


In Praise of Computer Organization and Design: The Hardware/
Software Interface

“Textbook selection is often a frustrating act of compromise—pedagogy, content 
coverage, quality of exposition, level of rigor, cost. Computer Organization and 
Design is the rare book that hits all the right notes across the board, without 
compromise. It is not only the premier computer organization textbook, it is a 
shining example of what all computer science textbooks could and should be.”

—Michael Goldweber, Xavier University

“I have been using Computer Organization and Design for years, from the very first 
edition. This new edition is yet another outstanding improvement on an already 
classic text. The evolution from desktop computing to mobile computing to Big 
Data brings new coverage of embedded processors such as the ARM, new material 
on how software and hardware interact to increase performance, and cloud 
computing. All this without sacrificing the fundamentals.”

—Ed Harcourt, St. Lawrence University

“To Millennials: Computer Organization and Design is the computer architecture 
book you should keep on your (virtual) bookshelf. The book is both old and new, 
because it develops venerable principles—Moore’s Law, abstraction, common case 
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates 
them with contemporary designs.”

—Mark D. Hill, University of Wisconsin-Madison

“The new edition of Computer Organization and Design keeps pace with advances 
in emerging embedded and many-core (GPU) systems, where tablets and 
smartphones will/are quickly becoming our new desktops. This text acknowledges 
these changes, but continues to provide a rich foundation of the fundamentals 
in computer organization and design which will be needed for the designers of 
hardware and software that power this new class of devices and systems.”

—Dave Kaeli, Northeastern University

“Computer Organization and Design provides more than an introduction to computer 
architecture. It prepares the reader for the changes necessary to meet the ever-
increasing performance needs of mobile systems and big data processing at a time 
that difficulties in semiconductor scaling are making all systems power constrained. 
In this new era for computing, hardware and software must be co-designed and 
system-level architecture is as critical as component-level optimizations.”

—Christos Kozyrakis, Stanford University

“Patterson and Hennessy brilliantly address the issues in ever-changing computer 
hardware architectures, emphasizing on interactions among hardware and software 
components at various abstraction levels. By interspersing I/O and parallelism concepts 
with a variety of mechanisms in hardware and software throughout the book, the new 
edition achieves an excellent holistic presentation of computer architecture for the post-
PC era. This book is an essential guide to hardware and software professionals facing 
energy efficiency and parallelization challenges in Tablet PC to Cloud computing.”

—Jae C. Oh, Syracuse University
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Preface

The most beautiful thing we can experience is the mysterious. It is the 
source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book
We believe that learning in computer science and engineering should reflect 
the current state of the field, as well as introduce the principles that are shaping 
computing. We also feel that readers in every specialty of computing need 
to appreciate the organizational paradigms that determine the capabilities, 
performance, energy, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing 
specialty to understand both hardware and software. The interaction between 
hardware and software at a variety of levels also offers a framework for understanding 
the fundamentals of computing. Whether your primary interest is hardware or 
software, computer science or electrical engineering, the central ideas in computer 
organization and design are the same. Thus, our emphasis in this book is to show 
the relationship between hardware and software and to focus on the concepts that 
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed 
the soundness of this perspective, given since the first edition. While programmers 
could ignore the advice and rely on computer architects, compiler writers, and silicon 
engineers to make their programs run faster or be more energy-efficient without 
change, that era is over. For programs to run faster, they must become parallel. 
While the goal of many researchers is to make it possible for programmers to be 
unaware of the underlying parallel nature of the hardware they are programming, 
it will take many years to realize this vision. Our view is that for at least the next 
decade, most programmers are going to have to understand the hardware/software 
interface if they want programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly 
language or logic design who need to understand basic computer organization as 
well as readers with backgrounds in assembly language and/or logic design who 
want to learn how to design a computer or understand how a system works and 
why it performs as it does.
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About the Other Book
Some readers may be familiar with Computer Architecture: A Quantitative 
Approach, popularly known as Hennessy and Patterson. (This book in turn is 
often called Patterson and Hennessy.) Our motivation in writing the earlier book 
was to describe the principles of computer architecture using solid engineering 
fundamentals and quantitative cost/performance tradeoffs. We used an approach 
that combined examples and measurements, based on commercial systems, to 
create realistic design experiences. Our goal was to demonstrate that computer 
architecture could be learned using quantitative methodologies instead of a 
descriptive approach. It was intended for the serious computing professional who 
wanted a detailed understanding of computers.

A majority of the readers for this book do not plan to become computer 
architects. The performance and energy efficiency of future software systems will 
be dramatically affected, however, by how well software designers understand the 
basic hardware techniques at work in a system. Thus, compiler writers, operating 
system designers, database programmers, and most other software engineers 
need a firm grounding in the principles presented in this book. Similarly, 
hardware designers must understand clearly the effects of their work on software 
applications.

Thus, we knew that this book had to be much more than a subset of the material 
in Computer Architecture, and the material was extensively revised to match the 
different audience. We were so happy with the result that the subsequent editions 
of Computer Architecture were revised to remove most of the introductory 
material; hence, there is much less overlap today than with the first editions of 
both books.

Why RISC-V for This Edition?
The choice of instruction set architecture is clearly critical to the pedagogy of a 
computer architecture textbook. We didn’t want an instruction set that required 
describing unnecessary baroque features for someone’s first instruction set, no 
matter how popular it is. Ideally, your initial instruction set should be an exemplar, 
just like your first love. Surprisingly, you remember both fondly.

Since there were so many choices at the time, for the first edition of Computer 
Architecture: A Quantitative Approach we invented our own RISC-style instruction 
set. Given the growing popularity and the simple elegance of the MIPS instruction 
set, we switched to it for the first edition of this book and to later editions of the 
other book. MIPS has served us and our readers well.

It’s been 20 years since we made that switch, and while billions of chips that use 
MIPS continue to be shipped, they are typically in found embedded devices where 
the instruction set is nearly invisible. Thus, for a while now it’s been hard to find a 
real computer on which readers can download and run MIPS programs.

The good news is that an open instruction set that adheres closely to the RISC 
principles has recently debuted, and it is rapidly gaining a following. RISC-V, which 
was developed originally at UC Berkeley, not only cleans up the quirks of the MIPS 
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instruction set, but it offers a simple, elegant, modern take on what instruction sets 
should look like in 2017.

Moreover, because it is not proprietary, there are open-source RISC-V simulators, 
compilers, debuggers, and so on easily available and even open-source RISC-V 
implementations available written in hardware description languages. In addition, 
there will soon be low-cost hardware platforms on which to run RISC-V programs. 
Readers will not only benefit from studying these RISC-V designs, they will be able 
to modify them and go through the implementation process in order to understand 
the impact of their hypothetical changes on performance, die size, and energy.

This is an exciting opportunity for the computing industry as well as for 
education, and thus at the time of this writing more than 40 companies have joined 
the RISC-V foundation. This sponsor list includes virtually all the major players 
except for ARM and Intel, including AMD, Google, Hewlett Packard Enterprise, 
IBM, Microsoft, NVIDIA, Oracle, and Qualcomm.

It is for these reasons that we wrote a RISC-V edition of this book, and we are 
switching Computer Architecture: A Quantitative Approach to RISC-V as well.

Given that RISC-V offers both 32-bit address instructions and 64-bit address 
instructions with essentially the same instruction set, we could have switched 
instruction sets but kept the address size at 32 bits. Our publisher polled the faculty 
who used the book and found that 75% either preferred larger addresses or were 
neutral, so we increased the address space to 64 bits, which may make more sense 
today than 32 bits.

The only changes for the RISC-V edition from the MIPS edition are those 
associated with the change in instruction sets, which primarily affects Chapter 2, 
Chapter 3, the virtual memory section in Chapter 5, and the short VMIPS example 
in Chapter 6. In Chapter 4, we switched to RISC-V instructions, changed several 
figures, and added a few “Elaboration” sections, but the changes were simpler than 
we had feared. Chapter 1 and the rest of the appendices are virtually unchanged. 
The extensive online documentation and combined with the magnitude of RISC-V 
make it difficult to come up with a replacement for the MIPS version of Appendix 
A (“Assemblers, Linkers, and the SPIM Simulator” in the MIPS Fifth Edition). 
Instead, Chapters 2, 3, and 5 include quick overviews of the hundreds of RISC-V 
instructions outside of the core RISC-V instructions that we cover in detail in the 
rest of the book.

Note that we are not (yet) saying that we are permanently switching to RISC-V. For 
example, in addition to this new RISC-V edition, there are ARMv8 and MIPS versions 
available for sale now. One possibility is that there will be a demand for all versions for 
future editions of the book, or for just one. We’ll cross that bridge when we come to it. 
For now, we look forward to your reaction to and feedback on this effort.

Changes for the Fifth Edition
We had six major goals for the fifth edition of Computer Organization and Design 
demonstrate the importance of understanding hardware with a running example; 
highlight main themes across the topics using margin icons that are introduced 
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early; update examples to reflect changeover from PC era to post-PC era; spread 
the material on I/O throughout the book rather than isolating it into a single 
chapter; update the technical content to reflect changes in the industry since the 
publication of the fourth edition in 2009; and put appendices and optional sections 
online instead of including a CD to lower costs and to make this edition viable as 
an electronic book.

