies in which each body continuously interacts with
every other body. One example is an astrophysical simulation in which each body
represents an individual star, and the bodies gravitationally attract each other.
Other examples are protein folding, where N-body simulation is used to calculate
electrostatic and van der Waals forces; turbulent fluid flow simulation; and global
illumination in computer graphics.

The all-pairs N-body algorithm calculates the total force on each body in the
system by computing each pair-wise force in the system, summing for each body.
Many scientists consider this method to be the most accurate, with the only loss of
precision coming from the floating-point hardware operations. The drawback is its
O(n2) computational complexity, which is far too large for systems with more than
10 bodies. To overcome this high cost, several simplifications have been proposed
to yield O(n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm,
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast
methods still rely on the all-pairs method as a kernel for accurate computation of
short-range forces; thus it continues to be important.

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary
physics. Between two bodies indexed by i and j, the 3D force vector is:

f
r

r
rij

i j

ij

ij

ij
G

m m
|| || || ||2

The force magnitude is calculated in the left term, while the direction is computed
in the right (unit vector pointing from one body to the other).

Given a list of interacting bodies (an entire system or a subset), the calculation is
simple: for all pairs of interactions, compute the force and sum for each body. Once
the total forces are calculated, they are used to update each body’s position and
velocity, based on the previous position and velocity. The calculation of the forces
has complexity O(n2), while the update is O(n).

1 Adapted from Nyland et al. [2007], “Fast N-Body Simulation with CUDA,” Chapter 31 of
GPU Gems 3.

B-66 Appendix B Graphics and Computing GPUs

The serial force-calculation code uses two nested for-loops iterating over pairs of
bodies. The outer loop selects the body for which the total force is being calculated,
and the inner loop iterates over all the bodies. The inner loop calls a function that
computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the
calculation of force on each body is independent of the calculation on all other
bodies. Once all of the forces are computed, the positions and velocities of the
bodies can be updated.

The code for the serial and parallel versions is shown in Figure B.8.12 and Figure
B.8.13. The serial version has two nested for-loops. The conversion to CUDA,
like many other examples, converts the serial outer loop to a per-thread kernel
where each thread computes the total force on a single body. The CUDA kernel
computes a global thread ID for each thread, replacing the iterator variable of the
serial outer loop. Both kernels finish by storing the total acceleration in a global
array used to compute the new position and velocity values in a subsequent step.
The outer loop is replaced by a CUDA kernel grid that launches N threads, one
for each body.

void accel_on_all_bodies()
{
 int i, j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
 }
}

FIGURE B.8.12 Serial code to compute all pair-wise forces on N bodies.

__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
}

FIGURE B.8.13 CUDA thread code to compute the total force on a single body.

 B.8 Real Stuff: Mapping Applications to GPUs B-67

Optimization for GPU Execution

The CUDA code shown is functionally correct, but is not efficient, as it ignores
key architectural features. Better performance can be achieved with three main
optimizations. First, shared memory can be used to avoid identical memory reads
between threads. Second, using multiple threads per body improves performance
for small values of N. Third, loop unrolling reduces loop overhead.

Using Shared Memory

Shared memory can hold a subset of body positions, much like a cache, eliminating
redundant global memory requests between threads. We optimize the code shown
above to have each of p threads in a thread-block load one position into shared
memory (for a total of p positions). Once all the threads have loaded a value into
shared memory, ensured by __syncthreads(), each thread can then perform
p interactions (using the data in shared memory). This is repeated N/p times to
complete the force calculation for each body, which reduces the number of requests
to memory by a factor of p (typically in the range 32–128).

The function called accel_on_one_body() requires a few changes to support
this optimization. The modified code is shown in Figure B.8.14.

__shared__ float4 shPosition[256];
…
__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j, k;
 int p = blockDim.x;
 float3 acc(0.0f, 0.0f, 0.0f);
 float4 myBody = body[i];

 for (j = 0; j < N; j += p) { // Outer loops jumps by p each time
 shPosition[threadIdx.x] = body[j+threadIdx.x];
 __syncthreads();
 for (k = 0; k < p; k++) { // Inner loop accesses p positions
 acc = body_body_interaction(acc, myBody, shPosition[k]);
 }
 __syncthreads();
 }
 accel[i] = acc;
}

FIGURE B.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance.

B-68 Appendix B Graphics and Computing GPUs

The loop that formerly iterated over all bodies now jumps by the block dimension
p. Each iteration of the outer loop loads p successive positions into shared memory
(one position per thread). The threads synchronize, and then p force calculations
are computed by each thread. A second synchronization is required to ensure that
new values are not loaded into shared memory prior to all threads completing the
force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than
10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s).
This optimization keeps the application busy performing computation rather than
waiting on memory accesses, as it would have done without the use of shared
memory. The performance for varying values of N is shown in Figure B.8.15.

Using Multiple Threads per Body
Figure B.8.15 shows performance degradation for problems with small values of N
(N< 4096) on the GeForce 8800 GTX. Many research efforts that rely on N-body
calculations focus on small N (for long simulation times), making it a target of
our optimization efforts. Our presumption to explain the lower performance was
that there was simply not enough work to keep the GPU busy when N is small.
The solution is to allocate more threads per body. We change the thread-block
dimensions from (p, 1, 1) to (p, q, 1), where q threads divide the work of a single body
into equal parts. By allocating the additional threads within the same thread block,
partial results can be stored in shared memory. When all the force calculations are

250
N-Body Performance on GPUs

200

150

100

50

G
F

LO
P

S

Number of Bodies

0

51
2

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
,2

88

16
,3

84

24
,5

76

32
,7

68

1 thread, 8800

2 threads, 8800

4 threads, 8800

1 thread, 9600

2 threads, 9600

4 threads, 9600

FIGURE B.8.15 Performance measurements of the N-body application on a GeForce 8800
GTX and a GeForce 9600. The 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at
0.80 GHz (about 30% of the 8800). The peak performance is 242 GFLOPS. For a GPU with more processors,
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the
8800 doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can significantly
improve performance, but eventually incurs a performance penalty as N grows.

 B.8 Real Stuff: Mapping Applications to GPUs B-69

done, the q partial results can be collected and summed to compute the final result.
Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 GTX jumps by 110% when
N = 1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS).
Performance degrades slightly on large N, so we only use this optimization for N
smaller than 4096. The performance increases are shown in Figure B.8.15 for a
GPU with 128 processors and a smaller GPU with 64 processors clocked at two-
thirds the speed.

Performance Comparison

The performance of the N-body code is shown in Figure B.8.15 and Figure B.8.16.
In Figure B.8.15, performance of high- and medium-performance GPUs is shown,
along with the performance improvements achieved by using multiple threads per
body. The performance on the faster GPU ranges from 90 to just under 250 GFLOPS.

Figure B.8.16 shows nearly identical code (C++ versus CUDA) running on
Intel Core2 CPUs. The CPU performance is about 1% of the GPU, in the range of
0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes.

Number of Bodies

N-Body Performance on Intel CPUs
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

51
2

G
F

LO
P

S

76
8

10
24

15
36

20
48

30
72

40
96

61
44

81
92

12
,2

88

16
,3

84

24
,5

76

32
,7

68

T2400

E8200

X9775

X9775-Cuda

FIGURE B.8.16 Performance measurements on the N-body code on a CPU. The graph shows
single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note
the dramatic reduction in GFLOPS performance (shown in GFLOPS on the y-axis), demonstrating how
much faster the GPU is compared to the CPU. The performance on the CPU is generally independent of
problem size, except for an anomalously low performance when N = 16,384 on the X9775 CPU. The graph
also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler)
on a single CPU core, where it outperforms the C++ code by 24%. As a programming language, CUDA
exposes parallelism and locality that a compiler can exploit. The Intel CPUs are a 3.2 GHz Extreme X9775
(code named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a
1.83 GHz T2400 (code named “Yonah”), a 2007 laptop CPU. The Penryn version of the Core 2 architecture
is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root
operations to execute four times faster than previous Intel CPUs.

B-70 Appendix B Graphics and Computing GPUs

The graph also shows the results of compiling the CUDA version of the code
for a CPU, where the performance improves by 24%. CUDA, as a programming
language, exposes parallelism, allowing the compiler to make better use of the SSE
vector unit on a single core. The CUDA version of the N-body code naturally maps
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect
scaling on an eight-core system with N = 4096 (ratios of 2.0, 3.97, and 7.94 on two,
four, and eight cores, respectively).

Results

With a modest effort, we developed a computational kernel that improves GPU
performance over multicore CPUs by a factor of up to 157. Execution time for
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz,
single core) took more than 3 seconds per frame to run the same code that runs at a
44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires
6–16 seconds, and on older Core2 processors and Pentium IV processor, the time
is about 25 seconds. We must divide the apparent increase in performance in half,
as the CPU requires only half as many calculations to compute the same result
(using the optimization that the forces on a pair of bodies are equal in strength and
opposite in direction).

How can the GPU speed up the code by such a large amount? The answer
requires inspecting architectural details. The pair-wise force calculation requires
20 floating-point operations, comprised mostly of addition and multiplication
instructions (some of which can be combined using a multiply-add instruction),
but there are also division and square root instructions for vector normalization.
Intel CPUs take many cycles for single-precision division and square root
instructions,2 although this has improved in the latest Penryn CPU family with its
faster 4-bit divider.3 Additionally, the limitations in register capacity lead to many
MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the
GeForce 8800 executes a reciprocal square-root thread instruction in four clocks;
see Section B.6 for special function accuracy. It has a larger register file (per thread)
and shared memory that can be accessed as an instruction operand. Finally, the
CUDA compiler emits 15 instructions for one iteration of the loop, compared
with more than 40 instructions from a variety of x86 CPU compilers. Greater
parallelism, faster execution of complex instructions, more register space, and an
efficient compiler all combine to explain the dramatic performance improvement
of the N-body code between the CPU and the GPU.

2 The x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were
not considered, as their accuracy is too low to be comparable.
3 Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual.
November 2007. Order Number: 248966-016. Also available at www.intel.com/design/
processor/manuals/248966.pdf.

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/design/processor/manuals/248966.pdf

 B.8 Real Stuff: Mapping Applications to GPUs B-71

On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential
processors. Compiling and executing the CUDA version of the code on a CPU
demonstrates that the problem scales well to multicore CPUs, but is still significantly
slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion,
and can interactively display 16K bodies interacting at 44 frames per second.
This allows astrophysical and biophysical events to be displayed and navigated at
interactive rates. Additionally, we can parameterize many settings, such as noise
reduction, damping, and integration techniques, immediately displaying their
effects on the dynamics of the system. This provides scientists with stunning visual
imagery, boosting their insights on otherwise invisible systems (too large or small,
too fast or too slow), allowing them to create better models of physical phenomena.

Figure B.8.17 shows a time-series display of an astrophysical simulation of 16K
bodies, with each body acting as a galaxy. The initial configuration is a spherical shell

FIGURE B.8.17 Twelve images captured during the evolution of an N-body system with 16,384 bodies.

B-72 Appendix B Graphics and Computing GPUs

of bodies rotating about the z-axis. One phenomenon of interest to astrophysicists
is the clustering that occurs, along with the merging of galaxies over time. For the
interested reader, the CUDA code for this application is available in the CUDA
SDK from www.nvidia.com/CUDA.

 B.9 Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have
arisen. We cover a few here.

Fallacy GPUs are just SIMD vector multiprocessors.
It is easy to draw the false conclusion that GPUs are simply SIMD vector
multiprocessors. GPUs do have a SPMD-style programming model, in that
a programmer can write a single program that is executed in multiple thread
instances with multiple data. The execution of these threads is not purely SIMD
or vector, however; it is single-instruction multiple-thread (SIMT), described in
Section B.4. Each GPU thread has its own scalar registers, thread private memory,
thread execution state, thread ID, independent execution and branch path, and
effective program counter, and can address memory independently. Although a
group of threads (e.g., a warp of 32 threads) executes more efficiently when the PCs
for the threads are the same, this is not necessary. So, the multiprocessors are not
purely SIMD. The thread execution model is MIMD with barrier synchronization
and SIMT optimizations. Execution is more efficient if individual thread load/
store memory accesses can be coalesced into block accesses, as well. However, this
is not strictly necessary. In a purely SIMD vector architecture, memory/register
accesses for different threads must be aligned in a regular vector pattern. A GPU
has no such restriction for register or memory accesses; however, execution is more
efficient if warps of threads access local blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute
more than one warp of threads concurrently. In graphics applications, there may
be multiple groups of vertex programs, pixel programs, and geometry programs
running in the multiprocessor array concurrently. Computing programs may also
execute different programs concurrently in different warps.

Fallacy GPU performance cannot grow faster than Moore’s law.
Moore’s law is simply a rate. It is not a “speed of light” limit for any other rate.
Moore’s law describes an expectation that, over time, as semiconductor technology
advances and transistors become smaller, the manufacturing cost per transistor will
decline exponentially. Put another way, given a constant manufacturing cost, the

http://www.nvidia.com/CUDA

 B.9 Fallacies and Pitfalls B-73

number of transistors will increase exponentially. Gordon Moore [1965] predicted
that this progression would provide roughly two times the number of transistors
for the same manufacturing cost every year, and later revised it to doubling every
2 years. Although Moore made the initial prediction in 1965 when there were just
50 components per integrated circuit, it has proved remarkably consistent. The
reduction of transistor size has historically had other benefits, such as lower power
per transistor and faster clock speeds at constant power.

This increasing bounty of transistors is used by chip architects to build processors,
memory, and other components. For some time, CPU designers have used the
extra transistors to increase processor performance at a rate similar to Moore’s law,
so much so that many people think that processor performance growth of two
times every 18–24 months is Moore’s law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores,
improving the architecture and design, and pipelining for more clock speed. The
rest of the new transistors are used for providing more cache, to make memory
access faster. In contrast, GPU designers use almost none of the new transistors to
provide more cache; most of the transistors are used for improving the processor
cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law
bounty directly by applying exponentially more transistors to building more parallel,
and thus faster, processors. Second, GPU designers can improve on the architecture
over time, increasing the efficiency of the processing. Third, Moore’s law assumes
constant cost, so the Moore’s law rate can clearly be exceeded by spending more for
larger chips with more transistors. Fourth, GPU memory systems have increased their
effective bandwidth at a pace nearly comparable to the processing rate, by using faster
memories, wider memories, data compression, and better caches. The combination of
these four approaches has historically allowed GPU performance to double regularly,
roughly every 12 to 18 months. This rate, exceeding the rate of Moore’s law, has been
demonstrated on graphics applications for approximately 10 years and shows no sign
of significant slowdown. The most challenging rate limiter appears to be the memory
system, but competitive innovation is advancing that rapidly too.

Fallacy GPUs only render 3D graphics; they can’t do general computation.
GPUs are built to render 3D graphics as well as 2D graphics and video. To meet
the demands of graphics software developers as expressed in the interfaces and
performance/feature requirements of the graphics APIs, GPUs have become
massively parallel programmable floating-point processors. In the graphics
domain, these processors are programmed through the graphics APIs and with
arcane graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and
Direct3D). However, there is nothing preventing GPU architects from exposing

B-74 Appendix B Graphics and Computing GPUs

the parallel processor cores to programmers without the graphics API or the arcane
graphics languages.

In fact, the Tesla architecture family of GPUs exposes the processors through
a software environment known as CUDA, which allows programmers to develop
general application programs using the C language and soon C++. GPUs are
Turing-complete processors, so they can run any program that a CPU can run,
although perhaps less well. And perhaps faster.

Fallacy GPUs cannot run double-precision floating-point programs fast.
In the past, GPUs could not run double-precision floating-point programs at all,
except through software emulation. And that’s not very fast at all. GPUs have made
the progression from indexed arithmetic representation (lookup tables for colors)
to 8-bit integers per color component, to fixed-point arithmetic, to single-precision
floating-point, and recently added double precision. Modern GPUs perform
virtually all calculations in single-precision IEEE floating-point arithmetic, and are
beginning to use double precision in addition.

For a small additional cost, a GPU can support double-precision floating-point
as well as single-precision floating-point. Today, double-precision runs more slowly
than the single-precision speed, about five to ten times slower. For incremental
additional cost, double-precision performance can be increased relative to single
precision in stages, as more applications demand it.

Fallacy GPUs don’t do floating-point correctly.
GPUs, at least in the Tesla architecture family of processors, perform single-
precision floating-point processing at a level prescribed by the IEEE 754 floating-
point standard. So, in terms of accuracy, GPUs are the equal of any other IEEE
754-compliant processors.

Today, GPUs do not implement some of the specific features described in the
standard, such as handling denormalized numbers and providing precise floating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full
IEEE rounding, fused-multiply-add, and denormalized number support for double
precision.

Pitfall Just use more threads to cover longer memory latencies.
CPU cores are typically designed to run a single thread at full speed. To run at full
speed, every instruction and its data need to be available when it is time for that
instruction to run. If the next instruction is not ready or the data required for that
instruction is not available, the instruction cannot run and the processor stalls.
External memory is distant from the processor, so it takes many cycles of wasted
execution to fetch data from memory. Consequently, CPUs require large local

 B.9 Fallacies and Pitfalls B-75

caches to keep running without stalling. Memory latency is long, so it is avoided
by striving to run in the cache. At some point, program working set demands may
be larger than any cache. Some CPUs have used multithreading to tolerate latency,
but the number of threads per core has generally been limited to a small number.

The GPU strategy is different. GPU cores are designed to run many threads
concurrently, but only one instruction from any thread at a time. Another way to
say this is that a GPU runs each thread slowly, but in aggregate runs the threads
efficiently. Each thread can tolerate some amount of memory latency, because
other threads can run.

The downside of this is that multiple—many multiple threads—are required to
cover the memory latency. In addition, if memory accesses are scattered or not
correlated among threads, the memory system will get progressively slower in
responding to each individual request. Eventually, even the multiple threads will
not be able to cover the latency. So, the pitfall is that for the “just use more threads”
strategy to work for covering latency, you have to have enough threads, and the
threads have to be well-behaved in terms of locality of memory access.

Fallacy O(n) algorithms are difficult to speed up.
No matter how fast the GPU is at processing data, the steps of transferring data to
and from the device may limit the performance of algorithms with O(n) complexity
(with a small amount of work per datum). The highest transfer rate over the PCIe
bus is approximately 48 GB/second when DMA transfers are used, and slightly less
for nonDMA transfers. The CPU, in contrast, has typical access speeds of 8–12 GB/
second to system memory. Example problems, such as vector addition, will be
limited by the transfer of the inputs to the GPU and the returning output from the
computation.

There are three ways to overcome the cost of transferring data. First, try to leave
the data on the GPU for as long as possible, instead of moving the data back and
forth for different steps of a complicated algorithm. CUDA deliberately leaves data
alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and
computation, so data can be streamed in and out of the device while it is computing.
This model is useful for any data stream that can be processed as it arrives. Examples
are video processing, network routing, data compression/decompression, and even
simpler computations such as large vector mathematics.

The third suggestion is to use the CPU and GPU together, improving performance
by assigning a subset of the work to each, treating the system as a heterogeneous
computing platform. The CUDA programming model supports allocation of work
to one or more GPUs along with continued use of the CPU without the use of
threads (via asynchronous GPU functions), so it is relatively simple to keep all
GPUs and a CPU working concurrently to solve problems even faster.

B-76 Appendix B Graphics and Computing GPUs

 B.10 Concluding Remarks

GPUs are massively parallel processors and have become widely used, not only
for 3D graphics, but also for many other applications. This wide application was
made possible by the evolution of graphics devices into programmable processors.
The graphics application programming model for GPUs is usually an API such
as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA
programming model uses an SPMD (single-program multiple data) style, executing
a program with many parallel threads.

GPU parallelism will continue to scale with Moore’s law, mainly by increasing
the number of processors. Only the parallel programming models that can readily
scale to hundreds of processor cores and thousands of threads will be successful
in supporting manycore GPUs and CPUs. Also, only those applications that have
many largely independent parallel tasks will be accelerated by massively parallel
manycore architectures.

Parallel programming models for GPUs are becoming more flexible, for both
graphics and parallel computing. For example, CUDA is evolving rapidly in the
direction of full C/C++ functionality. Graphics APIs and programming models
will likely adapt parallel computing capabilities and models from CUDA. Its
SPMD-style threading model is scalable, and is a convenient, succinct, and easily
learned model for expressing large amounts of parallelism.

Driven by these changes in the programming models, GPU architecture is in
turn becoming more flexible and more programmable. GPU fixed-function units
are becoming accessible from general programs, along the lines of how CUDA
programs already use texture intrinsic functions to perform texture lookups using
the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics
and other application programmers. GPUs will continue to expand to include
more processing power through additional processor cores, as well as increasing
the thread and memory bandwidth available for programs. In addition, the
programming models must evolve to include programming heterogeneous
manycore systems including both GPUs and CPUs.

Acknowledgments
This appendix is the work of several authors at NVIDIA. We gratefully acknowledge
the significant contributions of Michael Garland, John Montrym, Doug Voorhies,
Lars Nyland, Erik Lindholm, Paulius Micikevicius, Massimiliano Fatica, Stuart
Oberman, and Vasily Volkov.

 B.11 Historical Perspective and Further Reading B-77

 B.11 Historical Perspective and Further
Reading

Graphics Pipeline Evolution
3D graphics pipeline hardware evolved from the large expensive systems of the
early 1980s to small workstations and then to PC accelerators in the mid- to late-
1990s. During this period, three major transitions occurred:

■	 Performance-leading graphics subsystems declined in price from $50,000 to
$200.

■	 Performance increased from 50 million pixels per second to 1 billion pixels per
second and from 100,000 vertices per second to 10 million vertices per second.

■	 Native hardware capabilities evolved from wireframe (polygon outlines) to
flat shaded (constant color) filled polygons, to smooth shaded (interpolated
color) filled polygons, to full-scene anti-aliasing with texture mapping and
rudimentary multitexturing.

Fixed-Function Graphics Pipelines
Throughout this period, graphics hardware was configurable, but not programmable
by the application developer. With each generation, incremental improvements
were offered. But developers were growing more sophisticated and asking for
more new features than could be reasonably offered as built-in fixed functions. The
NVIDIA GeForce 3, described by Lindholm et al. [2001], took the first step toward
true general shader programmability. It exposed to the application developer what
had been the private internal instruction set of the floating-point vertex engine.
This coincided with the release of Microsoft’s DirectX 8 and OpenGL’s vertex shader
extensions. Later GPUs, at the time of DirectX 9, extended general programmability
and floating point capability to the pixel fragment stage, and made texture
available at the vertex stage. The ATI Radeon 9700, introduced in 2002, featured
a programmable 24-bit floating-point pixel fragment processor programmed
with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel
processors. This was part of a general trend toward unifying the functionality of
the different stages, at least as far as the application programmer was concerned.
NVIDIA’s GeForce 6800 and 7800 series were built with separate processor designs
and separate hardware dedicated to the vertex and to the fragment processing. The
XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and
pixel shaders to execute on the same processor.

B-78 Appendix B Graphics and Computing GPUs

Evolution of Programmable Real-Time Graphics
During the last 30 years, graphics architecture has evolved from a simple pipeline for
drawing wireframe diagrams to a highly parallel design consisting of several deep
parallel pipelines capable of rendering complex interactive imagery that appears
three-dimensional. Concurrently, many of the calculations involved became far
more sophisticated and user-programmable.

In these graphics pipelines, certain stages do a great deal of floating-point
arithmetic on completely independent data, such as transforming the position
of triangle vertexes or generating pixel colors. This data independence is a key
difference between GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have 1 million triangles and 6 million pixels. The opportunity to use
hardware parallelism to exploit this data independence is tremendous.

The specific functions executed at a few graphics pipeline stages vary with
rendering algorithms and have evolved to be programmable. Vertex programs
map the position of triangle vertices on to the screen, altering their position, color,
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w)
vertex position and computes a floating-point (x, y, z) screen position. Geometry
programs operate on primitives defined by multiple vertices, changing them or
generating additional primitives. Pixel fragment shaders each “shade” one pixel,
computing a floating-point red, green, blue, alpha (RGBA) color contribution to
the rendered image at its pixel sample (x, y) image position. For all three types of
graphics shaders, program instances can be run in parallel, because each works on
independent data, produces independent results, and has no side effects.

Between these programmable graphics pipeline stages are dozens of fixed-function
stages which perform well-defined tasks far more efficiently than a programmable
processor could and which would benefit far less from programmability. For
example, between the geometry processing stage and the pixel processing stage is
a “rasterizer,” a complex state machine that determines exactly which pixels (and
portions thereof) lie within each geometric primitive’s boundaries. Together, the
mix of programmable and fixed-function stages is engineered to balance extreme
performance with user control over the rendering algorithms.

Common rendering algorithms perform a single pass over input primitives and
access other memory resources in a highly coherent manner; these algorithms
provide excellent bandwidth utilization and are largely insensitive to memory
latency. Combined with a pixel shader workload that is usually compute-limited,
these characteristics have guided GPUs along a different evolutionary path than
CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated
by floating-point datapath and fixed-function logic. GPU memory interfaces
emphasize bandwidth over latency (since latency can be readily hidden by a high
thread count); indeed, bandwidth is typically many times higher than a CPU,
exceeding 100 GB/second in some cases. The far-higher number of fine-grained
lightweight threads effectively exploits the rich parallelism available.

 B.11 Historical Perspective and Further Reading B-79

Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable
graphics stages are mapped to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three times,
with much fixed-function graphics logic between visits. Since different rendering
algorithms present wildly different loads among the three programmable stages,
this unification provides processor load balancing.

Unified Graphics and Computing Processors
By the DirectX 10 generation, the functionality of vertex and pixel fragment
shaders was to be made identical to the programmer, and in fact a new logical
stage was introduced, the geometry shader, to process all the vertices of a primitive
rather than vertices in isolation. The GeForce 8800 was designed with DirectX 10
in mind. Developers were coming up with more sophisticated shading algorithms,
and this motivated a sharp increase in the available shader operation rate,
particularly floating-point operations. NVIDIA chose to pursue a processor design
with higher operating frequency than standard-cell methodologies had allowed,
to deliver the desired operation throughput as area-efficiently as possible. High-
clock-speed design requires substantially more engineering effort, and this favored
designing one processor, rather than two (or three, given the new geometry stage).
It became worthwhile to take on the engineering challenges of a unified processor
(load balancing and recirculation of a logical pipeline onto threads of the processor
array) to get the benefits of one processor design.

GPGPU: an Intermediate Step
As DirectX 9-capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9 GPUs had been designed only to match
the features required by the graphics API. To access the computational resources, a
programmer had to cast their problem into native graphics operations. For example,
to run many simultaneous instances of a pixel shader, a triangle had to be issued to
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did
not have the means to perform arbitrary scatter operations to memory. The only
way to write a result to memory was to emit it as a pixel color value, and configure
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass
of computation to the next was to write all parallel results to a pixel framebuffer,
then use that framebuffer as a texture map as input to the pixel fragment shader of
the next stage of the computation. Mapping general computations to a GPU in this
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful
of useful applications with painstaking efforts. This field was called “GPGPU” for
general purpose computing on GPUs.

B-80 Appendix B Graphics and Computing GPUs

GPU Computing
While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its
potential usefulness would be much greater if programmers could think of the GPU
as a processor. NVIDIA selected a programming approach in which programmers
would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a high-
efficiency floating-point and integer processor that could run a variety of
simultaneous workloads to support the logical graphics pipeline. This processor
was designed to take advantage of the common case of groups of threads executing
the same code path. NVIDIA added memory load and store instructions with
integer byte addressing to support the requirements of compiled C programs. It
introduced the thread block (cooperative thread array), grid of thread blocks, and
barrier synchronization to dispatch and manage highly parallel computing work.
Atomic memory operations were added. NVIDIA developed the CUDA C/C++
compiler, libraries, and runtime software to enable programmers to readily access
the new data-parallel computation model and develop applications.

Scalable GPUs
Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horsepower by
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the
VGA controller. As 3D-capable accelerators appeared, the market had room for a
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan
Line Interleave) on their Voodoo2, which held the performance crown for its time
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first
by speed binning and packaging, then with separate chip designs (GeForce 2 GTS &
GeForce 2 MX). At present, for a given architecture generation, four or five separate
GPU chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and workstation
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in
2004, starting with GeForce 6800—providing multi-GPU scalability transparently
to the programmer and to the user. Functional behavior is identical across the
scaling range; one application will run unchanged on any implementation of an
architectural family.

CPUs are scaling to higher transistor counts by increasing the number of
constant-performance cores on a die, rather than increasing the performance of
a single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to
eightfold task parallelism to fully utilize these processors, and applications using
task parallelism must be rewritten frequently to target each successive doubling of

 B.11 Historical Perspective and Further Reading B-81

core count. In contrast, the highly multithreaded GPU encourages the use of many-
fold data parallelism and thread parallelism, which readily scales to thousands of
parallel threads on many processors. The GPU scalable parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once and
runs on a GPU with any number of processors. As shown in Section B.1, a CUDA
programmer explicitly states both fine-grained and coarse-grained parallelism in
a thread program by decomposing the problem into grids of thread blocks—the
same program will run efficiently on GPUs or CPUs of any size in current and
future generations as well.

Recent Developments
Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these programs run
the application tens or hundreds of times faster than multicore CPUs are capable
of running them. Examples include n-body simulation, molecular modeling,
computational finance, and oil and gas exploration data processing. Although many
of these use single-precision floating-point arithmetic, some problems require
double precision. The recent arrival of double-precision floating-point in GPUs
enables an even broader range of applications to benefit from GPU acceleration.

For a comprehensive list and examples of current developments in applications
that are accelerated by GPUs, visit CUDAZone: www.nvidia.com/CUDA.

Future Trends
Naturally, the number of processor cores will continue to increase in proportion to
increases in available transistors as silicon processes improve. In addition, GPUs
will continue to enjoy vigorous architectural evolution. Despite their demonstrated
high performance on data-parallel applications, GPU core processors are still of
relatively simple design. More aggressive techniques will be introduced with each
successive architecture to increase the actual utilization of the calculating units.
Because scalable parallel computing on GPUs is a new field, novel applications
are rapidly being created. By studying them, GPU designers will discover and
implement new machine optimizations.

Further Reading

Akeley, K. and T. Jermoluk [1988]. “High-Performance Polygon Rendering,” Proc. SIGGRAPH 1988 (August),
239–46.

Akeley, K. [1993]. “RealityEngine Graphics.” Proc. SIGGRAPH 1993 (August), 109–16.

Blelloch, G. B. [1990]. “Prefix Sums and Their Applications”. In John H. Reif (Ed.), Synthesis of Parallel
Algorithms, Morgan Kaufmann Publishers, San Francisco.

Blythe, D. [2006]. “The Direct3D 10 System”, ACM Trans. Graphics Vol. 25, no. 3 (July), 724–34.

http://www.nvidia.com/CUDA
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref2

B-82 Appendix B Graphics and Computing GPUs

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahlian, M. Houston, and P. Hanrahan [2004]. “Brook for
GPUs: Stream Computing on Graphics Hardware.” Proc. SIGGRAPH 2004, 777–86, August. http://doi.acm.
org/10.1145/1186562.1015800.

Elder, G. [2002] “Radeon 9700.” Eurographics/SIGGRAPH Workshop on Graphics Hardware, Hot3D
Session, www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt.

Fernando, R. and M. J. Kilgard [2003]. The Cg Tutorial: The Definitive Guide to Programmable Real-Time
Graphics, Addison-Wesley, Reading, MA.

Fernando, R. (Ed.), [2004]. GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics,
Addison-Wesley, Reading, MA. https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html.

Foley, J., A. van Dam, S. Feiner, and J. Hughes [1995]. Computer Graphics: Principles and Practice, second
edition in C, Addison-Wesley, Reading, MA.

Hillis, W. D. and G. L. Steele [1986]. “Data parallel algorithms.” Commun. ACM 29, 12 (Dec.), 1170–83. http://
doi.acm.org/10.1145/7902.7903.

IEEE Std 754-2008 [2008]. IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8, STD95802,
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933 (Aug. 29).

Industrial Light and Magic [2003]. OpenEXR, www.openexr.com.