Before discussing the goals in detail, let’s look at the table on the next page. It 
shows the hardware and software paths through the material. Chapters 1, 4, 5, and 
6 are found on both paths, no matter what the experience or the focus. Chapter 1 
discusses the importance of energy and how it motivates the switch from single 
core to multicore microprocessors and introduces the eight great ideas in computer 
architecture. Chapter 2 is likely to be review material for the hardware-oriented, 
but it is essential reading for the software-oriented, especially for those readers 
interested in learning more about compilers and object-oriented programming 
languages. Chapter  3 is for readers interested in constructing a datapath or in 
learning more about floating-point arithmetic. Some will skip parts of Chapter 3, 
either because they don’t need them, or because they offer a review. However, we 
introduce the running example of matrix multiply in this chapter, showing how 
subword parallels offers a fourfold improvement, so don’t skip Sections 3.6 to 3.8. 
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews, 
and Section 4.12 gives the next performance boost for matrix multiply for those 
with a software focus. Those with a hardware focus, however, will find that this 
chapter presents core material; they may also, depending on their background, 
want to read Appendix A on logic design first. The last chapter, on multicores, 
multiprocessors, and clusters, is mostly new content and should be read by 
everyone. It was significantly reorganized in this edition to make the flow of 
ideas more natural and to include much more depth on GPUs, warehouse-scale 
computers, and the hardware–software interface of network interface cards that 
are key to clusters.
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Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions
and Technology

1.1 to 1.11

      1.12 (History)

3. Arithmetic for Computers

3.1 to 3.5

      3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

D. RISC Instruction-Set Architectures       D.1 to D.17

2. Instructions: Language
of the Computer

2.1 to 2.14

      2.15 (Compilers & Java)

2.16 to 2.20

      2.21 (History)

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.12 (Parallel, Real Stuff)

      4.16 (History)

A. The Basics of Logic Design A.1 to A.13

C. Mapping Control to Hardware       C.1 to C.6

 B.1 to B.13

Read carefully

Review or read

Read if have time

Read for culture

Reference

      4.13 (Verilog Pipeline Control)

5. Large and Fast: Exploiting
Memory Hierarchy

5.1 to 5.10

      5.18 (History)

4.14 to 4.15 (Fallacies)

6. Parallel Process from Client
to Cloud

6.1 to 6.8

      6.9 (Networks)

6.10 to 6.14

      6.15 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.17

B. Graphics Processor Units

      5.12 (Verilog Cache Controller)

      5.11 (Redundant Arrays of
Inexpensive Disks)
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The first of the six goals for this fifth edition was to demonstrate the importance 
of understanding modern hardware to get good performance and energy efficiency 
with a concrete example. As mentioned above, we start with subword parallelism 
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance 
in Chapter 4 by unrolling the loop to demonstrate the value of instruction-level 
parallelism. Chapter 5 doubles performance again by optimizing for caches using 
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by 
using thread-level parallelism. All four optimizations in total add just 24 lines of C 
code to our initial matrix multiply example.

The second goal was to help readers separate the forest from the trees by 
identifying eight great ideas of computer architecture early and then pointing out 
all the places they occur throughout the rest of the book. We use (hopefully) easy-
to-remember margin icons and highlight the corresponding word in the text to 
remind readers of these eight themes. There are nearly 100 citations in the book. No 
chapter has less than seven examples of great ideas, and no idea is cited less than five 
times. Performance via parallelism, pipelining, and prediction are the three most 
popular great ideas, followed closely by Moore’s Law. Chapter 4, The Processor, is 
the one with the most examples, which is not a surprise since it probably received 
the most attention from computer architects. The one great idea found in every 
chapter is performance via parallelism, which is a pleasant observation given the 
recent emphasis in parallelism in the field and in editions of this book.

The third goal was to recognize the generation change in computing from the 
PC era to the post-PC era by this edition with our examples and material. Thus, 
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6 
describes the computing infrastructure of the cloud. We also feature the ARM, 
which is the instruction set of choice in the personal mobile devices of the post-
PC era, as well as the x86 instruction set that dominated the PC era and (so far) 
dominates cloud computing.

The fourth goal was to spread the I/O material throughout the book rather 
than have it in its own chapter, much as we spread parallelism throughout all the 
chapters in the fourth edition. Hence, I/O material in this edition can be found in 
Sections 1.4, 4.9, 5.2, 5.5, 5.11, and 6.9. The thought is that readers (and instructors) 
are more likely to cover I/O if it’s not segregated to its own chapter.

This is a fast-moving field, and, as is always the case for our new editions, an 
important goal is to update the technical content. The running example is the ARM 
Cortex A53 and the Intel Core i7, reflecting our post-PC era. Other highlights 
include a tutorial on GPUs that explains their unique terminology, more depth on 
the warehouse-scale computers that make up the cloud, and a deep dive into 10 
Gigabyte Ethernet cards.

To keep the main book short and compatible with electronic books, we placed 
the optional material as online appendices instead of on a companion CD as in 
prior editions.

Finally, we updated all the exercises in the book.
While some elements changed, we have preserved useful book elements from 

prior editions. To make the book work better as a reference, we still place definitions 
of new terms in the margins at their first occurrence. The book element called
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“Understanding Program Performance” sections helps readers understand the 
performance of their programs and how to improve it, just as the “Hardware/Software 
Interface” book element helped readers understand the tradeoffs at this interface. 
“The Big Picture” section remains so that the reader sees the forest despite all the 
trees. “Check Yourself ” sections help readers to confirm their comprehension of the 
material on the first time through with answers provided at the end of each chapter. 
This edition still includes the green RISC-V reference card, which was inspired by 
the “Green Card” of the IBM System/360. This card has been updated and should be 
a handy reference when writing RISC-V assembly language programs.

Instructor Support
We have collected a great deal of material to help instructors teach courses using 
this book. Solutions to exercises, figures from the book, lecture slides, and other 
materials are available to instructors who register with the publisher. In addition, 
the companion Web site provides links to a free RISC-V software. Check the 
publisher’s Web site for more information:

textbooks.elsevier.com/9780128122754

Concluding Remarks
If you read the following acknowledgments section, you will see that we went to 
great lengths to correct mistakes. Since a book goes through many printings, we 
have the opportunity to make even more corrections. If you uncover any remaining, 
resilient bugs, please contact the publisher by electronic mail at codRISCVbugs@
mkp.com or by low-tech mail using the address found on the copyright page.

This edition is the third break in the long-standing collaboration between 
Hennessy and Patterson, which started in 1989. The demands of running one of 
the world’s great universities meant that President Hennessy could no longer make 
the substantial commitment to create a new edition. The remaining author felt 
once again like a tightrope walker without a safety net. Hence, the people in the 
acknowledgments and Berkeley colleagues played an even larger role in shaping 
the contents of this book. Nevertheless, this time around there is only one author 
to blame for the new material in what you are about to read.
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 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. This is not a dry and dreary field, 
where progress is glacial and where new ideas atrophy from neglect. No! Computers 
are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product of 
the United States, and whose economy has become dependent in part on the rapid 
improvements in information technology promised by Moore’s Law. This unusual 
industry embraces innovation at a breath-taking rate. In the last 30 years, there have 
been a number of new computers whose introduction appeared to revolutionize 
the computing industry; these revolutions were cut short only because someone 
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception 
of electronic computing in the late 1940s. Had the transportation industry kept 
pace with the computer industry, for example, today we could travel from New 
York to London in a second for a penny. Take just a moment to contemplate how 
such an improvement would change society—living in Tahiti while working in San 
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can 
appreciate the implications of such a change.
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Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and industrial revolutions. The 
resulting multiplication of humankind’s intellectual strength and reach naturally 
has affected our everyday lives profoundly and changed the ways in which the 
search for new knowledge is carried out. There is now a new vein of scientific 
investigation, with computational scientists joining theoretical and experimental 
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and 
physics, among others.

The computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications that 
were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science fiction.”

■	 Computers in automobiles: Until microprocessors improved dramatically 
in price and performance in the early 1980s, computer control of cars was 
ludicrous. Today, computers reduce pollution, improve fuel efficiency via 
engine controls, and increase safety through blind spot warnings, lane 
departure warnings, moving object detection, and air bag inflation to protect 
occupants in a crash.

■	 Cell phones: Who would have dreamed that advances in computer 
systems would lead to more than half of the planet having mobile phones,  
allowing person-to-person communication to almost anyone anywhere in 
the world?

■	 Human genome project: The cost of computer equipment to map and analyze 
human DNA sequences was hundreds of millions of dollars. It’s unlikely that 
anyone would have considered this project had the computer costs been 10 
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover, 
costs continue to drop; you will soon be able to acquire your own genome, 
allowing medical care to be tailored to you.

■	 World Wide Web: Not in existence at the time of the first edition of this book, 
the web has transformed our society. For many, the web has replaced libraries 
and newspapers.

■	 Search engines: As the content of the web grew in size and in value, finding 
relevant information became increasingly important. Today, many people 
rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our 
society. Hardware advances have allowed programmers to create wonderfully 
useful software, which explains why computers are omnipresent. Today’s science 
fiction suggests tomorrow’s killer applications: already on their way are glasses that 
augment reality, the cashless society, and cars that can drive themselves.
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Traditional Classes of Computing Applications and Their 
Characteristics
Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used 
in computers ranging from smart home appliances to cell phones to the largest 
supercomputers, these different applications have distinct design requirements 
and employ the core hardware technologies in different ways. Broadly speaking, 
computers are used in three dissimilar classes of applications.

Personal computers (PCs) are possibly the best-known form of computing, 
which readers of this book have likely used extensively. Personal computers 
emphasize delivery of good performance to single users at low cost and usually 
execute third-party software. This class of computing drove the evolution of many 
computing technologies, which is merely 35 years old!

Servers are the modern form of what were once much larger computers, and 
are usually accessed only via a network. Servers are oriented to carrying sizable 
workloads, which may consist of either single complex applications—usually a 
scientific or engineering application—or handling many small jobs, such as would 
occur in building a large web server. These applications are usually based on 
software from another source (such as a database or simulation system), but are 
often modified or customized for a particular function. Servers are built from the 
same basic technology as desktop computers, but provide for greater computing, 
storage, and input/output capacity. In general, servers also place a higher emphasis 
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and 
cost a thousand dollars. These low-end servers are typically used for file storage, 
small business applications, or simple web serving. At the other extreme are 
supercomputers, which at the present consist of tens of thousands of processors 
and many terabytes of memory, and cost tens to hundreds of millions of dollars. 
Supercomputers are usually used for high-end scientific and engineering 
calculations, such as weather forecasting, oil exploration, protein structure 
determination, and other large-scale problems. Although such supercomputers 
represent the peak of computing capability, they represent a relatively small fraction 
of the servers and thus a proportionally tiny fraction of the overall computer market 
in terms of total revenue.

Embedded computers are the largest class of computers and span the widest 
range of applications and performance. Embedded computers include the 
microprocessors found in your car, the computers in a television set, and the 
networks of processors that control a modern airplane or cargo ship. Embedded 
computing systems are designed to run one application or one set of related 
applications that are normally integrated with the hardware and delivered as a 
single system; thus, despite the large number of embedded computers, most users 
never really see that they are using a computer!

personal computer 
(PC) A computer 
designed for use by 
an individual, usually 
incorporating a graphics 
display, a keyboard, and a 
mouse.

server A computer 
used for running 
larger programs for 
multiple users, often 
simultaneously, and 
typically accessed only via 
a network.

supercomputer A class 
of computers with the 
highest performance and 
cost; they are configured 
as servers and typically 
cost tens to hundreds of 
millions of dollars.

terabyte (TB) Originally 
1,099,511,627,776 
(240) bytes, although 
communications and 
secondary storage 
systems developers 
started using the term to 
mean 1,000,000,000,000 
(1012) bytes. To reduce 
confusion, we now use the 
term tebibyte (TiB) for 
240 bytes, defining terabyte 
(TB) to mean 1012 bytes. 
Figure 1.1 shows the full 
range of decimal and 
binary values and names.

embedded computer  
A computer inside 
another device used 
for running one 
predetermined application 
or collection of software.
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Embedded applications often have unique application requirements that 
combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only to be as fast as necessary 
to handle its limited function, and beyond that, minimizing cost and power is the 
most important objective. Despite their low cost, embedded computers often have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the computer in a 
plane or cargo ship crashes). In consumer-oriented embedded applications, such as 
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded 
systems, techniques of redundancy from the server world are often employed. 
Although this book focuses on general-purpose computers, most concepts apply 
directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more 
detail on a particular subject that may be of interest. Disinterested readers may skip 
over an elaboration, since the subsequent material will never depend on the contents 
of the elaboration.

Many embedded processors are designed using processor cores, a version of a 
processor written in a hardware description language, such as Verilog or VHDL (see 
Chapter 4). The core allows a designer to integrate other application-specific hardware 
with the processor core for fabrication on a single chip.

Welcome to the Post-PC Era
The continuing march of technology brings about generational changes in 
computer hardware that shake up the entire information technology industry. 
Since the last edition of the book, we have undergone such a change, as significant 
in the past as the switch starting 30 years ago to personal computers. Replacing the 

Decimal 
term Abbreviation Value

Binary 
term Abbreviation Value % Larger

kilobyte KB 103 kibibyte KiB 210 2%

megabyte MB 106 mebibyte MiB 220 5%

gigabyte GB 109 gibibyte GiB 230 7%

terabyte TB 1012 tebibyte TiB 240 10%

petabyte PB 1015 pebibyte PiB 250 13%

exabyte EB 1018 exbibyte EiB 260 15%

zettabyte ZB 1021 zebibyte ZiB 270 18%

yottabyte YB 1024 yobibyte YiB 280 21%

FIGURE 1.1 The 2X vs. 10Y bytes ambiguity was resolved by adding a binary notation for 
all the common size terms. In the last column we note how much larger the binary term is than its 
corresponding decimal term, which is compounded as we head down the chart. These prefixes work for bits 
as well as bytes, so gigabit (Gb) is 109 bits while gibibits (Gib) is 230 bits.
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PC is the personal mobile device (PMD). PMDs are battery operated with wireless 
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs, 
users can download software (“apps”) to run on them. Unlike PCs, they no longer 
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen 
or even speech input. Today’s PMD is a smart phone or a tablet computer, but 
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth over 
time of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the conventional server is Cloud Computing, which relies 
upon giant datacenters that are now known as Warehouse Scale Computers (WSCs). 
Companies like Amazon and Google build these WSCs containing 100,000 servers 
and then let companies rent portions of them so that they can provide software 
services to PMDs without having to build WSCs of their own. Indeed, Software as a 
Service (SaaS) deployed via the Cloud is revolutionizing the software industry just 
as PMDs and WSCs are revolutionizing the hardware industry. Today’s software 
developers will often have a portion of their application that runs on the PMD and 
a portion that runs in the Cloud.

What You Can Learn in This Book
Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
popular software. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. Thus, programmers often 
followed a simple credo: minimize memory space to make programs fast. In the 

Personal mobile 
devices (PMDs) are 
small wireless devices to 
connect to the Internet; 
they rely on batteries for 
power, and software is 
installed by downloading 
apps. Conventional 
examples are smart 
phones and tablets.

Cloud Computing  
refers to large collections 
of servers that provide 
services over the Internet; 
some providers rent 
dynamically varying 
numbers of servers as a 
utility.

Software as a Service 
(SaaS) delivers software 
and data as a service over 
the Internet, usually via 
a thin program such as a 
browser that runs on local 
client devices, instead of 
binary code that must be 
installed, and runs wholly 
on that device. Examples 
include web search and 
social networking.
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FIGURE 1.2 The number manufactured per year of tablets and smart phones, which 
reflect the post-PC era, versus personal computers and traditional cell phones. Smart 
phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the 
fastest growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone 
categories are relatively flat or declining.
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last decade, advances in computer design and memory technology have greatly 
reduced the importance of small memory size in most applications other than 
those in embedded computing systems.

Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature 
of processors and the hierarchical nature of memories. We demonstrate the 
importance of this understanding in Chapters 3 to 6 by showing how to improve 
performance of a C program by a factor of 200. Moreover, as we explain in Section 
1.7, today’s programmers need to worry about energy efficiency of their programs 
running either on the PMD or in the Cloud, which also requires understanding 
what is below your code. Programmers who seek to build competitive versions of 
software will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary 
machine, unraveling the software below your program and the hardware under the 
covers of your computer. By the time you complete this book, we believe you will 
be able to answer the following questions:

■	 How are programs written in a high-level language, such as C or Java, 
translated into the language of the hardware, and how does the hardware 
execute the resulting program? Comprehending these concepts forms the 
basis of understanding the aspects of both the hardware and software that 
affect program performance.

■	 What is the interface between the software and the hardware, and how does 
software instruct the hardware to perform needed functions? These concepts 
are vital to understanding how to write many kinds of software.

■	 What determines the performance of a program, and how can a programmer 
improve the performance? As we will see, this depends on the original 
program, the software translation of that program into the computer’s 
language, and the effectiveness of the hardware in executing the program.

■	 What techniques can be used by hardware designers to improve performance? 
This book will introduce the basic concepts of modern computer design. The 
interested reader will find much more material on this topic in our advanced 
book, Computer Architecture: A Quantitative Approach.

■	 What techniques can be used by hardware designers to improve energy 
efficiency? What can the programmer do to help or hinder energy efficiency?

■	 What are the reasons for and the consequences of the recent switch from 
sequential processing to parallel processing? This book gives the motivation, 
describes the current hardware mechanisms to support parallelism, and 
surveys the new generation of “multicore” microprocessors (see Chapter 6).

■	 Since the first commercial computer in 1951, what great ideas did computer 
architects come up with that lay the foundation of modern computing?

multicore 
microprocessor  
A microprocessor 
containing multiple 
processors (“cores”) in a 
single integrated circuit.
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Without understanding the answers to these questions, improving the 
performance of your program on a modern computer or evaluating what features 
might make one computer better than another for a particular application will be 
a complex process of trial and error, rather than a scientific procedure driven by 
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and definitions, places the major components of software and hardware 
in perspective, shows how to evaluate performance and energy, introduces 
integrated circuits (the technology that fuels the computer revolution), and explains 
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the 
terminology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors) love using 
acronyms, which are easy to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a highlighted definition 
of every term in the margins the first time it appears in the text. After a short 
time of working with the terminology, you will be fluent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIe, SATA, and many others.

To reinforce how the software and hardware systems used to run a program will 
affect performance, we use a special section, Understanding Program Performance, 
throughout the book to summarize important insights into program performance. 
The first one appears below.

acronym A word 
constructed by taking the 
initial letters of a string 
of words. For example: 
RAM is an acronym for 
Random Access Memory, 
and CPU is an acronym 
for Central Processing 
Unit.

The performance of a program depends on a combination of the effectiveness of the 
algorithms used in the program, the software systems used to create and translate 
the program into machine instructions, and the effectiveness of the computer in 
executing those instructions, which may include input/output (I/O) operations. 
This table summarizes how the hardware and software affect performance.

Understanding  
Program  
Performance

Hardware or software 
component How this component affects performance

Where is this  
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of computer instructions 
for each source-level statement

Chapters 2 and 3

Processor and memory 
system

Determines how fast instructions can be 
executed

Chapters 4, 5, and 6

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed

Chapters 4, 5, and 6
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To demonstrate the impact of the ideas in this book, as mentioned above, we 
improve the performance of a C program that multiplies a matrix times a vector 
in a sequence of chapters. Each step leverages understanding how the underlying 
hardware really works in a modern microprocessor to improve performance by a 
factor of 200!

■	 In the category of data-level parallelism, in Chapter 3 we use subword 
parallelism via C intrinsics to increase performance by a factor of 3.8.

■	 In the category of instruction-level parallelism, in Chapter 4 we use loop 
unrolling to exploit multiple instruction issue and out-of-order execution 
hardware to increase performance by another factor of 2.3.

■	 In the category of memory hierarchy optimization, in Chapter 5 we use  
cache blocking to increase performance on large matrices by another factor of 
2.0 to 2.5.

■	 In the category of thread-level parallelism, in Chapter 6 we use parallel for 
loops in OpenMP to exploit multicore hardware to increase performance by 
another factor of 4 to 14.

Check  
Yourself

Check Yourself sections are designed to help readers assess whether they  
comprehend the major concepts introduced in a chapter and understand the 
implications of those concepts. Some Check Yourself questions have simple answers; 
others are for discussion among a group. Answers to the specific questions can  
be found at the end of the chapter. Check Yourself questions appear only at the 
end of a section, making it easy to skip them if you are sure you understand the 
material.