Intel Corporation [2007]. Intel 64 and IA-32 Architectures Optimization Reference Manual. November. Order
Number: 248966-016. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf.

Kessenich, J. [2006]. The OpenGL Shading Language, Language Version 1.20, Sept. 2006. www.opengl.org/
documentation/specs/.

Kirk, D. and D. Voorhies [1990]. “The Rendering Architecture of the DN10000VS.” Proc. SIGGRAPH 1990
(August), 299–307.

Lindholm E., M.J. Kilgard, and H. Moreton [2001]. “A User- Programmable Vertex Engine.” Proc. SIGGRAPH
2001 (August), 149–58.

Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym [2008]. “NVIDIA Tesla: A Unified Graphics and
Computing Architecture”, IEEE Micro Vol. 28, no. 2 (March–April), 39–55.

Microsoft Corporation. Microsoft DirectX Specification, https://msdn.microsoft.com/en-us/library/
windows/apps/hh452744.aspx.

Microsoft Corporation [2003]. Microsoft DirectX 9 Programmable Graphics Pipeline, Microsoft Press,
Redmond, WA.

Montrym, J., D. Baum, D. Dignam, and C. Migdal [1997]. “InfiniteReality: A Real-Time Graphics System.”
Proc. SIGGRAPH 1997 (August), 293–301.

Montrym, J. and H. Moreton [2005]. “The GeForce 6800”, IEEE Micro, Vol. 25, no. 2 (March–April), 41–51.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits”, Electronics, Vol. 38, no. 8
(April 19).

http://doi.acm.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1186562.1015800
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref3
https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref5
http://doi.acm.org/10.1145/7902.7903
http://doi.acm.org/10.1145/7902.7903
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://www.openexr.com
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.opengl.org/documentation/specs/
http://www.opengl.org/documentation/specs/
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref7
https://msdn.microsoft.com/en-us/library/windows/apps/hh452744.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh452744.aspx
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref10

 B.11 Historical Perspective and Further Reading B-83

Nguyen, H. (Ed.), [2008]. GPU Gems 3, Addison-Wesley, Reading, MA.

Nickolls, J., I. Buck, M. Garland, and K. Skadron [2008]. “Scalable Parallel Programming with CUDA”, ACM
Queue Vol. 6, no. 2 (March–April) 40–53.

NVIDIA [2007]. CUDA Zone. http://www.nvidia.com/object/cuda_home_new.html.

NVIDIA [2007]. CUDA Programming Guide 1.1. https://developer.nvidia.com/nvidia-gpu-programming-
guide.

NVIDIA [2007]. PTX: Parallel Thread Execution ISA version 1.1. www.nvidia.com/object/io_1195170102263.
html.

Nyland, L., M. Harris, and J. Prins [2007]. “Fast N-Body Simulation with CUDA.” In H. Nguyen (Ed.),
GPU Gems 3, Addison-Wesley, Reading, MA.

Oberman, S. F. and M. Y. Siu [2005]. “A High-Performance Area- Efficient Multifunction Interpolator,” Proc.
Seventeenth IEEE Symp. Computer Arithmetic, 272–79.

Patterson, D. A. and J. L. Hennessy [2004]. Computer Organization and Design: The Hardware/Software Inter
face, third edition, Morgan Kaufmann Publishers, San Francisco.

Pharr, M. ed. [2005]. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley, Reading, MA.

Satish, N., M. Harris, and M. Garland [2008]. “Designing Efficient Sorting Algorithms for Manycore GPUs,”
NVIDIA Technical Report NVR-2008-001.

Segal, M. and K. Akeley [2006]. The OpenGL Graphics System: A Specification, Version 2.1, Dec. 1, 2006. www.
opengl.org/documentation/specs/.

Sengupta, S., M. Harris, Y. Zhang, and J. D. Owens [2007]. “Scan Primitives for GPU Computing.” In Proc. of
Graphics Hardware 2007 (August), 97–106.

Volkov, V. and J. Demmel [2008]. “LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs,”
Technical Report No. UCB/EECS-2008-49, 1–11. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-
2008-49.pdf.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007]. “Optimization of sparse matrix-
vector multiplication on emerging multicore platforms,” In Proc. Supercomputing 2007, November.

http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref12
http://www.nvidia.com/object/cuda_home_new.html
https://developer.nvidia.com/nvidia-gpu-programming-guide
https://developer.nvidia.com/nvidia-gpu-programming-guide
http://www.nvidia.com/object/io_1195170102263.html
http://www.nvidia.com/object/io_1195170102263.html
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref13
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00018-X/sbref15
http://www.opengl.org/documentation/specs/
http://www.opengl.org/documentation/specs/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.pdf

Mapping Control
to Hardware

C
A P P E N D I X

C.1 Introduction C-3
C.2 Implementing Combinational Control

Units C-4
C.3 Implementing Finite-State Machine

Control C-8
C.4 Implementing the Next-State Function with a

Sequencer C-22

A custom format such
as this is slave to the
architecture of the
hardware and the
instruction set it serves.
The format must strike
a proper compromise
between ROM size,
ROM-output decoding,
circuitry size, and
machine execution rate.

Jim McKevit, et al.
8086 design report, 1997

C.5 Translating a Microprogram to Hardware C-28
C.6 Concluding Remarks C-32
C.7 Exercises C-33

 C.1 Introduction

Control typically has two parts: a combinational part that lacks state and a sequential
control unit that handles sequencing and the main control in a multicycle design.
Combinational control units are often used to handle part of the decode and
control process. The ALU control in Chapter 4 is such an example. A single-cycle
implementation like that in Chapter 4 can also use a combinational controller,
since it does not require multiple states. Section C.2 examines the implementation
of these two combinational units from the truth tables of Chapter 4.

Since sequential control units are larger and often more complex, there are a wider
variety of techniques for implementing a sequential control unit. The usefulness of
these techniques depends on the complexity of the control, characteristics such
as the average number of next states for any given state, and the implementation
technology.

The most straightforward way to implement a sequential control function is with
a block of logic that takes as inputs the current state and the opcode field of the
Instruction register and produces as outputs the datapath control signals and the
value of the next state. The initial representation may be either a finite-state diagram
or a microprogram. In the latter case, each microinstruction represents a state.

C-4 Appendix C Mapping Control to Hardware

In an implementation using a finite-state controller, the next-state function will
be computed with logic. Section C.3 constructs such an implementation both for
a ROM and a PLA.

An alternative method of implementation computes the next-state function by
using a counter that increments the current state to determine the next state. When
the next state doesn’t follow sequentially, other logic is used to determine the state.
Section C.4 explores this type of implementation and shows how it can be used to
implement finite-state control.

In Section C.5, we show how a microprogram representation of sequential
control is translated to control logic.

 C.2 Implementing Combinational
Control Units

In this section, we show how the ALU control unit and main control unit for the
single clock design are mapped down to the gate level. With modern computer-
aided design (CAD) systems, this process is completely mechanical. The examples
illustrate how a CAD system takes advantage of the structure of the control
function, including the presence of don’t-care terms.

Mapping the ALU Control Function to Gates
Figure C.2.1 shows the truth table for the ALU control function that was developed
in Chapter 4, Section 4.4. A logic block that implements this ALU control function
will have four distinct outputs (called Operation3, Operation2, Operation1, and
Operation0), each corresponding to one of the four bits of the ALU control in the
last column of Figure C.2.1. The logic function for each output is constructed by
combining all the truth table entries that set that particular output. For example, the
low-order bit of the ALU control (Operation0) is set by the last two entries of the
truth table in Figure C.2.1. Thus, the truth table for Operation0 will have these two
entries.

Figure C.2.2 shows the truth tables for each of the four ALU control bits.
We have taken advantage of the common structure in each truth table to
incorporate additional don’t cares. For example, the five lines in the truth table of
Figure C.2.1 that set Operation1 are reduced to just two entries in Figure C.2.2.
A logic minimization program will use the don’t-care terms to reduce the number
of gates and the number of inputs to each gate in a logic gate realization of these
truth tables.

A confusing aspect of Figure C.2.2 is that there is no logic function for Opera-
tion3. That is because this control line is only used for the NOR operation, which is
not needed for the RISC-V subset in Figure 4.12.

From the simplified truth table in Figure C.2.2, we can generate the logic shown
in Figure C.2.3, which we call the ALU control block. This process is straightforward

 C.2 Implementing Combinational Control Units C-5

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111

FIGURE C.2.1 The truth table for the four ALU control bits (called Operation) as a function
of the ALUOp and function code field. This table is the same as that shown in Figure 4.13.

fi edoc noitcnuFpOULA elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 1 X X X X X X

1 X X X X X 1 X

a. The truth table for Operation2 = 1 (this table corresponds to the second to left bit of the Operation
� eld in Figure C.2.1)

fi edoc noitcnuFpOULA elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 X X X X X X X

X X X X X 0 X X

b. The truth table for Operation1 = 1

fi edoc noitcnuFpOULA elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

1 X X X X X X 1

1 X X X 1 X X X

c. The truth table for Operation0 = 1

FIGURE C.2.2 The truth tables for three ALU control lines. Only the entries for which the
output is 1 are shown. The bits in each field are numbered from right to left starting with 0; thus F5 is the
most significant bit of the function field, and F0 is the least significant bit. Similarly, the names of the signals
corresponding to the 4-bit operation code supplied to the ALU are Operation3, Operation2, Operation1,
and Operation0 (with the last being the least significant bit). Thus the truth table above shows the input
combinations for which the ALU control should be 0010, 0001, 0110, or 0111 (the other combinations are
not used). The ALUOp bits are named ALUOp1 and ALUOp0. The three output values depend on the 2-bit
ALUOp field and, when that field is equal to 10, the 6-bit function code in the instruction. Accordingly, when
the ALUOp field is not equal to 10, we don’t care about the function code value (it is represented by an X).
There is no truth table for when Operation3=1 because it is always set to 0 in Figure C.2.1. See Appendix A
for more background on don’t cares.

C-6 Appendix C Mapping Control to Hardware

and can be done with a CAD program. An example of how the logic gates can be
derived from the truth tables is given in the legend to Figure C.2.3.

This ALU control logic is simple because there are only three outputs, and only a
few of the possible input combinations need to be recognized. If a large number of
possible ALU function codes had to be transformed into ALU control signals, this
simple method would not be efficient. Instead, you could use a decoder, a memory,
or a structured array of logic gates. These techniques are described in Appendix A,
and we will see examples when we examine the implementation of the multicycle
controller in Section C.3.

Elaboration: In general, a logic equation and truth table representation of a logic
function are equivalent. (We discuss this in further detail in Appendix A). However, when a
truth table only specifies the entries that result in nonzero outputs, it may not completely
describe the logic function. A full truth table completely indicates all don’t-care entries.
For example, the encoding 11 for ALUOp always generates a don’t care in the output.
Thus a complete truth table would have XXX in the output portion for all entries with 11
in the ALUOp field. These don’t-care entries allow us to replace the ALUOp field 10 and
01 with 1X and X1, respectively. Incorporating the don’t-care terms and minimizing the
logic is both complex and error-prone and, thus, is better left to a program.

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

Operation3

FIGURE C.2.3 The ALU control block generates the four ALU control bits, based on the
function code and ALUOp bits. This logic is generated directly from the truth table in Figure C.2.2.
Only 4 of the 6 bits in the function code are actually needed as inputs, since the upper 2 bits are always don’t
cares. Let’s examine how this logic relates to the truth table of Figure C.2.2. Consider the Operation2 output,
which is generated by two lines in the truth table for Operation2. The second line is the AND of two terms
(F1 = 1 and ALUOp1 = 1); the top two-input AND gate corresponds to this term. The other term that causes
Operation2 to be asserted is simply ALUOp0. These two terms are combined with an OR gate whose output
is Operation2. The outputs Operation0 and Operation1 are derived in similar fashion from the truth table.
Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND gate to generate 0.

 C.2 Implementing Combinational Control Units C-7

Mapping the Main Control Function to Gates
Implementing the main control function with an unstructured collection of gates,
as we did for the ALU control, is reasonable because the control function is neither
complex nor large, as we can see from the truth table shown in Figure C.2.4.
However, if most of the 64 possible opcodes were used and there were many more
control lines, the number of gates would be much larger and each gate could have
many more inputs.

Since any function can be computed in two levels of logic, another way to
implement a logic function is with a structured two-level logic array. Figure C.2.5
shows such an implementation. It uses an array of AND gates followed by an array
of OR gates. This structure is called a programmable logic array (PLA). A PLA is one
of the most common ways to implement a control function. We will return to the
topic of using structured logic elements to implement control when we implement
the finite-state controller in the next section.

Control Signal name R-format lw sw beq

Inputs

Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs

RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

FIGURE C.2.4 The control function for the simple one-clock implementation is completely
specified by this truth table. This table is the same as that shown in Figure 4.22.

C-8 Appendix C Mapping Control to Hardware

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

FIGURE C.2.5 The structured implementation of the control function as described by the
truth table in Figure C.2.4. The structure, called a programmable logic array (PLA), uses an array of
AND gates followed by an array of OR gates. The inputs to the AND gates are the function inputs and their
inverses (bubbles indicate inversion of a signal). The inputs to the OR gates are the outputs of the AND gates
(or, as a degenerate case, the function inputs and inverses). The output of the OR gates is the function outputs.

 C.3 Implementing Finite-State Machine
Control

To implement the control as a finite-state machine, we must first assign a number to
each of the 10 states; any state could use any number, but we will use the sequential
numbering for simplicity. Figure C.3.1 shows the finite-state diagram. With 10
states, we will need 4 bits to encode the state number, and we call these state bits S3,
S2, S1, and S0. The current-state number will be stored in a state register, as shown
in Figure C.3.2. If the states are assigned sequentially, state i is encoded using the

 C.3 Implementing Finite-State Machine Control C-9

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (O
p = 'SW') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
 'J

')

 (O
p = 'SW

')

(O
p

=
 'L

W
')

4

0
1

9862

753

Start

FIGURE C.3.1 The finite-state diagram for multicycle control.

C-10 Appendix C Mapping Control to Hardware

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

FIGURE C.3.2 The control unit for RISC-V will consist of some control logic and a register
to hold the state. The state register is written at the active clock edge and is stable during the clock
cycle.

state bits as the binary number i. For example, state 6 is encoded as 0110two or S3 =
0, S2 = 1, S1 = 1, S0 = 0, which can also be written as

S S S S3 2 1 0⋅ ⋅ ⋅

The control unit has outputs that specify the next state. These are written into
the state register on the clock edge and become the new state at the beginning of
the next clock cycle following the active clock edge. We name these outputs NS3,
NS2, NS1, and NS0. Once we have determined the number of inputs, states, and
outputs, we know what the basic outline of the control unit will look like, as we
show in Figure C.3.2.

 C.3 Implementing Finite-State Machine Control C-11

The block labeled “control logic” in Figure C.3.2 is combinational logic. We can
think of it as a big table giving the value of the outputs in terms of the inputs. The
logic in this block implements the two different parts of the finite-state machine.
One part is the logic that determines the setting of the datapath control outputs,
which depend only on the state bits. The other part of the control logic implements
the next-state function; these equations determine the values of the next-state bits
based on the current-state bits and the other inputs (the 6-bit opcode).

Figure C.3.3 shows the logic equations: the top portion shows the outputs, and
the bottom portion shows the next-state function. The values in this table were

pOsetats tnerruCtuptuO

PCWrite state0 + state9

PCWriteCond state8

IorD state3 + state5

MemRead state0 + state3

MemWrite state5

IRWrite state0

MemtoReg state4

PCSource1 state9

PCSource0 state8

ALUOp1 state6

ALUOp0 state8

ALUSrcB1 state1 +state2

ALUSrcB0 state0 + state1

ALUSrcA state2 + state6 + state8

RegWrite state4 + state7

RegDst state7

NextState0 state4 + state5 + state7 + state8 + state9

NextState1 state0

NextState2 state1 (Op = 'lw') + (Op = 'sw')

NextState3 state2 (Op = 'lw')

NextState4 state3

NextState5 state2 (Op = 'sw')

NextState6 state1 (Op = 'R-type')

NextState7 state6

NextState8 state1 (Op = 'beq')

NextState9 state1 (Op = 'jmp')

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form. Remember
that “+” stands for OR in logic equations. The state inputs and NextState outputs must be expanded by using
the state encoding. Any blank entry is a don’t care.

C-12 Appendix C Mapping Control to Hardware

EXAMPLE

ANSWER

determined from the state diagram in Figure C.3.1. Whenever a control line is
active in a state, that state is entered in the second column of the table. Likewise, the
next-state entries are made whenever one state is a successor to another.

In Figure C.3.3, we use the abbreviation stateN to stand for current state N.
Thus, stateN is replaced by the term that encodes the state number N. We use
NextStateN to stand for the setting of the next-state outputs to N. This output is
implemented using the next-state outputs (NS). When NextStateN is active, the
bits NS[3–0] are set corresponding to the binary version of the value N. Of course,
since a given next-state bit is activated in multiple next states, the equation for
each state bit will be the OR of the terms that activate that signal. Likewise, when
we use a term such as (Op = ‘lw’), this corresponds to an AND of the opcode
inputs that specifies the encoding of the opcode lw in 6 bits, just as we did for the
simple control unit in the previous section of this chapter. Translating the entries in
Figure C.3.3 into logic equations for the outputs is straightforward.

Logic Equations for Next-State Outputs

Give the logic equation for the low-order next-state bit, NS0.

The next-state bit NS0 should be active whenever the next state has NS0 = 1
in the state encoding. This is true for NextState1, NextState3, NextState5,
NextState7, and NextState9. The entries for these states in Figure C.3.3 supply
the conditions when these next-state values should be active. The equation for
each of these next states is given below. The first equation states that the next
state is 1 if the current state is 0; the current state is 0 if each of the state input
bits is 0, which is what the rightmost product term indicates.

NextState State S S S S
NextState State Op 1w

1 0 3 2 1 0
3 2 5 0
5 5

5 5

⋅ ⋅ ⋅
⋅ ([-]))

(
5

5

S S S S Op Op Op Op Op Op
NextState State O

3 2 1 0 5 4 3 2 1 0
5 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ pp sw

S S S S Op Op Op Op Op Op
NextState

[-])5 0

3 2 1 0 5 4 3 2 1 0
7

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅5

5 SState S3 S S S
NextState State Op jmp

S S S

6 2 1 0
9 1 5 0

3 2

5

5 5

5

⋅ ⋅ ⋅
⋅

⋅ ⋅

([-])

11 0 5 4 3 2 1 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅S Op Op Op Op Op Op

 C.3 Implementing Finite-State Machine Control C-13

NS0 is the logical sum of all these terms.

As we have seen, the control function can be expressed as a logic equation for each
output. This set of logic equations can be implemented in two ways: corresponding
to a complete truth table, or corresponding to a two-level logic structure that allows
a sparse encoding of the truth table. Before we look at these implementations, let’s
look at the truth table for the complete control function.

It is simplest if we break the control function defined in Figure C.3.3 into two
parts: the next-state outputs, which may depend on all the inputs, and the control
signal outputs, which depend only on the current-state bits. Figure C.3.4 shows
the truth tables for all the datapath control signals. Because these signals actually
depend only on the state bits (and not the opcode), each of the entries in a table
in Figure C.3.4 actually represents 64 (= 26) entries, with the 6 bits named Op
having all possible values; that is, the Op bits are don’t-care bits in determining
the data path control outputs. Figure C.3.5 shows the truth table for the next-state
bits NS[3–0], which depend on the state input bits and the instruction bits, which
supply the opcode.

Elaboration: There are many opportunities to simplify the control function by
observing similarities among two or more control signals and by using the semantics of
the implementation. For example, the signals PCWriteCond, PCSource0, and ALUOp0 are
all asserted in exactly one state, state 8. These three control signals can be replaced
by a single signal.

NextState State S S S S
NextState State Op 1w

1 0 3 2 1 0
3 2 5 0
5 5

5 5

⋅ ⋅ ⋅
⋅ ([-]))

(
5

5

S S S S Op Op Op Op Op Op
NextState State O

3 2 1 0 5 4 3 2 1 0
5 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ pp sw

S S S S Op Op Op Op Op Op
NextState

[-])5 0

3 2 1 0 5 4 3 2 1 0
7

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅5

5 SState S3 S S S
NextState State Op jmp

S S S

6 2 1 0
9 1 5 0

3 2

5

5 5

5

⋅ ⋅ ⋅
⋅

⋅ ⋅

([-])

11 0 5 4 3 2 1 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅S Op Op Op Op Op Op

C-14 Appendix C Mapping Control to Hardware

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 1 0 0 0 0 0 1 1

10101001

dnoCetirWCProfelbathturT.betirWCProfelbathturT.a c. Truth table for IorD

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 1

d. Truth table for MemRead e. Truth table for MemWrite f. Truth table for IRWrite

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 0 0 1 0 0 1 1 0 0 0

g. Truth table for MemtoReg h. Truth table for PCSource1 i. Truth table for PCSource0

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 1 0 1 0 0 0 0 0 0 1

0 0 1 0

1BcrSULArofelbathturT.l0pOULArofelbathturT.k1pOULArofelbathturT.j

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 0 0 1 1 1

1 0 0 0

m. Truth table for ALUSrcB0 n. Truth table for ALUSrcA o. Truth table for RegWrite

s3 s2 s1 s0

0 1 1 1

p. Truth table for RegDst

FIGURE C.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state
input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the six Op
bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0,
and ALUOp0, these signals are active only in state 8 (see b, i, and k). These three signals could be replaced by one signal. There are other
opportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables.

 C.3 Implementing Finite-State Machine Control C-15

A ROM Implementation
Probably the simplest way to implement the control function is to encode the truth
tables in a read-only memory (ROM). The number of entries in the memory for the
truth tables of Figures C.3.4 and C.3.5 is equal to all possible values of the inputs
(the 6 opcode bits plus the 4 state bits), which is 2# inputs = 210 = 1024. The inputs

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when
the current state is 1.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 0 1 1

X X X X X X 0 1 1 0

b. The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation
occurs when the current state is one of 1, 2, 3, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1

1 0 1 0 1 1 0 0 0 1

1 0 0 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

c. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state
is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

X X X X X X 0 0 0 0

1 0 0 0 1 1 0 0 1 0

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

0 0 0 0 1 0 0 0 0 1

d. The truth table for the NS0 output, which is active when the next state is 1, 3, 5, 7, or 9. This happens
only if the current state is one of 0, 1, 2, or 6.

FIGURE C.3.5 The four truth tables for the four next-state output bits (NS[3–0]). The next-
state outputs depend on the value of Op[5-0], which is the opcode field, and the current state, given by S[3–
0]. The entries with X are don’t-care terms. Each entry with a don’t-care term corresponds to two entries, one
with that input at 0 and one with that input at 1. Thus an entry with n don’t-care terms actually corresponds
to 2n truth table entries.

C-16 Appendix C Mapping Control to Hardware

EXAMPLE

to the control unit become the address lines for the ROM, which implements
the control logic block that was shown in Figure C.3.2. The width of each entry
(or word in the memory) is 20 bits, since there are 16 datapath control outputs and
4 next-state bits. This means the total size of the ROM is 210 × 20 = 20 Kbits.

The setting of the bits in a word in the ROM depends on which outputs are active
in that word. Before we look at the control words, we need to order the bits within
the control input (the address) and output words (the contents), respectively. We
will number the bits using the order in Figure C.3.2, with the next-state bits being
the low-order bits of the control word and the current-state input bits being the
low-order bits of the address. This means that the PCWrite output will be the high-
order bit (bit 19) of each memory word, and NS0 will be the low-order bit. The
high-order address bit will be given by Op5, which is the high-order bit of the
instruction, and the low-order address bit will be given by S0.

We can construct the ROM contents by building the entire truth table in a form
where each row corresponds to one of the 2n unique input combinations, and a
set of columns indicates which outputs are active for that input combination. We
don’t have the space here to show all 1024 entries in the truth table. However, by
separating the datapath control and next-state outputs, we do, since the datapath
control outputs depend only on the current state. The truth table for the datapath
control outputs is shown in Figure C.3.6. We include only the encodings of the state
inputs that are in use (that is, values 0 through 9 corresponding to the 10 states of
the state machine).

The truth table in Figure C.3.6 directly gives the contents of the upper 16 bits of
each word in the ROM. The 4-bit input field gives the low-order 4 address bits of
each word, and the column gives the contents of the word at that address.

If we did show a full truth table for the datapath control bits with both
the state number and the opcode bits as inputs, the opcode inputs would all
be don’t cares. When we construct the ROM, we cannot have any don’t cares,
since the addresses into the ROM must be complete. Thus, the same datapath
control outputs will occur many times in the ROM, since this part of the ROM
is the same whenever the state bits are identical, independent of the value of the
opcode inputs.

Control ROM Entries

For what ROM addresses will the bit corresponding to PCWrite, the high bit
of the control word, be 1?

 C.3 Implementing Finite-State Machine Control C-17

)]0–3[S(seulav tupnIstuptuO

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

PCWrite 1 0 0 0 0 0 0 0 0 1

PCWriteCond 0 0 0 0 0 0 0 0 1 0

IorD 0 0 0 1 0 1 0 0 0 0

MemRead 1 0 0 1 0 0 0 0 0 0

MemWrite 0 0 0 0 0 1 0 0 0 0

IRWrite 1 0 0 0 0 0 0 0 0 0

MemtoReg 0 0 0 0 1 0 0 0 0 0

PCSource1 0 0 0 0 0 0 0 0 0 1

PCSource0 0 0 0 0 0 0 0 0 1 0

ALUOp1 0 0 0 0 0 0 1 0 0 0

ALUOp0 0 0 0 0 0 0 0 0 1 0

ALUSrcB1 0 1 1 0 0 0 0 0 0 0

ALUSrcB0 1 1 0 0 0 0 0 0 0 0

ALUSrcA 0 0 1 0 0 0 1 0 1 0

RegWrite 0 0 0 0 1 0 0 1 0 0

RegDst 0 0 0 0 0 0 0 1 0 0

FIGURE C.3.6 The truth table for the 16 datapath control outputs, which depend only on
the state inputs. The values are determined from Figure C.3.4. Although there are 16 possible values for
the 4-bit state field, only 10 of these are used and are shown here. The 10 possible values are shown at the top;
each column shows the setting of the datapath control outputs for the state input value that appears at the
top of the column. For example, when the state inputs are 0011 (state 3), the active datapath control outputs
are IorD or MemRead.

ANSWER
PCWrite is high in states 0 and 9; this corresponds to addresses with the 4
low-order bits being either 0000 or 1001. The bit will be high in the memory
word independent of the inputs Op[5–0], so the addresses with the bit high
are 000000000, 0000001001, 0000010000, 0000011001, . . . , 1111110000,
1111111001. The general form of this is XXXXXX0000 or XXXXXX1001,
where XXXXXX is any combination of bits, and corresponds to the 6-bit
opcode on which this output does not depend.

C-18 Appendix C Mapping Control to Hardware

We will show the entire contents of the ROM in two parts to make it easier to
show. Figure C.3.7 shows the upper 16 bits of the control word; this comes directly
from Figure C.3.6. These datapath control outputs depend only on the state inputs,
and this set of words would be duplicated 64 times in the full ROM, as we discussed
above. The entries corresponding to input values 1010 through 1111 are not used, so
we do not care what they contain.

Figure C.3.8 shows the lower four bits of the control word corresponding to the
next-state outputs. The last column of the table in Figure C.3.8 corresponds to all the
possible values of the opcode that do not match the specified opcodes. In state 0, the
next state is always state 1, since the instruction was still being fetched. After state 1,
the opcode field must be valid. The table indicates this by the entries marked illegal;
we discuss how to deal with these exceptions and interrupts opcodes in Section 4.9.

Not only is this representation as two separate tables a more compact way to
show the ROM contents; it is also a more efficient way to implement the ROM. The
majority of the outputs (16 of 20 bits) depends only on four of the 10 inputs. The
number of bits in total when the control is implemented as two separate ROMs
is 24 × 16 + 210 × 4 = 256 + 4096 = 4.3 Kbits, which is about one-fifth of the
size of a single ROM, which requires 210 × 20 = 20 Kbits. There is some overhead
associated with any structured-logic block, but in this case the additional overhead
of an extra ROM would be much smaller than the savings from splitting the single
ROM.

Lower 4 bits of the address Bits 19–4 of the word

00010000001010010000

00011000000000001000

00101000000000000100

00000000000011001100

01000000010000000010

00000000000101001010

00100010000000000110

11000000000000001110

00100101000000100001

00000000100000011001

FIGURE C.3.7 The contents of the upper 16 bits of the ROM depend only on the state
inputs. These values are the same as those in Figure C.3.6, simply rotated 90°. This set of control words
would be duplicated 64 times for every possible value of the upper six bits of the address.

 C.3 Implementing Finite-State Machine Control C-19

Although this ROM encoding of the control function is simple, it is wasteful,
even when divided into two pieces. For example, the values of the Instruction
register inputs are often not needed to determine the next state. Thus, the next-
state ROM has many entries that are either duplicated or are don’t care. Consider
the case when the machine is in state 0: there are 26 entries in the ROM (since the
opcode field can have any value), and these entries will all have the same contents
(namely, the control word 0001). The reason that so much of the ROM is wasted is
that the ROM implements the complete truth table, providing the opportunity to
have a different output for every combination of the inputs. But most combinations
of the inputs either never happen or are redundant!

Op [5–0]

Current state
S[3–0]

000000
(R-format)

000010
(jmp)

000100
(beq)

100011
(lw)

101011
(sw)

Any other
value

0000 0001 0001 0001 0001 0001 0001

0001 0110 1001 1000 0010 0010 Illegal

0010 XXXX XXXX XXXX 0011 0101 Illegal

0011 0100 0100 0100 0100 0100 Illegal

0100 0000 0000 0000 0000 0000 Illegal

0101 0000 0000 0000 0000 0000 Illegal

0110 0111 0111 0111 0111 0111 Illegal

0111 0000 0000 0000 0000 0000 Illegal

1000 0000 0000 0000 0000 0000 Illegal

1001 0000 0000 0000 0000 0000 Illegal

FIGURE C.3.8 This table contains the lower 4 bits of the control word (the NS outputs),
which depend on both the state inputs, S[3–0], and the opcode, Op[5–0], which correspond
to the instruction opcode. These values can be determined from Figure C.3.5. The opcode name is
shown under the encoding in the heading. The four bits of the control word whose address is given by the
current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the
output is always 0001, independent of the other inputs; when the state is two, the next state is don’t care for
three of the inputs, three for lw, and five for sw. Together with the entries in Figure C.3.7, this table specifies
the contents of the control unit ROM. For example, the word at address 1000110001 is obtained by finding
the upper 16 bits in the table in Figure C.3.7 using only the state input bits (0001) and concatenating the lower
four bits found by using the entire address (0001 to find the row and 100011 to find the column). The entry
from Figure C.3.7 yields 0000000000011000, while the appropriate entry in the table immediately above is
0010. Thus the control word at address 1000110001 is 00000000000110000010. The column labeled “Any
other value” applies only when the Op bits do not match one of the specified opcodes.

C-20 Appendix C Mapping Control to Hardware

A PLA Implementation
We can reduce the amount of control storage required at the cost of using more
complex address decoding for the control inputs, which will encode only the input
combinations that are needed. The logic structure most often used to do this is
a programmed logic array (PLA), which we mentioned earlier and illustrated in
Figure C.2.5. In a PLA, each output is the logical OR of one or more minterms.
A minterm, also called a product term, is simply a logical AND of one or more
inputs. The inputs can be thought of as the address for indexing the PLA, while
the minterms select which of all possible address combinations are interesting. A
minterm corresponds to a single entry in a truth table, such as those in Figure
C.3.4, including possible don’t-care terms. Each output consists of an OR of these
minterms, which exactly corresponds to a complete truth table. However, unlike
a ROM, only those truth table entries that produce an active output are needed,
and only one copy of each minterm is required, even if the minterm contains don’t
cares. Figure C.3.9 shows the PLA that implements this control function.

As we can see from the PLA in Figure C.3.9, there are 17 unique minterms—10
that depend only on the current state and seven others that depend on a combination
of the Op field and the current-state bits. The total size of the PLA is proportional
to (#inputs × #product terms) + (#outputs × #product terms), as we can see
symbolically from the figure. This means the total size of the PLA in Figure C.3.9 is
proportional to (10 × 17) + (20 × 17) = 510. By comparison, the size of a single
ROM is proportional to 20 Kb, and even the two-part ROM has a total of 4.3 Kb.
Because the size of a PLA cell will be only slightly larger than the size of a bit in a
ROM, a PLA will be a much more efficient implementation for this control unit.

Of course, just as we split the ROM in two, we could split the PLA into two PLAs:
one with four inputs and 10 minterms that generates the 16 control outputs, and
one with 10 inputs and seven minterms that generates the four next-state outputs.
The first PLA would have a size proportional to (4 × 10) + (10 × 16) = 200, and
the second PLA would have a size proportional to (10 × 7) + (4 × 7) = 98. This
would yield a total size proportional to 298 PLA cells, about 55% of the size of a
single PLA. These two PLAs will be considerably smaller than an implementation
using two ROMs. For more details on PLAs and their implementation, as well as
the references for books on logic design, see Appendix A.

 C.3 Implementing Finite-State Machine Control C-21

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

FIGURE C.3.9 This PLA implements the control function logic for the multicycle
implementation. The inputs to the control appear on the left and the outputs on the right. The top half
of the figure is the AND plane that computes all the minterms. The minterms are carried to the OR plane
on the vertical lines. Each colored dot corresponds to a signal that makes up the minterm carried on that
line. The sum terms are computed from these minterms, with each gray dot representing the presence of the
intersecting minterm in that sum term. Each output consists of a single sum term.

C-22 Appendix C Mapping Control to Hardware

 C.4 Implementing the Next-State Function
with a Sequencer

Let’s look carefully at the control unit we built in the last section. If you examine
the ROMs that implement the control in Figures C.3.7 and C.3.8, you can see
that much of the logic is used to specify the next-state function. In fact, for the
implementation using two separate ROMs, 4096 out of the 4368 bits (94%)
correspond to the next-state function! Furthermore, imagine what the control
logic would look like if the instruction set had many more different instruction
types, some of which required many clocks to implement. There would be many
more states in the finite-state machine. In some states, we might be branching to
a large number of different states depending on the instruction type (as we did in
state 1 of the finite-state machine in Figure C.3.1). However, many of the states
would proceed in a sequential fashion, just as states 3 and 4 do in Figure C.3.1.

For example, if we included floating point, we would see a sequence of many
states in a row that implement a multicycle floating-point instruction. Alternatively,
consider how the control might look for a machine that can have multiple memory
operands per instruction. It would require many more states to fetch multiple
memory operands. The result of this would be that the control logic will be
dominated by the encoding of the next-state function. Furthermore, much of the
logic will be devoted to sequences of states with only one path through them that
look like states 2 through 4 in Figure C.3.1. With more instructions, these sequences
will consist of many more sequentially numbered states than for our simple subset.

To encode these more complex control functions efficiently, we can use a
control unit that has a counter to supply the sequential next state. This counter
often eliminates the need to encode the next-state function explicitly in the control
unit. As shown in Figure C.4.1, an adder is used to increment the state, essentially
turning it into a counter. The incremented state is always the state that follows
in numerical order. However, the finite-state machine sometimes “branches.” For
example, in state 1 of the finite-state machine (see Figure C.3.1), there are four
possible next states, only one of which is the sequential next state. Thus, we need
to be able to choose between the incremented state and a new state based on the
inputs from the Instruction register and the current state. Each control word will
include control lines that will determine how the next state is chosen.

It is easy to implement the control output signal portion of the control word,
since, if we use the same state numbers, this portion of the control word will
look exactly like the ROM contents shown in Figure C.3.7. However, the method
for selecting the next state differs from the next-state function in the finite-state
machine.

 C.4 Implementing the Next-State Function with a Sequencer C-23

With an explicit counter providing the sequential next state, the control unit
logic need only specify how to choose the state when it is not the sequentially
following state. There are two methods for doing this. The first is a method we have
already seen: namely, the control unit explicitly encodes the next-state function.
The difference is that the control unit need only set the next-state lines when the
designated next state is not the state that the counter indicates. If the number of

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p[

5–
0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB

ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

FIGURE C.4.1 The control unit using an explicit counter to compute the next state. In this
control unit, the next state is computed using a counter (at least in some states). By comparison, Figure C.3.2
encodes the next state in the control logic for every state. In this control unit, the signals labeled AddrCtl
control how the next state is determined.

C-24 Appendix C Mapping Control to Hardware

states is large and the next-state function that we need to encode is mostly empty,
this may not be a good choice, since the resulting control unit will have lots of
empty or redundant space. An alternative approach is to use separate external logic
to specify the next state when the counter does not specify the state. Many control
units, especially those that implement large instruction sets, use this approach, and
we will focus on specifying the control externally.

Although the nonsequential next state will come from an external table, the
control unit needs to specify when this should occur and how to find that next state.
There are two kinds of “branching” that we must implement in the address select
logic. First, we must be able to jump to one of a number of states based on the
opcode portion of the Instruction register. This operation, called a dispatch, is
usually implemented by using a set of special ROMs or PLAs included as part of the
address selection logic. An additional set of control outputs, which we call AddrCtl,
indicates when a dispatch should be done. Looking at the finite-state diagram
(Figure C.3.1), we see that there are two states in which we do a branch based on a
portion of the opcode. Thus we will need two small dispatch tables. (Alternatively,
we could also use a single dispatch table and use the control bits that select the table
as address bits that choose from which portion of the dispatch table to select the
address.)

The second type of branching that we must implement consists of branching
back to state 0, which initiates the execution of the next RISC-V instruction.
Thus there are four possible ways to choose the next state (three types of branches,
plus incrementing the current-state number), which can be encoded in 2 bits. Let’s
assume that the encoding is as follows:

AddrCtl value Action

0 Set state to 0

1 Dispatch with ROM 1

2 Dispatch with ROM 2

3 Use the incremented state

If we use this encoding, the address select logic for this control unit can be
implemented as shown in Figure C.4.2.

To complete the control unit, we need only specify the contents of the dispatch
ROMs and the values of the address-control lines for each state. We have already
specified the datapath control portion of the control word using the ROM contents
of Figure C.3.7 (or the corresponding portions of the PLA in Figure C.3.9). The
next-state counter and dispatch ROMs take the place of the portion of the control
unit that was computing the next state, which was shown in Figure C.3.8. We are
only implementing a portion of the instruction set, so the dispatch ROMs will be
largely empty. Figure C.4.3 shows the entries that must be assigned for this subset.

 C.4 Implementing the Next-State Function with a Sequencer C-25

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

FIGURE C.4.2 This is the address select logic for the control unit of Figure C.4.1.

2 MOR hctapsiD1 MOR hctapsiD

Op Opcode name Value Op Opcode name Value

000000 R-format 0110 100011 lw 0011

000010 jmp 1001 101011 sw 0101

000100 beq 1000

100011 lw 0010

101011 sw 0010

FIGURE C.4.3 The dispatch ROMs each have 26 = 64 entries that are 4 bits wide, since
that is the number of bits in the state encoding. This figure only shows the entries in the ROM that
are of interest for this subset. The first column in each table indicates the value of Op, which is the address
used to access the dispatch ROM. The second column shows the symbolic name of the opcode. The third
column indicates the value at that address in the ROM.

C-26 Appendix C Mapping Control to Hardware

Now we can determine the setting of the address selection lines (AddrCtl) in
each control word. The table in Figure C.4.4 shows how the address control must
be set for every state. This information will be used to specify the setting of the
AddrCtl field in the control word associated with that state.

The contents of the entire control ROM are shown in Figure C.4.5. The total
storage required for the control is quite small. There are 10 control words, each 18
bits wide, for a total of 180 bits. In addition, the two dispatch tables are 4 bits wide
and each has 64 entries, for a total of 512 additional bits. This total of 692 bits beats
the implementation that uses two ROMs with the next-state function encoded in
the ROMs (which requires 4.3 Kbits).

Of course, the dispatch tables are sparse and could be more efficiently implemented
with two small PLAs. The control ROM could also be replaced with a PLA.

State number Address-control action Value of AddrCtl

3etats detnemercni esU0

11 MOR hctapsid esU1

22 MOR hctapsid esU2

3etats detnemercni esU3

00 yb rebmun etats ecalpeR4

00 yb rebmun etats ecalpeR5

3etats detnemercni esU6

00 yb rebmun etats ecalpeR7

00 yb rebmun etats ecalpeR8

00 yb rebmun etats ecalpeR9

FIGURE C.4.4 The values of the address-control lines are set in the control word that
corresponds to each state.

State number Control word bits 17–2 Control word bits 1–0

1100010000001010010

1000011000000000001

0100101000000000002

1100000000000011003

0001000000010000004

0000000000000101005

1100100010000000006

0011000000000000007

0000100101000000108

0000000000100000019

FIGURE C.4.5 The contents of the control memory for an implementation using an explicit
counter. The first column shows the state, while the second shows the datapath control bits, and the last
column shows the address-control bits in each control word. Bits 17–2 are identical to those in Figure C.3.7.

 C.4 Implementing the Next-State Function with a Sequencer C-27

Optimizing the Control Implementation
We can further reduce the amount of logic in the control unit by two different
techniques. The first is logic minimization, which uses the structure of the logic
equations, including the don’t-care terms, to reduce the amount of hardware
required. The success of this process depends on how many entries exist in the
truth table, and how those entries are related. For example, in this subset, only
the lw and sw opcodes have an active value for the signal Op5, so we can
replace the two truth table entries that test whether the input is lw or sw by a single
test on this bit; similarly, we can eliminate several bits used to index the dispatch
ROM because this single bit can be used to find lw and sw in the first dispatch ROM.
Of course, if the opcode space were less sparse, opportunities for this optimization
would be more difficult to locate. However, in choosing the opcodes, the architect
can provide additional opportunities by choosing related opcodes for instructions
that are likely to share states in the control.

A different sort of optimization can be done by assigning the state numbers in a
finite-state or microcode implementation to minimize the logic. This optimization,
called state assignment, tries to choose the state numbers such that the resulting
logic equations contain more redundancy and can thus be simplified. Let’s consider
the case of a finite-state machine with an encoded next-state control first, since it
allows states to be assigned arbitrarily. For example, notice that in the finite-state
machine, the signal RegWrite is active only in states 4 and 7. If we encoded those
states as 8 and 9, rather than 4 and 7, we could rewrite the equation for RegWrite as
simply a test on bit S3 (which is only on for states 8 and 9). This renumbering allows
us to combine the two truth table entries in part (o) of Figure C.3.4 and replace
them with a single entry, eliminating one term in the control unit. Of course, we
would have to renumber the existing states 8 and 9, perhaps as 4 and 7.

The same optimization can be applied in an implementation that uses an explicit
program counter, though we are more restricted. Because the next-state number is
often computed by incrementing the current-state number, we cannot arbitrarily
assign the states. However, if we keep the states where the incremented state is used
as the next state in the same order, we can reassign the consecutive states as a block.
In an implementation with an explicit next-state counter, state assignment may
allow us to simplify the contents of the dispatch ROMs.

If we look again at the control unit in Figure C.4.1, it looks remarkably like a
computer in its own right. The ROM or PLA can be thought of as memory supplying
instructions for the datapath. The state can be thought of as an instruction address.
Hence the origin of the name microcode or microprogrammed control. The control
words are thought of as microinstructions that control the datapath, and the State
register is called the microprogram counter. Figure C.4.6 shows a view of the control
unit as microcode. The next section describes how we map from a microprogram
to microcode.

C-28 Appendix C Mapping Control to Hardware

 C.5 Translating a Microprogram to Hardware

To translate a microprogram into actual hardware, we need to specify how each
field translates into control signals. We can implement a microprogram with either
finite-state control or a microcode implementation with an explicit sequencer. If
we choose a finite-state machine, we need to construct the next-state function from

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Instruction register
opcode field

BWrite

Datapath

FIGURE C.4.6 The control unit as a microcode. The use of the word “micro” serves to distinguish between the program counter in
the datapath and the microprogram counter, and between the microcode memory and the instruction memory.

 C.5 Translating a Microprogram to Hardware C-29

the microprogram. Once this function is known, we can map a set of truth table
entries for the next-state outputs. In this section, we will show how to translate
the microprogram, assuming that the next state is specified by a sequencer.
From the truth tables we will construct, it would be straightforward to build the
next-state function for a finite-state machine.

tnemmoCevitca slangiSeulaVeman dleiF

ALU control

Add ALUOp = 00 Cause the ALU to add.

Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for branches.

Func code ALUOp = 10 Use the instruction’s function code to determine ALU control.

SRC1
PC ALUSrcA = 0 Use the PC as the � rst ALU input.

A ALUSrcA = 1 Register A is the � rst ALU input.

SRC2

B ALUSrcB = 00 Register B is the second ALU input.

4 ALUSrcB = 01 Use 4 as the second ALU input.

Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.

Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.

Register
control

 srebmun retsiger eht sa RI eht fo sdle � tr dna sr eht gnisu sretsiger owt daeRdaeR
and putting the data into registers A and B.

Write ALU RegWrite,
RegDst = 1,
MemtoReg = 0

Write a register using the rd � eld of the IR as the register number and the
contents of ALUOut as the data.

Write MDR RegWrite,
RegDst = 0,
MemtoReg = 1

Write a register using the rt � eld of the IR as the register number and the
contents of the MDR as the data.

Memory

Read PC MemRead,
IorD = 0, IRWrite

Read memory using the PC as address; write result into IR (and the MDR).

Read ALU MemRead,
IorD = 1

Read memory using ALUOut as address; write result into MDR.

Write ALU MemWrite,
IorD = 1

Write memory using the ALUOut as address, contents of B as the data.

PC write control

ALU PCSource = 00,
PCWrite

Write the output of the ALU into the PC.

ALUOut-cond PCSource = 01,
PCWriteCond

If the Zero output of the ALU is active, write the PC with the contents of the
register ALUOut.

Jump address PCSource = 10,
PCWrite

Write the PC with the jump address from the instruction.

Sequencing

Seq AddrCtl = 11 Choose the next microinstruction sequentially.

Fetch AddrCtl = 00 Go to the � rst microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

FIGURE C.5.1 Each microcode field translates to a set of control signals to be set. These 22 different values of the fields specify
all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor
control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don’t care and is not used.

C-30 Appendix C Mapping Control to Hardware

Assuming an explicit sequencer, we need to do two additional tasks to translate
the microprogram: assign addresses to the microinstructions and fill in the
contents of the dispatch ROMs. This process is essentially the same as the process
of translating an assembly language program into machine instructions: the fields
of the assembly language or microprogram instruction are translated, and labels on
the instructions must be resolved to addresses.

Figure C.5.1 shows the various values for each microinstruction field that
controls the datapath and how these fields are encoded as control signals. If the
field corresponding to a signal that affects a unit with state (i.e., Memory, Memory
register, ALU destination, or PCWriteControl) is blank, then no control signal
should be active. If a field corresponding to a multiplexor control signal or the ALU
operation control (i.e., ALUOp, SRC1, or SRC2) is blank, the output is unused, so
the associated signals may be set as don’t care.

The sequencing field can have four values: Fetch (meaning go to the Fetch
state), Dispatch 1, Dispatch 2, and Seq. These four values are encoded to set the
2-bit address control just as they were in Figure C.4.4: Fetch = 0, Dispatch 1 = 1,
Dispatch 2 = 2, Seq = 3. Finally, we need to specify the contents of the dispatch
tables to relate the dispatch entries of the sequence field to the symbolic labels in
the microprogram. We use the same dispatch tables as we did earlier in Figure
C.4.3.

A microcode assembler would use the encoding of the sequencing field, the
contents of the symbolic dispatch tables in Figure C.5.2, the specification in Figure
C.5.1, and the actual microprogram to generate the microinstructions.

Since the microprogram is an abstract representation of the control, there is a
great deal of flexibility in how the microprogram is translated. For example, the
address assigned to many of the microinstructions can be chosen arbitrarily; the
only restrictions are those imposed by the fact that certain microinstructions must

2 elbat hctapsid edocorciM1 elbat hctapsid

Opcode fi eld Opcode name Value Opcode fi eld Opcode name Value

000000 R-format Rformat1 100011 lw LW2

000010 jmp JUMP1 101011 sw SW2

000100 beq BEQ1

100011 lw Mem1

101011 sw Mem1

FIGURE C.5.2 The two microcode dispatch ROMs showing the contents in symbolic form
and using the labels in the microprogram.

 C.5 Translating a Microprogram to Hardware C-31

occur in sequential order (so that incrementing the State register generates the
address of the next instruction). Thus the microcode assembler may reduce the
complexity of the control by assigning the microinstructions cleverly.

Organizing the Control to Reduce the Logic
For a machine with complex control, there may be a great deal of logic in the
control unit. The control ROM or PLA may be very costly. Although our simple
implementation had only an 18-bit microinstruction (assuming an explicit
sequencer), there have been machines with microinstructions that are hundreds of
bits wide. Clearly, a designer would like to reduce the number of microinstructions
and the width.

The ideal approach to reducing control store is to first write the complete
microprogram in a symbolic notation and then measure how control lines are set
in each microinstruction. By taking measurements we are able to recognize control
bits that can be encoded into a smaller field. For example, if no more than one of
eight lines is set simultaneously in the same microinstruction, then this subset of
control lines can be encoded into a 3-bit field (log2 8 = 3). This change saves five bits
in every microinstruction and does not hurt CPI, though it does mean the extra
hardware cost of a 3-to-8 decoder needed to generate the eight control lines when
they are required at the datapath. It may also have some small clock cycle impact,
since the decoder is in the signal path. However, shaving five bits off control store
width will usually overcome the cost of the decoder, and the cycle time impact will
probably be small or nonexistent. For example, this technique can be applied to bits
13–6 of the microinstructions in this machine, since only one of the seven bits of
the control word is ever active (see Figure C.4.5).

This technique of reducing field width is called encoding. To further save space,
control lines may be encoded together if they are only occasionally set in the same
microinstruction; two microinstructions instead of one are then required when
both must be set. As long as this doesn’t happen in critical routines, the narrower
microinstruction may justify a few extra words of control store.

Microinstructions can be made narrower still if they are broken into different
formats and given an opcode or format field to distinguish them. The format field
gives all the unspecified control lines their default values, so as not to change
anything else in the machine, and is similar to the opcode of an instruction in a
more powerful instruction set. For example, we could use a different format for
microinstructions that did memory accesses from those that did register-register
ALU operations, taking advantage of the fact that the memory access control lines
are not needed in microinstructions controlling ALU operations.

Reducing hardware costs by using format fields usually has an additional
performance cost beyond the requirement for more decoders. A microprogram
using a single microinstruction format can specify any combination of operations
in a datapath and can take fewer clock cycles than a microprogram made up of
restricted microinstructions that cannot perform any combination of operations in

C-32 Appendix C Mapping Control to Hardware

a single microinstruction. However, if the full capability of the wider microprogram
word is not heavily used, then much of the control store will be wasted, and the
machine could be made smaller and faster by restricting the microinstruction
capability.

The narrow, but usually longer, approach is often called vertical microcode, while
the wide but short approach is called horizontal microcode. It should be noted that
the terms “vertical microcode” and “horizontal microcode” have no universal
definition—the designers of the 8086 considered its 21-bit microinstruction to be
more horizontal than in other single-chip computers of the time. The related terms
maximally encoded and minimally encoded are probably better than vertical and
horizontal.

 C.6 Concluding Remarks

We began this appendix by looking at how to translate a finite-state diagram to an
implementation using a finite-state machine. We then looked at explicit sequencers
that use a different technique for realizing the next-state function. Although large
microprograms are often targeted at implementations using this explicit next-state
approach, we can also implement a microprogram with a finite-state machine. As
we saw, both ROM and PLA implementations of the logic functions are possible.
The advantages of explicit versus encoded next state and ROM versus PLA
implementation are summarized below.

Independent of whether the control is represented as a finite-state diagram
or as a microprogram, translation to a hardware control implementation is
similar. Each state or microinstruction asserts a set of control outputs and
specifies how to choose the next state.

The next-state function may be implemented by either encoding it in a
finite-state machine or using an explicit sequencer. The explicit sequencer
is more efficient if the number of states is large and there are many
sequences of consecutive states without branching.

The control logic may be implemented with either ROMs or PLAs (or
even a mix). PLAs are more efficient unless the control function is very
dense. ROMs may be appropriate if the control is stored in a separate
memory, as opposed to within the same chip as the datapath.

The BIG
Picture

 C.7 Exercises C-33

 C.7 Exercises

C.1 [10] <§C.2> Instead of using four state bits to implement the finite-state
machine in Figure C.3.1, use nine state bits, each of which is a 1 only if the finite-
state machine is in that particular state (e.g., S1 is 1 in state 1, S2 is 1 in state 2, etc.).
Redraw the PLA (Figure C.3.9).

C.2 [5] <§C.3> We wish to add the instruction jal (jump and link). Make any
necessary changes to the datapath or to the control signals if needed. You can
photocopy figures to make it faster to show the additions. How many product terms
are required in a PLA that implements the control for the single-cycle datapath for
jal?

C.3 [5] <§C.3> Now we wish to add the instruction addi (add immediate).
Add any necessary changes to the datapath and to the control signals. How many
product terms are required in a PLA that implements the control for the single-
cycle datapath for addiu?

C.4 [10] <§C.3> Determine the number of product terms in a PLA that
implements the finite-state machine for addi. The easiest way to do this is to
construct the additions to the truth tables for addi.

C.5 [20] <§C.4> Implement the finite-state machine of using an explicit counter
to determine the next state. Fill in the new entries for the additions to Figure C.4.5.
Also, add any entries needed to the dispatch ROMs of Figure C.5.2.

C.6 [15] <§§C.3–C.6> Determine the size of the PLAs needed to implement the
multicycle machine, assuming that the next-state function is implemented with
a counter. Implement the dispatch tables of Figure C.5.2 using two PLAs and the
contents of the main control unit in Figure C.4.5 using another PLA. How does
the total size of this solution compare to the single PLA solution with the next state
encoded? What if the main PLAs for both approaches are split into two separate
PLAs by factoring out the next-state or address select signals?

A P P E N D I X A Survey of RISC
Architectures for
Desktop, Server, and
Embedded Computers

D
RISC: any computer
announced after 1985.

Steven Przybylskic
A Designer of the Stanford MIPS

 D.1 Introduction D-3

D.1 Introduction D-3
D.2 Addressing Modes and Instruction Formats D-5
D.3 Instructions: The MIPS Core Subset D-9
D.4 Instructions: Multimedia Extensions of the Desktop/Server

RISCs D-16
D.5 Instructions: Digital Signal-Processing Extensions of the

Embedded RISCs D-19
D.6 Instructions: Common Extensions to MIPS Core D-20
D.7 Instructions Unique to MIPS-64 D-25
D.8 Instructions Unique to Alpha D-27
D.9 Instructions Unique to SPARC v9 D-29
D.10 Instructions Unique to PowerPC D-32
D.11 Instructions Unique to PA-RISC 2.0 D-34
D.12 Instructions Unique to ARM D-36
D.13 Instructions Unique to Thumb D-38
D.14 Instructions Unique to SuperH D-39
D.15 Instructions Unique to M32R D-40
D.16 Instructions Unique to MIPS-16 D-40
D.17 Concluding Remarks D-43

 D.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in
this appendix. The first group is the desktop and server RISCs:

■	 Digital Alpha

■	 Hewlett-Packard PA-RISC

■	 IBM and Motorola PowerPC

■	 MIPS INC MIPS-64

■	 Sun Microsystems SPARC

D-4 Appendix D A Survey of RISC Architectures

The second group is the embedded RISCs:

■	 Advanced RISC Machines ARM

■	 Advanced RISC Machines Thumb

■	 Hitachi SuperH

■	 Mitsubishi M32R

■	 MIPS INC MIPS-16

Alpha MIPS I PA-RISC 1.1 PowerPC SPARCv8

Date announced 1992 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, model) 64 bits, fl at 32 bits, fl at 48 bits,
segmented

32 bits, fl at 32 bits, fl at

 dengilA dengilanU dengilA dengilA dengilA tnemngila ataD

Data addressing modes 1 1 5 4 2

 egaP egaP egaP egaP egaP noitcetorP

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB

 deppam yromeM deppam yromeM deppam yromeM deppam yromeM deppam yromeM O/I

Integer registers (number, model, size) 31 GPR × 64 bits 31 GPR × 32 bits 31 GPR × 32 bits 32 GPR × 32 bits 31 GPR × 32 bits

Separate fl oating-point registers 31 × 32 or
31 × 64 bits

16 × 32 or
16 × 64 bits

56 × 32 or
28 × 64 bits

32 × 32 or
32 × 64 bits

32 × 32 or
32 × 64 bits

Floating-point format IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

FIGURE D.1.1 Summary of the first version of five architectures for desktops and servers. Except for the number of data
address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure
D.17.1. Later versions of these architectures all support a flat, 64-bit address space.

ARM Thumb SuperH M32R MIPS-16

 6991 7991 5991 2991 5891 decnuonna etaD

Instruction size (bits) 32 16 16 16/32 16/32

Address space (size, model) 32 bits, fl at 32 bits, fl at 32 bits, fl at 32 bits, fl at 32/64 bits, fl at

 dengilA dengilA dengilA dengilA dengilA tnemngila ataD

Data addressing modes 6 6 4 3 2

Integer registers (number, model, size) 15 GPR x 32 bits 8 GPR + SP,
LR x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP,
RA x 32/64 bits

 deppam yromeM deppam yromeM deppam yromeM deppam yromeM deppam yromeM O/I

FIGURE D.1.2 Summary of five architectures for embedded applications. Except for number of data address modes and some
instruction set details, the integer instruction sets of these architectures are similar. Contrast this with Figure D.17.1.

 D.2 Addressing Modes and Instruction Formats D-5

There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of the
desktop and server RISCs are found in Figure D.1.1 and the embedded RISCs in
Figure D.1.2.

Notice that the embedded RISCs tend to have eight to 16 general-purpose
registers while the desktop/server RISCs have 32, and that the length of instructions
is 16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Thumb
and MIPS-16 are really optional modes of ARM and MIPS invoked by call
instructions. When in this mode, they execute a subset of the native architecture
using 16-bit-long instructions. These 16-bit instruction sets are not intended to be
full architectures, but they are enough to encode most procedures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have been
extended over the years. We have decided to describe the latest versions of the
architectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R
version 1, and MIPS-16 version 1 for the embedded ones.

The remaining sections proceed as follows: after discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey of
the instructions in five steps:

■	 Instructions found in the MIPS core, which is defined in Chapters 2 and 3 of
the main text

■	 Multimedia extensions of the desktop/server RISCs

■	 Digital signal-processing extensions of the embedded RISCs

■	 Instructions not found in the MIPS core but found in two or more architectures

■	 The unique instructions and characteristics of each of the 10 architectures

We give the evolution of the instruction sets in the final section and conclude with
speculation about future directions for RISCs.

 D.2 Addressing Modes and Instruction
Formats

Figure D.2.1 shows the data addressing modes supported by the desktop
architectures. Since all have one register that always has the value 0 when used in
address modes, the absolute address mode with limited range can be synthesized
using zero as the base in displacement addressing. (This register can be changed

D-6 Appendix D A Survey of RISC Architectures

by ALU operations in PowerPC; it is always 0 in the other machines.) Similarly,
register indirect addressing is synthesized by using displacement addressing with
an offset of 0. Simplified addressing modes is one distinguishing feature of RISC
architectures.

Figure D.2.2 shows the data addressing modes supported by the embedded
architectures. Unlike the desktop RISCs, these embedded machines do not reserve
a register to contain 0. Although most have two to three simple addressing modes,
ARM and SuperH have several, including fairly complex calculations. ARM has
an addressing mode that can shift one register by any amount, add it to the other
registers to form the address, and then update one register with this new address.

References to code are normally PC-relative, although jump register indirect
is supported for returning from procedures, for case statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left
2 bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instructions for the desktop
RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory.
Embedded architectures with 16-bit-long instructions usually shift the PC-relative
address by one for similar reasons.

Addressing mode Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Register + offset (displacement or based) X X X X X

 X X)sdaoL(X)PF(X)dexedni(retsiger + retsigeR

Register + scaled register (scaled) X

Register + offset and update register X X

Register + register and update register X X

FIGURE D.2.1 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short address
versions of the offset addressing modes. MIPS-64 has indexed addressing for floating-point loads and stores. (These addressing modes are
described in Figure 2.18.)

Addressing mode ARMv4 Thumb SuperH M32R MIPS-16

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X

 X)delacs(retsiger delacs + retsigeR

Register + offset and update register X

Register + register and update register X

 X X tceridni retsigeR

Autoincrement, autodecrement X X X X

)sdaol(X X)sdaol(X X atad evitaler-CP

FIGURE D.2.2 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R have
separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the latter mode. This increases the
use of 16-bit instructions in the M32R, and it gives a wider set of address modes to different data transfer instructions in SuperH. To get
greater addressing range, ARM and Thumb shift the offset left one or two bits if the data size is halfword or word. (These addressing modes are
described in Figure 2.18.)

 D.2 Addressing Modes and Instruction Formats D-7

Figure D.2.3 shows the format of the desktop RISC instructions, which include
the size of the address. Each instruction set architecture uses these four primary
instruction formats. Figure D.2.4 shows the six formats for the embedded RISC
machines. The desire to have smaller code size via 16-bit instructions leads to more
instruction formats.

Register-register

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 4 0

31 25 20 15 10 4 0

Op6 Opx11

Opx6

Opx11

Opx8

Opx11

Op6

Op6

Op6

Rs15

Rs15

Rs15

Rd5

Rd5

Rd5

Rd5

Const5

Op2 Opx6

Rs25

Rs15 0

Rs25

Rs25

Rs25

Rs25

Rs15

Rd5

Register-immediate

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 0

051025213

Op6 Const16

Const16

Const16

Const16

Const13

Op6

Op6

Op6

Rd5

Rs15

Rs25

Rd5

Op2 Opx6

Rs15

Rs15 1

Rd5

Rd5

Rs15

Rd5

Branch

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 18 12 01

051025213

Op6 Const21

Const16

Const14 Opx2

Const11 O C

Const19

Op6

Op6

Op6

Rs15

Rs15

Rs25

Opx6

Op2 Opx11

Opx3

Opx5/Rs25

Rs15

Rs15

Jump/call

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 20 15 12 01

0025213

Op6 Const21

Const26

Const24 Opx2

Const21 O1 C1

Const30

Op6

Op6

Op6

Rs15

Op2

Opcode Register Constant

FIGURE D.2.3 Instruction formats for desktop/server RISC architectures. These four formats
are found in all five architectures. (The superscrift notation in this figure means the width of a field in bits.)
Although the register fields are located in similar pieces of the instruction, be aware that the destination and
two source fields are scrambled. Op = the main opcode, Opx = an opcode extension, Rd = the destination
register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an immediate or as
an address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations
that is different from the data transfer format shown here. It provides an 8-bit immediate in bits 20 to 13 of
the RR format, with bits 12 to 5 remaining as an opcode extension.

D-8 Appendix D A Survey of RISC Architectures

Opcode Register Constant

Register-register

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 1 0

31 27 19 15 11 3 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8

Op6

Op4

Op4 Rd4

Rd4

Rs24

Op5 Rs13 Rs23

Rs14 Rd4

Opx2

Rd3Rs3

Rs4

Rd3

Rs14

Register-immediate

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4

Op5 Rs3 Const5

Rs14 Rd4

Rd3 Const8

Const8

Rs4

Rd3

Const16

Data transfer

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4 Rs4

Op5 Rs3 Const5

Rs14 Rd4

Const5 Rs3 Rd3

Const4

Rs4

Rd3

Const16

Branch

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 0

0327213

Opx4

Opx4

Opx4

Op4 Const24

Op4

Op8

Op4 Rd4

Op5 Const8

Const8

Const8

Rs4

Rd3

Const16

Jump

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 0

0327213

Opx4

Opx4

Op4 Const24

Op5

Op4

Op4

Op5 Const11

Const11

Const12

Const8

Call

ARM

Thumb

SuperH

M32R

MIPS-16

05251

0327213

Opx4

Op8

Op4 Const24

Op5

Op4

Op6 Const26

Const11 Opx5 Const11

Const12

Const24

FIGURE D.2.4 Instruction formats for embedded RISC architectures. These six formats are
found in all five architectures. The notation is the same as in Figure D.2.3. Note the similarities in branch,
jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats.
The differences result from whether the architecture has eight or 16 registers, whether it is a two- or three-
operand format, and whether the instruction length is 16 or 32 bits.