1. The number of embedded processors sold every year greatly outnumbers 
the number of PC and even post-PC processors. Can you confirm or deny 
this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of conventional computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance 
of a program. Can you think of examples where each of the following is the 
right place to look for a performance bottleneck?

■	 The algorithm chosen
■	 The programming language or compiler
■	 The operating system
■	 The processor
■	 The I/O system and devices
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 1.2 Eight Great Ideas in Computer 
Architecture

We now introduce eight great ideas that computer architects have invented in 
the last 60 years of computer design. These ideas are so powerful they have lasted 
long after the first computer that used them, with newer architects demonstrating 
their admiration by imitating their predecessors. These great ideas are themes that 
we will weave through this and subsequent chapters as examples arise. To point 
out their influence, in this section we introduce icons and highlighted terms that 
represent the great ideas and we use them to identify the nearly 100 sections of the 
book that feature use of the great ideas.

Design for Moore’s Law
The one constant for computer designers is rapid change, which is driven largely by 
Moore’s Law. It states that integrated circuit resources double every 18–24 months. 
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made 
by Gordon Moore, one of the founders of Intel. As computer designs can take years, 
the resources available per chip can easily double or quadruple between the start 
and finish of the project. Like a skeet shooter, computer architects must anticipate 
where the technology will be when the design finishes rather than design for where 
it starts. We use an “up and to the right” Moore’s Law graph to represent designing 
for rapid change.

Use Abstraction to Simplify Design
Both computer architects and programmers had to invent techniques to make 
themselves more productive, for otherwise design time would lengthen as 
dramatically as resources grew by Moore’s Law. A major productivity technique for 
hardware and software is to use abstractions to characterize the design at different 
levels of representation; lower-level details are hidden to offer a simpler model at 
higher levels. We’ll use the abstract painting icon to represent this second great idea.

Make the Common Case Fast
Making the common case fast will tend to enhance performance better than 
optimizing the rare case. Ironically, the common case is often simpler than the rare 
case and hence is usually easier to enhance. This common sense advice implies 
that you know what the common case is, which is only possible with careful 
experimentation and measurement (see Section 1.6). We use a sports car as the 
icon for making the common case fast, as the most common trip has one or two 
passengers, and it’s surely easier to make a fast sports car than a fast minivan!
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Performance via Parallelism
Since the dawn of computing, computer architects have offered designs that get 
more performance by computing operations in parallel. We’ll see many examples 
of parallelism in this book. We use multiple jet engines of a plane as our icon for 
parallel performance.

Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer architecture that 
it merits its own name: pipelining. For example, before fire engines, a “bucket 
brigade” would respond to a fire, which many cowboy movies show in response to 
a dastardly act by the villain. The townsfolk form a human chain to carry a water 
source to fire, as they could much more quickly move buckets up the chain instead 
of individuals running back and forth. Our pipeline icon is a sequence of pipes, 
with each section representing one stage of the pipeline.

Performance via Prediction
Following the saying that it can be better to ask for forgiveness than to ask for 
permission, the next great idea is prediction. In some cases, it can be faster on 
average to guess and start working rather than wait until you know for sure, 
assuming that the mechanism to recover from a misprediction is not too expensive 
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as 
our prediction icon.

Hierarchy of Memories
Programmers want the memory to be fast, large, and cheap, as memory speed often 
shapes performance, capacity limits the size of problems that can be solved, and the 
cost of memory today is often the majority of computer cost. Architects have found 
that they can address these conflicting demands with a hierarchy of memories, with 
the fastest, smallest, and the most expensive memory per bit at the top of the hierarchy 
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in Chapter 
5, caches give the programmer the illusion that main memory is almost as fast as the 
top of the hierarchy and nearly as big and cheap as the bottom of the hierarchy. We 
use a layered triangle icon to represent the memory hierarchy. The shape indicates 
speed, cost, and size: the closer to the top, the faster and more expensive per bit the 
memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy
Computers not only need to be fast; they need to be dependable. Since any physical 
device can fail, we make systems dependable by including redundant components that 
can take over when a failure occurs and to help detect failures. We use the tractor-trailer 
as our icon, since the dual tires on each side of its rear axles allow the truck to continue 
driving even when one tire fails. (Presumably, the truck driver heads immediately to a 
repair facility so the flat tire can be fixed, thereby restoring redundancy!)
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 1.3 Below Your Program

A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated software libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple low-level instructions. 
To go from a complex application to the primitive instructions involves several 
layers of software that interpret or translate high-level operations into simple 
computer instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of software are organized primarily in a 
hierarchical fashion, with applications being the outermost ring and a variety of 
systems software sitting between the hardware and the application software.

There are many types of systems software, but two types of systems software 
are central to every computer system today: an operating system and a compiler. 
An operating system interfaces between a user’s program and the hardware 
and provides a variety of services and supervisory functions. Among the most 
important functions are:

■	 Handling basic input and output operations

■	 Allocating storage and memory

■	 Providing for protected sharing of the computer among multiple applications 
using it simultaneously

Examples of operating systems in use today are Linux, iOS, and Windows.

systems software  
Software that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.

operating system  
Supervising program that 
manages the resources of 
a computer for the benefit 
of the programs that run 
on that computer.Application software 

Sys
tems software 

Hardware

FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown 
as concentric circles with hardware in the center and application software outermost. In 
complex applications, there are often multiple layers of application software as well. For example, a database 
system may run on top of the systems software hosting an application, which in turn runs on top of the 
database.

In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own language.
Mark Twain, The 
Innocents Abroad, 1869
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Compilers perform another vital function: the translation of a program written 
in a high-level language, such as C, C++, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
languages and the simplicity of the instructions executed by the hardware, the 
translation from a high-level language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in Chapter 2.

From a High-Level Language to the Language of Hardware
To speak directly to electronic hardware, you need to send electrical signals. The 
easiest signals for computers to understand are on and off, and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. The two symbols for these two letters are the numbers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are 
slaves to our commands, which are called instructions. Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits

1001010100101110

tell one computer to add two numbers. Chapter 2 explains why we use numbers 
for instructions and data; we don’t want to steal that chapter’s thunder, but using 
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At first, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the computer, the 
pioneers invented software to translate from symbolic notation to binary. The first of 
these programs was named an assembler. This program translates a symbolic version 
of an instruction into the binary version. For example, the programmer would write

add A, B

and the assembler would translate this notation into

1001010100101110

This instruction tells the computer to add the two numbers A and B. The name coined 
for this symbolic language, still used today, is assembly language. In contrast, the 
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate fluid flow or that an accountant 
might use to balance the books. Assembly language requires the programmer 
to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer.

compiler A program 
that translates high-level 
language statements 
into assembly language 
statements.

binary digit Also called 
a bit. One of the two 
numbers in base 2 (0 or 1) 
that are the components 
of information.

instruction A command 
that computer hardware 
understands and obeys.

assembler A program 
that translates a symbolic 
version of instructions 
into the binary version.

assembly language  
A symbolic representation 
of machine instructions.

machine language  
A binary representation of 
machine instructions.
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The recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of high-level programming languages and compilers 
that translate programs in such languages into instructions. Figure 1.4 shows the 
relationships among these programs and languages, which are more examples of 
the power of abstraction.

high-level 
programming 
language A portable 
language such as C, C++, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
language.

swap(size_t v[], size_t k)
{
   size_t temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

Assembler

Compiler

Binary machine
language
program
(for RISC-V)

Assembly
language
program
(for RISC-V)

High-level
language
program
(in C)

slli x6, x11, 3
add  x6, x10, x6
ld   x5, 0(x6)  
ld   x7, 8(x6)  
sd   x7, 0(x6)  
sd   x5, 8(x6)  
jalr x0, 0(x1)

 swap:

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

FIGURE 1.4 C program compiled into assembly language and then assembled into binary 
machine language. Although the translation from high-level language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
These languages and this program are examined in more detail in Chapter 2.
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A compiler enables a programmer to write this high-level language expression:

A + B

The compiler would compile it into this assembly language statement:

add A, B

As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for scientific 
computation, Cobol for business data processing, Lisp for symbol manipulation, 
and so on. There are also domain-specific languages for even narrower groups of 
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in software development 
is that it takes less time to develop programs when they are written in languages 
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

The final advantage is that programming languages allow programs to be 
independent of the computer on which they were developed, since compilers and 
assemblers can translate high-level language programs to the binary instructions of 
any computer. These three advantages are so strong that today little programming 
is done in assembly language.

 1.4 Under the Covers

Now that we have looked below your program to uncover the underlying software, 
let’s open the covers of your computer to learn about the underlying hardware. The 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chapters deal with 
different parts of these four tasks.

When we come to an important point in this book, a point so significant that 
we hope you will remember it forever, we emphasize it by identifying it as a Big 
Picture item. We have about a dozen Big Pictures in this book, the first being the 
five components of a computer that perform the tasks of inputting, outputting, 
processing, and storing data.

Two key components of computers are input devices, such as the microphone, 
and output devices, such as the speaker. As the names suggest, input feeds the 

input device  
A mechanism through 
which the computer is 
fed information, such as a 
keyboard.

output device  
A mechanism that 
conveys the result of a 
computation to a user, 
such as a display, or to 
another computer.
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computer, and output is the result of computation sent to the user. Some devices, 
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s take 
an introductory tour through the computer hardware, starting with the external 
I/O devices.

The five classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor. Figure 1.5 shows the standard organization of a computer. 
This organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these five 
categories. To help you keep all this in perspective, the five components of 
a computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.