 D.3 Instructions: The MIPS Core Subset D-9

Figures D.2.5 and D.2.6 show the variations in extending constant fields to
the full width of the registers. In this subtle point, the RISCs are similar but not
identical.

 D.3 Instructions: The MIPS Core Subset

The similarities of each architecture allow simultaneous descriptions, starting with
the operations equivalent to the MIPS core.

MIPS Core Instructions
Almost every instruction found in the MIPS core is found in the other architectures,
as Figures D.3.1 through D.3.5 show. (For reference, definitions of the MIPS
instructions are found in the MIPS Reference Data Card at the beginning of the
book.) Instructions are listed under four categories: data transfer (Figure D.3.1);
arithmetic/logical (Figure D.3.2); control (Figure D.3.3); and floating point
(Figure D.3.4). A fifth category (Figure D.3.5) shows conventions for register

Format: instruction category Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

ngiSngiSngiSngiSngiSlla:hcnarB

ngiSngiSngiS—ngiSlla:llac/pmuJ

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Zero Sign Sign Sign Sign

ngiSoreZ—oreZoreZlacigol:etaidemmi-retsigeR

FIGURE D.2.5 Summary of constant extension for desktop RISCs. The constants in the jump and call instructions of MIPS are
not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate
instructions.

Format: instruction category Armv4 Thumb SuperH M32R MIPS-16

 ngiS ngiS ngiS ngiS ngiS lla :hcnarB

 — ngiS ngiS oreZ/ngiS ngiS lla :llac/pmuJ

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign

 — oreZ oreZ — oreZlacigol :etaidemmi-retsigeR

FIGURE D.2.6 Summary of constant extension for embedded RISCs. The 16-bit-length instructions have much shorter
immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have a way to get a long address for
procedure calls from two sequencial halfwords. The constants in the jump and call instructions of MIPS are not sign-extended, since they only
replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. The 8-bit immediates in ARM can be rotated right an even number of
bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM.

D-10 Appendix D A Survey of RISC Architectures

usage and pseudoinstructions on each architecture. If a MIPS core instruction
requires a short sequence of instructions in other architectures, these instructions
are separated by semicolons in Figures D.3.1 through D.3.5. (To avoid confusion,
the destination register will always be the leftmost operand in this appendix,
independent of the notation normally used with each architecture.) Figures D.3.6
through D.3.9 show the equivalent listing for embedded RISCs. Note that floating
point is generally not defined for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch, but
despite all the similarities, each of these architectures has found a different way to
perform the operation.

Compare and Conditional Branch
SPARC uses the traditional four condition code bits stored in the program status
word: negative, zero, carry, and overflow. They can be set on any arithmetic or logical
instruction; unlike earlier architectures, this setting is optional on each instruction.
An explicit option leads to fewer problems in pipelined implementation. Although
condition codes can be set as a side effect of an operation, explicit compares are
synthesized with a subtract using r0 as the destination. SPARC conditional branches

Data transfer
(instruction formats)

R-I R-I R-I, R-R R-I, R-R R-I, R-R

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Load byte signed LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB
Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB
Load halfword signed LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH
Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH
Load word LDLS LW LDW, LDWX, LDWS LW LD
Load SP fl oat LDS* LWC1 FLDWX, FLDWS LFS LDF
Load DP fl oat LDT LDC1 FLDDX, FLDDS LFD LDDF
Store byte STB SB STB, STBX, STBS STB STB
Store halfword STW SH STH, STHX, STHS STH STH
Store word STL SW STW, STWX, STWS STW ST
Store SP fl oat STS SWC1 FSTWX, FSTWS STFS STF
Store DP fl oat STT SDC1 FSTDX, FSTDS STFD STDF
Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_,

MTSPR, MT_
RD, WR, RDPR, WRPR,
LDXFSR, STXFSR

Move integer to FP register ITOFS MFC1/DMFC1 STW; FLDWX STW; LDFS ST; LDF
Move FP to integer register FTTOIS MTC1/DMTC1 FSTWX; LDW STFS; LW STF; LD

FIGURE D.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a
MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated
by commas. For this figure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single-precision floating point to double
precision and loads the entire 64-bit register.

 D.3 Instructions: The MIPS Core Subset D-11

Arithmetic/logical
(instruction formats)

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Add ADDL ADDU, ADDU ADDL, LD0, ADDI,
UADDCM

ADD, ADDI ADD

Add (trap if overfl ow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; MCRXR; BC ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overfl ow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT, MULTU SHiADD;...; (i=1,2,3) MULLW, MULLI MULX

Multiply (trap if overfl ow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overfl —————)wo

And AND AND, ,DNADNAIDNA ANDI AND

Or BIS OR, ,ROROIRO ORI OR

Xor XOR XOR, ,ROXROXIROX XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI
(B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL
Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL
Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA
Compare CMPEQ, CMPLT,

CMPLE
SLT/U, ccBUSRLC)I(PMCBMOCU/ITLS r0,...

FIGURE D.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If
there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category,
all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of these
instructions but uses a single mnemonic. (Of course these are separate opcodes!)

Control
(instruction formats)

B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Branch on integer compare B_ (<, >, <=,
>=, =, not=)

BEQ, BNE, B_Z
(<, >, <=, >=)

COMB, COMIB BC BR_Z, BPcc (<,
>, <=, >=, =,
not=)

Branch on fl oating-point
compare

FB_(<, >, <=,
>=, =, not=)

BC1T, BC1F FSTWX f0;
LDW t; BB t

BC FBPfcc (<, >,
<=, >=, =,...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...
Call, call register BSR JAL, JALR BL, BLE BL, BLA,

BCLRL, BCCTRL
CALL, JMPL

Trap CALL_PAL
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL REI JR; ERET RFI, RFIR RFI DONE, RETRY,
RETURN

FIGURE D.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equivalent
to MIPS core, they are separated by commas.

D-12 Appendix D A Survey of RISC Architectures

test condition codes to determine all possible unsigned and signed relations.
Floating point uses separate condition codes to encode the IEEE 754 conditions,
requiring a floating-point compare instruction. Version 9 expanded SPARC
branches in four ways: a separate set of condition codes for 64-bit operations; a
branch that tests the contents of a register and branches if the value is =, not =, <,
<=, >=, or <= 0 (see MIPS below); three more sets of floating-point condition
codes; and branch instructions that encode static branch prediction.

PowerPC also uses four condition codes—less than, greater than, equal, and
summary overflow—but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without conflict, essentially
giving PowerPC eight extra 4-bit registers. Any of these eight condition codes can
be the target of a compare instruction, and any can be the source of a conditional
branch. The integer instructions have an option bit that behaves as if the integer op

Floating point
(instruction formats) R-R R-R R-R R-R R-R

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Add single, double ADDS, ADDT ADD.S, ADD.D FADD FADD/dbl FADDS, FADD FADDS, FADDD
Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB FSUB/dbl FSUBS, FSUB FSUBS, FSUBD
Multiply single, double MULS, MULT MUL.S, MUL.D FMPY FMPY/dbl FMULS, FMUL FMULS, FMULD
Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, FDIV/dbl FDIVS, FDIV FDIVS, FDIVD
Compare CMPT_ (=, <,

<=, UN)
C_.S, C_.D (<, >,
<=, >=, =,...)

FCMP, FCMP/dbl
(<, =, >)

FCMP FCMPS, FCMPD

Move R-R ADDT Fd, F31, Fs MOV.S, MOV.D FCPY FMV FMOVS/D/Q
Convert (single, double,
integer) to (single,
double, integer)

CVTST, CVTTS,
CVTTQ, CVTQS,
CVTQT

CVT.S.D, CVT.
D.S, CVT.S.W,
CVT.D.W, CVT.
W.S, CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—, FRSP, —,
FCTIW,—, —

FSTOD, FDTOS,
FSTOI, FDTOI,
FITOS, FITOD

FIGURE D.3.4 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not available in
that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are separated
by commas.

Conventions Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0
Return address register (any) r31 r2, r31 link (special) r31

No-op LDQ_U r31,... SLL r0, r0, r0 OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0
Move R-R integer BIS..., r31,... ADD..., r0,... OR..., r0,... OR rx, ry, ry OR..., r0,...
Operand order OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd

FIGURE D.3.5 Conventions of desktop RISC architectures equivalent to MIPS core.

 D.3 Instructions: The MIPS Core Subset D-13

is followed by a compare to zero that sets the first condition “register.” PowerPC
also lets the second “register” be optionally set by floating-point instructions.
PowerPC provides logical operations among these eight 4-bit condition code
registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch.

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set on less than instructions (SLT, SLTI,
SLTU, SLTIU) compare two operands and then set the destination register to 1
if less and to 0 otherwise. These instructions are enough to synthesize the full set
of relations. Because of the popularity of comparisons to 0, MIPS includes special
compare and branch instructions for all such comparisons: greater than or equal to
zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less
than zero (BLTZ). Of course, equal and not equal to zero can be synthesized using
r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for floating point
with separate floating-point compare and branch instructions; MIPS IV expanded
this to eight floating-point condition codes, with the floating point comparisons
and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point
compares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition
holds and to 0 otherwise. The branch instructions compare one register to 0 (BEQ,
BGE, BGT, BLE, BLT, BNE) or its least significant bit to 0 (BLBC, BLBS) and
then branch if the condition holds.

Instruction name ARMv4 Thumb SuperH M32R MIPS-16

Data transfer (instruction formats) DT DT DT DT DT

Load byte signed LDRSB LDRSB MOV.B LDB LB
Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU
Load halfword signed LDRSH LDRSH MOV.W LDH LH
Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU
Load word LDR LDR MOV.L LD LW
Store byte STRB STRB MOV.B STB SB
Store halfword STRH STRH MOV.W STH SH
Store word STR STR MOV.L ST SW
Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE

FIGURE D.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize
a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defined for the embedded RISCs. Thumb and
MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction
set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.

D-14 Appendix D A Survey of RISC Architectures

PA-RISC has many branch options, which we’ll see in Section D.11. The most
straightforward is a compare and branch instruction (COMB), which compares two
registers, branches depending on the standard relations, and then tests the least
significant bit of the result of the comparison.

ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one operand from the other and the difference
sets the condition codes. Compare negative (CMN) adds one operand to the other,
and the sum sets the condition codes. TST performs logical AND on the two
operands to set all condition codes but overflow, while TEQ uses exclusive OR to
set the first three condition codes. Like SPARC, the conditional version of the ARM
branch instruction tests condition codes to determine all possible unsigned and
signed relations.

Arithmetic/logical
(instruction formats)

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name ARMv4 Thumb SuperH M32R MIPS-16

Add ADD ADD ADD ADD, ADDI, ADD3 ADDU, ADDIU

Add (trap if overfl ow) ADDS; SWIVS ADD; BVC .+4; SWI ADDV ADDV, ADDV3 —1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overfl ow) SUBS; SWIVS SUB; BVC .+1; SWI SUBV SUBV —1

Multiply MUL MUL MUL MUL MULT, MULTU

Multiply (trap if overfl ow) —

Divide — — DIV1, DIVoS,
DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overfl ———)wo

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR

Load high part register — — SETH —1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, SLL3 SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, SRL3 SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, SRA3 SRAV, SRA

Compare CMP,CMN,
TST,TEQ

CMP, CMN, TST CMP/cond,
TST

CMP/I, CMPU/I CMP/I2, SLT/I,
SLT/IU

FIGURE D.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons.
If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Thumb and MIPS-16 are just 16-bit
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to
show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found
only in 16-bit mode of Thumb or MIPS-16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with
superscript 3 are just a variation of a move instruction, such as LSR3.

 D.3 Instructions: The MIPS Core Subset D-15

As we shall see in Section D.12, one unusual feature of ARM is that every
instruction has the option of executing conditionally depending on the condition
codes. (This bears similarities to the annulling option of PA-RISC, seen in Section
D.11.)

Not surprisingly, Thumb follows ARM. The differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare
instructions. Two branch instructions decide to branch if either the T bit is 1
(BT) or the T bit is 0 (BF). The two flavors of branches allow fewer comparison
instructions.

Mitsubishi M32R also offers a single condition code bit (C) used for signed and
unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less
than the other or not, similar to the MIPS set on less than instructions. Two branch
instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also includes
instructions to branch on equality or inequality of registers (BEQ and BNE) and all
relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike
BC and BNC, these last instructions are all 32 bits wide.

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU),
but instead of putting the result in one of the eight registers, it is placed in a special
register named T. MIPS-16 is always implemented in machines that also have the
full 32-bit MIPS instructions and registers; hence, register T is really register 24 in
the full MIPS architecture. The MIPS-16 branch instructions test to see if a register
is or is not equal to zero (BEQZ and BNEZ). There are also instructions that branch

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C

Instruction name ARMv4 Thumb SuperH M32R MIPS-16

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, BC, BNC, B__Z BEQZ2, BNEZ2, BTEQZ2,
BTNEZ2

Jump, jump register MOV pc, ri MOV pc, ri BRA, JMP BRA, JMP B2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

 KAERB PART APART IWS IWS parT

Return from interrupt MOVS pc, r14 —1 — ETR STR 1

FIGURE D.3.8 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS-16 are just 16-bit instruction
subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences
that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit
mode of Thumb or MIPS-16, such as BTEQZ2.

Conventions ARMv4 Thumb SuperH M32R MIPS-16

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV r0, r0 MOV r0, r0 NOP NOP SLL r0, r0

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2

FIGURE D.3.9 Conventions of embedded RISC instructions equivalent to MIPS core.

D-16 Appendix D A Survey of RISC Architectures

if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two registers are
equal, MIPS added compare instructions (CMP, CMPI) that compute the exclusive
OR of two registers and place the result in register T. Compare was added since
MIPS-16 left out instructions to compare and branch if registers are equal or not
(BEQ and BNE).

Figures D.3.10 and D.3.11 summarize the schemes used for conditional branches.

 D.4 Instructions: Multimedia Extensions of
the Desktop/Server RISCs

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations. Many graphics systems use 8 bits to represent each of the three
primary colors plus 8 bits for the location of a pixel.

Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Number of condition code bits
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer, 4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer, 1 FP 1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP

Basic branch instructions
(integer and FP)

1 2 integer, 1 FP 7 integer 1 both 3 integer, 1 FP

Compare register with
register/const and branch

— =, not= =, not=, <, <=, >, >=,
even, odd

— —

Compare register to zero and
branch

=, not=, <, <=, >,
>=, even, odd

=, not=, <, <=,
>, >=

=, not=, <, <=, >, >=,
even, odd

— =, not=, <, <=, >, >=

FIGURE D.3.10 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is
accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison
bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARMv4 Thumb SuperH M32R MIPS-16

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/const
and branch

— — =, >, >= =, not= —

Compare register to zero and branch — — =, >, >= =, not=, <, <=, >, >= =, not=

FIGURE D.3.11 Summary of five embedded RISC approaches to conditional branches.

 D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs D-17

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples need more than 8 bits of
precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take
up less space when stored in memory, but due to the infrequency of arithmetic
operations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justified as a
graphical accelerator within the company, recognized that many graphics and
audio applications would perform the same operation on vectors of these data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partitioning the carry chains within a 64-bit ALU, it could perform simultaneous
operations on short vectors of eight 8-bit operands, four 16-bit operands, or two
32-bit operands. The cost of such partitioned ALUs was small. Applications that
lend themselves to such support include MPEG (video), games like DOOM (3-D
graphics), Adobe Photoshop (digital photography), and teleconferencing (audio
and image processing).

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include such
support. As we shall see, this virus spread unevenly. The PowerPC is the only
holdout, and rumors are that it is “running a fever.”

These extensions have been called subword parallelism, vector, or SIMD (single-
instruction, multiple data) (see Chapter 6). Since Intel marketing uses SIMD to
describe the MMX extension of the 8086, that has become the popular name.
Figure D.4.1 summarizes the support by architecture.

From Figure D.4.1, you can see that, in general, MIPS MDMX works on eight
bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-
words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do
much. The Alpha MAX operations are just byte versions of compare, min, max, and
absolute difference, leaving it up to software to isolate fields and perform parallel
adds, subtracts, and multiplies on bytes and halfwords. MIPS also added operations
to work on two 32-bit floating-point operands per cycle, but they are considered
part of MIPS V and not simply multimedia extensions (see Section D.7).

One feature not generally found in general-purpose microprocessors is
saturating operations. Saturation means that when a calculation overflows, the
result is set to the largest positive number or most negative number, rather than a
modulo calculation as in two’s complement arithmetic. Commonly found in digital
signal processors (see the next section), these saturating operations are helpful in
routines for filtering.

These machines largely used existing register sets to hold operands: integer
registers for Alpha and HP PA-RISC and floating-point registers for MIPS and Sun.
Hence data transfers are accomplished with standard load and store instructions.
MIPS also added a 192-bit (3*64) wide register to act as an accumulator for some
operations. By having three times the native data width, it can be partitioned to
accumulate either eight bytes with 24 bits per field or four halfwords with 48 bits

D-18 Appendix D A Survey of RISC Architectures

per field. This wide accumulator can be used for add, subtract, and multiply/ add
instructions. MIPS claims performance advantages of two to four times for the
accumulator.

Perhaps the surprising conclusion of this table is the lack of consistency. The
only operations found on all four are the logical operations (AND, OR, XOR),
which do not need a partitioned ALU. If we leave out the frugal Alpha, then the
only other common operations are parallel adds and subtracts on four halfwords.

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a
compiler that works well with multimedia extensions of all desktop RISCs would
be challenging.

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS

 W2 ,H4 H4 H4 ,B8 tcartbus/ddA

 H4 H4 ,B8 bus/dda gnitarutaS

 H/B4 H4 ,B8ylpitluM

)=< ,> ,=ton ,=(W2 ,H4)=<,<,=(H4 ,B8)=>(B8 erapmoC

 H4 H4 ,B8 tfel/thgir tfihS

 H4 H4 citemhtira thgir tfihS

 H4 ,B8 dda dna ylpitluM

Shift and add
(saturating)

4H

 W2 ,H4 ,B8 W2 ,H4 ,B8 W2 ,H4 ,B8 W2 ,H4 ,B8 rox/ro/dnA

Absolute difference 8B 8B

Max/min 8B, 4W 8B, 4H

Pack (2n bits --> n ,B2>-W2 ,H2>-W2B8>-H4*2 B8>-H4*2 ,H4>-W2*2 B4>-H4 ,B2>-W2)stib
4H->4B

B8>-B4*2 ,H4>-B4H4>-H2*2 ,B8>-B4*2 H4>-B4 ,W2>-B2 egrem/kcapnU

 H4 H4 ,B8e flfuhs/etumreP

 .tP .lF regetnI .ccA b291 + .tP .lF regetnI stes retsigeR

FIGURE D.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits), and
W for word (32 bits). Thus 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean
two operands each with two words. Note that MDMX has vector/scalar operations, where the scalar is specified as an element of one of
the vector registers. This table is a simplification of the full multimedia architectures, leaving out many details. For example, MIPS MDMX
includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes
instructions to set registers to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.

 D.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs D-19

 D.5 Instructions: Digital Signal-Processing
Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support
for integer multiply-accumulate. The multiplies tend to be on shorter words than
regular integers, such as 16 bits, and the accumulator tends to be on longer words,
such as 64 bits. The reason for multiply-accumulate is to efficiently implement
digital filters, common in DSP applications. Since Thumb and MIPS-16 are subset
architectures, they do not provide such support. Instead, programmers should use
the DSP or multimedia extensions found in the 32-bit mode instructions of ARM
and MIPS-64.

Figure D.5.1 shows the size of the multiply, the size of the accumulator, and
the operations and instruction names for the embedded RISCs. Machines with
accumulator sizes greater than 32 and less than 64 bits will force the upper bits
to remain as the sign bits, thereby “saturating” the add to set to maximum and
minimum fixed-point values if the operations overflow.

ARMv4 Thumb SuperH M32R MIPS-16

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B —

 — B65 B46/B84 ,B24/B23 — B46/B23 rotalumucca fo eziS

 — CCA LCAM ,HCAM — sRPG fo sriap ro RPG ynA eman rotalumuccA

Operations 32B/64B product + 64B
accumulate signed/
unsigned

— 32B product + 42B/32B
accumulate (operands in
memory); 64B product
+ 64B/48B accumulate
(operands in memory); clear
MAC

32B/48B product +
64B accumulate,
round, move

—

Corresponding
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, MAC.LS,
CLRMAC

MACHI/MACLO,
MACWHI/MACWLO,
RAC, RACH, MVFACHI/
MVFACLO, MVTACHI/
MVTACLO

—

FIGURE D.5.1 Summary of five embedded RISC approaches to multiply-accumulate.

D-20 Appendix D A Survey of RISC Architectures

 D.6 Instructions: Common Extensions to
MIPS Core

Figures D.6.1 through D.6.7 list instructions not found in Figures D.3.5 through
D.3.11 in the same four categories. Instructions are put in these lists if they appear
in more than one of the standard architectures. The instructions are defined using
the hardware description language defined in Figure D.6.8.

Although most of the categories are self-explanatory, a few bear comment:

■	 The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system semaphores
in a uniprocessor as well as for multiprocessor synchronization (see Section
2.11 in Chapter 2).

■	 The 64-bit data transfer and operation rows show how MIPS, PowerPC,
and SPARC define 64-bit addressing and integer operations. SPARC simply
defines all register and addressing operations to be 64 bits, adding only

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Atomic swap R/M
(for locks and
semaphores)

Temp<---Rd; Rd<–Mem[x];
Mem[x]<---Temp

LDL/Q_L;
STL/Q_C

LL; SC — (see D.8) LWARX;
STWCX

CASA, CASX

Load 64-bit integer Rd<–64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer
unsigned

Rd32..63<–32 Mem[x];
Rd0..31<–32 0

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer
signed

Rd32..63<–32 Mem[x]; 32
Rd0..31<–32 Mem[x]0

LDL LW LDW; EXTRD,S
63, 8

LWA LDSW

Prefetch Cache[x]<–hint FETCH,
FETCH_M*

PREF, PREFX LDD, r0
LDW, r0

DCBT,
DCBTST

PRE-FETCH

Load coprocessor Coprocessor<– Mem[x] — LWCi CLDWX, CLDWS — —

Store coprocessor Mem[x]<– Coprocessor — SWCi CSTWX, CSTWS — —

Endian (Big/little endian?) Either Either Either Either Either

Cache fl ush (Flush cache block at this
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared memory
synchronization

(All prior data transfers
complete before next data
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

FIGURE D.6.1 Data transfer instructions not found in MIPS core but found in two or more of the five desktop
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing
data to be read from memory, modified, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see
Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A,
R31, and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190).

 D.6 Instructions: Common Extensions to MIPS Core D-21

special instructions for 64-bit shifts, data transfers, and branches. MIPS
includes the same extensions, plus it adds separate 64-bit signed arithmetic
instructions. PowerPC adds 64-bit right shift, load, store, divide, and compare
and has a separate mode determining whether instructions are interpreted as
32- or 64-bit operations; 64-bit operations will not work in a machine that

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

64-bit integer
arithmetic ops

Rd<–64Rs1 op64 Rs2 ADD,
SUB, MUL

DADD, DSUB
DMULT, DDIV

ADD, SUB,
SHLADD, DS

ADD, SUBF,
MULLD, DIVD

ADD, SUB,
MULX,
S/UDIVX

64-bit integer
logical ops

Rd<–64Rs1 op64 Rs2 AND, OR,
XOR

AND, OR,
XOR

AND, OR, XOR AND, OR, XOR AND, OR,
XOR

64-bit shifts Rd<–64Rs1 op64 Rs2 SLL,
SRA, SRL

DSLL/V,
DSRA/V,
DSRL/V

DEPD,Z
EXTRD,S
EXTRD,U

SLD, SRAD,
SRLD

SLLX, SRAX,
SRLX

Conditional move if (cond) Rd<–Rs CMOV_ MOVN/Z SUBc, n; ADD — MOVcc, MOVr

Support for
multiword integer
add

CarryOut, Rd <– Rs1 +
Rs2 + OldCarryOut

— ADU; SLTU;
ADDU, DADU;
SLTU; DADDU

ADDC ADDC, ADDE ADDcc

Support for
multiword integer
sub

CarryOut, Rd <– Rs1
Rs2 + OldCarryOut

— SUBU; SLTU;
SUBU,
DSUBU;
SLTU; DSUBU

SUBB SUBFC, SUBFE SUBcc

And not Rd <– Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN

Or not Rd <– Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<–Rs10..15 +
(Const<<16);

— — ADDIL (R-I) ADDIS (R-I) —

Coprocessor
operations

(Defi ned by coprocessor) — COPi COPR,i — IMPDEPi

FIGURE D.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Optimized delayed
branches

(Branch not always
delayed)

— BEQL, BNEL,
B_ZL (<, >,
<=, >=)

COMBT, n,
COMBF, n

— BPcc, A,
FPBcc, A

Conditional trap if (COND) {R31<---PC; PC
<–0..0#i}

— T_,,T_I (=,
not=, <, >,
<=, >=)

SUBc, n; BREAK TW, TD, TWI,
TDI

Tcc

No. control
registers

Misc. regs (virtual
memory, interrupts, . . .)

6 equiv. 12 32 33 29

FIGURE D.6.3 Control instructions not found in MIPS core but found in two or more of the five desktop architectures.

D-22 Appendix D A Survey of RISC Architectures

only supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and
operations in version 2.0.

■	 The “prefetch” instruction supplies an address and hint to the implementation
about the data. Hints include whether the data are likely to be read or written
soon, likely to be read or written only once, or likely to be read or written
many times. Prefetch does not cause exceptions. MIPS has a version that
adds two registers to get the address for floating-point programs, unlike
nonfloating-point MIPS programs.

■	 In the “Endian” row, “Big/little” means there is a bit in the program status
register that allows the processor to act either as big endian or little endian
(see Appendix A). This can be accomplished by simply complementing some
of the least significant bits of the address in data transfer instructions.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Multiply and add Fd <– (Fs1 × Fs2)
+ Fs3

— MADD.S/D FMPYFADD sgl/dbl FMADD/S

Multiply and sub Fd <– (Fs1 × Fs2)
– Fs3

— MSUB.S/D FMSUB/S

Neg mult and add Fd <– -((Fs1 × Fs2)
+ Fs3)

— NMADD.S/D FMPYFNEG sgl/dbl FNMADD/S

Neg mult and sub Fd <– -((Fs1 × Fs2)
– Fs3)

— S/BUSMNFD/S.BUSMN

Square root Fd <– SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<–Fs FCMOV_ MOVF/T,
MOVF/T.S/D

FTESTFCPY — FMOVcc

Negate Fd <– Fs ^
x80000000

CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q

Absolute value Fd <– Fs &
x7FFFFFFF

— ABS.S/D FABS/dbl FABS FABSS/D/Q

FIGURE D.6.4 Floating-point instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Defi nition ARMv4 Thumb SuperH M32R MIPS-16

Atomic swap R/M (for
semaphores)

Temp<–Rd; Rd<–Mem[x];
Mem[x]<–Temp

SWP, SWPB —1 (see TAS) LOCK; UNLOCK —1

Memory management unit Paged address translation Via coprocessor
instructions

—1 LDTLB —1

Endian (Big/little endian?) Either Either Either Big Either

FIGURE D.6.5 Data transfer instructions not found in MIPS core but found in two or more of the five embedded
architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.

 D.6 Instructions: Common Extensions to MIPS Core D-23

■	 The “shared memory synchronization” helps with cache-coherent multi-
processors: all loads and stores executed before the instruction must complete
before loads and stores after it can start. (See Chapter 2.)

■	 The “coprocessor operations” row lists several categories that allow for the
processor to be extended with special-purpose hardware.

Name Defi nition ARMv4 Thumb SuperH M32R MIPS-16

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI

Support for multiword integer add CarryOut, Rd <--- Rd + Rs1 +
OldCarryOut

ADCS ADC ADDC ADDX —1

Support for multiword integer sub CarryOut, Rd <--- Rd – Rs1 +
OldCarryOut

SBCS SBC SUBC SUBX —1

 1sR – 0 ---< dR etageN NEG2 NEG NEG NEG

)1sR(~ ---< dRtoN MVN MVN NOT NOT NOT

 1sR ---< dR evoM MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >> Rd0. . . i–1 <---
Rs31–i. . . 31

ROR ROR ROTC

)2sR(~ & 1sR ---< dR ton dnA BIC BIC

FIGURE D.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embedded
architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb or MIPS-16. The superscript
2 shows new instructions found only in 16-bit mode of Thumb or MIPS-16, such as NEG2.

Name Defi nition ARMv4 Thumb SuperH M32R MIPS-16

No. control registers Misc. registers 21 29 9 5 36

FIGURE D.6.7 Control information in the five embedded architectures.

One difference that needs a longer explanation is the optimized branches. Figure
D.6.9 shows the options. The Alpha and PowerPC offer branches that take effect
immediately, like branches on earlier architectures. To accelerate branches, these
machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs
offer delayed branches. The embedded RISCs generally do not support delayed
branch, with the exception of SuperH, which has it as an option.

The other three desktop RISCs provide a version of delayed branch that makes it
easier to fill the delay slot. The SPARC “annulling” branch executes the instruction
in the delay slot only if the branch is taken; otherwise the instruction is annulled.
This means the instruction at the target of the branch can safely be copied into the
delay slot, since it will only be executed if the branch is taken. The restrictions are
that the target is not another branch and that the target is known at compile time.
(SPARC also offers a nondelayed jump because an unconditional branch with the
annul bit set does not execute the following instruction.) Later versions of the MIPS

D-24 Appendix D A Survey of RISC Architectures

 gninaeM elpmaxE gninaeM noitatoN

<- - Data transfer. Length of transfer is given by
the destination’s length; the length is specifi ed
when not clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1.
Registers have a fi xed length, so
transfers shorter than the register
size must indicate which bits are
used.

M Array of memory accessed in bytes. The
starting address for a transfer is indicated as
the index to the memory array.

Regs[R1]<--M[x]; Place contents of memory location x
into R1. If a transfer starts at M[i]
and requires 4 bytes, the transferred
bytes are M[i], M[i+1], M[i+2],
and M[i+3].

<- -n Transfer an n-bit fi eld, used whenever length
of transfer is not clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory
location x to memory location y. The
length of the two sides should match.

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are
numbered from MSB starting at 0.)

Xm..n Subscript selects a fi eld. Regs[R3]24..31<--M[x]; Moves contents of memory location x
into low-order byte of R3.

Xn Superscript replicates a bit fi eld. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0.

Concatenates two fi elds. Regs[R3]<--240## M[x];
F2##F3<--64M[x];

Moves contents of location x into low
byte of R3; clears upper three bytes.
Moves 64 bits from memory starting
at location x; 1st 32 bits go into F2,
2nd 32 into F3.

*, & Dereference a pointer; get the address of a
variable.

p*<--&x; Assign to object pointed to by p the
address of the variable x.

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, >, <,
>=, <=

C relational operators; equal, not equal,
greater, less, greater or equal, less or equal.

(Regs[R1]== Regs[R2]) &
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the
contents of R2 and contents of R3 do
not equal the contents of R4.

&, |, ^, ! C bitwise logical operations: AND, OR,
exclusive OR, and complement.

(Regs[R1] & (Regs[R2]|
Regs[R3]))

Bitwise AND of R1 and bitwise OR of
R2 and R3.

FIGURE D.6.8 Hardware description notation (and some standard C operators).