The BIG 
Picture

FIGURE 1.5 The organization of a computer, showing the five classic components. The 
processor gets instructions and data from memory. Input writes data to memory, and output reads data from 
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.
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Through the Looking Glass
The most fascinating I/O device is probably the graphics display. Most personal 
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display. 
The LCD is not the source of light; instead, it controls the transmission of light.  
A typical LCD includes rod-shaped molecules in a liquid that form a twisting  
helix that bends light entering the display, from either a light source behind the 
display or less often from reflected light. The rods straighten out when a current is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCDs use an active matrix that has a tiny transistor switch at each 
pixel to control current precisely and make sharper images. A red-green-blue 
mask associated with each dot on the display determines the intensity of the three-
color components in the final image; in a color active matrix LCD, there are three 
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can  
be represented as a matrix of bits, called a bit map. Depending on the size of the 
screen and the resolution, the display matrix in a typical tablet ranges in size from 
1024 × 768 to 2048 × 1536. A color display might use 8 bits for each of the three 
colors (red, blue, and green), for 24 bits per pixel, permitting millions of different 
colors to be displayed.

The computer hardware support for graphics consists mainly of a raster refresh 
buffer, or frame buffer, to store the bit map. The image to be represented onscreen 
is stored in the frame buffer, and the bit pattern per pixel is read out to the graphics 
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design 
of just 4 bits per pixel.

The goal of the bit map is to represent faithfully what is on the screen. The 
challenges in graphics systems arise because the human eye is very good at detecting 
even subtle changes on the screen.

liquid crystal display 
(LCD) A display 
technology using a thin 
layer of liquid polymers 
that can be used to 
transmit or block light 
according to whether a 
charge is applied.

active matrix display  
A liquid crystal display 
using a transistor to 
control the transmission 
of light at each individual 
pixel.

pixel The smallest 
individual picture 
element. Screens are 
composed of hundreds 
of thousands to millions 
of pixels, organized in a 
matrix.

Through computer 
displays I have landed 
an airplane on the 
deck of a moving 
carrier, observed a 
nuclear particle hit a 
potential well, flown 
in a rocket at nearly 
the speed of light and 
watched a computer 
reveal its innermost 
workings.
Ivan Sutherland, the 
“father” of computer 
graphics, Scientific 
American, 1984

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the 
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains 
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X1, Y1).
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Touchscreen
While PCs also use LCDs, the tablets and smartphones of the post-PC era have 
replaced the keyboard and mouse with touch-sensitive displays, which has 
the wonderful user interface advantage of users pointing directly at what they  
are interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets 
today use capacitive sensing. Since people are electrical conductors, if an insulator 
like glass is covered with a transparent conductor, touching distorts the electrostatic 
field of the screen, which results in a change in capacitance. This technology can 
allow multiple touches simultaneously, which recognizes gestures that can lead to 
attractive user interfaces.

Opening the Box
Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, 
of the five classic components of the computer, I/O dominates this reading device. 
The list of I/O devices includes a capacitive multitouch LCD, front-facing camera, 
rear-facing camera, microphone, headphone jack, speakers, accelerometer, 
gyroscope, Wi-Fi network, and Bluetooth network. The datapath, control, and 
memory are a tiny portion of the components.

The small rectangles in Figure 1.8 contain the devices that drive our advancing 
technology, called integrated circuits and nicknamed chips. The A5 package 
seen in the middle of Figure 1.8 contains two ARM processors that operate at a 
clock rate of 1 GHz. The processor is the active part of the computer, following the 
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O 
devices to activate, and so on. Occasionally, people call the processor the CPU, for 
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a 
microprocessor. The processor logically comprises two main components: datapath 
and control, the respective brawn and brain of the processor. The datapath performs 
the arithmetic operations, and control tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program. Chapter 4 
explains the datapath and control for a higher-performance design.

The A5 package in Figure 1.8 also includes two memory chips, each with 
2 gibibits of capacity, thereby supplying 512 MiB. The memory is where the 
programs are kept when they are running; it also contains the data needed by the 
running programs. The memory is built from DRAM chips. DRAM stands for 
dynamic random access memory. Multiple DRAMs are used together to contain 
the instructions and data of a program. In contrast to sequential access memories, 
such as magnetic tapes, the RAM portion of the term DRAM means that memory 
accesses take basically the same amount of time no matter what portion of the 
memory is read.

Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache memory. 

integrated circuit Also 
called a chip. A device 
combining dozens to 
millions of transistors.

central processor unit 
(CPU) Also called 
processor. The active part 
of the computer, which 
contains the datapath and 
control and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.

datapath The 
component of the 
processor that performs 
arithmetic operations.

control The component 
of the processor that 
commands the datapath, 
memory, and I/O 
devices according to 
the instructions of the 
program.

memory The storage 
area in which programs 
are kept when they are 
running and that contains 
the data needed by the 
running programs.

dynamic random access  
memory (DRAM)  
Memory built as an 
integrated circuit; it 
provides random access to 
any location. Access times 
are 50 nanoseconds and 
cost per gigabyte in 2012 
was $5 to $10.
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FIGURE 1.7 Components of the Apple iPad 2 A1395. The metal back of the iPad (with the reversed 
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD. To the 
far right is the 3.8 V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and offers  
10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. The 
small components surrounding the metal back in the center are what we think of as the computer; they 
are often L-shaped to fit compactly inside the case next to the battery. Figure 1.8 shows a close-up of the 
L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the 
processor and the memory. The tiny rectangle below the logic board contains a chip that provides wireless 
communication: Wi-Fi, Bluetooth, and FM tuner. It fits into a small slot in the lower left corner of the logic 
board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera 
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case 
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and 
accelerometer. These last two chips combine to allow the iPad to recognize six-axis motion. The tiny rectangle 
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. The 
cable at the bottom is the connector between the logic board and the camera/volume control board. The 
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy 
iFixit, www.ifixit.com)

FIGURE 1.8 The logic board of Apple iPad 2 in Figure 1.7. The photo highlights five integrated circuits. 
The large integrated circuit in the middle is the Apple A5 chip, which contains dual ARM processor cores 
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of 
the processor chip inside the A5 package. The similar-sized chip to the left is the 32 GB flash memory chip 
for non-volatile storage. There is an empty space between the two chips where a second flash chip can be 
installed to double storage capacity of the iPad. The chips to the right of the A5 include power controller and 
I/O controller chips. (Courtesy iFixit, www.ifixit.com)

http://www.ifixit.com
http://www.ifixit.com
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Cache memory consists of a small, fast memory that acts as a buffer for the DRAM 
memory. (The nontechnical definition of cache is a safe place for hiding things.) 
Cache is built using a different memory technology, static random access memory 
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM 
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small, 
fast memory that acts as a 
buffer for a slower, larger 
memory.

static random access 
memory (SRAM) Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.

FIGURE 1.9 The processor integrated circuit inside the A5 package. The size of chip is 12.1 by 10.1 mm, and 
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or 
cores in the middle left of the chip and a PowerVR graphics processing unit (GPU) with four datapaths in the 
upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM). 
(Courtesy Chipworks, www.chipworks.com)

http://www.chipworks.com
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As mentioned above, one of the great ideas to improve design is abstraction. 
One of the most important abstractions is the interface between the hardware  
and the lowest-level software. Because of its importance, it is given a special  
name: the instruction set architecture, or simply architecture, of a computer. 
The instruction set architecture includes anything programmers need to know to 
make a binary machine language program work correctly, including instructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the  
details of doing I/O, allocating memory, and other low-level system functions 
so that application programmers do not need to worry about such details. The 
combination of the basic instruction set and the operating system interface 
provided for application programmers is called the application binary interface 
(ABI).

An instruction set architecture allows computer designers to talk about functions 
independently from the hardware that performs them. For example, we can talk 
about the functions of a digital clock (keeping time, displaying the time, setting the 
alarm) separately from the clock hardware (quartz crystal, LED displays, plastic 
buttons). Computer designers distinguish architecture from an implementation of 
an architecture along the same lines: an implementation is hardware that obeys the 
architecture abstraction. These ideas bring us to another Big Picture.

instruction set 
architecture Also 
called architecture. An 
abstract interface between 
the hardware and the 
lowest-level software 
that encompasses all the 
information necessary to 
write a machine language 
program that will run 
correctly, including 
instructions, registers, 
memory access, I/O, and 
so on.

application binary 
interface (ABI) The user 
portion of the instruction 
set plus the operating 
system interfaces used by 
application programmers. 
It defines a standard for 
binary portability across 
computers. Both hardware and software consist of hierarchical layers using abstraction, 

with each lower layer hiding details from the level above. One key interface 
between the levels of abstraction is the instruction set architecture—the 
interface between the hardware and low-level software. This abstract 
interface enables many implementations of varying cost and performance 
to run identical software.

The BIG 
Picture

A Safe Place for Data
Thus far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is volatile—that is, when it loses power, 
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off the 
power to the DVD player, and is therefore a nonvolatile memory technology.

implementation  
Hardware that obeys the 
architecture abstraction.

volatile memory  
Storage, such as DRAM, 
that retains data only if it 
is receiving power.

nonvolatile memory  
A form of memory that 
retains data even in the 
absence of a power source 
and that is used to store 
programs between runs.  
A DVD disk is nonvolatile.
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To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and 
programs between runs, the term main memory or primary memory is used for 
the former, and secondary memory for the latter. Secondary memory forms the 
next lower layer of the memory hierarchy. DRAMs have dominated main memory 
since 1975, but magnetic disks dominated secondary memory starting even earlier. 
Because of their size and form factor, personal mobile devices use flash memory, 
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip 
containing the flash memory of the iPad 2. While slower than DRAM, it is much 
cheaper than DRAM in addition to being nonvolatile. Although costing more per 
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged, 
and it is more power efficient than disks. Hence, flash memory is the standard 
secondary memory for PMDs. Alas, unlike disks and DRAM, flash memory bits 
wear out after 100,000 to 1,000,000 writes. Thus, file systems must keep track of 
the number of writes and have a strategy to avoid wearing out storage, such as by 
moving popular data. Chapter 5 describes disks and flash memory in more detail.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in Figure 1.5 is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new personal mobile device 
or server without a network interface would be ridiculed. Networked computers 
have several major advantages:

■	 Communication: Information is exchanged between computers at high 
speeds.

■	 Resource sharing: Rather than each computer having its own I/O devices, 
computers on the network can share I/O devices.

■	 Nonlocal access: By connecting computers over long distances, users need not 
be near the computer they are using.