(Plain) branch Delayed branch Annulling delayed branch

Found in architectures Alpha, PowerPC, ARM, Thumb,
SuperH, M32R, MIPS-16

MIPS-64, PA-RISC,
SPARC, SuperH

MIPS-64, SPARC PA-RISC

Execute following instruction Only if branch not taken Always Only if branch
taken

If forward branch not
taken or backward
branch taken

FIGURE D.6.9 When the instruction following the branch is executed for three types of branches.

 D.7 Instructions Unique to MIPS-64 D-25

architecture have added a branch likely instruction that also annuls the following
instruction if the branch is not taken. PA-RISC allows almost any instruction to
annul the next instruction, including branches. Its “nullifying” branch option will
execute the next instruction depending on the direction of the branch and whether
it is taken (i.e., if a forward branch is not taken or a backward branch is taken).
Presumably this choice was made to optimize loops, allowing the instructions
following the exit branch and the looping branch to execute in the common case.

Now that we have covered the similarities, we will focus on the unique features
of each architecture. We first cover the desktop/server RISCs, ordering them by
length of description of the unique features from shortest to longest, and then the
embedded RISCs.

 D.7 Instructions Unique to MIPS-64

MIPS has gone through five generations of instruction sets, and this evolution has
generally added features found in other architectures. Here are the salient unique
features of MIPS, the first several of which were found in the original instruction set.

Nonaligned Data Transfers
MIPS has special instructions to handle misaligned words in memory. A rare event
in most programs, it is included for supporting 16-bit minicomputer applications
and for doing memcpy and strcpy faster. Although most RISCs trap if you try to
load a word or store a word to a misaligned address, on all architectures misaligned
words can be accessed without traps by using four load byte instructions and then
assembling the result using shifts and logical ORs. The MIPS load and store word
left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just
two instructions: LWL loads the left portion of the register and LWR loads the right
portion of the register. SWL and SWR do the corresponding stores. Figure D.7.1
shows how they work. There are also 64-bit versions of these instructions.

Remaining Instructions
Below is a list of the remaining unique details of the MIPS-64 architecture:

■	 NOR—This logical instruction calculates ~(Rs1 | Rs2).

■	 Constant shift amount—Nonvariable shifts use the 5-bit constant field shown
in the register-register format in Figure D.2.3.

■	 SYSCALL—This special trap instruction is used to invoke the operating
system.

D-26 Appendix D A Survey of RISC Architectures

■	 Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers.

■	 Jump/call not PC-relative—The 26-bit address of jumps and calls is not added
to the PC. It is shifted left two bits and replaces the lower 28 bits of the PC.
This would only make a difference if the program were located near a 256 MB
boundary.

■	 TLB instructions—Translation-lookaside buffer (TLB) misses were handled
in software in MIPS I, so the instruction set also had instructions for
manipulating the registers of the TLB (see Chapter 5 for more on TLBs).
These registers are considered part of the “system coprocessor.” Since MIPS I

Case 1
 Before

M[100]

100 101 102 103

D A V

M[104]

R2

R2

After

After

104 105 106 107

E

E

OJ H N

N

LWL R2, 101:

D A V

R2

LWR R2, 104:

D A V

Case 2
 Before

M[200]

200 201 202 203

D

M[204]

R4

R4

After

After

204 205 206 207

EVA

E

OJ H N

N

LWL R4, 203:

D O H

R4

LWR R4, 206:

D A V

FIGURE D.7.1 MIPS instructions for unaligned word reads. This figure assumes operation in
big-endian mode. Case 1 first loads the three bytes 101, 102, and 103 into the left of R2, leaving the least
significant byte undisturbed. The following LWR simply loads byte 104 into the least significant byte of
R2, leaving the other bytes of the register unchanged using LWL. Case 2 first loads byte 203 into the most
significant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204,
205, and 206. LWL reads the word with the first byte from memory, shifts to the left to discard the unneeded
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the first byte to the lowest-order
byte of the word. The following LWR addresses the last byte, right-shifts to discard the unneeded byte(s), and
finally changes only those bytes of Rd. The byte(s) transferred are from the last byte up to the highest-order
byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the
inverse of LWR. Changing to little-endian mode flips which bytes are selected and discarded. (If big-little,
left-right, load-store seem confusing, don’t worry; they work!)

 D.8 Instructions Unique to Alpha D-27

the instructions differ among versions of the architecture; they are more part
of the implementations than part of the instruction set architecture.

■	 Reciprocal and reciprocal square root—These instructions, which do not
follow IEEE 754 guidelines of proper rounding, are included apparently for
applications that value speed of divide and square root more than they value
accuracy.

■	 Conditional procedure call instructions—BGEZAL saves the return address and
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL
does the same for less than zero. The purpose of these instructions is to get a
PC-relative call. (There are “likely” versions of these instructions as well.)

■	 Parallel single-precision floating-point operations—As well as extending
the architecture with parallel integer operations in MDMX, MIPS-64 also
supports two parallel 32-bit floating-point operations on 64-bit registers
in a single instruction. “Paired single” operations include add (ADD.PS),
subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL,
CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS,
MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and
multiply-subtract (MSUB.PS).

There is no specific provision in the MIPS architecture for floating-point execution
to proceed in parallel with integer execution, but the MIPS implementations of
floating point allow this to happen by checking to see if arithmetic interrupts are
possible early in the cycle. Normally, exception detection would force serialization
of execution of integer and floating-point operations.

 D.8 Instructions Unique to Alpha

The Alpha was intended to be an architecture that made it easy to build high-
performance implementations. Toward that goal, the architects originally made
two controversial decisions: imprecise floating-point exceptions and no byte or
halfword data transfers.

To simplify pipelined execution, Alpha does not require that an exception
should act as if no instructions past a certain point are executed and that all before
that point have been executed. It supplies the TRAPB instruction, which stalls until
all prior arithmetic instructions are guaranteed to complete without incurring
arithmetic exceptions. In the most conservative mode, placing one TRAPB per
exception-causing instruction slows execution by roughly five times but provides
precise exceptions (see Darcy and Gay [1996]).

D-28 Appendix D A Survey of RISC Architectures

Code that does not include TRAPB does not obey the IEEE 754 floating-point
standard. The reason is that parts of the standard (NaNs, infinities, and denormals)
are implemented in software on Alpha, as they are on many other microprocessors.
To implement these operations in software, however, programs must find the
offending instruction and operand values, which cannot be done with imprecise
interrupts!

When the architecture was developed, it was believed by the architects that byte
loads and stores would slow down data transfers. Byte loads require an extra shifter
in the data transfer path, and byte stores require that the memory system perform
a read-modify-write for memory systems with error correction codes, since the
new ECC value must be recalculated. This omission meant that byte stores required
the sequence load word, replaced the desired byte, and then stored the word.
(Inconsistently, floating-point loads go through considerable byte swapping to
convert the obtuse VAX floating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes
an elaborate set of byte manipulation instructions: extract field and zero rest of a
register (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields
of a register (ZAP), and compare multiple bytes (CMPGE).

Apparently, the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of the
Alpha chip (21164A), the architecture does include loads and stores for bytes and
halfwords.

Remaining Instructions
Below is a list of the remaining unique instructions of the Alpha architecture:

■	 PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all privileges enabled, interrupts
disabled, and virtual memory mapping turned off for instructions. PAL
(privileged architecture library) code is used for TLB management, atomic
memory operations, and some operating system primitives. PAL code is
called via the CALL_PAL instruction.

■	 No divide—Integer divide is not supported in hardware.

■	 “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least significant three bits. Extract instructions
then select the desired unaligned word using the lower address bits. These
instructions are similar to LWL/R, SWL/R in MIPS.

■	 Floating-point single precision represented as double precision—Single-
precision data are kept as conventional 32-bit formats in memory but are
converted to 64-bit double-precision format in registers.

■	 Floating-point register F31 is fixed at zero—To simplify comparisons to zero.

 D.9 Instructions Unique to SPARC v9 D-29

■	 VAX floating-point formats—To maintain compatibility with the VAX
architecture, in addition to the IEEE 754 single- and double-precision formats
called S and T, Alpha supports the VAX single- and double-precision formats
called F and G, but not VAX format D. (D had too narrow an exponent field
to be useful for double precision and was replaced by G in VAX code.)

■	 Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing zeros
(CTTZ), and count the number of ones in a word (CTPOP). Originally found
on Cray computers, these instructions help with decryption.

 D.9 Instructions Unique to SPARC v9

Several features are unique to SPARC.

Register Windows
The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used, with
a new one allocated on each procedure call. Although this could limit the depth of
procedure calls, the limitation is avoided by operating the banks as a circular buffer,
providing unlimited depth. The knee of the cost/performance curve seems to be six
to eight banks.

SPARC can have between two and 32 windows, typically using eight registers
each for the globals, locals, incoming parameters, and outgoing parameters. (Given
that each window has 16 unique registers, an implementation of SPARC can have as
few as 40 physical registers and as many as 520, although most have 128 to 136, so
far.) Rather than tie window changes with call and return instructions, SPARC has
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window
of the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer to
allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruction, with the
source registers from the callee’s window and the destination register in the caller’s
window. This automatically deallocates the stack frame. Compilers can also make
use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could slow
down the clock rate. This was not the case for early implementations. The SPARC
architecture (with register windows) and the MIPS R2000 architecture (without)

D-30 Appendix D A Survey of RISC Architectures

have been built in several technologies since 1987. For several generations, the
SPARC clock rate has not been slower than the MIPS clock rate for implementations
in similar technologies, probably because cache access times dominate register
access times in these implementations. The current-generation machines took
different implementation strategies—in order versus out of order—and it’s unlikely
that the number of registers by themselves determined the clock rate in either
machine. Recently, other architectures have included register windows: Tensilica
and IA-64.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to identify memory accesses to input/
output devices, or to control registers for devices such as the cache and memory
management unit.

Fast Traps
Version 9 SPARC includes support to make traps fast. It expands the single level
of traps to at least four levels, allowing the window overflow and underflow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby
making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk
The primary remaining arithmetic feature is tagged addition and subtraction.
The designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with operations
for addition, subtraction, and, hence, comparison. The two least significant bits
indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc
set the overflow bit if either operand is not tagged as an integer or if the result is too
large. A subsequent conditional branch or trap instruction can decide what to do.
(If the operands are not integers, software recovers the operands, checks the types
of the operands, and invokes the correct operation based on those types.) It turns
out that the misaligned memory access trap can also be put to use for tagged data,
since loading from a pointer with the wrong tag can be an invalid access. Figure
D.9.1 shows both types of tag support.

 D.9 Instructions Unique to SPARC v9 D-31

Overlapped Integer and Floating-Point Operations
SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SPARC has a
queue of pending floating-point instructions and their addresses. RDPR allows the
processor to empty the queue. The second floating-point feature is the inclusion of
floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions
The remaining unique features of SPARC are as follows:

■	 JMPL uses Rd to specify the return address register, so specifying r31 makes
it similar to JALR in MIPS and specifying r0 makes it like JR.

■	 LDSTUB loads the value of the byte into Rd and then stores FF16 into
the addressed byte. This version 8 instruction can be used to implement
synchronization (see Chapter 2).

■	 CASA (CASXA) atomically compares a value in a processor register to a
32-bit (64-bit) value in memory; if and only if they are equal, it swaps the
value in memory with the value in a second processor register. This version 9

a. Add, sub, or
compare integers
(coded as 00)

TADDcc r7, r5, r6

00

00

00

(R5)

(R7)

(R6)

b. Loading via
valid pointer
(coded as 11)

LD rD, r4, –3
–

11

00

3

(R4)

(Word
address)

FIGURE D.9.1 SPARC uses the two least significant bits to encode different data types
for the tagged arithmetic instructions. a. Integer arithmetic takes a single cycle as long as the
operands and the result are integers. b. The misaligned trap can be used to catch invalid memory accesses,
such as trying to use an integer as a pointer. For languages with paired data like LISP, an offset of − 3 can be
used to access the even word of a pair (CAR) and + 1 can be used for the odd word of a pair (CDR).

D-32 Appendix D A Survey of RISC Architectures

instruction can be used to construct wait-free synchronization algorithms
that do not require the use of locks.

■	 XNOR calculates the exclusive OR with the complement of the second operand.

■	 BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler can
give hints to the machine about whether a branch is likely to be taken or not.

■	 ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how
this is used for proper execution of aggregate returning procedures in C.

■	 POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture.

■	 Nonfaulting loads allow compilers to move load instructions ahead of
conditional control structures that control their use. Hence, nonfaulting
loads will be executed speculatively.

■	 Quadruple-precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point
operations and data transfers.

■	 Multiple-precision floating-point results for multiply mean that two single-
precision operands can result in a double-precision product and two
double-precision operands can result in a quadruple-precision product.
These instructions can be useful in complex arithmetic and some models of
floating-point calculations.

 D.10 Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800.

Branch Registers: Link and Counter
Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another
procedure, the link doesn’t always have to be saved. Making the return address
a special register makes the return jump faster, since the hardware need not go
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where the
program iterates a fixed number of times. By using a special register, the branch

 D.10 Instructions Unique to PowerPC D-33

hardware can determine quickly whether a branch based on the count register is
likely to branch, since the value of the register is known early in the execution cycle.
Tests of the value of the count register in a branch instruction will automatically
decrement the count register.

Given that the count register and link register are already located with the
hardware that controls branches, and that one of the problems in branch prediction
is getting the target address early in the pipeline, the PowerPC architects decided to
make a second use of these registers. Either register can hold a target address of a
conditional branch. Thus, PowerPC supplements its basic conditional branch with
two instructions that get the target address from these registers (BCLR, BCCTR).

Remaining Instructions
Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it generates a 0 in this case—but in base
+ index addressing it can be used as the index. The other unique features of the
PowerPC are as follows:

■	 Load multiple and store multiple save or restore up to 32 registers in a single
instruction.

■	 LSW and STSW permit fetching and storing of fixed- and variable-length
strings that have arbitrary alignment.

■	 Rotate with mask instructions support bit field extraction and insertion. One
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only places
the bits into the destination register where there is a corresponding 1 bit in
the mask, thereby inserting a field.

■	 Algebraic right shift sets the carry bit (CA) if the operand is negative and any
1 bits are shifted out. Thus, a signed divide by any constant power of two that
rounds toward 0 can be accomplished with an SRAWI followed by ADDZE,
which adds CA to the register.

■	 CBTLZ will count leading zeros.

■	 SUBFIC computes (immediate - RA), which can be used to develop a one’s or
two’s complement.

■	 Logical shifted immediate instructions shift the 16-bit immediate to the left 16
bits before performing AND, OR, or XOR.

D-34 Appendix D A Survey of RISC Architectures

 D.11 Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed significantly
in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual
features of any desktop RISC machine. For example, it has the most addressing
modes and instruction formats, and, as we shall see, several instructions that are
really the combination of two simpler instructions.

Nullification
As shown in Figure D.6.9, several RISC machines can choose not to execute the
instruction following a delayed branch to improve utilization of the branch slot.
This is called nullification in PA-RISC, and it has been generalized to apply to any
arithmetic/logical instruction as well as to all branches. Thus, an add instruction
can add two operands, store the sum, and cause the following instruction to be
skipped if the sum is zero. Like conditional move instructions, nullification allows
PA-RISC to avoid branches in cases where there is just one instruction in the then
part of an if statement.

A Cornucopia of Conditional Branches
Given nullification, PA-RISC did not need to have separate conditional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure D.11.1 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instructions.

Synthesized Multiply and Divide
PA-RISC provides several primitives so that multiply and divide can be synthesized
in software. Instructions that shift one operand 1, 2, or 3 bits and then add, trapping
or not on overflow, are useful in multiplies. (Alpha also includes instructions that
multiply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD,
S4SUB, and S8SUB.) The divide step performs the critical step of nonrestoring
divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer et al. [1988] measured the size of operands in multiplies and divides to
show how well the multiply step would work. Using these data for C programs,
Muchnick [1988] found that by making special cases, the average multiply by a
constant takes six clock cycles and the multiply of variables takes 24 clock cycles.
PA- RISC has ten instructions for these operations.

 D.11 Instructions Unique to PA-RISC 2.0 D-35

The original SPARC architecture used similar optimizations, but with increasing
numbers of transistors the instruction set was expanded to include full multiply
and divide operations. PA-RISC gives some support along these lines by putting
a full 32-bit integer multiply in the floating-point unit; however, the integer data
must first be moved to floating-point registers.

Decimal Operations
COBOL programs will compute on decimal values, stored as 4 bits per digit,
rather than converting back and forth between binary and decimal. PA-RISC has
instructions that will convert the sum from a normal 32-bit add into proper decimal
digits. It also provides logical and arithmetic operations that set the condition codes
to test for carries of digits, bytes, or halfwords. These operations also test whether
bytes or halfwords are zero. These operations would be useful in arithmetic on 8-bit
ASCII characters. Five PA-RISC instructions provide decimal support.

Remaining Instructions
Here are some remaining PA-RISC instructions:

■	 Branch vectored shifts an index register left 3 bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements.

■	 Extract and deposit instructions allow arbitrary bit fields to be selected from
or inserted into registers. Variations include whether the extracted field is
sign-extended, whether the bit field is specified directly in the instruction or
indirectly in another register, and whether the rest of the register is set to zero
or left unchanged. PA-RISC has 12 such instructions.

noitatoNnoitcurtsnIemaN

COMB Compare and branch }21tesffo+CP--<CP{))2sR,1sR(dnoc(fi
COMIB Compare immediate

and branch
}21tesffo+CP--<CP{))2sR,5mmi(dnoc(fi

MOVB Move and branch Rs2 <-- Rs1, if (cond(Rs1,0)) {PC <-- PC + offset12}
MOVIB Move immediate

and branch
Rs2 <-- imm5, if (cond(imm5,0)) {PC <-- PC + offset12}

ADDB Add and branch Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) {PC <-- PC + offset12}
ADDIB Add immediate

and branch
Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12}

BB Branch on bit }21tesffo+CP--<CP{))0,psR(dnoc(fi
BVB Branch on variable bit }21tesffo+CP--<CP{))0,rassR(dnoc(fi

FIGURE D.11.1 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the 5-bit
immediate is called imm5. The 16 conditions are = , < , < =, odd, signed overflow, unsigned no overflow, zero or no overflow unsigned, never,
and their respective complements. The BB instruction selects one of the 32 bits of the register and branches depending on whether its value is
0 or 1. The BVB selects the bit to branch using the shift amount register, a special-purpose register. The subscript notation specifies a bit field.

D-36 Appendix D A Survey of RISC Architectures

■	 To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in
register 1. The following data transfer instruction uses offset addressing to
add the lower 11 bits of the address to register 1. This pair of instructions
allows PA-RISC to add a 32-bit constant to a base register, at the cost of
changing register 1.

■	 PA-RISC has nine debug instructions that can set breakpoints on instruction
or data addresses and return the trapped addresses.

■	 Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero.

■	 Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits.

■	 Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, a load with a destination of register 0 is defined to be a software-
controlled cache prefetch.

■	 PA-RISC 2.0 extended cache hints to stores to indicate block copies,
recommending that the processor not load data into the cache if it’s not
already in the cache. It also can suggest that on loads and stores, there is
spatial locality to prepare the cache for subsequent sequential accesses.

■	 PA-RISC 2.0 also provides an optional branch target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch target stack, but hardware controls
whether or not these are valid.

■	 Multiply/add and multiply/subtract are floating-point operations that can
launch two independent floating-point operations in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add introduced
in version 2.0 of PA-RISC.

 D.12 Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional
execution of instructions. Every instruction starts with a 4-bit field that determines
whether it will act as a nop or as a real instruction, depending on the condition
codes. Hence, conditional branches are properly considered as conditionally
executing the unconditional branch instruction. Conditional execution allows

 D.12 Instructions Unique to ARM D-37

avoiding a branch to jump over a single instruction. It takes less code space and
time to simply conditionally execute one instruction.

The 12-bit immediate field has a novel interpretation. The 8 least significant bits
are zero-extended to a 32-bit value, then rotated right the number of bits specified
in the first 4 bits of the field multiplied by two. Whether this split actually catches
more immediates than a simple 12-bit field would be an interesting study. One
advantage is that this scheme can represent all powers of two in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted before
being operated on. The shift options are shift left logical, shift right logical, shift
right arithmetic, and rotate right. Once again, it would be interesting to see how
often operations like rotate-and-add, shift-right-and-test, and so on occur in ARM
programs.

Remaining Instructions
Below is a list of the remaining unique instructions of the ARM architecture:

■	 Block loads and stores—Under control of a 16-bit mask within the
instructions, any of the 16 registers can be loaded or stored into memory
in a single instruction. These instructions can save and restore registers on
procedure entry and return. These instructions can also be used for block
memory copy—offering up to four times the bandwidth of a single register
load-store—and today, block copies are the most important use.

■	 Reverse subtract—RSB allows the first register to be subtracted from the
immediate or shifted register. RSC does the same thing, but includes the
carry when calculating the difference.

■	 Long multiplies—Similarly to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned product (UMULL).

■	 No divide—Like the Alpha, integer divide is not supported in hardware.

■	 Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures D.6.1 through D.6.4), it comes for free in the conditional
execution of all ARM instructions, including SWI.

■	 Coprocessor interface—Like many of the desktop RISCs, ARM defines a
full set of coprocessor instructions: data transfer, moves between general-
purpose and coprocessor registers, and coprocessor operations.

■	 Floating-point architecture—Using the coprocessor interface, a floating-point
architecture has been defined for ARM. It was implemented as the FPA10
coprocessor.

■	 Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the PC
and the most significant bit to determine if the mode is ARM (1) or Thumb (0).

D-38 Appendix D A Survey of RISC Architectures

 D.13 Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only a
few procedures dominate execution time, the hope is that this hybrid gets the best
of both worlds.

Although Thumb instructions are translated by the hardware into conventional
ARM instructions for execution, there are several restrictions. First, conditional
execution is dropped from almost all instructions. Second, only the first eight
registers are easily available in all instructions, with the stack pointer, link register,
and program counter used implicitly in some instructions. Third, Thumb uses a two-
operand format to save space. Fourth, the unique shifted immediates and shifted
second operands have disappeared and are replaced by separate shift instructions.
Fifth, the addressing modes are simplified. Finally, putting all instructions into 16
bits forces many more instruction formats.

In many ways, the simplified Thumb architecture is more conventional than
ARM. Here are additional changes made from ARM in going to Thumb:

■	 Drop of immediate logical instructions—Logical immediates are gone.

■	 Condition codes implicit—Rather than have condition codes set optionally,
they are defined by the opcode. All ALU instructions and none of the data
transfers set the condition codes.

■	 Hi/Lo register access—The 16 ARM registers are halved into Lo registers
and Hi registers, with the eight Hi registers including the stack pointer (SP),
link register, and PC. The Lo registers are available in all ALU operations.
Variations of ADD, BX, CMP, and MOV also work with all combinations
of Lo and Hi registers. SP and PC registers are also available in variations of
data transfers and add immediates. Any other operations on the Hi registers
require one MOV to put the value into a Lo register, perform the operation
there, and then transfer the data back to the Hi register.

■	 Branch/call distance—Since instructions are 16 bits wide, the 8-bit conditional
branch address is shifted by one instead of by two. Branch with link is specified
in two instructions, concatenating 11 bits from each instruction and shifting
them left to form a 23-bit address to load into PC.

■	 Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC.

 D.14 Instructions Unique to SuperH D-39

 D.14 Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to
another register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load constants to give a larger addressing range than can
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR. Below
is a list of the remaining unique details of the SuperH architecture:

■	 Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0.

■	 Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appendix A), SuperH offers
optional delayed branch execution for BT and BF.

■	 Many multiplies—Depending on whether the operation is signed or unsigned,
if the operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The
product is found in the MACL and MACH registers.

■	 Zero and sign extension—Byte or halfwords are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register.

■	 One-bit shift amounts—Perhaps in an attempt to make them fit within the
16-bit instructions, shift instructions only shift a single bit at a time.

■	 Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (negative).
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These
instructions help offset the 1-bit constant shift amounts of standard shifts.

■	 Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which
set the T bit with the value rotated, and also have variations that include the
T bit in the rotations (ROTCL and ROTCR).

■	 SWAP—This instruction swaps either the high and low bytes of a 32-bit word
or the two bytes of the rightmost 16 bits.

■	 Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register.

■	 Negate with carry—Like SUBC (Figure D.6.6), except the first operand is 0.

■	 Cache prefetch—Like many of the desktop RISCs (Figures D.6.1 through
D.6.4), SuperH has an instruction (PREF) to prefetch data into the cache.

D-40 Appendix D A Survey of RISC Architectures

■	 Test-and-set—SuperH uses the older test-and-set (TAS) instruction to
perform atomic locks or semaphores (see Chapter 2). TAS first loads a byte
from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not
0. Finally, it sets the most significant bit of the byte to 1 and writes the result
back to memory.

 D.15 Instructions Unique to M32R

The most unusual feature of the M32R is a slight VLIW approach to the pairs of 16-
bit instructions. A bit is reserved in the first instruction of the pair to say whether
this instruction can be executed in parallel with the next instruction— that is, the
two instructions are independent—or if these two must be executed sequentially.
(An earlier machine that offered a similar option was the Intel i860.) This feature is
included for future implementations of the architecture.

One surprise is that all branch displacements are shifted left 2 bits before being
added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions
are only 16 bits long, this shift means that a branch cannot go to any instruction
in the program: it can only branch to instructions on word boundaries. A similar
restriction is placed on the return address for the branch-and-link and jump-and-
link instructions: they can only return to a word boundary. Thus, for a slightly
larger branch distance, software must ensure that all branch addresses and all
return addresses are aligned to a word boundary. The M32R code space is probably
slightly larger, and it probably executes more nop instructions than it would if the
branch address was only shifted left 1 bit.

However, the VLIW feature above means that a nop can execute in parallel with
another 16-bit instruction so that the padding doesn’t take more clock cycles. The
code size expansion depends on the ability of the compiler to schedule code and to
pair successive 16-bit instructions; Mitsubishi claims that code size overall is only
7% larger than that for the Motorola 6800 architecture.

The last remaining novel feature is that the result of the divide operation is the
remainder instead of the quotient.

 D.16 Instructions Unique to MIPS-16

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA
mode bit determines the width of instructions: 0 means 32-bit-wide instructions

 D.16 Instructions Unique to MIPS-16 D-41

and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA
mode bit to switch to the other ISA. JR and JALR have been redefined to set the ISA
mode bit from the most significant bit of the register containing the branch address,
and this bit is not considered part of the address. All jump-and-link instructions
save the current mode bit as the most significant bit of the return address.

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: these two instructions need 32
bits even in the 16-bit mode, presumably to get a large enough address to branch
to far procedures.

In picking this subset, MIPS decided to include opcodes for some three-operand
instructions and to keep 16 opcodes for 64-bit operations. The combination of this
many opcodes and operands in 16 bits led the architects to provide only eight easy-
to-use registers—just like Thumb—whereas the other embedded RISCs offer about
16 registers. Since the hardware must include the full 32 registers of the 32-bit ISA
mode, MIPS-16 includes move instructions to copy values between the eight MIPS-
16 registers and the remaining 24 registers of the full MIPS architecture. To reduce
pressure on the eight visible registers, the stack pointer is considered a separate
register. MIPS-16 includes a variety of separate opcodes to do data transfers using
SP as a base register and to increment SP: LWSP, LDSP, SWSP, SDSP, ADJSP,
DADJSP, ADDIUSPD, and DADDIUSP.

To fit within the 16-bit limit, immediate fields have generally been shortened to
5 to 8 bits. MIPS-16 provides a way to extend its shorter immediates into the full
width of immediates in the 32-bit mode. Borrowing a trick from the Intel 8086, the
EXTEND instruction is really a 16-bit prefix that can be prepended to any MIPS-16
instruction with an address or immediate field. The prefix supplies enough bits to
turn the 5-bit field of data transfers and 5- to 8-bit fields of arithmetic immediates
into 16-bit constants. Alas, there are two exceptions. ADDIU and DADDIU start with
4-bit immediate fields, but since EXTEND can only supply 11 more bits, the wider
immediate is limited to 15 bits. EXTEND also extends the 3-bit shift fields into 5-bit
fields for shifts. (In case you were wondering, the EXTEND prefix does not need to
start on a 32-bit boundary.)

To further address the supply of constants, MIPS-16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the
lower 2 or 3 bits cleared. The constant word or doubleword is then loaded into
a register. Thus 32-bit or 64-bit constants can be included with MIPS-16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and
place it in a register.

MIPS-16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit

D-42 Appendix D A Survey of RISC Architectures

data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the additional
changes made from the MIPS core instructions in going to MIPS-16:

■	 Drop of signed arithmetic instructions—Arithmetic instructions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

■	 Drop of immediate logical instructions—Logical immediates are gone too:
ANDI, ORI, XORI.

■	 Branch instructions pared down—Comparing two registers and then
branching did not fit, nor did all the other comparisons of a register to zero.
Hence these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ,
BLEZ, and BLTZ. As mentioned in Section D.3, to help compensate MIPS-16
includes compare instructions to test if two registers are equal. Since compare
and set on less than set the new T register, branches were added to test the T
register.

■	 Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two.

■	 Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay.

■	 Extension and distance for data transfer offsets—The 5-bit and 8-bit fields are
zero-extended instead of sign-extended in 32-bit mode. To get greater range,
the immediate fields are shifted left 1, 2, or 3 bits depending on whether the
data are halfword, word, or doubleword. If the EXTEND prefix is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode.

■	 Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set on less than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode. They are still sign-extended for general adds and for adding to
SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density
and orthogonality are strange bedfellows in MIPS-16!

■	 Redefining shift amount of 0—MIPS-16 defines the value 0 in the 3-bit shift
field to mean a shift of 8 bits.

■	 New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be
synthesized from other instructions using r0 as a source.

 D.17 Concluding Remarks D-43

 D.17 Concluding Remarks

This appendix covers the addressing modes, instruction formats, and all instructions
found in 10 RISC architectures. Although the later sections of the appendix
concentrate on the differences, it would not be possible to cover 10 architectures in
these few pages if there were not so many similarities. In fact, we would guess that
more than 90% of the instructions executed for any of these architectures would
be found in Figures D.3.5 through D.3.11. To contrast this homogeneity, Figure
D.17.1 gives a summary for four architectures from the 1970s in a format similar
to that shown in Figure D.1.1. (Imagine trying to write a single chapter in this style
for those architectures!) In the history of computing, there has never been such
widespread agreement on computer architecture.

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, . . . , 432

Addressing (size, model) 24 bits, fl at/31 bits,
fl at

4 + 16 bits,
segmented

24 bits, fl at 32 bits, fl at

Data aligned? Yes 360/No 370 No 16-bit aligned No

41=953/2sedomgnisserddaataD

egaPlanoitpOenoNegaPnoitcetorP

BK5.0BK23ot52.0—BK4&BK2ezisegaP

deppamyromeMdeppamyromeMedocpOedocpOO/I

Integer registers (size,
model, number)

16 GPR × 32 bits 8 dedicated data ×
16 bits

8 data and 8 address ×
32 bits

15 GPR × 32 bits

Separate fl oating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (fl oating
hexadecimal)

IEEE 754 single,
double, extended

IEEE 754 single,
double, extended

DEC

FIGURE D.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure D.1.1, there is little agreement between
these architectures in any category.

This style of architecture cannot remain static, however. Like people, instruction
sets tend to get bigger as they get older. Figure D.17.2 shows the genealogy of these
instruction sets, and Figure D.17.3 shows which features were added to or deleted
from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address
architectures, and they have done so fairly painlessly.