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is Ethernet. It can 
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and 
speed make Ethernet useful to connect computers on the same floor of a building; 

main memory Also 
called primary memory. 
Memory used to hold 
programs while they are 
running; typically consists 
of DRAM in today’s 
computers.

secondary memory  
Nonvolatile memory 
used to store programs 
and data between runs; 
typically consists of flash 
memory in PMDs and 
magnetic disks in servers.

magnetic disk Also 
called hard disk. A form 
of nonvolatile secondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
material. Because they 
are rotating mechanical 
devices, access times are 
about 5 to 20 milliseconds 
and cost per gigabyte in 
2012 was $0.05 to $0.10.

flash memory  
A nonvolatile semi-
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive per bit and 
faster than magnetic disks. 
Access times are about 5 
to 50 microseconds and 
cost per gigabyte in 2012 
was $0.75 to $1.00.
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hence, it is an example of what is generically called a local area network. Local area 
networks are interconnected with switches that can also provide routing services 
and security. Wide area networks cross continents and are the backbone of the 
Internet, which supports the web. They are typically based on optical fibers and are 
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by 
becoming much more ubiquitous and by making dramatic increases in performance. 
In the 1970s, very few individuals had access to electronic mail, the Internet and 
web did not exist, and physically mailing magnetic tapes was the primary way to 
transfer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access.

As networking technology improved, it became considerably cheaper and 
had a significantly higher capacity. For example, the first standardized local area 
network technology, developed about 30 years ago, was a version of Ethernet that 
had a maximum capacity (also called bandwidth) of 10 million bits per second, 
typically shared by tens of, if not a hundred, computers. Today, local area network 
technology offers a capacity of from 1 to 40 gigabits per second, usually shared 
by at most a few computers. Optical communications technology has allowed 
similar growth in the capacity of wide area networks, from hundreds of kilobits 
to gigabits and from hundreds of computers connected to a worldwide network to 
millions of computers connected. This dramatic rise in deployment of networking 
combined with increases in capacity have made network technology central to the 
information revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way 
computers communicate. Wireless technology is widespread, which enabled  
the post-PC era. The ability to make a radio in the same low-cost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a significant 
improvement in price, leading to an explosion in deployment. Currently available 
wireless technologies, called by the IEEE standard name 802.11, allow for transmission 
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit  
different from wire-based networks, since all users in an immediate area share the 
airwaves.

local area network 
(LAN) A network 
designed to carry data 
within a geographically 
confined area, typically 
within a single building.

wide area network 
(WAN) A network 
extended over hundreds 
of kilometers that can 
span a continent.

Check  
Yourself

■	 Semiconductor DRAM memory, flash memory, and disk storage differ 
significantly. For each technology, list its volatility, approximate relative 
access time, and approximate relative cost compared to DRAM.

 1.5 Technologies for Building Processors  
and Memory

Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer. Figure 1.10 shows the technologies that have 
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been used over time, with an estimate of the relative performance per unit cost for 
each technology. Since this technology shapes what computers will be able to do 
and how quickly they will evolve, we believe all computer professionals should be 
familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated 
circuit (IC) combined dozens to hundreds of transistors into a single chip. When 
Gordon Moore predicted the continuous doubling of resources, he was forecasting 
the growth rate of the number of transistors per chip. To describe the tremendous 
increase in the number of transistors from hundreds to millions, the adjective very 
large scale is added to the term, creating the abbreviation VLSI, for very large-scale 
integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.11 shows 
the growth in DRAM capacity since 1977. For 35 years, the industry has consistently 
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how to manufacture integrated circuits, we start at the beginning. 
The manufacture of a chip begins with silicon, a substance found in sand. Because 
silicon does not conduct electricity well, it is called a semiconductor. With a special 
chemical process, it is possible to add materials to silicon that allow tiny areas to 
transform into one of three devices:

■	 Excellent conductors of electricity (using either microscopic copper or 
aluminum wire)

transistor An on/off 
switch controlled by an 
electric signal.

very large-scale 
integrated (VLSI) 
circuit A device 
containing hundreds of 
thousands to millions of 
transistors.

silicon A natural  
element that is a 
semiconductor.

semiconductor  
A substance that does not 
conduct electricity well.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1
1965 35
1975 Integrated circuit

Very large-scale integrated circuit
Ultra large-scale integrated circuit

Transistor
900

1995 2,400,000
2013 250,000,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over 
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See  Section 1.12.
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FIGURE 1.11 Growth of capacity per DRAM chip over time. The y-axis is measured in kibibits (210 bits). The DRAM industry 
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat 
closer to doubling every two to three years.
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■	 Excellent insulators from electricity (like plastic sheathing or glass)

■	 Areas that can conduct or insulate under specific conditions (as a switch)

Transistors fall into the last category. A VLSI circuit, then, is just billions of 
combinations of conductors, insulators, and switches manufactured in a single 
small package.

The manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers. Figure 1.12 shows that process. 
The process starts with a silicon crystal ingot, which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot 
is finely sliced into wafers no more than 0.1 inches thick. These wafers then go 
through a series of processing steps, during which patterns of chemicals are placed 
on each wafer, creating the transistors, conductors, and insulators discussed earlier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators.

silicon crystal ingot  
A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.

wafer A slice from a 
silicon ingot no more than 
0.1 inches thick, used to 
create chips.

called dies and more informally known as chips. Figure 1.13 shows a photograph 
of a wafer containing microprocessors before they have been diced; earlier, Figure 
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to 
contain the flaws, rather than the whole wafer. This concept is quantified by the 
yield of a process, which is defined as the percentage of good dies from the total 
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and to the fewer dies that fit on a wafer. To reduce the cost, 
using the next generation process shrinks a large die as it uses smaller sizes for 
both transistors and wires. This improves the yield and the die count per wafer. A 
32-nanometer (nm) process was typical in 2012, which means essentially that the 
smallest feature size on the die is 32 nm.

defect A microscopic 
flaw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.

die The individual 
rectangular sections that 
are cut from a wafer, more 
informally known as 
chips.

yield The percentage of 
good dies from the total 
number of dies on the 
wafer.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are 
then tested with a wafer tester, and a map of the good parts is made. Next, the wafers are diced into dies (see 
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) 
The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and 
tested one more time before shipping the packaged parts to customers. One bad packaged part was found 
in this final test.

A single microscopic flaw in the wafer itself or in one of the dozens of patterning 
steps can result in that area of the wafer failing. These defects, as they are called, 
make it virtually impossible to manufacture a perfect wafer. The simplest way to 
cope with imperfection is to place many independent components on a single 
wafer. The patterned wafer is then chopped up, or diced, into these components, 
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called dies and more informally known as chips. Figure 1.13 shows a photograph 
of a wafer containing microprocessors before they have been diced; earlier, Figure 
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to 
contain the flaws, rather than the whole wafer. This concept is quantified by the 
yield of a process, which is defined as the percentage of good dies from the total 
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and to the fewer dies that fit on a wafer. To reduce the cost, 
using the next generation process shrinks a large die as it uses smaller sizes for 
both transistors and wires. This improves the yield and the die count per wafer. A 
32-nanometer (nm) process was typical in 2012, which means essentially that the 
smallest feature size on the die is 32 nm.

defect A microscopic 
flaw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.

die The individual 
rectangular sections that 
are cut from a wafer, more 
informally known as 
chips.

yield The percentage of 
good dies from the total 
number of dies on the 
wafer.

FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). The number of 
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. The several dozen partially 
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the 
masks used to pattern the silicon. This die uses a 32-nanometer technology, which means that the smallest 
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature 
size, which refers to the size of the transistors as “drawn” versus the final manufactured size.
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Once you’ve found good dies, they are connected to the input/output pins of a 
package, using a process called bonding. These packaged parts are tested a final time, 
since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple 
equations:

Cost per die
Cost per wafer

Dies per wafer yield

Dies per waffer
Wafer area
Die area

Yield
Defects per area Die are

�

1

1( ( aa/2))2

The first equation is straightforward to derive. The second is an approximation, 
since it does not subtract the area near the border of the round wafer that cannot 
accommodate the rectangular dies (see Figure 1.13). The final equation is based on 
empirical observations of yields at integrated circuit factories, with the exponent related 
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are 
generally not linear in the die area.

Check  
Yourself

A key factor in determining the cost of an integrated circuit is volume. Which of 
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular 
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower 
for higher volumes.

4. Engineering development costs are high and largely independent of volume; 
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and 
therefore, have higher yield per wafer.

 1.6 Performance

Assessing the performance of computers can be quite challenging. The scale and 
intricacy of modern software systems, together with the wide range of performance 
improvement techniques employed by hardware designers, have made performance 
assessment much more difficult.

When trying to choose among different computers, performance is an important 
attribute. Accurately measuring and comparing different computers is critical to 
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purchasers and therefore, to designers. The people selling computers know this as 
well. Often, salespeople would like you to see their computer in the best possible 
light, whether or not this light accurately reflects the needs of the purchaser’s 
application. Hence, understanding how best to measure performance and the 
limitations of those measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be 
determined; then, we describe the metrics for measuring performance from the 
viewpoint of both a computer user and a designer. We also look at how these metrics 
are related and present the classical processor performance equation, which we will 
use throughout the text.

Defining Performance
When we say one computer has better performance than another, what do we 
mean? Although this question might seem simple, an analogy with passenger 
airplanes shows how subtle the question of performance can be. Figure 1.14 
lists some typical passenger airplanes, together with their cruising speed, range, 
and capacity. If we wanted to know which of the planes in this table had the best 
performance, we would first need to define performance. For example, considering 
different measures of performance, we see that the plane with the highest cruising 
speed was the Concorde (retired from service in 2003), the plane with the longest 
range is the DC-8, and the plane with the largest capacity is the 747.

Airplane
Passenger
capacity

Cruising range 
(miles)

Cruising speed 
(m.p.h.)

Passenger throughput 
(passengers × m.p.h.) 

Boeing 777 375 4630 610 228,750
Boeing 747 470

132
146

4150 610 286,700
BAC/Sud Concorde 4000 1350 178,200
Douglas DC-8-50 8720 544  79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last 
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising 
speed (ignoring range and takeoff and landing times).