D-44 Appendix D A Survey of RISC Architectures

1960

CDC 6600
1963

Cray-1
1976

M32R
1997

Thumb
1995

ARMv4
1995

ARM3
1990

ARM2
1987

ARM1
1985

SPARCv8
1987

SPARCv9
1994

MIPS-16
1996

MIPS I
1986

MIPS II
1989

MIPS III
1992

Alpha
1992

PA-RISC
1986

PA-RISC 1.1
1990

PA-RISC 2.0
1996

RT/PC
1986

Power1
1990

PowerPC
1993

Power2
1993

Alphav3
1996

MIPS IV
1994

MIPS V
1996

MIPS-64
2002

MIPS-32
2002

Berkeley RISC-1
1981 Stanford MIPS

1982

Digital PRISM
1988

IBM ASC 1968

IBM 801
1975

America
1985

SuperH
1992

1965

1970

1975

1980

1985

1990

1995

2000

2002

FIGURE D.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in
bold. The CDC 6600 and Cray-1 were load-store machines with register 0 fixed at 0, and with separate integer and floating-point registers.
Instructions could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801
leading to the unsuccessful RT/PC and America leading to the successful Power architecture. Some people who worked on the 801 later
joined Hewlett-Packard to work on the PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to
Furber [1996], the Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both
architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (There are no ARMv4
and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not
introduce it. Instead, DEC shipped workstations using MIPS microprocessors for 3 years before they brought out their own RISC instruction
set, Alpha 21064, which is very similar to MIPS III and PRISM. The Alpha architecture has had small extensions, but they have not been
formalized with version numbers; we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and
halfword loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Digital names chips after
the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264). “EV” stands for “extended VAX.”

 Further Reading D-45

We would like to thank the following people for comments on drafts of this
appendix: Professor Steven B. Furber, University of Manchester; Dr. Dileep
Bhandarkar, Intel Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and Dr.
Hiokazu Takata, Mitsubishi Electric Corporation.

Further Reading
Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Newton, MA: Digital Press.

Darcy, J.D., and D. Gay [1996]. “FLECKmarks: Measuring floating point performance using a full IEEE
compliant arithmetic benchmark,” CS 252 class project, U.C. Berkeley (see www.sonic.net/~jddarcy/Research/
fleckmrk.pdf).

Digital Semiconductor [1996]. Alpha Architecture Handbook, Version 3, Maynard, MA: Digital Press, Order
number EC-QD2KB-TE (October).

rewoPSPIMCRAPSCSIR-AP

Feature 1.0 1.1 2.0 v8 v9 I II III IV V 1 2 PC

Interlocked loads X ” ” X ” + ” ” X ” ”

Load-store FP double X ” ” X ” + ” ” X ” ”

Semaphore X ” ” X ” + ” ” X ” ”

Square root X ” ” X ” + ” ” + ”

+”””X”X””XSingle-precision FP ops

Memory synchronize X ” ” X ” + ” ” X ” ”

Coprocessor X ” ” X — X ” ” ”

””X+”X””Xgnisserddaxedni+esaB

””X”++””sretsigerPFtib-4623.viuqE

Annulling delayed branch X ” ” X ” + ” ”

Branch register contents X ” ” + X ” ” ”

+”””X+”+naidneelttil/giB

””X””++tibnoitciderphcnarB

—”X++evomlanoitidnoC

””X+++ehcacotniatadhcteferP

+”+++spo.tni/gnisserddatib-46

32-bit multiply, divide + ” + X ” ” ” X ” ”

—++dauqPFerots-daoL

””X++dda/lumPFdesuF

—”X””XsnoitcurtsnignirtS

XX”XtroppusaidemitluM

FIGURE D.17.3 Features added to desktop RISC machines. X means in the original machine, + means added later, ” means
continued from prior machine, and — means removed from architecture. Alpha is not included, but it added byte and word loads and stores,
and bit count and multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single floating-point operations.

http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref1
http://www.sonic.net/~jddarcy/Research/fleckmrk.pdf
http://www.sonic.net/~jddarcy/Research/fleckmrk.pdf

D-46 Appendix D A Survey of RISC Architectures

Furber, S. B. [1996]. ARM System Architecture, Harlow, England: Addison-Wesley. (See http://www.
pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191
&forced_logout=forced_logged_out#sthash.QX4WfErc).

Hewlett-Packard [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.

Hitachi [1997]. SuperH RISC Engine SH7700 Series Programming Manual. (See http://am.renesas.com/
products/mpumcu/superh/sh7700/Documentation.jsp).

IBM [1994]. The PowerPC Architecture, San Francisco: Morgan Kaufmann.

Kane, G. [1996]. PA-RISC 2.0 Architecture, Upper Saddle River, NJ: Prentice Hall PTR.

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Englewood Cliffs, NJ: Prentice Hall.

Kissell, K.D. [1997]. MIPS16: High-Density for the Embedded Market.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication and division on the
HP precision architecture”, IEEE Trans. on Computers 37:8, 980–90.

MIPS [1997]. MIPS16 Application Specific Extension Product Description.

Mitsubishi [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Soft ware Manual (September).

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC”, Sun Technology 1:3(Summer) , 64–77.

Seal, D. Arm Architecture Reference Manual, 2nd ed, Morgan Kaufmann, 2000.

Silicon Graphics [1996]. MIPS V Instruction Set.

Sites, R. L., and R. Witek (eds.) [1995]. Alpha Architecture Reference Manual, 2nd ed. Newton, MA: Digital
Press.

Sloss, A. N., D. Symes, and C. Wright, ARM System Developer’s Guide San Francisco: Elsevier Morgan
Kaufmann, 2004.

Sun Microsystems [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-09, August 25.

Sweetman, D. See MIPS Run, 2nd ed, Morgan Kaufmann, 2006.

Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the SPUR LISP architecture,”
Proc. 13th Symposium on Computer Architecture (June), Tokyo.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of SOAR: Smalltalk on a
RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, MI, 188–97.

Weaver, D. L. and T. Germond [1994]. The SPARC Architectural Manual, Version 9 Englewood Cliffs, NJ:
Prentice Hall.

Weiss, S. and J. E. Smith [1994]. Power and PowerPC, San Francisco: Morgan Kaufmann.

http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out#sthash.QX4WfErc
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out#sthash.QX4WfErc
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out#sthash.QX4WfErc
http://am.renesas.com/products/mpumcu/superh/sh7700/Documentation.jsp
http://am.renesas.com/products/mpumcu/superh/sh7700/Documentation.jsp
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00020-8/sbref13

This page intentionally left blank

Answers to Check Yourself

Chapter 1
§1.1, page 10: Discussion questions: many answers are acceptable.
§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds,
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.
§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn’t have to be true.
§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.
§1.6, page 40: b.
§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Chapter 2
§2.2, page 66: RISC-V, C, Java.
§2.3, page 73: 2) Very slow.
§2.4, page 80: 2) −8ten

§2.5, page 89: 3) sub x11, x10, x9
§2.6, page 92: Both. AND with a mask pattern of 1s will leaves 0s everywhere but
the desired field. Shifting left by the correct amount removes the bits from the left
of the field. Shifting right by the appropriate amount puts the field into the right-
most bits of the doubleword, with 0s in the rest of the doubleword. Note that AND
leaves the field where it was originally, and the shift pair moves the field into the
rightmost part of the doubleword.
§2.7, page 97: I. All are true. II. 1).
§2.8, page 108: Both are true.
§2.9, page 113: I. 1) and 2) II. 3).
§2.10, page 121: I. 4) ±4 K. II. 4) ± 1 M.
§2.11, page 124: Both are true.
§2.12, page 133: 4) Machine independence.

Chapter 3
§3.2, page 177: 2.
§3.5, page 215: 3.

e-2 Answers to Check Yourself

Chapter 4
§4.1, page 240: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 243: false. Edge-triggered state elements make simultaneous reading and
writing both possible and unambiguous.
§4.3, page 250: I. a. II. c.
§4.4, page 262: Yes, Branch and ALUOp0 are identical. In addition, you can use
the flexibility of the don’t care bits to combine other signals together. ALUSrc and
MemtoReg can be made the same by setting the two don’t care bits of MemtoReg
to 1 and 0. ALUOp1 and MemtoReg can be made to be inverses of one another by
setting the don’t care bit of MemtoReg to 1. You don’t need an inverter; simply use
the other signal and flip the order of the inputs to the MemtoReg multiplexor!
§4.5, page 275: 1. Stall due to a load-use data hazard of the ld result. 2. Avoid
stalling in the third instruction for the read-after-write data hazard on x11 by
forwarding the add result. 3. It need not stall, even without forwarding.
§4.6, page 288: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 314: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 321: The first instruction, since it is logically executed before the others.
§4.10, page 334: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware.
6. Hardware. 7. Both. 8. Hardware. 9. Both.
§4.12, page 344: First two are false and the last two are true.

Chapter 5
§5.1, page 369: 1 and 4. (3 is false because the cost of the memory hierarchy varies
per computer, but in 2016 the highest cost is usually the DRAM.)
§5.3, page 390: 1 and 4: A lower miss penalty can enable smaller blocks, since you
don’t have that much latency to amortize, yet higher memory bandwidth usually
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 409: 1.
§5.8, page 449: 2. (Both large block sizes and prefetching may reduce compulsory
misses, so 1 is false.)

Chapter 6
§6.1, page 494: False. Task-level parallelism can help sequential applications and
sequential applications can be made to run on parallel hardware, although it is
more challenging.
§6.2, page 499: False. Weak scaling can compensate for a serial portion of the
program that would otherwise limit scalability, but not so for strong scaling.
§6.3, page 504: True, but they are missing useful vector features like gather-scatter
and vector length registers that improve the efficiency of vector architectures.

 Answers to Check Yourself e-3

(As an elaboration in this section mentions, the AVX2 SIMD extensions offers
indexed loads via a gather operation but not scatter for indexed stores. The Haswell
generation x86 microprocessor is the first to support AVX2.)
§6.4, page 509: 1. True. 2. True.
§6.5, page 513: False. Since the shared address is a physical address, multiple
tasks each in their own virtual address spaces can run well on a shared memory
multiprocessor.
§6.6, page 521: False. Graphics DRAM chips are prized for their higher bandwidth.
§6.7, page 526: 1. False. Sending and receiving a message is an implicit
synchronization, as well as a way to share data. 2. True.
§6.8, page 528: True.
§6.10, page 540: True. We likely need innovation at all levels of the hardware and
software stack for parallel computing to succeed.

This page intentionally left blank

Glossary

absolute address A variable’s or routine’s
actual address in memory.
abstraction A model that renders
lower-level details of computer systems
temporarily invisible to facilitate the design
of sophisticated systems.
access bit Also called use bit or reference
bit. A field that is set whenever a page is
accessed and that is used to implement LRU
or other replacement schemes.
acronym A word constructed by taking
the initial letters of a string of words. For
example: RAM is an acronym for Random
Access Memory, and CPU is an acronym for
Central Processing Unit.
active matrix display A liquid crystal
display using a transistor to control the
transmission of light at each individual pixel.
address A value used to delineate the
location of a specific data element within a
memory array.
address translation Also called address
mapping. The process by which a virtual
address is mapped to an address used to
access memory.
addressing mode One of the several
addressing regimes delimited by their varied
use of operands and/or addresses.
aliasing A situation in which two addresses
access the same object; it can occur in
virtual memory when there are two virtual
addresses for the same physical page.
alignment restriction A requirement
that data be aligned in memory on natural
boundaries.
Amdahl’s Law A rule stating that the
performance enhancement possible with
a given improvement is limited by the
amount that the improved feature is used.
It is a quantitative version of the law of
diminishing returns.

AND A logical bit-by-bit operation with
two operands that calculates a 1 only if there
is a 1 in both operands.
antidependence Also called name
dependence. An ordering forced by the
reuse of a name, typically a register, rather
than by a true dependence that carries a
value between two instructions.
antifuse A structure in an integrated circuit
that when programmed makes a permanent
connection between two wires.
application binary interface (ABI) The
user portion of the instruction set plus
the operating system interfaces used by
application programmers. It defines a
standard for binary portability across
computers.
architectural registers The instruction
set of visible registers of a processor; for
example, in RISC-V, these are the 32 integer
and 32 floating-point registers.
arithmetic intensity The ratio of floating-
point operations in a program to the
number of data bytes accessed by a program
from main memory.
arithmetic logic unit (ALU) Hardware that
performs addition, subtraction, and usually
logical operations such as AND and OR.
assembler A program that translates a
symbolic version of instruction into the
binary version.
assembler directive An operation that tells
the assembler how to translate a program
but does not produce machine instructions;
always begins with a period.
assembly language A symbolic language
that can be translated into binary machine
language.
asserted The signal is logically high or true.
asserted signal A signal that is (logically)
true, or 1.

G-2 Glossary

backpatching A method for translating
from assembly language to machine
instructions in which the assembler builds a
(possibly incomplete) binary representation
of every instruction in one pass over
a program and then returns to fill in
previously undefined labels.
basic block A sequence of instructions
without branches (except possibly at the
end) and without branch targets or branch
labels (except possibly at the beginning).
behavioral specification Describes how a
digital system operates functionally.
benchmark A program selected for use in
comparing computer performance.
biased notation A notation that represents
the most negative value by 00…000two and
the most positive value by 11…11two, with
0 typically having the value 10…00two,
thereby biasing the number such that the
number plus the bias has a nonnegative
representation.
binary digit Also called binary bit. One of
the two numbers in base 2, 0 or 1, that are
the components of information.
bisection bandwidth The bandwidth
between two equal parts of a multiprocessor.
This measure is for a worst-case split of the
multiprocessor.
block (or line) The minimum unit of
information that can be either present or not
present in a cache.
blocking assignment In Verilog, an
assignment that completes before the
execution of the next statement.
branch address table Also called branch
table. A table of addresses of alternative
instruction sequences.
branch-and-link instruction An
instruction that branches to an address and
simultaneously saves the address of the
following instruction in a register (usually
x1 in RISC-V).
branch not taken or (untaken branch) A
branch where the branch condition is false
and the program counter (PC) becomes the
address of the instruction that sequentially
follows the branch.

branch prediction A method of resolving a
branch hazard that assumes a given outcome
for the conditional branch and proceeds
from that assumption rather than waiting to
ascertain the actual outcome.
branch prediction buffer Also called
branch history table. A small memory
that is indexed by the lower portion of the
address of the branch instruction and that
contains one or more bits indicating whether
the branch was recently taken or not.
branch taken A branch where the branch
condition is satisfied and the program
counter (PC) becomes the branch target. All
unconditional branches are taken branches.
branch target address The address
specified in a branch, which becomes the
new program counter (PC) if the branch
is taken. In the RISC-V architecture, the
branch target is given by the sum of the
immediate field of the instruction and the
address of the branch.
branch target buffer A structure that
caches the destination PC or destination
instruction for a branch. It is usually
organized as a cache with tags, making it
more costly than a simple prediction
buffer.
bus In logic design, a collection of data lines
that are treated together as a single logical
signal; also, a shared collection of lines with
multiple sources and uses.
cache memory A small, fast memory that
acts as a buffer for a slower, larger memory.
cache miss A request for data from the
cache that cannot be filled because the data
are not present in the cache.
callee A procedure that executes a series
of stored instructions based on parameters
provided by the caller and then returns
control to the caller.
callee-saved register A register saved by the
routine making a procedure call.
caller The program that instigates a
procedure and provides the necessary
parameter values.
caller-saved register A register saved by the
routine being called.

 Glossary G-3

capacity miss A cache miss that
occurs because the cache, even with full
associativity, cannot contain all the blocks
needed to satisfy the request.
central processing unit (CPU) Also called
central processor unit or processor. The
active part of the computer, which contains
the datapath and control and which adds
numbers, tests numbers, signals I/O devices
to activate, and so on.
clock cycle Also called tick, clock tick,
clock period, clock, or cycle. The time for
one clock period, usually of the processor
clock.
clock cycles per instruction (CPI) Average
number of clock cycles per instruction for a
program or program fragment.
clock period The length of each clock
cycle.
clock skew The difference in absolute time
between the times when two state elements
see a clock edge.
clocking methodology The approach used
to determine when data are valid and stable
relative to the clock.
Cloud Computing refers to large
collections of servers that provide services
over the Internet; some providers rent
dynamically varying numbers of servers as
a utility.
cluster A set of computers connected over
a local area network that function as a single
large multiprocessor.
clusters Collections of computers
connected via I/O over standard network
switches to form a message-passing
multiprocessor.
coarse-grained multithreading A version
of hardware multithreading that implies
switching between threads only after
significant events, such as a last-level cache
miss.
combinational element An operational
element, such as an AND gate or an ALU.
combinational logic A logic system whose
blocks do not contain memory and hence
compute the same output given the same
input.

commit unit The unit in a dynamic or
out-of-order execution pipeline that decides
when it is safe to release the result of an
operation to programmer-visible registers
and memory.
compiler A program that translates high-
level language statements into assembly
language statements.
compulsory miss Also called cold-start
miss. A cache miss caused by the first
access to a block that has never been in the
cache.
conditional branch An instruction that
tests a value, and that allows for a subsequent
transfer of control to a new address in the
program based on the outcome of the test.
conflict miss Also called collision miss. A
cache miss that occurs in a set-associative
or direct-mapped cache when multiple
blocks compete for the same set and that are
eliminated in a fully associative cache of the
same size.
context switch A changing of the internal
state of the processor to allow a different
process to use the processor that includes
saving the state needed to return to the
currently executing process.
control The component of the processor
that commands the datapath, memory, and
I/O devices according to the instructions of
the program.
control hazard Also called branch hazard.
Arises when the proper instruction cannot
execute in the proper pipeline clock cycle
because the instruction that was fetched is
not the one that is needed; that is, the flow
of instruction addresses is not what the
pipeline expected.
control signal A signal used for multiplexor
selection or for directing the operation of a
functional unit; contrasts with a data signal,
which contains information that is operated
on by a functional unit.
correlating predictor A branch predictor
that combines local behavior of a particular
branch and global information about the
behavior of some recent number of executed
branches.

G-4 Glossary

CPU execution time Also called CPU time.
The actual time the CPU spends computing
for a specific task.
crossbar network A network that allows
any node to communicate with any other
node in one pass through the network.
D flip-flop A flip-flop with one data input
that stores the value of that input signal in
the internal memory when the clock edge
occurs.
data hazard Also called a pipeline data
hazard. When a planned instruction
cannot execute in the proper clock cycle
because data that are needed to execute the
instruction are not yet available.
data race Two memory accesses forming a
data race if they are from different threads to
the same location, at least one is a write, and
they occur one after another.
data segment The segment of a UNIX
object or executable file that contains a
binary representation of the initialized data
used by the program.
data transfer instruction A command that
moves data between memory and registers.
data-level parallelism Parallelism achieved
by performing the same operation on
independent data.
datapath The component of the processor
that performs arithmetic operations.
datapath element A unit used to operate
on or hold data within a processor. In the
RISC-V implementation, the datapath
elements include the instruction and data
memories, the register file, the ALU, and
adders.
deasserted The signal being logically low
or false.
deasserted signal A signal that is (logically)
false, or 0.
decoder A logic block that has an n-bit
input and 2n outputs, where only one output
is asserted for each input combination.
defect A microscopic flaw in a wafer or in
patterning steps that can result in the failure
of the die containing that defect.
delayed branch A type of branch where
the instruction immediately following the

branch is always executed, independent
of whether the branch condition is true or
false.
die The individual rectangular sections that
are cut from a wafer, more informally known
as chips.
direct-mapped cache A cache structure in
which each memory location is mapped to
exactly one location in the cache.
dividend A number being divided.
divisor A number that the dividend is
divided by.
don’t-care term An element of a logical
function in which the output does not
depend on the values of all the inputs. Don’t-
care terms may be specified in different
ways.
double precision A floating-point value
represented in a 64-bit doubleword.
doubleword Another natural unit of access
in a computer, usually a group of 64 bits;
corresponds to the size of a register in the
RISC-V architecture.
dynamic branch prediction Prediction
of branches at runtime using runtime
information.
dynamic multiple issue An approach to
implementing a multiple-issue processor
where many decisions are made during
execution by the processor.
dynamic pipeline scheduling Hardware
support for reordering the order of
instruction execution so as to avoid stalls.
dynamic random access memory
(DRAM) Memory built as an integrated
circuit; it provides random access to any
location. Access times are 50 nanoseconds
and cost per gigabyte in 2012 was
$5 to $10.
dynamically linked libraries
(DLLs) Library routines that are linked to a
program during execution.
edge-triggered clocking A clocking scheme in
which all state changes occur on a clock edge.
embedded computer A computer inside
another device used for running one
predetermined application or collection of
software.

 Glossary G-5

EOR A logical bit-by-bit operation with two
operands that calculates the exclusive OR
of the two operands. That is, it calculates a
1 only if the values are different in the two
operands.
error detection code A code that enables
the detection of an error in data, but not the
precise location and, hence, correction of
the error.
exception Also called an interrupt. An
unscheduled event that disrupts program
execution; used to detect overflow.
exception enable Also called interrupt
enable. A signal or action that controls
whether the process responds to an
exception or not; necessary for preventing
the occurrence of exceptions during
intervals before the processor has safely
saved the state needed to restart.
executable file A functional program in
the format of an object file that contains no
unresolved references. It can contain symbol
tables and debugging information.
A “stripped executable” does not contain
that information. Relocation information
may be included for the loader.
exponent In the numerical representation
system of floating-point arithmetic,
the value that is placed in the exponent
field.
external label Also called global label.
A label referring to an object that can be
referenced from files other than the one in
which it is defined.
false sharing When two unrelated shared
variables are located in the same cache block
and the full block is exchanged between
processors even though the processors are
accessing different variables.
field programmable devices (FPD) An
integrated circuit containing combinational
logic, and possibly memory devices, that are
configurable by the end user.
field programmable gate array (FPGA) A
configurable integrated circuit containing
both combinational logic blocks and flip-
flops.
fine-grained multithreading A version
of hardware multithreading that implies

switching between threads after every
instruction.
finite-state machine A sequential logic
function consisting of a set of inputs and
outputs, a next-state function that maps
the current state and the inputs to a new
state, and an output function that maps the
current state and possibly the inputs to a set
of asserted outputs.
flash memory A nonvolatile semiconductor
memory. It is cheaper and slower than
DRAM but more expensive per bit and faster
than magnetic disks. Access times are about
5 to 50 microseconds and cost per gigabyte
in 2012 was $0.75 to $1.00.
flip-flop A memory element for which the
output is equal to the value of the stored state
inside the element and for which the internal
state is changed only on a clock edge.
floating point Computer arithmetic that
represents numbers in which the binary
point is not fixed.
flush To discard instructions in a pipeline,
usually due to an unexpected event.
formal parameter A variable that is
the argument to a procedure or macro;
replaced by that argument once the macro is
expanded.
forward reference A label that is used
before it is defined.
forwarding Also called bypassing. A
method of resolving a data hazard by
retrieving the missing data element from
internal buffers rather than waiting for it to
arrive from programmer-visible registers or
memory.
fraction The value, generally between 0 and
1, placed in the fraction field.
frame pointer A value denoting the
location of the saved registers and local
variables for a given procedure.
fully associative cache A cache structure in
which a block can be placed in any location
in the cache.
fully connected network A network that
connects processor-memory nodes by
supplying a dedicated communication link
between every node.

G-6 Glossary

fused multiply add A floating-point
instruction that performs both a multiply
and an add, but rounds only once after the
add.
gate A device that implements basic logic
functions, such as AND or OR.
global miss rate The fraction of references
that miss in all levels of a multilevel cache.
global pointer The register that is reserved
to point to the static area.
guard The first of two extra bits kept on
the right during intermediate calculations
of floating-point numbers; used to improve
rounding accuracy.
handler Name of a software routine
invoked to “handle” an exception or
interrupt.
hardware description language A
programming language for describing
hardware, used for generating simulations
of a hardware design and also as input to
synthesis tools that can generate actual
hardware.
hardware multithreading Increasing
utilization of a processor by switching to
another thread when one thread is stalled.
hardware synthesis tools Computer-aided
design software that can generate a gate-level
design based on behavioral descriptions of a
digital system.
hexadecimal Numbers in base 16.
high-level programming language A
portable language such as C, C++, Java, or
Visual Basic that is composed of words and
algebraic notation that can be translated by a
compiler into assembly language.
hit rate The fraction of memory accesses
found in a level of the memory hierarchy.
hit time The time required to access a level
of the memory hierarchy, including the time
needed to determine whether the access is a
hit or a miss.
hold time The minimum time during
which the input must be valid after the clock
edge.
implementation Hardware that obeys the
architecture abstraction.

imprecise interrupt Also called imprecise
exception. Interrupts or exceptions in
pipelined computers that are not associated
with the exact instruction that was the cause
of the interrupt or exception.
in-order commit A commit in which the
results of pipelined execution are written
to the programmer visible state in the same
order that instructions are fetched.
input device A mechanism through which
the computer is fed information, such as a
microphone.
instruction A command that computer
hardware understands and obeys.
instruction count The number of
instructions executed by the program.
instruction format A form of
representation of an instruction composed
of fields of binary numbers.
instruction latency The inherent execution
time for an instruction.
instruction-level parallelism The
parallelism among instructions.
instruction mix A measure of the dynamic
frequency of instructions across one or
many programs.
instruction set architecture Also called
architecture. An abstract interface between
the hardware and the lowest-level software
that encompasses all the information
necessary to write a machine language
program that will run correctly, including
instructions, registers, memory access, I/O,
and so on.
integrated circuit Also called a chip. A
device combining dozens to millions of
transistors.
interrupt An exception that comes from
outside of the processor. (Some architectures
use the term interrupt for all exceptions.)
interrupt handler A piece of code that
is run as a result of an exception or an
interrupt.
issue packet The set of instructions that
issues together in one clock cycle; the packet
may be determined statically by the compiler
or dynamically by the processor.

 Glossary G-7

issue slots The positions from which
instructions could issue in a given clock
cycle; by analogy, these correspond to
positions at the starting blocks for a sprint.
Java bytecode Instruction from an
instruction set designed to interpret Java
programs.
Just In Time compiler (JIT) The name
commonly given to a compiler that operates
at runtime, translating the interpreted
code segments into the native code of the
computer.
latch A memory element in which the
output is equal to the value of the stored
state inside the element and the state is
changed whenever the appropriate inputs
change and the clock is asserted.
latency (pipeline) The number of stages in
a pipeline or the number of stages between
two instructions during execution.
least recently used (LRU) A replacement
scheme in which the block replaced is the
one that has been unused for the longest
time.
least significant bit The rightmost bit in a
RISC-V doubleword.
level-sensitive clocking A timing
methodology in which state changes occur
at either high or low clock levels but are not
instantaneous, as such changes are in edge-
triggered designs.
linker Also called link editor. A systems
program that combines independently
assembled machine language programs
and resolves all undefined labels into an
executable file.
liquid crystal display A display technology
using a thin layer of liquid polymers that can
be used to transmit or block light according
to whether a charge is applied.
load-use data hazard A specific form of
data hazard in which the data being loaded
by a load instruction have not yet become
available when they are needed by another
instruction.
loader A systems program that places an
object program in main memory so that it is
ready to execute.

local area network (LAN) A network
designed to carry data within a
geographically confined area, typically
within a single building.
local label A label referring to an object
that can be used only within the file in
which it is defined.
local miss rate The fraction of references
to one level of a cache that miss; used in
multilevel hierarchies.
lock A synchronization device that allows
access to data to only one processor at a
time.
lookup tables (LUTs) In a field
programmable device, the name given to the
cells because they consist of a small amount
of logic and RAM.
loop unrolling A technique to get more
performance from loops that access arrays,
in which multiple copies of the loop body
are made and instructions from different
iterations are scheduled together.
machine language Binary representation
used for communication within a computer
system.
macro A pattern-matching and
replacement facility that provides a simple
mechanism to name a frequently used
sequence of instructions.
magnetic disk Also called hard disk. A
form of nonvolatile secondary memory
composed of rotating platters coated with a
magnetic recording material. Because they
are rotating mechanical devices, access times
are about 5 to 20 milliseconds and cost per
gigabyte in 2012 was $0.05 to $0.10.
main memory Also called primary
memory. Memory used to hold programs
while they are running; typically consists of
DRAM in today’s computers.
memory The storage area in which
programs are kept when they are running,
and that contains the data needed by the
running programs.
memory hierarchy A structure that uses
multiple levels of memories; as the distance
from the processor increases, the size of the
memories and the access time both increase.

G-8 Glossary

message passing Communicating between
multiple processors by explicitly sending and
receiving information.
metastability A situation that occurs if a
signal is sampled when it is not stable for
the required setup and hold times, possibly
causing the sampled value to fall into the
indeterminate region between a high and
low value.
microarchitecture The organization of the
processor, including the major functional
units, their interconnection, and control.
million instructions per second (MIPS)
A measurement of program execution
speed based on the number of millions
of instructions. MIPS is computed as the
instruction count divided by the product of
the execution time and 106.
MIMD or Multiple Instruction streams,
Multiple Data streams. A multiprocessor.
minterms Also called product terms. A set
of logic inputs joined by conjunction (AND
operations); the product terms form the first
logic stage of the programmable logic array
(PLA).
miss penalty The time required to fetch a
block into a level of the memory hierarchy
from the lower level, including the time
to access the block, transmit it from one
level to the other, insert it in the level that
experienced the miss, and then pass the
block to the requestor.
miss rate The fraction of memory accesses
not found in a level of the memory
hierarchy.
most significant bit The leftmost bit in a
RISC-V doubleword.
multicore microprocessor A
microprocessor containing multiple
processors (“cores”) in a single integrated
circuit. Virtually all microprocessors today
in desktops and servers are multicore.
multilevel cache A memory hierarchy with
multiple levels of caches, rather than just a
cache and main memory.
multiple issue A scheme whereby multiple
instructions are launched in one clock cycle.

multiprocessor A computer system with
at least two processors. This computer is in
contrast to a uniprocessor, which has one,
and is increasingly hard to find today.
multistage network A network that
supplies a small switch at each node.
NAND gate An inverted AND gate.
network bandwidth Informally, the peak
transfer rate of a network; can refer to
the speed of a single link or the collective
transfer rate of all links in the network.
next-state function A combinational
function that, given the inputs and the
current state, determines the next state of a
finite-state machine.
nonblocking assignment An assignment
that continues after evaluating the right-
hand side, assigning the left-hand side the
value only after all right-hand sides are
evaluated.
nonblocking cache A cache that allows the
processor to make references to the cache
while the cache is handling an earlier miss.
nonuniform memory access (NUMA) A
type of single address space multiprocessor
in which some memory accesses are much
faster than others depending on which
processor asks for which word.
nonvolatile memory A form of memory that
retains data even in the absence of a power
source and that is used to store programs
between runs. A DVD disk is nonvolatile.
nop An instruction that does no operation
to change state.
NOR A logical bit-by-bit operation with
two operands that calculates the NOT of the
OR of the two operands. That is, it calculates
a 1 only if there is a 0 in both operands.
NOR gate An inverted OR gate.
normalized A number in floating-point
notation that has no leading 0s.
NOT A logical bit-by-bit operation with
one operand that inverts the bits; that is, it
replaces every 1 with a 0, and every 0 with a 1.
object oriented language A programming
language that is oriented around objects
rather than actions, or data versus logic.

 Glossary G-9

one’s complement A notation that
represents the most negative value by
10…000two and the most positive value
by 01…11two, leaving an equal number of
negatives and positives but ending up with
two zeros, one positive (00…00two) and one
negative (11…11two). The term is also used to
mean the inversion of every bit in a pattern:
0 to 1 and 1 to 0.
opcode The field that denotes the operation
and format of an instruction.
OpenMP An API for shared memory
multiprocessing in C, C++, or Fortran that
runs on UNIX and Microsoft platforms. It
includes compiler directives, a library, and
runtime directives.
OR A logical bit-by-bit operation with two
operands that calculates a 1 if there is a 1 in
either operand.
out-of-order execution A situation in
pipelined execution when an instruction
blocked from executing does not cause the
following instructions to wait.
output device A mechanism that conveys
the result of a computation, such as a display,
to a user or to another computer.
page fault An event that occurs when
an accessed page is not present in main
memory.
page table The table containing the virtual
to physical address translations in a virtual
memory system. The table, which is stored
in memory, is typically indexed by the
virtual page number; each entry in the
table contains the physical page number for
that virtual page if the page is currently in
memory.
parallel processing program A single
program that runs on multiple processors
simultaneously.
PC-relative addressing An addressing
regime in which the address is the sum of
the program counter (PC) and a constant in
the instruction.
personal computer (PC) A computer
designed for use by an individual, usually
incorporating a graphics display, a keyboard,
and a mouse.

personal mobile devices (PMDs) Small
wireless devices to connect to the Internet;
they rely on batteries for power, and
software is installed by downloading apps.
Conventional examples are smart phones
and tablets.
physical address An address in main
memory.
physically addressed cache A cache that is
addressed by a physical address.
pipeline stall Also called bubble. A stall
initiated in order to resolve a hazard.
pipelining An implementation technique in
which multiple instructions are overlapped
in execution, much like an assembly line.
pixel The smallest individual picture
element. Screens are composed of hundreds
of thousands to millions of pixels, organized
in a matrix.
pop Remove element from stack.
precise interrupt Also called precise
exception. An interrupt or exception
that is always associated with the correct
instruction in pipelined computers.
prefetching A technique in which data
blocks needed in the future are brought
into the cache early by the use of special
instructions that specify the address of the
block.
procedure A stored subroutine that
performs a specific task based on the
parameters with which it is provided.
procedure call frame A block of memory
that is used to hold values passed to a
procedure as arguments, to save registers
that a procedure may modify but that the
procedure’s caller does not want changed,
and to provide space for variables local to a
procedure.
procedure frame Also called activation
record. The segment of the stack containing
a procedure’s saved registers and local
variables.
process Includes one or more threads, the
address space, and the operating system
state. Hence, a process switch usually
invokes the operating system, but not a
thread switch.