Let’s suppose we define performance in terms of speed. This still leaves two 
possible definitions. You could define the fastest plane as the one with the highest 
cruising speed, taking a single passenger from one point to another in the least time. 
If you were interested in transporting 450 passengers from one point to another, 
however, the 747 would clearly be the fastest, as the last column of the figure shows. 
Similarly, we can define computer performance in several distinct ways.

If you were running a program on two different desktop computers, you’d say 
that the faster one is the desktop computer that gets the job done first. If you were 
running a datacenter that had several servers running jobs submitted by many users, 
you’d say that the faster computer was the one that completed the most jobs during 
a day. As an individual computer user, you are interested in reducing response 
time—the time between the start and completion of a task—also referred to as 

response time Also 
called execution time. 
The total time required 
for the computer to 
complete a task, including 
disk accesses, memory 
accesses, I/O activities, 
operating system 
overhead, CPU execution 
time, and so on.
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execution time. Datacenter managers often care about increasing throughput or 
bandwidth—the total amount of work done in a given time. Hence, in most cases, 
we will need different performance metrics as well as different sets of applications 
to benchmark personal mobile devices, which are more focused on response time, 
versus servers, which are more focused on throughput.

throughput Also called 
bandwidth. Another 
measure of performance, 
it is the number of tasks 
completed per unit time.

EXAMPLE

ANSWER

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease 
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors 
for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case 
1, both response time and throughput are improved. In case 2, no one task gets 
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost 
as large as the throughput, the system might force requests to queue up. In 
this case, increasing the throughput could also improve response time, since 
it would reduce the waiting time in the queue. Thus, in many real computer 
systems, changing either execution time or throughput often affects the other.

In discussing the performance of computers, we will be primarily concerned with 
response time for the first few chapters. To maximize performance, we want to 
minimize response time or execution time for some task. Thus, we can relate 
performance and execution time for a computer X:

Performance
Execution timeX

X
�

1

This means that for two computers X and Y, if the performance of X is greater than 
the performance of Y, we have

Performance Performance

Execution time Execution time
Ex

X Y

YX

�

�
1 1

eecution time Execution timeXY �

That is, the execution time on Y is longer than that on X, if X is faster than Y.
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In discussing a computer design, we often want to relate the performance of two 
different computers quantitatively. We will use the phrase “X is n times faster than 
Y”—or equivalently “X is n times as fast as Y”—to mean

Performance
Performance

X

Y
� n

If X is n times as fast as Y, then the execution time on Y is n times as long as it is 
on X:

Performance
Performance

Execution time
Execution time

X

Y

Y

X
� �

 n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same 
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if

Performance
Performance

Execution time
Execution time

A

B

B

A
� �

 
n

Thus the performance ratio is
15
10

1 5� .

and A is therefore 1.5 times as fast as B.

EXAMPLE

ANSWER

In the above example, we could also say that computer B is 1.5 times slower than 
computer A, since

Performance
Performance

A

B
� 1 5.

means that

Performance PerformanceA
B1 5.

�
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For simplicity, we will normally use the terminology as fast as when we try to 
compare computers quantitatively. Because performance and execution time are 
reciprocals, increasing performance requires decreasing execution time. To avoid 
the potential confusion between the terms increasing and decreasing, we usually 
say “improve performance” or “improve execution time” when we mean “increase 
performance” and “decrease execution time.”

Measuring Performance
Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program execution time is 
measured in seconds per program. However, time can be defined in different ways, 
depending on what we count. The most straightforward definition of time is called 
wall clock time, response time, or elapsed time. These terms mean the total time 
to complete a task, including disk accesses, memory accesses, input/output (I/O) 
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several 
programs simultaneously. In such cases, the system may try to optimize throughput 
rather than attempt to minimize the elapsed time for one program. Hence, we 
often want to distinguish between the elapsed time and the time over which the 
processor is working on our behalf. CPU execution time or simply CPU time, 
which recognizes this distinction, is the time the CPU spends computing for this 
task and does not include time spent waiting for I/O or running other programs. 
(Remember, though, that the response time experienced by the user will be the 
elapsed time of the program, not the CPU time.) CPU time can be further divided 
into the CPU time spent in the program, called user CPU time, and the CPU time 
spent in the operating system performing tasks on behalf of the program, called 
system CPU time. Differentiating between system and user CPU time is difficult to 
do accurately, because it is often hard to assign responsibility for operating system 
activities to one user program rather than another and because of the functionality 
differences between operating systems.

For consistency, we maintain a distinction between performance based on 
elapsed time and that based on CPU execution time. We will use the term system 
performance to refer to elapsed time on an unloaded system and CPU performance 
to refer to user CPU time. We will focus on CPU performance in this chapter, 
although our discussions of how to summarize performance can be applied to 
either elapsed time or CPU time measurements.

CPU execution 
time Also called CPU 
time. The actual time the 
CPU spends computing 
for a specific task.

user CPU time The 
CPU time spent in a 
program itself.

system CPU time The 
CPU time spent in 
the operating system 
performing tasks on 
behalf of the program.

Different applications are sensitive to different aspects of the performance of a 
computer system. Many applications, especially those running on servers, depend 
as much on I/O performance, which, in turn, relies on both hardware and software. 
Total elapsed time measured by a wall clock is the measurement of interest. In 

Understanding  
Program  

Performance
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Although as computer users we care about time, when we examine the details 
of a computer it’s convenient to think about performance in other metrics. In 
particular, computer designers may want to think about a computer by using a 
measure that relates to how fast the hardware can perform basic functions. Almost 
all computers are constructed using a clock that determines when events take  
place in the hardware. These discrete time intervals are called clock cycles (or  
ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a 
clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or 
250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the 
clock period. In the next subsection, we will formalize the relationship between the 
clock cycles of the hardware designer and the seconds of the computer user.

clock cycle Also called 
tick, clock tick, clock 
period, clock, or cycle. 
The time for one clock 
period, usually of the 
processor clock, which 
runs at a constant rate.

clock period The length 
of each clock cycle.

some application environments, the user may care about throughput, response 
time, or a complex combination of the two (e.g., maximum throughput with a 
worst-case response time). To improve the performance of a program, one must 
have a clear definition of what performance metric matters and then proceed to 
find performance bottlenecks by measuring program execution and looking for 
the likely bottlenecks. In the following chapters, we will describe how to search for 
bottlenecks and improve performance in various parts of the system.

1. Suppose we know that an application that uses both personal mobile 
devices and the Cloud is limited by network performance. For the following 
changes, state whether only the throughput improves, both response time 
and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud, 
increasing the total network throughput and reducing the delay to obtain 
network access (since there are now two channels).

b. The networking software is improved, thereby reducing the network 
communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is four times as fast as the performance of 
computer B, which runs a given application in 28 seconds. How long will 
computer C take to run that application?

Check  
Yourself

CPU Performance and Its Factors
Users and designers often examine performance using different metrics. If we could 
relate these different metrics, we could determine the effect of a design change 
on the performance as experienced by the user. Since we are confining ourselves 
to CPU performance at this point, the bottom-line performance measure is CPU 
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execution time. A simple formula relates the most basic metrics (clock cycles and 
clock cycle time) to CPU time:

CPU execution time
for a program

CPU clock cycles
for a program Clocck cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time
for a program

CPU clock cycles for a program
Clock

�
rrate

This formula makes it clear that the hardware designer can improve performance 
by reducing the number of clock cycles required for a program or the length of 
the clock cycle. As we will see in later chapters, the designer often faces a trade-off 
between the number of clock cycles needed for a program and the length of each 
cycle. Many techniques that decrease the number of clock cycles may also increase 
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz 
clock. We are trying to help a computer designer build a computer, B, which will 
run this program in 6 seconds. The designer has determined that a substantial 
increase in the clock rate is possible, but this increase will affect the rest of the 
CPU design, causing computer B to require 1.2 times as many clock cycles as 
computer A for this program. What clock rate should we tell the designer to 
target?

Let’s first find the number of clock cycles required for the program on A:

CPU time
CPU clock cycles

Clock rate

seconds
CPU clock cycles

A
A

A

10 AA

A

cycles
second

CPU clock cycles seconds cycles
se

2 10

10 2 10

9

9

ccond
cycles20 109

EXAMPLE

ANSWER
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CPU time for B can be found using this equation:

CPU time CPU clock cycles
Clock rate

 seconds

B
A

B

1 2

6 1 2 20

.

. 10

1 2 20 10
6

9

9

 cycles
Clock rate

Clock rate  cycles
 seco

B

B
.

nnds
 cycles

second
 cycles

second
 GHz0 2 20 10 4 10 4

9 9.

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance
The performance equations above did not include any reference to the number of 
instructions needed for the program. However, since the compiler clearly generated 
instructions to execute, and the computer had to execute the instructions to run 
the program, the execution time must depend on the number of instructions in a 
program. One way to think about execution time is that it equals the number of 
instructions executed multiplied by the average time per instruction. Therefore, the 
number of clock cycles required for a program can be written as

CPU clock cycles Instructions for a program
Average clock cycles

 pper instruction

The term clock cycles per instruction, which is the average number of clock 
cycles each instruction takes to execute, is often abbreviated as CPI. Since different 
instructions may take different amounts of time depending on what they do, CPI 
is an average of all the instructions executed in the program. CPI provides one 
way of comparing two different implementations of the identical instruction set 
architecture, since the number of instructions executed for a program will, of 
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture. 
Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, 
and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same 
program. Which computer is faster for this program and by how much?

clock cycles 
per instruction 
(CPI) Average number 
of clock cycles per 
instruction for a program 
or program fragment.

EXAMPLE
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We know that each computer executes the same number of instructions for 
the program; let’s call this number I. First, find the number of processor clock 
cycles for each computer:

CPU clock cycles
CPU clock cycles

A

B

I
I

2 0
1 2

.
.