G-10 Glossary

program counter (PC) The register
containing the address of the instruction in
the program being executed.
programmable array logic (PAL) Contains
a programmable and-plane followed by a
fixed or-plane.
programmable logic array (PLA) A
structured-logic element composed of
a set of inputs and corresponding input
complements and two stages of logic, the
first generating product terms of the inputs
and input complements, and the second
generating sum terms of the product terms.
Hence, PLAs implement logic functions as a
sum of products.
programmable logic device (PLD) An
integrated circuit containing combinational
logic whose function is configured by the
end user.
programmable ROM (PROM) A form of
read-only memory that can be programmed
when a designer knows its contents.
propagation time The time required for
an input to a flip-flop to propagate to the
outputs of the flip-flop.
protection A set of mechanisms for
ensuring that multiple processes sharing the
processor, memory, or I/O devices cannot
interfere, intentionally or unintentionally,
with one another by reading or writing each
other’s data. These mechanisms also isolate
the operating system from a user process.
pseudoinstruction A common variation of
assembly language instructions often treated
as if it were an instruction in its own right.
Pthreads A UNIX API for creating and
manipulating threads. It is structured as a
library.
push Add element to stack.
quotient The primary result of a division; a
number that when multiplied by the divisor
and added to the remainder produces the
dividend.
read-only memory (ROM) A memory
whose contents are designated at creation
time, after which the contents can only be
read. ROM is used as structured logic to
implement a set of logic functions by using

the terms in the logic functions as address
inputs and the outputs as bits in each word
of the memory.
receive message routine A routine used
by a processor in machines with private
memories to accept a message from another
processor.
recursive procedures Procedures that
call themselves either directly or indirectly
through a chain of calls.
reduction A function that processes a data
structure and returns a single value.
reference bit Also called use bit or access
bit. A field that is set whenever a page is
accessed and that is used to implement LRU
or other replacement schemes.
reg In Verilog, a register.
register file A state element that consists
of a set of registers that can be read and
written by supplying a register number to be
accessed.
register renaming The renaming of
registers by the compiler or hardware to
remove antidependences.
register use convention Also called
procedure call convention. A software
protocol governing the use of registers by
procedures.
relocation information The segment of a
UNIX object file that identifies instructions
and data words that depend on absolute
addresses.
remainder The secondary result of a
division; a number that when added to the
product of the quotient and the divisor
produces the dividend.
reorder buffer The buffer that holds results
in a dynamically scheduled processor until
it is safe to store the results to memory or a
register.
reservation station A buffer within a
functional unit that holds the operands and
the operation.
response time Also called execution time.
The total time required for the computer
to complete a task, including disk accesses,
memory accesses, I/O activities, operating

 Glossary G-11

system overhead, CPU execution time, and
so on.
restartable instruction An instruction that
can resume execution after an exception is
resolved without the exceptions affecting the
result of the instruction.
return address A link to the calling site that
allows a procedure to return to the proper
address; in RISC-V, it is usually stored in
register x1.
rotational latency Also called rotational
delay. The time required for the desired
sector of a disk to rotate under the read/
write head; usually assumed to be half the
rotation time.
round Method to make the intermediate
floating-point result fit the floating-point
format; the goal is typically to find the
nearest number that can be represented in
the format. It is also the name of the second
of two extra bits kept on the right during
intermediate floating-point calculations,
which improves rounding accuracy.
scientific notation A notation that renders
numbers with a single digit to the left of the
decimal point.
secondary memory Nonvolatile memory
used to store programs and data between
runs; typically consists of flash memory in
PMDs and magnetic disks in servers.
sector One of the segments that make up
a track on a magnetic disk; a sector is the
smallest amount of information that is read
or written on a disk.
seek The process of positioning a read/write
head over the proper track on a disk.
segmentation A variable-size address
mapping scheme in which an address
consists of two parts: a segment number,
which is mapped to a physical address, and a
segment offset.
selector value Also called control value.
The control signal that is used to select one
of the input values of a multiplexor as the
output of the multiplexor.
semiconductor A substance that does not
conduct electricity well.

send message routine A routine used
by a processor in machines with private
memories to pass a message to another
processor.
sensitivity list The list of signals that
specifies when an always block should be
re-evaluated.
separate compilation Splitting a program
across many files, each of which can be
compiled without knowledge of what is in
the other files.
sequential logic A group of logic elements
that contain memory and hence whose value
depends on the inputs as well as the current
contents of the memory.
server A computer used for running
larger programs for multiple users, often
simultaneously, and typically accessed only
via a network.
set-associative cache A cache that has a
fixed number of locations (at least two)
where each block can be placed.
setup time The minimum time that the
input to a memory device must be valid
before the clock edge.
shared memory multiprocessor (SMP) A
parallel processor with a single physical
address space.
sign-extend Increases the size of a data item
by replicating the high-order sign bit of the
original data item in the high-order bits of
the larger, destination data item.
silicon A natural element that is a
semiconductor.
silicon crystal ingot A rod composed of
a silicon crystal that is between 8 and 12
inches in diameter and about 12 to 24 inches
long.
SIMD or Single Instruction stream,
Multiple Data streams. The same instruction
is applied to many data streams, as in a
vector processor.
simple programmable logic device
(SPLD) Programmable logic device, usually
containing either a single PAL or PLA.
simultaneous multithreading (SMT) A
version of multithreading that lowers

G-12 Glossary

the cost of multithreading by utilizing
the resources needed for multiple issue,
dynamically scheduled microarchitecture.
single precision A floating-point value
represented in a 32-bit word.
single-cycle implementation Also called
single clock cycle implementation. An
implementation in which an instruction is
executed in one clock cycle. While easy to
understand, it is too slow to be practical.
SISD or Single Instruction stream, Single
Data stream. A uniprocessor.
Software as a Service (SaaS) delivers
software and data as a service over the
Internet, usually via a thin program such as
a browser that runs on local client devices,
instead of binary code that must be installed,
and runs wholly on that device. Examples
include web search and social networking.
source language The high-level language in
which a program is originally written.
spatial locality The locality principle
stating that if a data location is referenced,
data locations with nearby addresses will
tend to be referenced soon.
speculation An approach whereby
the compiler or processor guesses the
outcome of an instruction to remove it as a
dependence in executing other instructions.
split cache A scheme in which a level
of the memory hierarchy is composed of
two independent caches that operate in
parallel with each other, with one handling
instructions and one handling data.
SPMD Single Program, Multiple Data
streams. The conventional MIMD
programming model, where a single
program runs across all processors.
stack A data structure for spilling registers
organized as a last-in-first-out queue.
stack pointer A value denoting the most
recently allocated address in a stack that
shows where registers should be spilled or
where old register values can be found. In
RISC-V, it is register x2, also known as sp.
stack segment The portion of memory used
by a program to hold procedure call frames.

state element A memory element, such as a
register or a memory.
static data The portion of memory that
contains data whose size is known to the
compiler and whose lifetime is the program’s
entire execution.
static multiple issue An approach to
implementing a multiple-issue processor
where many decisions are made by the
compiler before execution.
static random access memory (SRAM) A
memory where data are stored statically (as
in flip-flops) rather than dynamically (as in
DRAM). SRAMs are faster than DRAMs,
but less dense and more expensive per bit.
sticky bit A bit used in rounding in
addition to guard and round that is set
whenever there are nonzero bits to the right
of the round bit.
stored-program concept The idea that
instructions and data of many types can
be stored in memory as numbers and thus
be easy to change, leading to the stored
program computer.
strong scaling Speed-up achieved on a
multiprocessor without increasing the size of
the problem.
structural hazard When a planned
instruction cannot execute in the proper
clock cycle because the hardware does not
support the combination of instructions that
are set to execute.
structural specification Describes how
a digital system is organized in terms of a
hierarchical connection of elements.
sum of products A form of logical
representation that employs a logical sum
(OR) of products (terms joined using the
AND operator).
supercomputer A class of computers with
the highest performance and cost; they are
configured as servers and typically cost tens
to hundreds of millions of dollars.
superscalar An advanced pipelining
technique that enables the processor to
execute more than one instruction per clock
cycle by selecting them during execution.

 Glossary G-13

supervisor mode Also called kernel mode.
A mode indicating that a running process is
an operating system process.
swap space The space on the disk reserved
for the full virtual memory space of a
process.
symbol table A table that matches names of
labels to the addresses of the memory words
that instructions occupy.
synchronization The process of
coordinating the behavior of two or more
processes, which may be running on
different processors.
synchronizer failure A situation in which a
flip-flop enters a metastable state and where
some logic blocks reading the output of the
flip-flop see a 0 while others see a 1.
synchronous system A memory system
that employs clocks and where data signals
are read only when the clock indicates that
the signal values are stable.
system call A special instruction that
transfers control from user mode to a
dedicated location in supervisor code space,
invoking the exception mechanism in the
process.
system CPU time The CPU time spent in
the operating system performing tasks on
behalf of the program.
systems software Software that provides
services that are commonly useful, including
operating systems, compilers, loaders, and
assemblers.
tag A field in a table used for a memory
hierarchy that contains the address
information required to identify whether
the associated block in the hierarchy
corresponds to a requested word.
task-level parallelism or process-level
parallelism Utilizing multiple processors
by running independent programs
simultaneously.
temporal locality The principle stating that
if a data location is referenced, then it will
tend to be referenced again soon.
terabyte (TB) Originally 1,099,511,627,776
(240) bytes, although communications and

secondary storage systems developers started
using the term to mean 1,000,000,000,000
(1012) bytes. To reduce confusion, we now
use the term tebibyte (TiB) for 240 bytes,
defining terabyte (TB) to mean 1012 bytes.
(Figure 1.1 shows the full range of decimal
and binary values and names.)
text segment The segment of a UNIX object
file that contains the machine language code
for routines in the source file.
thread A thread includes the program
counter, the register state, and the stack. It
is a lightweight process; whereas threads
commonly share a single address space,
processes don’t.
three Cs model A cache model in which all
cache misses are classified into one of three
categories: compulsory misses, capacity
misses, and conflict misses.
throughput Also called bandwidth.
Another measure of performance, it is the
number of tasks completed per unit time.
tournament branch predictor A branch
predictor with multiple predictions for each
branch and a selection mechanism that
chooses which predictor to enable for a
given branch.
track One of thousands of concentric
circles that makes up the surface of a
magnetic disk.
transistor An on/off switch controlled by
an electric signal.
translation-lookaside buffer (TLB) A
cache that keeps track of recently used
address mappings to try to avoid an access
to the page table.
truth table From logic, a representation of
a logical operation by listing all the values
of the inputs and then in each case showing
what the resulting outputs should be.
underflow (floating-point) A situation
in which a negative exponent becomes too
large to fit in the exponent field.
uniform memory access (UMA) A
multiprocessor in which latency to any
word in main memory is about the same no
matter which processor requests the access.

G-14 Glossary

units in the last place (ulp) The number of
bits in error in the least significant bits of the
significand between the actual number and
the number that can be represented.
unmapped A portion of the address space
that cannot have page faults.
unresolved reference A reference that
requires more information from an outside
source to be complete.
use bit Also called reference bit or access
bit. A field that is set whenever a page is
accessed and that is used to implement LRU
or other replacement schemes.
use latency Number of clock cycles between
a load instruction and an instruction that
can use the result of the load without stalling
the pipeline.
user CPU time The CPU time spent in a
program itself.
valid bit A field in the tables of a memory
hierarchy that indicates that the associated
block in the hierarchy contains valid data.
vector lane One or more vector functional
units and a portion of the vector register file.
Inspired by lanes on highways that increase
traffic speed, multiple lanes execute vector
operations simultaneously.
vectored interrupt An interrupt for which
the address to which control is transferred is
determined by the cause of the exception.
Verilog One of the two most common
hardware description languages.
very-large-scale integrated (VLSI)
circuit A device containing hundreds of
thousands to millions of transistors.
very long instruction word (VLIW) A
style of instruction set architecture that
launches many operations that are defined to
be independent in a single wide instruction,
typically with many separate opcode fields.
VHDL One of the two most common
hardware description languages.
virtual address An address that
corresponds to a location in virtual space
and is translated by address mapping to a
physical address when memory is accessed.

virtual machine A virtual computer that
appears to have nondelayed branches and
loads and a richer instruction set than the
actual hardware.
virtual memory A technique that uses
main memory as a “cache” for secondary
storage.
virtually addressed cache A cache that is
accessed with a virtual address rather than a
physical address.
volatile memory Storage, such as DRAM,
that retains data only if it is receiving power.
wafer A slice from a silicon ingot no more
than 0.1 inches thick, used to create chips.
weak scaling Speed-up achieved on a
multiprocessor while expanding the size of
the problem proportionally to the increase
in the number of processors.
wide area network (WAN) A network
extended over hundreds of kilometers that
can span a continent.
wire In Verilog, specifies a combinational
signal.
word The natural unit of access in a
computer, usually a group of 32 bits.
workload A set of programs run on a
computer that is either the actual collection
of applications run by a user or constructed
from real programs to approximate such a
mix. A typical workload specifies both the
programs and the relative frequencies.
write buffer A queue that holds data
while the data are waiting to be written to
memory.
write-back A scheme that handles writes
by updating values only to the block in the
cache, then writing the modified block to
the lower level of the hierarchy when the
block is replaced.
write-through A scheme in which writes
always update both the cache and the
next lower level of the memory hierarchy,
ensuring that data are always consistent
between the two.
yield The percentage of good dies from the
total number of dies on the wafer.

Further Reading

Chapter 1

Barroso, L. and U. Hölzle [2007]. “The case for energy-proportional computing”,
IEEE Computer, December.
A plea to change the nature of computer components so that they use much less power
when lightly utilized.

Bell, C. G. [1996]. Computer Pioneers and Pioneer Computers, ACM and the
Computer Museum, videotapes.
Two videotapes on the history of computing, produced by Gordon and Gwen Bell,
including the following machines and their inventors: Harvard Mark-I, ENIAC,
EDSAC, IAS machine, and many others.

Burks, A.W., H.H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion
of the logical design of an electronic computing instrument,” Report to the U.S.
Army Ordnance Department, p. 1; also appears in Papers of John von Neumann, W.
Aspray and A. Burks (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers,
Los Angeles, 1987, 97–146.
A classic paper explaining computer hardware and software before the first
stored-program computer was built. We quote extensively from it in Chapter 3. It
simultaneously explained computers to the world and was a source of controversy
because the first draft did not give credit to Eckert and Mauchly.

Campbell-Kelly, M. and W. Aspray [1996]. Computer: A History of the Information
Machine, Basic Books, New York.
Two historians chronicle the dramatic story. The New York Times calls it well written
and authoritative.

Ceruzzi, P. F. [1998]. A History of Modern Computing, MIT Press, Cambridge, MA.
Contains a good description of the later history of computing: the integrated circuit
and its impact, personal computers, UNIX, and the Internet.

Curnow, H. J. and B. A. Wichmann [1976]. “A synthetic benchmark”, The Computer
J. 19(1):80.
Describes the first major synthetic benchmark, Whetstone, and how it was created.

Flemming, P. J. and J. J. Wallace [1986]. “How not to lie with statistics: The correct
way to summarize benchmark results”, Commun. ACM 29(3 (March)), 218–221.
Describes some of the underlying principles in using different means to summarize
performance results.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref4
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref5
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref6
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref6

FR-2 Further Reading

Goldstine, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton
University Press, Princeton, NJ.
A personal view of computing by one of the pioneers who worked with von Neumann.

Hayes, B. [2007]. “Computing in a parallel universe”, American Scientist, Vol.
95(November–December), 476–480.
An overview of the parallel computing challenge written for the layman.

Hennessy, J. L. and D. A. Patterson [2012]. Chapter 1 of Computer Architecture: A
Quantitative Approach, fifth edition, Morgan Kaufmann Publishers, Waltham, MA.
Section 1.5 goes into more detail on power, Section 1.6 contains much more detail on
the cost of integrated circuits and explains the reasons for the difference between price
and cost, and Section 1.8 gives more details on evaluating performance.

Lampson, B.W. [1986]. “Personal distributed computing; The Alto and Ethernet
software.” In ACM Conference on the History of Personal Workstations (January).

Thacker, C.R. [1986]. “Personal distributed computing: The Alto and Ethernet
hardware,” In ACM Conference on the History of Personal Workstations (January).
These two papers describe the software and hardware of the landmark Alto.

Metropolis, N., J. Howlett, and G. -C. Rota (Eds.) [1980]. A History of Computing in
the Twentieth Century, Academic Press, New York.
A collection of essays that describe the people, software, computers, and laboratories
involved in the first experimental and commercial computers. Most of the authors
were personally involved in the projects. An excellent bibliography of early reports
concludes this interesting book.

Public Broadcasting System [1992]. The Machine That Changed the World,
videotapes.
These five 1-hour programs include rare footage and interviews with pioneers of the
computer industry.

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, MA.
Short biographies of 31 computer pioneers.

Stern, N. [1980]. “Who invented the first electronic digital computer?” Annals of
the History of Computing 2:4 (October), 375–376.
A historian s perspective on Atanasoff versus Eckert and Mauchly.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.
A personal view of computing by one of the pioneers.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref7
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref8
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref9
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref10
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref11
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref12
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref13

 Further Reading FR-3

Chapter 2

Bayko, J. [1996]. “Great microprocessors of the past and present,” search for it on
the http://www.cpushack.com/CPU/cpu.html.
A personal view of the history of both representative and unusual microprocessors,
from the Intel 4004 to the Patriot Scientific ShBoom!

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood
Cliffs, NJ.
This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture: The
VAX, Digital Press, Boston.
This book concentrates on the VAX, but also includes descriptions of the Intel 8086,
IBM 360, and CDC 6600.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—
8080 to 8086”, Computer 13:10 (October).
The architecture history of the Intel from the 4004 to the 8086, according to the people
who participated in the designs.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley,
New York.
The Motorola 6800 is the main focus of the book, but it covers the Intel 8086, Motorola
6809, TI 9900, and Zilog Z8000.

Waterman, A. Y. Lee, D. Patterson, and K. Asanović [2016]. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Version 2.1.
The canonical reference manual for the RISC-V instruction set architecture, this
technical report discusses the rationale behind the myriad tradeoffs in the ISA’s design.
Download from http://riscv.org/specifications/.

Chapter 3
If you are interested in learning more about floating point, two publications by
David Goldberg [1991, 2002] are good starting points; they abound with pointers
to further reading. Several of the stories told in this section come from Kahan
[1972, 1983]. The latest word on the state of the art in computer arithmetic is often
found in the Proceedings of the latest IEEE-sponsored Symposium on Computer
Arithmetic, held every 2 years; the 16th was held in 2003.

http://www.cpushack.com/CPU/cpu.html
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref14
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref15
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref16
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref16
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref17
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref17
http://riscv.org/specifications/

FR-4 Further Reading

Burks, A.W., H.H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion
of the logical design of an electronic computing instrument,” Report to the U.S.
Army Ordnance Dept., p. 1; also in Papers of John von Neumann, W. Aspray and A.
Burks (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers, Los Angeles,
1987, 97–146.
This classic paper includes arguments against floating-point hardware.

Goldberg, D. [2002]. “Computer arithmetic”. Appendix J of Computer Architecture:
A Quantitative Approach, fifth edition, J. L. Hennessy and D. A. Patterson, Morgan
Kaufmann Publishers, Waltham, MA.
A more advanced introduction to integer and floating-point arithmetic, with emphasis
on hardware. It covers Sections 3.4–3.6 of this book in just 10 pages, leaving another
45 pages for advanced topics.

Goldberg, D. [1991]. “What every computer scientist should know about floating-
point arithmetic”, ACM Computing Surveys 23(1) 5–48.
Another good introduction to floating-point arithmetic by the same author, this time
with emphasis on software.

Kahan, W. [1972]. “A survey of error-analysis”. Info. Processing 71 (Proc. IFIP
Congress 71 in Ljubljana), Vol. 2, North-Holland Publishing, Amsterdam, 1214–
1239
This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand”, Proc. Amer. Stat. Assoc. Joint
Summer Meetings of 1983, Statistical Computing Section, 12–26.
The title refers to silicon and is another source of stories illustrating the importance of
accurate arithmetic.

Kahan, W. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes,
Computer Science Division, University of California, Berkeley.
What the 8087 floating-point architecture could have been.

Kahan, W. [1997]. Available at http://www.cims.nyu.edu/~dbindel/class/
cs279/87stack.pdf.
A collection of memos related to floating point, including “Beastly numbers” (another
less famous Pentium bug), “Notes on the IEEE floating point arithmetic” (including
comments on how some features are atrophying), and “The baleful effects of computing
benchmarks” (on the unhealthy preoccupation on speed versus correctness, accuracy,
ease of use, flexibility, …).

Koren, I. [2002]. Computer Arithmetic Algorithms, second edition, A. K. Peters,
Natick, MA.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref19
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref19
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref20
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref20
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref20
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref21
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref21
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref22
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref22
http://www.cims.nyu.edu/~dbindel/class/cs279/87stack.pdf
http://www.cims.nyu.edu/~dbindel/class/cs279/87stack.pdf
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref23
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref23

 Further Reading FR-5

A textbook aimed at seniors and first-year graduate students that explains fundamental
principles of basic arithmetic, as well as complex operations such as logarithmic and
trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.
This computer pioneer’s recollections include the derivation of the standard hardware
for multiply and divide developed by von Neumann.

Chapter 4

Bhandarkar, D. and D. W. Clark [1991]. “Performance from architecture:
Comparing a RISC and a CISC with similar hardware organizations,” Proc. Fourth
Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Palo Alto, CA, 310–319.
A quantitative comparison of RISC and CISC written by scholars who argued for
CISCs as well as built them; they conclude that MIPS is between 2 and 4 times faster
than a VAX built with similar technology, with a mean of 2.7.

Fisher, J. A. and B. R. Rau [1993]. Journal of Supercomputing (January), Kluwer.
This entire issue is devoted to the topic of exploiting ILP. It contains papers on both the
architecture and software and is a wonderful source for further references.

Hennessy, J. L. and D. A. Patterson [2012]. Computer Architecture: A Quantitative
Approach, fifth edition, Morgan Kaufmann, Waltham, MA.
Chapter 3 and Appendix C go into considerably more detail about pipelined processors
(almost 200 pages), including superscalar processors and VLIW processors. Appendix
G describes Itanium.

Jouppi, N. P. and D. W. Wall [1989]. “Available instruction-level parallelism for
superscalar and superpipelined processors,’’ Proc. Third Conf. on Architectural
Support for Programming Languages and Operating Systems, IEEE/ACM (April),
Boston, 272–82.
A comparison of deeply pipelined (also called superpipelined) and superscalar systems.

Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New
York.
A formal text on pipelined control, with emphasis on underlying principles.

Russell, R. M. [1978]. “The CRAY-1 computer system”, Commun. ACM 21:1
(January), 63–72.
A short summary of a classic computer that uses vectors of operations to remove
pipeline stalls.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref24
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref25
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref25
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref25
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref25
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref26
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref27
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref27
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref28
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref28
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref28
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref28
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref29
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref29
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref30
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref30

FR-6 Further Reading

Smith, A. and J. Lee [1984]. “Branch prediction strategies and branch target buffer
design”, Computer 17:1 (January), 6–22.
An early survey on branch prediction.

Smith, J. E. and A. R. Plezkun [1988]. “Implementing precise interrupts in pipelined
processors”, IEEE Trans. on Computers 37:5 (May), 562–573.
Covers the difficulties in interrupting pipelined computers.

Thornton, J. E. [1970]. Design of a Computer: The Control Data 6600, Scott,
Foresman, Glenview, IL.
A classic book describing a classic computer, considered the first supercomputer.

Chapter 5

Cantin, J. F. and M. D. Hill [2001]. “Cache performance for selected SPEC CPU2000
benchmarks”, SIGARCH Computer Architecture News 29:4 (September), 13–18.
A reference paper of cache miss rates for many cache sizes for the SPEC2000
benchmarks.

Conti, C, D. H. Gibson, and S. H. Pitowsky [1968]. “Structural aspects of the
System/360 Model 85, part I: General organization”, IBM Systems J. 7:1, 2–14.
A classic paper that describes the first commercial computer to use a cache and its
resulting performance.

Hennessy, J. and D. Patterson [2012]. Chapter 2 and Appendix B in Computer
Architecture: A Quantitative Approach, fifth edition, Morgan Kaufmann Publishers,
Waltham, MA.
For more in-depth coverage of a variety of topics including protection, cache
performance of out-of-order processors, virtually addressed caches, multilevel
caches, compiler optimizations, additional latency tolerance mechanisms, and cache
coherency.

Kilburn, T., D. B. G Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level
storage system,” IRE Transactions on Electronic Computers EC-11 (April), 223–
35. Also appears in D. P. Siewiorek, C G Bell, and A. Newell [1982], Computer
Structures: Principles and Examples, McGraw-Hill, New York, 135–48.
This classic paper is the first proposal for virtual memory.

LaMarca, A. and R. E. Ladner [1996]. “The influence of caches on the performance
of heaps,” ACM J. of Experimental Algorithmics Vol. 1.
This paper shows the difference between complexity analysis of an
algorithm, instruction count performance, and memory hierarchy for four sorting
algorithms.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref31
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref31
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref32
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref32
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref33
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref33
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref34
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref34
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref35
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref35
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref36
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref36
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref36
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref37
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref37
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref37
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref37
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref38
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref38

 Further Reading FR-7

McCalpin, J.D. [1995]. “STREAM: Sustainable Memory Bandwidth in High
Performance Computers,” https://www.cs.virginia.edu/stream/.
A widely used microbenchmark that measures the performance of the memory system
behind the caches.

Przybylski, S. A. [1990]. Cache and Memory Hierarchy Design: A Performance-
Directed Approach, Morgan Kaufmann Publishers, San Francisco.
A thorough exploration of multilevel memory hierarchies and their performance.

Ritchie, D. [1984]. “The evolution of the UNIX time-sharing system”, AT& T Bell
Laboratories Technical Journal 1984:1577–1593.
The history of UNIX from one of its inventors.

Ritchie, D. M. and K. Thompson [1978]. “The UNIX time-sharing system”, Bell
System Technical Journal (August), 1991–2019.
A paper describing the most elegant operating system ever invented.

Silberschatz, A., P. Galvin, and G. Grange [2003]. Operating System Concepts, sixth
edition, Addison-Wesley, Reading, MA.
An operating systems textbook with a thorough discussion of virtual memory processes
and process management, and protection issues.

Smith, A. J. [1982]. “Cache memories”, Computing Surveys 14:3 (September),
473–530.
The classic survey paper on caches. This paper defined the terminology for the field
and has served as a reference for many computer designers.

Smith, D. K. and R. C. Alexander [1988]. Fumbling the Future: How Xerox Invented,
Then Ignored, the First Personal Computer, Morrow, New York.
A popular book that explains the role of Xerox PARC in laying the foundation for
today’s computing, but which Xerox did not substantially benefit from.

Tanenbaum, A. [2001]. Modern Operating Systems, second edition, Upper Saddle
River: Prentice Hall, NJ.
An operating system textbook with a good discussion of virtual memory.

Waterman, A. Y. Lee, D. Patterson, and K. Asanović [2016]. The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Version 1.9.1.
The RISC-V Privileged Architecture manual discusses in more detail the layered
privilege mode design and the memory address-translation and protection schemes
described in Chapter 5.

Wilkes, M. [1965]. “Slave memories and dynamic storage allocation”, IEEE Trans.
Electronic Computers EC 14(2 (April)), 270–271.
The first classic paper on caches.

https://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref39
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref39
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref40
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref40
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref41
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref41
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref42
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref42
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref43
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref43
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref44
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref44
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref45
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref45
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref46
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref46

FR-8 Further Reading

Chapter 6

Almasi, G. S. and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/
Cummings, Redwood City, CA.
A textbook covering parallel computers.

Amdahl, G.M. [1967]. “Validity of the single processor approach to achieving large
scale computing capabilities,” Proc. AFIPS Spring Joint Computer Conf., Atlantic
City, NJ (April), 483–85.
Written in response to the claims of the Illiac IV, this three-page article describes
Amdahl’s law and gives the classic reply to arguments for abandoning the current
form of computing.

Andrews, G. R. [1991]. Concurrent Programming: Principles and Practice,
Benjamin/Cummings, Redwood City, CA.
A text that gives the principles of parallel programming.

Archibald, J. and J.-L. Baer [1986]. “Cache coherence protocols: Evaluation
using a multiprocessor simulation model”, ACM Trans. on Computer Systems
4:4 (November), 273–98.
Classic survey paper of shared-bus cache coherence protocols.

Arpaci-Dusseau, A., R. Arpaci-Dusseau, D. Culler, J. Hellerstein, and D. Patterson
[1997]. “High-performance sorting on networks of workstations,” Proc. ACM SIG
MOD/PODS Conference on Management of Data, Tucson, AZ (May), 12–15.
How a world record sort was performed on a cluster, including architecture critique
of the workstation and network interface. By April 1, 1997, they pushed the record to
8.6 GB in 1 minute and 2.2 seconds to sort 100 MB.

Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick [2006]. “The landscape
of parallel computing research: A view from Berkeley”. Tech. Rep. UCB/EECS-2006-
183, EECS Department, University of California, Berkeley. (December 18).
Nicknamed the “Berkeley View,” this report lays out the landscape of the multicore
challenge.

Bailey, D.H., E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V.
Venkatakrishnan, and S.K. Weeratunga. [1991]. “The NAS parallel benchmarks—
summary and preliminary results,” Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing (August).
Describes the NAS parallel benchmarks.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref47
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref47
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref48
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref48
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref49
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref49
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref49
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref50
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref50
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref50
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref50

 Further Reading FR-9

Bell, C. G. [1985]. “Multis: A new class of multiprocessor computers”, Science
228(April 26), 462–467.
Distinguishes shared address and nonshared address multiprocessors based on micro-
processors.

Bienia, C., S. Kumar, J.P. Singh, and K. Li [2008]. “The PARSEC benchmark suite:
characterization and architectural implications,” Princeton University Technical
Report TR-81 1-008 (January).
Describes the PARSEC parallel benchmarks. Also see http://parsec.cs.princeton.edu/.

Cooper, B.F., A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears [2010].
Benchmarking cloud serving systems with YCSB, In: Proceedings of the 1st ACM
Symposium on Cloud Computing, Indianapolis, Indiana, USA. http://dx.doi.
org/10.1145/1807128.1807152 (June).
Presents the “Yahoo! Cloud Serving Benchmark” (YCSB) framework, with the goal
of facilitating performance comparisons of the new generation of cloud data serving
systems.

Culler, D. E., J. P. Singh, and A. Gupta [1998]. Parallel Computer Architecture,
Morgan Kaufmann, San Francisco.
A textbook on parallel computers.

Dongarra, J. J., J. R. Bunch, G. B. Moler, and G. W. Stewart [1979]. LINPACK Users’
Guide, Society for Industrial Mathematics.
The original document describing Linpack, which became a widely used parallel
benchmark.

Falk, H. [1976]. “Reaching for the gigaflop”, IEEE Spectrum 13:10 (October),
65–70.
Chronicles the sad story of the Illiac IV: four times the cost and less than one-tenth the
performance of original goals.

Flynn, M. J. [1966]. “Very high-speed computing systems”, Proc. IEEE 54:12
(December), 1901–09.
Classic article showing SISD/SIMD/MISD/MIMD classifications.

Hennessy, J. and D. Patterson [2012]. “Chapters 5 and Appendices F and I”. In
Computer Architecture: A Quantitative Approach, fifth edition, Morgan Kaufmann
Publishers, Waltham, MA.
A more in-depth coverage of a variety of multiprocessor and cluster topics, including
programs and measurements.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref51
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref51
http://parsec.cs.princeton.edu/
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref52
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref52
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref53
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref53
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref54
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref54
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref55
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref55
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref56
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref56
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref56

FR-10 Further Reading

Henning, J. L. [2007]. “SPEC CPU suite growth: an historical perspective”, Computer
Architecture News Vol. 35, no. 1 (March).
Gives the history of SPEC, including the use of SPECrate to measure performance on
independent jobs, which is being used as a parallel benchmark.

Hord, R. M. [1982]. The Illiac-IV, the First Supercomputer, Computer Science Press,
Rockville, MD.
A historical accounting of the Illiac IV project.

Hwang, K. [1993]. Advanced Computer Architecture with Parallel Programming,
McGraw-Hill, New York.
Another textbook covering parallel computers.

Kozyrakis, C. and D. Patterson [2003]. “Scalable vector processors for embedded
systems”, IEEE Micro 23:6 (November–December), 36–45.
Examination of a vector architecture for the MIPS instruction set in media and signal
processing.

Laprie, J.-C. [1985]. “Dependable computing and fault tolerance: Concepts and
terminology,” 15th Annual Int’l Symposium on Fault-Tolerant Computing FTCS 15,
Digest of Papers, Ann Arbor, MI (June 19–21) 2–11.
The paper that introduced standard definitions of dependability, reliability, and
availability.

Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles
Babbage”, Bibliothèque Universelle de Genève (October).
Certainly the earliest reference on multiprocessors, this mathematician made this
comment while translating papers on Babbage’s mechanical computer.

Patterson, D., G. Gibson, and R. Katz [1988]. “A case for redundant arrays of
inexpensive disks (RAID),” SIGMOD Conference, 109–16.

Pfister, G. F. [1998]. In Search of Clusters: The Coming Battle in Lowly Parallel
Computing, second edition, Prentice Hall, Upper Saddle River, NJ.
An entertaining book that advocates clusters and is critical of NUMA multiprocessors.

Regnier, G., S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell,
L. Cline, and A. Foong [2004]. TCP onloading for data center servers. IEEE
Computer, 37(11):48–58.
Describes the work of researchers at Intel Labs, who have experimented with alternative
solutions that improve the server’s ability to process TCP/IP packets efficiently and at
very high rates.

Seitz, C. [1985]. “The Cosmic Cube”, Comm. ACM 28:1 (January), 22–31.
A tutorial article on a parallel processor connected via a hypertree. The Cosmic Cube
is the ancestor of the Intel supercomputers.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref57
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref57
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref58
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref58
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref59
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref59
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref60
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref60
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref61
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref61
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref62
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref62
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref63
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref63
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref63
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref64

 Further Reading FR-11

Slotnick, D. L. [1982]. “The conception and development of parallel processors—a
personal memoir”, Annals of the History of Computing 4:1 (January), 20–30.
Recollections of the beginnings of parallel processing by the architect of the Illiac IV.

Williams, S., A. Waterman, and D. Patterson [2009]. “Roofline: An insightful visual
performance model for multicore architectures”, Communications of the ACM,
52:4 (April), 65–76.

Williams, S., J. Carter, L. Oliker, J. Shalf, and K. Yelick [2008]. “Lattice Boltzmann
simulation optimization on leading multicore platforms,” International Parallel &
Distributed Processing Symposium (IPDPS).
Paper containing the results of the four multicores for LBMHD.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007].
“Optimization of sparse matrix-vector multiplication on emerging multicore
platforms”, Supercomputing (SC)
Paper containing the results of the four multicores for SPmV.

Williams, S. [2008]. Autotuning Performance of Multicore Computers, Ph.D.
Dissertation, U.C. Berkeley.
Dissertation containing the roofline model.

Woo, S.C., M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. “The SPLASH-2 programs:
characterization and methodological considerations,” Proceedings of the 22nd
Annual International Symposium on Computer Architecture (ISCA ’95), May, 24–36.
Paper describing the second version of the Stanford parallel benchmarks.

Appendix A

There are a number of good texts on logic design. Here are some you might like to
look into.
Ashenden, P. [2007]. Digital Design: An Embedded Systems Approach Using VHDL/
Verilog, Waltham, MA: Morgan Kaufmann.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood
Cliff s, NJ: Prentice Hall.
A thorough book on logic design using Verilog.

Harris, D. and S. Harris [2012]. Digital Design and Computer Architecture, Waltham,
MA: Morgan Kaufmann.
A unique and modern approach to digital design using VHDL and SystemVerilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.
A general text on logic design.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref65
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref65
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref66
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref66
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref66
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref67
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref67
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref67
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref68
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref68
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref69
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref69
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref70
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref70
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref71

FR-12 Further Reading

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood
Cliff s, NJ: Prentice Hall.
A general text on logic design.

Appendix B

Akeley, K. and T. Jermoluk [1988]. “High-Performance Polygon Rendering,” Proc.
SIGGRAPH 1988 (August), 239–46.

Akeley, K. [1993]. “RealityEngine Graphics.” Proc. SIGGRAPH 1993 (August),
109–16.

Blelloch, G. B. [1990]. “Prefix Sums and Their Applications”. In John H. Reif (Ed.),
Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San Francisco.

Blythe, D. [2006]. “The Direct3D 10 System”, ACM Trans. Graphics Vol. 25 no. 3,
(July), 724–734.

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahlian, M. Houston, and P. Hanrahan
[2004]. “Brook for GPUs: Stream Computing on Graphics Hardware.” Proc.
SIGGRAPH 2004, 777–86, August. http://doi.acm.org/10.1145/1186562.1015800.

Elder, G. [2002] “Radeon 9700.” Eurographics/SIGGRAPH Workshop on Graphics
Hardware, Hot3D Session. www.graphicshardware.org/previous/www_2002/
presentations/Hot3D-RADEON9700.ppt.

Fernando, R. and M. J. Kilgard [2003]. The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics, Addison-Wesley, Reading, MA.

Fernando, R. (Ed.), [2004]. GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics, Addison-Wesley, Reading, MA. https://developer.nvidia.
com/gpugems/GPUGems/gpugems_pref01.html.

Foley, J., A. van Dam, S. Feiner, and J. Hughes [1995]. Computer Graphics: Principles
and Practice, second edition in C, Addison- Wesley, Reading, MA.

Hillis, W. D. and G. L. Steele [1986]. “Data parallel algorithms”, Commun. ACM
29:12 (Dec.), 1170–83. http://doi.acm.org/10.1145/7902.7903.
IEEE 754R Working Group [2006]. DRAFT Standard for Floating-Point Arithmetic
P754. www.validlab.com/754R/drafts/archive/2006-10-04.pdf.

Industrial Light and Magic [2003]. OpenEXR, www.openexr.com.

Intel Corporation [2007]. Intel 64 and IA-32 Architectures Optimization Reference
Manual. November. Order Number: 248966-016. Also: http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref72
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref72
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref73
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref73
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref74
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref74
http://doi.acm.org/10.1145/1186562.1015800
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref75
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref75
https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html
https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref77
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref77
http://doi.acm.org/10.1145/7902.7903
http://www.validlab.com/754R/drafts/archive/2006-10-04.pdf
http://www.openexr.com
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

 Further Reading FR-13

Kessenich, J. [2006]. The OpenGL Shading Language, Language Version 1.20, Sept.
2006. www.opengl.org/documentation/specs/.
Kirk, D. and D. Voorhies [1990]. “The Rendering Architecture of the DN10000VS.”
Proc. SIGGRAPH 1990 (August), 299–307.

Lindholm E., M.J. Kilgard, and H. Moreton [2001]. “A User-Programmable Vertex
Engine.” Proc. SIGGRAPH 2001 (August), 149–58.

Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym [2008]. “NVIDIA Tesla:
A Unified Graphics and Computing Architecture”, IEEE Micro Vol. 28, no. 2
(March–April), 39–55.

Microsoft Corporation. Microsoft DirectX Specification, https://msdn.microsoft.
com/en-us/library/windows/apps/hh452744.aspx.

Microsoft Corporation. [2003]. Microsoft DirectX 9 Programmable Graphics
Pipeline, Microsoft Press, Redmond, WA.

Montrym, J., D. Baum, D. Dignam, and C. Migdal [1997]. “InfiniteReality: A Real-
Time Graphics System.” Proc. SIGGRAPH 1997 (August), 293–301.

Montrym, J. and H. Moreton [2005]. “The GeForce 6800”, IEEE Micro Vol. 25,
no. 2 (March–April), 41–51.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits”,
Electronics, Vol. 38, no. 8 (April 19).

Nguyen, H. ed. [2008]. GPU Gems 3, Addison-Wesley, Reading, MA.

Nickolls, J., I. Buck, M. Garland, and K. Skadron [2008]. “Scalable Parallel
Programming with CUDA”, ACM Queue, Vol. 6, no. 2 (March–April), 40–53.

NVIDIA [2007]. CUDA Zone. http://www.nvidia.com/object/cuda_home_new.
html.

NVIDIA [2007]. CUDA Programming Guide 1.1. https://developer.nvidia.com/
nvidia-gpu-programming-guide.

NVIDIA [2007]. PTX: Parallel Thread Execution ISA version 1.1. www.nvidia.com/
object/io_1195170102263.html.

Nyland, L., M. Harris, and J. Prins [2007]. “Fast N-Body Simulation with CUDA”.
In GPU Gems 3, H. Nguyen (Ed.), Addison-Wesley, Reading, MA.

Oberman, S.F. and M.Y. Siu [2005]. “A High-Performance Area-Efficient
Multifunction Interpolator,” Proc. Seventeenth IEEE Symp. Computer Arithmetic,
272–79.

Pharr, M. (Ed.), [2005]. GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, Addison-Wesley, Reading, MA.

http://www.opengl.org/documentation/specs/
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref79
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref79
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref79
https://msdn.microsoft.com/en-us/library/windows/apps/hh452744.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh452744.aspx
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref80
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref80
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref81
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref81
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref82
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref82
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref83
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref84
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref84
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://developer.nvidia.com/nvidia-gpu-programming-guide
https://developer.nvidia.com/nvidia-gpu-programming-guide
http://www.nvidia.com/object/io_1195170102263.html
http://www.nvidia.com/object/io_1195170102263.html
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref86
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref86

FR-14 Further Reading

Satish, N., M. Harris, and M. Garland [2008]. “Designing Efficient Sorting
Algorithms for Manycore GPUs,” NVIDIA Technical Report NVR-2008-001.

Segal, M. and K. Akeley [2006]. The OpenGL Graphics System: A Specification,
Version 2.1, Dec. 1, 2006. www.opengl.org/documentation/specs/.

Sengupta, S., M. Harris, Y. Zhang, and J.D. Owens [2007]. “Scan Primitives for
GPU Computing.” In Proc. of Graphics Hardware 2007 (August), 97–106.

Volkov, V. and J. Demmel [2008]. “LU, QR and Cholesky Factorizations using
Vector Capabilities of GPUs,” Technical Report No. UCB/EECS-2008-49, 1–11.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.pdf.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007].
“Optimization of sparse matrix-vector multiplication on emerging multicore
platforms,” In Proc. Supercomputing 2007, November.

Appendix D

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Newton, MA:
Digital Press.

Darcy, J.D., and D. Gay [1996]. “FLECKmarks: Measuring floating point
performance using a compliant arithmetic benchmark,” CS 252 class project, U.C
Berkeley (see www.sonic.net/~jddarcy/Research/fleckmrk.pdf)).

Digital Semiconductor. [1996]. Alpha Architecture Handbook, Version 3, Digital
Press, Maynard, MA. Order number EC-QD2KB-TE (October).

Furber, S. B. [1996]. ARM System Architecture, Addison-Wesley, Harlow, England.
(See http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_
detail.page?isbn=9780201675191&forced_logout=forced_logged_out#sthash.
QX4WfErc).

Hewlett-Packard [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.

Hitachi [1997]. SuperH RISC Engine SH7700 Series Programming Manual. (See
http://am.renesas.com/products/mpumcu/superh/sh7700/Documentation.jsp).

IBM. [1994]. The PowerPC Architecture, San Francisco: Morgan Kaufmann.

Kane, G. [1996]. PA-RISC 2.0 Architecture, Upper Saddle River, NJ: Prentice Hall
PTR.

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Englewood Cliffs, NJ:
Prentice Hall.

http://www.opengl.org/documentation/specs/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.pdf
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref87
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref87
http://www.sonic.net/~jddarcy/Research/fleckmrk.pdf
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref88
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref88
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out%23sthash.QX4WfErc
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out%23sthash.QX4WfErc
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780201675191&forced_logout=forced_logged_out%23sthash.QX4WfErc
http://am.renesas.com/products/mpumcu/superh/sh7700/Documentation.jsp
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref90
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref91
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref91
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref92
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref92

 Further Reading FR-15

Kissell, K.D. [1997]. MIPS16: High-Density for the Embedded Market.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer
multiplication and division on the HP precision architecture”, IEEE Trans. on
Computers 37(8), 980–990.

MIPS [1997]. MIPS16 Application Specific Extension Product Description.

Mitsubishi [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family
Software Manual (September).

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC”, Sun Technology 1:3
(Summer), 64–77.

Seal, D. Arm Architecture Reference Manual, 2nd ed, Morgan Kaufmann, 2000.

Silicon Graphics [1996]. MIPS V Instruction Set.

Sites, R. L., and R. Witek (Eds.) [1995]. Alpha Architecture Reference Manual, 2nd
ed., Newton, MA: Digital Press.

Sloss, A. N., D. Symes, and C. Wright, ARM System Developer’s Guide, San Francisco:
Elsevier Morgan Kaufmann, 2004.

Sun Microsystems [1989]. The SPARC Architectural Manual, Version 8, Part No.
800-1399-09, August 25.

Sweetman, D. See MIPS Run, 2nd ed, Morgan Kaufmann, 2006.

Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the
SPUR LISP architecture,” Proc. 13th Symposium on Computer Architecture (June),
Tokyo.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture
of SOAR: Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture
(June), Ann Arbor, MI, 188–97.

Weaver, D. L. and T. Germond [1994]. The SPARC Architectural Manual, Version 9,
Prentice Hall, Englewood Cliffs, NJ.

Weiss, S. and J. E. Smith [1994]. Power and PowerPC, San Francisco: Morgan
Kaufmann.

http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref93
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref93
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref93
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref94
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref94
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref96
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref96
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref99
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref99
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref100
http://refhub.elsevier.com/B978-0-12-812275-4.00021-X/sbref100

	Front Cover
	Computer Organization and Design
	Copyright Page
	Acknowledgments
	Contents
	Preface
	1 Computer Abstractions and Technology
	1.1 Introduction
	Traditional Classes of Computing Applications and Their Characteristics
	Welcome to the Post-PC Era
	What You Can Learn in This Book

	1.2 Eight Great Ideas in Computer Architecture
	Design for Moore’s Law
	Use Abstraction to Simplify Design
	Make the Common Case Fast
	Performance via Parallelism
	Performance via Pipelining
	Performance via Prediction
	Hierarchy of Memories
	Dependability via Redundancy

	1.3 Below Your Program
	From a High-Level Language to the Language of Hardware

	1.4 Under the Covers
	Through the Looking Glass
	Touchscreen
	Opening the Box
	A Safe Place for Data
	Communicating with Other Computers

	1.5 Technologies for Building Processors and Memory
	1.6 Performance
	Defining Performance
	Measuring Performance
	CPU Performance and Its Factors
	Instruction Performance
	The Classic CPU Performance Equation

	1.7 The Power Wall
	1.8 The Sea Change: The Switch from Uniprocessors to Multiprocessors
	1.9 Real Stuff: Benchmarking the Intel Core i7
	SPEC CPU Benchmark
	SPEC Power Benchmark

	1.10 Fallacies and Pitfalls
	1.11 Concluding Remarks
	Road Map for This Book

	1.12 Historical Perspective and Further Reading
	1.13 Exercises

	2 Instructions: Language of the Computer
	2.1 Introduction
	2.2 Operations of the Computer Hardware
	2.3 Operands of the Computer Hardware
	Memory Operands
	Constant or Immediate Operands

	2.4 Signed and Unsigned Numbers
	Summary

	2.5 Representing Instructions in the Computer
	RISC-V Fields

	2.6 Logical Operations
	2.7 Instructions for Making Decisions
	Loops
	Bounds Check Shortcut
	Case/Switch Statement

	2.8 Supporting Procedures in Computer Hardware
	Using More Registers
	Nested Procedures
	Allocating Space for New Data on the Stack
	Allocating Space for New Data on the Heap

	2.9 Communicating with People
	Characters and Strings in Java

	2.10 RISC-V Addressing for Wide Immediates and Addresses
	Wide Immediate Operands
	Addressing in Branches
	RISC-V Addressing Mode Summary
	Decoding Machine Language

	2.11 Parallelism and Instructions: Synchronization
	2.12 Translating and Starting a Program
	Compiler
	Assembler
	Linker
	Loader
	Dynamically Linked Libraries
	Starting a Java Program

	2.13 A C Sort Example to Put it All Together
	The Procedure swap
	Register Allocation for swap
	Code for the Body of the Procedure swap
	The Full swap Procedure

	The Procedure sort
	Register Allocation for sort
	Code for the Body of the Procedure sort
	The Procedure Call in sort
	Passing Parameters in sort
	Preserving Registers in sort
	The Full Procedure sort

	2.14 Arrays versus Pointers
	Array Version of Clear
	Pointer Version of Clear
	Comparing the Two Versions of Clear

	2.15 Advanced Material: Compiling C and Interpreting Java
	2.16 Real Stuff: MIPS Instructions
	2.17 Real Stuff: x86 Instructions
	Evolution of the Intel x86
	x86 Registers and Data Addressing Modes
	x86 Integer Operations
	x86 Instruction Encoding
	x86 Conclusion

	2.18 Real Stuff: The Rest of the RISC-V Instruction Set
	2.19 Fallacies and Pitfalls
	2.20 Concluding Remarks
	2.21 Historical Perspective and Further Reading
	2.22 Exercises

	3 Arithmetic for Computers
	3.1 Introduction
	3.2 Addition and Subtraction
	Summary

	3.3 Multiplication
	Sequential Version of the Multiplication Algorithm and Hardware
	Signed Multiplication
	Faster Multiplication
	Multiply in RISC-V
	Summary

	3.4 Division
	A Division Algorithm and Hardware
	Signed Division
	Faster Division
	Divide in RISC-V
	Summary

	3.5 Floating Point
	Floating-Point Representation
	Exceptions and Interrupts
	IEEE 754 Floating-Point Standard
	Floating-Point Addition
	Floating-Point Multiplication
	Floating-Point Instructions in RISC-V
	Accurate Arithmetic
	Summary

	3.6 Parallelism and Computer Arithmetic: Subword Parallelism
	3.7 Real Stuff: Streaming SIMD Extensions and Advanced Vector Extensions in x86
	3.8 Going Faster: Subword Parallelism and Matrix Multiply
	3.9 Fallacies and Pitfalls
	3.10 Concluding Remarks
	3.11 Historical Perspective and Further Reading
	3.12 Exercises

	4 The Processor
	4.1 Introduction
	A Basic RISC-V Implementation
	An Overview of the Implementation

	4.2 Logic Design Conventions
	Clocking Methodology

	4.3 Building a Datapath
	Creating a Single Datapath

	4.4 A Simple Implementation Scheme
	The ALU Control
	Designing the Main Control Unit
	Operation of the Datapath
	Finalizing Control
	Why a Single-Cycle Implementation is not Used Today

	4.5 An Overview of Pipelining
	Designing Instruction Sets for Pipelining
	Pipeline Hazards
	Structural Hazard
	Data Hazards

	Control Hazards
	Pipeline Overview Summary

	4.6 Pipelined Datapath and Control
	Graphically Representing Pipelines
	Pipelined Control

	4.7 Data Hazards: Forwarding versus Stalling
	Data Hazards and Stalls

	4.8 Control Hazards
	Assume Branch Not Taken
	Reducing the Delay of Branches
	Dynamic Branch Prediction
	Pipeline Summary

	4.9 Exceptions
	How Exceptions are Handled in the RISC-V Architecture
	Exceptions in a Pipelined Implementation

	4.10 Parallelism via Instructions
	The Concept of Speculation
	Static Multiple Issue
	An Example: Static Multiple Issue with the RISC-V ISA

	Dynamic Multiple-Issue Processors
	Dynamic Pipeline Scheduling

	Energy Efficiency and Advanced Pipelining

	4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines
	The ARM Cortex-A53
	The Intel Core i7 920
	Performance of the Intel Core i7 920

	4.12 Going Faster: Instruction-Level Parallelism and Matrix Multiply
	4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language to Describe and Model a Pipeline and Mo ...
	4.14 Fallacies and Pitfalls
	4.15 Concluding Remarks
	4.16 Historical Perspective and Further Reading
	4.17 Exercises

	5 Large and Fast: Exploiting Memory Hierarchy
	5.1 Introduction
	5.2 Memory Technologies
	SRAM Technology
	DRAM Technology
	Flash Memory
	Disk Memory

	5.3 The Basics of Caches
	Accessing a Cache
	Handling Cache Misses
	Handling Writes
	An Example Cache: The Intrinsity FastMATH Processor
	Summary

	5.4 Measuring and Improving Cache Performance
	Reducing Cache Misses by More Flexible Placement of Blocks
	Locating a Block in the Cache
	Choosing Which Block to Replace
	Reducing the Miss Penalty Using Multilevel Caches
	Software Optimization via Blocking
	Summary

	5.5 Dependable Memory Hierarchy
	Defining Failure
	The Hamming Single Error Correcting, Double Error Detecting Code (SEC/DED)

	5.6 Virtual Machines
	Requirements of a Virtual Machine Monitor
	(Lack of) Instruction Set Architecture Support for Virtual Machines
	Protection and Instruction Set Architecture

	5.7 Virtual Memory
	Placing a Page and Finding It Again
	Page Faults
	Virtual Memory for Large Virtual Addresses
	What about Writes?
	Making Address Translation Fast: the TLB
	The Intrinsity FastMATH TLB
	Integrating Virtual Memory, TLBs, and Caches
	Implementing Protection with Virtual Memory
	Handling TLB Misses and Page Faults
	Summary

	5.8 A Common Framework for Memory Hierarchy
	Question 1: Where Can a Block Be Placed?
	Question 2: How Is a Block Found?
	Question 3: Which Block Should Be Replaced on a Cache Miss?
	Question 4: What Happens on a Write?
	The Three Cs: An Intuitive Model for Understanding the Behavior of Memory Hierarchies

	5.9 Using a Finite-State Machine to Control a Simple Cache
	A Simple Cache
	Finite-State Machines
	FSM for a Simple Cache Controller

	5.10 Parallelism and Memory Hierarchy: Cache Coherence
	Basic Schemes for Enforcing Coherence
	Snooping Protocols

	5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks
	5.12 Advanced Material: Implementing Cache Controllers
	5.13 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
	Performance of the Cortex-A53 and Core i7 Memory Hierarchies

	5.14 Real Stuff: The Rest of the RISC-V System and Special Instructions
	5.15 Going Faster: Cache Blocking and Matrix Multiply
	5.16 Fallacies and Pitfalls
	5.17 Concluding Remarks
	5.18 Historical Perspective and Further Reading
	5.19 Exercises

	6 Parallel Processors from Client to Cloud
	6.1 Introduction
	6.2 The Difficulty of Creating Parallel Processing Programs
	6.3 SISD, MIMD, SIMD, SPMD, and Vector
	SIMD in x86: Multimedia Extensions
	Vector
	Vector versus Scalar
	Vector versus Multimedia Extensions

	6.4 Hardware Multithreading
	6.5 Multicore and Other Shared Memory Multiprocessors
	6.6 Introduction to Graphics Processing Units
	An Introduction to the NVIDIA GPU Architecture
	NVIDIA GPU Memory Structures
	Putting GPUs into Perspective

	6.7 Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors
	Warehouse-Scale Computers

	6.8 Introduction to Multiprocessor Network Topologies
	Implementing Network Topologies

	6.9 Communicating to the Outside World: Cluster Networking
	6.10 Multiprocessor Benchmarks and Performance Models
	Performance Models
	The Roofline Model
	Comparing Two Generations of Opterons

	6.11 Real Stuff: Benchmarking and Rooflines of the Intel Core i7 960 and the NVIDIA Tesla GPU
	6.12 Going Faster: Multiple Processors and Matrix Multiply
	6.13 Fallacies and Pitfalls
	6.14 Concluding Remarks
	6.15 Historical Perspective and Further Reading
	References

	6.16 Exercises

	Appendix A. The Basics of Logic Design
	A.1 Introduction
	A.2 Gates, Truth Tables, and Logic Equations
	Truth Tables
	Boolean Algebra
	Gates

	A.3 Combinational Logic
	Decoders
	Multiplexors
	Two-Level Logic and PLAs
	ROMs
	Don’t Cares
	Arrays of Logic Elements

	A.4 Using a Hardware Description Language
	Datatypes and Operators in Verilog
	Structure of a Verilog Program
	Representing Complex Combinational Logic in Verilog

	A.5 Constructing a Basic Arithmetic Logic Unit
	A 1-Bit ALU
	A 64-Bit ALU
	Tailoring the 64-Bit ALU to RISC-V
	Defining the RISC-V ALU in Verilog

	A.6 Faster Addition: Carry Lookahead
	Fast Carry Using “Infinite” Hardware
	Fast Carry Using the First Level of Abstraction: Propagate and Generate
	Fast Carry Using the Second Level of Abstraction
	Summary

	A.7 Clocks
	A.8 Memory Elements: Flip-Flops, Latches, and Registers
	Flip-Flops and Latches
	Register Files
	Specifying Sequential Logic in Verilog

	A.9 Memory Elements: SRAMs and DRAMs
	SRAMs
	DRAMs
	Error Correction

	A.10 Finite-State Machines
	A.11 Timing Methodologies
	Level-Sensitive Timing
	Asynchronous Inputs and Synchronizers

	A.12 Field Programmable Devices
	A.13 Concluding Remarks
	Further Reading

	A.14 Exercises

	Index
	Appendix B. Graphics and Computing GPUs
	B.1 Introduction
	A Brief History of GPU Evolution
	GPU Graphics Trends
	Heterogeneous System
	GPU Evolves into Scalable Parallel Processor
	Why CUDA and GPU Computing?
	GPU Unifes Graphics and Computing
	GPU Visual Computing Applications

	B.2 GPU System Architectures
	Heterogeneous CPU–GPU System Architecture
	The Historical PC (circa 1990)
	Game Consoles

	GPU Interfaces and Drivers
	Graphics Logical Pipeline
	Mapping Graphics Pipeline to Unified GPU Processors
	Basic Unified GPU Architecture
	Processor Array

	B.3 Programming GPUs
	Programming Real-Time Graphics
	Logical Graphics Pipeline
	Graphics Shader Programs
	Pixel Shader Example
	Programming Parallel Computing Applications
	Data Parallel Problem Decomposition

	Scalable Parallel Programming with CUDA
	The CUDA Paradigm

	Restrictions
	Implications for Architecture

	B.4 Multithreaded Multiprocessor Architecture
	Massive Multithreading
	Multiprocessor Architecture
	Single-Instruction Multiple-Thread (SIMT)
	SIMT Warp Execution and Divergence
	Managing Threads and Thread Blocks
	Thread Instructions
	Instruction Set Architecture (ISA)
	Memory Access Instructions
	Barrier Synchronization for Thread Communication

	Streaming Processor (SP)
	Special Function Unit (SFU)
	Comparing with Other Multiprocessors
	Multithreaded Multiprocessor Conclusion

	B.5 Parallel Memory System
	DRAM Considerations
	Caches
	MMU
	Memory Spaces
	Global memory
	Shared memory
	Local Memory
	Constant Memory
	Texture Memory
	Surfaces
	Load/Store Access
	ROP

	B.6 Floating-point Arithmetic
	Supported Formats
	Basic Arithmetic
	Specialized Arithmetic
	Texture Operations

	Performance
	Double precision

	B.7 Real Stuff: The NVIDIA GeForce 8800
	Streaming Processor Array (SPA)
	Texture/Processor Cluster (TPC)
	Streaming Multiprocessor (SM)
	Instruction Set
	Streaming Processor (SP)
	Special Function Unit (SFU)
	Rasterization
	Raster Operations Processor (ROP) and Memory System
	Scalability
	Performance
	Dense Linear Algebra Performance
	FFT Performance
	Sorting Performance

	B.8 Real Stuff: Mapping Applications to GPUs
	Sparse Matrices
	Caching in Shared Memory
	Scan and Reduction
	Radix Sort
	N-Body Applications on a GPU1
	N-Body Mathematics
	Optimization for GPU Execution
	Using Shared Memory

	Using Multiple Threads per Body
	Performance Comparison
	Results

	B.9 Fallacies and Pitfalls
	B.10 Concluding Remarks
	Acknowledgments

	B.11 Historical Perspective and Further Reading
	Graphics Pipeline Evolution
	Fixed-Function Graphics Pipelines
	Evolution of Programmable Real-Time Graphics
	Unified Graphics and Computing Processors
	GPGPU: an Intermediate Step
	GPU Computing
	Scalable GPUs
	Recent Developments
	Future Trends

	Further Reading

	Appendix C. Mapping Control to Hardware
	C.1 Introduction
	C.2 Implementing Combinational Control Units
	Mapping the ALU Control Function to Gates
	Mapping the Main Control Function to Gates

	C.3 Implementing Finite-State Machine Control
	A ROM Implementation
	A PLA Implementation

	C.4 Implementing the Next-State Function with a Sequencer
	Optimizing the Control Implementation

	C.5 Translating a Microprogram to Hardware
	Organizing the Control to Reduce the Logic

	C.6 Concluding Remarks
	C.7 Exercises

	Appendix D. A Survey of RISC Architectures for Desktop, Server, and Embedded Computers
	D.1 Introduction
	D.2 Addressing Modes and Instruction Formats
	D.3 Instructions: The MIPS Core Subset
	MIPS Core Instructions
	Compare and Conditional Branch

	D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs
	D.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs
	D.6 Instructions: Common Extensions to MIPS Core
	D.7 Instructions Unique to MIPS-64
	Nonaligned Data Transfers
	Remaining Instructions

	D.8 Instructions Unique to Alpha
	Remaining Instructions

	D.9 Instructions Unique to SPARC v9
	Register Windows
	Fast Traps
	Support for LISP and Smalltalk
	Overlapped Integer and Floating-Point Operations
	Remaining Instructions

	D.10 Instructions Unique to PowerPC
	Branch Registers: Link and Counter
	Remaining Instructions

	D.11 Instructions Unique to PA-RISC 2.0
	Nullification
	A Cornucopia of Conditional Branches
	Synthesized Multiply and Divide
	Decimal Operations
	Remaining Instructions

	D.12 Instructions Unique to ARM
	Remaining Instructions

	D.13 Instructions Unique to Thumb
	D.14 Instructions Unique to SuperH
	D.15 Instructions Unique to M32R
	D.16 Instructions Unique to MIPS-16
	D.17 Concluding Remarks
	Further Reading

	Answers to Check Yourself
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Glossary
	Further Reading
	Back Cover