Now we can compute the CPU time for each computer:

CPU time CPU clock cycles Clock cycle time
 ps

A A

I 2 0 250. 5500 I  ps

Likewise, for B:

CPU time ps psB II 1 2 500 600.

Clearly, computer A is faster. The amount faster is given by the ratio of the 
execution times:

CPU performance
CPU performance

Execution time
Execution tim

A

B

B

ee
ps
psA

600
500

1 2
I
I

.

We can conclude that computer A is 1.2 times as fast as computer B for this 
program.

The Classic CPU Performance Equation
We can now write this basic performance equation in terms of instruction count 
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time Instructioncount CPI Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time
Instruction count CPI

Clock rate

These formulas are particularly useful because they separate the three key factors 
that affect performance. We can use these formulas to compare two different 
implementations or to evaluate a design alternative if we know its impact on these 
three parameters.

instruction count The 
number of instructions 
executed by the program.

ANSWER
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Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a 
computer. The hardware designers have supplied the following facts:

CPI for each instruction class

A B C

CPI 1 2 3

For a particular high-level language statement, the compiler writer is 
considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

Which code sequence executes the most instructions? Which will be faster? 
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 +  
1 = 6 instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count 
and CPI to find the total number of clock cycles for each sequence:

CPU clock cycles CPI C( )i i
i

n

=
∑

1

This yields

CPU clock cycles cycles
CPU clock cy

1 2 1 1 2 2 3 2 2 6 10( ) ( ) ( )
ccles cycles2 4 1 1 2 1 3 4 2 3 9( ) ( ) ( )

So code sequence 2 is faster, even though it executes one extra instruction. Since 
code sequence 2 takes fewer overall clock cycles but has more instructions, it 
must have a lower CPI. The CPI values can be computed by

CPI CPU clock cycles
Instruction count

CPI CPU clock cycles

�

�1
11

1

2
2

10
5

2 0
Instruction count

CPI CPU clock cycles
Instruct

� �

�

.

iion count2

9
6

1 5� � .
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Figure 1.15 shows the basic measurements at different levels in the 
computer and what is being measured in each case. We can see how these 
factors are combined to yield execution time measured in seconds per 
program:

Time Seconds/Program Instructions
Program

Clock cycles
Instrucction

Seconds
Clock cycle

Always bear in mind that the only complete and reliable measure of 
computer performance is time. For example, changing the instruction set 
to lower the instruction count may lead to an organization with a slower 
clock cycle time or higher CPI that offsets the improvement in instruction 
count. Similarly, because CPI depends on the type of instructions executed, 
the code that executes the fewest number of instructions may not be the 
fastest.

The BIG  
Picture

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.15 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation? 
We can measure the CPU execution time by running the program, and the clock 
cycle time is usually published as part of the documentation for a computer. The 
instruction count and CPI can be more difficult to obtain. Of course, if we know 
the clock rate and CPU execution time, we need only one of the instruction count 
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the 
execution or by using a simulator of the architecture. Alternatively, we can use 
hardware counters, which are included in most processors, to record a variety of 
measurements, including the number of instructions executed, the average CPI, 
and often, the sources of performance loss. Since the instruction count depends 
on the architecture, but not on the exact implementation, we can measure the 
instruction count without knowing all the details of the implementation. The CPI, 
however, depends on a wide variety of design details in the computer, including 
both the memory system and the processor structure (as we will see in Chapter 4 
and Chapter 5), as well as on the mix of instruction types executed in an application. 
Thus, CPI varies by application, as well as among implementations with the same 
instruction set.
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The above example shows the danger of using only one factor (instruction count) 
to assess performance. When comparing two computers, you must look at all three 
components, which combine to form execution time. If some of the factors are 
identical, like the clock rate in the above example, performance can be determined 
by comparing all the nonidentical factors. Since CPI varies by instruction mix, 
both instruction count and CPI must be compared, even if clock rates are equal. 
Several exercises at the end of this chapter ask you to evaluate a series of computer 
and compiler enhancements that affect clock rate, CPI, and instruction count. In 

 Section 1.10, we’ll examine a common performance measurement that does not 
incorporate all the terms and can thus be misleading.

instruction mix  
A measure of the dynamic 
frequency of instructions 
across one or many 
programs.

Understanding 
Program 
Performance

The performance of a program depends on the algorithm, the language, the 
compiler, the architecture, and the actual hardware. The following table summarizes 
how these components affect the factors in the CPU performance equation.

Hardware 
or software 
component Affects what? How?

Algorithm Instruction count, 
CPI

The algorithm determines the number of source program 
instructions executed and hence the number of processor 
instructions executed. The algorithm may also affect the CPI, 
by favoring slower or faster instructions. For example, if the 
algorithm uses more divides, it will tend to have a higher CPI.

Programming 
language

Instruction count, 
CPI

The programming language certainly affects the instruction 
count, since statements in the language are translated to 
processor instructions, which determine instruction count. The 
language may also affect the CPI because of its features; for 
example, a language with heavy support for data abstraction 
(e.g., Java) will require indirect calls, which will use higher CPI 
instructions.

Compiler Instruction count, 
CPI

The efficiency of the compiler affects both the instruction 
count and average cycles per instruction, since the compiler 
determines the translation of the source language instructions 
into computer instructions. The compiler’s role can be very 
complex and affect the CPI in varied ways.

Instruction set 
architecture

Instruction count, 
clock rate, CPI

The instruction set architecture affects all three aspects of 
CPU performance, since it affects the instructions needed 
for a function, the cost in cycles of each instruction, and the 
overall clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in 
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To 
reflect that approach, some designers invert CPI to talk about IPC, or instructions per 
clock cycle. If a processor executes on average two instructions per clock cycle, then it 
has an IPC of 2 and hence a CPI of 0.5.
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Elaboration: Although clock cycle time has traditionally been fixed, to save energy  
or temporarily boost performance, today’s processors can vary their clock rates, so we 
would need to use the average clock rate for a program. For example, the Intel Core i7 
will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls 
this Turbo mode.

Check  
Yourself

 1.7 The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel 
microprocessors over 30 years. Both clock rate and power increased rapidly for 
decades and then flattened off recently. The reason they grew together is that they 
are correlated, and the reason for their recent slowing is that we have run into the 
practical power limit for cooling commodity microprocessors.

A given application written in Java runs 15 seconds on a desktop processor. A new  
Java compiler is released that requires only 0.6 as many instructions as the old  
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the 
application to run using this new compiler? Pick the right answer from the three  
choices below:

a.
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FIGURE 1.16 Clock rate and power for Intel x86 microprocessors over eight generations 
and 30 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The 
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler 
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.
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Although power provides a limit to what we can cool, in the post-PC era the really 
valuable resource is energy. Battery life can trump performance in the personal 
mobile device, and the architects of warehouse scale computers try to reduce the 
costs of powering and cooling 100,000 servers as the costs are high at this scale. Just 
as measuring time in seconds is a safer evaluation of program performance than a 
rate like MIPS (see Section 1.10), the energy metric joules is a better measure than 
a power rate like watts, which is just joules/second.

The dominant technology for integrated circuits is called CMOS (complementary 
metal oxide semiconductor). For CMOS, the primary source of energy consumption 
is so-called dynamic energy—that is, energy that is consumed when transistors 
switch states from 0 to 1 and vice versa. The dynamic energy depends on the 
capacitive loading of each transistor and the voltage applied:

Energy Capacitive load Voltage∝  � 2

This equation is the energy of a pulse during the logic transition of 0 → 1 → 0 or  
1 → 0 → 1. The energy of a single transition is then

Energy Capacitive load Voltage∝ 1 2 2/ � � 

The power required per transistor is just the product of energy of a transition and 
the frequency of transitions:

Power Capacitive load Voltage Frequency switched∝ 1 2 2/ � � �

Frequency switched is a function of the clock rate. The capacitive load per transistor 
is a function of both the number of transistors connected to an output (called the 
fanout) and the technology, which determines the capacitance of both wires and 
transistors.

With regard to Figure 1.16, how could clock rates grow by a factor of 1000 while 
power increased by only a factor of 30? Energy and thus power can be reduced by 
lowering the voltage, which occurred with each new generation of technology, and 
power is a function of the voltage squared. Typically, the voltage was reduced about 
15% per generation. In 20 years, voltages have gone from 5 V to 1 V, which is why 
the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive 
load of the more complex older processor. Further, assume that it can adjust 
voltage so that it can reduce voltage 15% compared to processor B, which 
results in a 15% shrink in frequency. What is the impact on dynamic power?

EXAMPLE
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Power
Power

Capacitive load Voltage Fnew

old

〈 〉 〈 〉 〈0 85 0 85 2. . rrequency switched
Capacitive load Voltage Frequency

0 85
2

. 〉
  switched

Thus the power ratio is

0 85 0 524. .�

Hence, the new processor uses about half the power of the old processor.

The modern problem is that further lowering of the voltage appears to make the 
transistors too leaky, like water faucets that cannot be completely shut off. Even 
today about 40% of the power consumption in server chips is due to leakage. If 
transistors started leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large 
devices to increase cooling, and they turn off parts of the chip that are not used in a 
given clock cycle. Although there are many more expensive ways to cool chips and 
thereby raise their power to, say, 300 watts, these techniques are generally too costly 
for personal computers and even servers, not to mention personal mobile devices.

Since computer designers slammed into a power wall, they needed a new way 
forward. They chose a different path from the way they designed microprocessors 
for their first 30 years.

Elaboration: Although dynamic energy is the primary source of energy consumption 
in CMOS, static energy consumption occurs because of leakage current that flows even 
when a transistor is off. In servers, leakage is typically responsible for 40% of the energy 
consumption. Thus, increasing the number of transistors increases power dissipation, 
even if the transistors are always off. A variety of design techniques and technology 
innovations are being deployed to control leakage, but it’s hard to lower voltage further.

Elaboration: Power is a challenge for integrated circuits for two reasons. First, power 
must be brought in and distributed around the chip; modern microprocessors use 
hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect 
are used solely for power and ground distribution to portions of the chip. Second, power 
is dissipated as heat and must be removed. Server chips can burn more than 100 watts, 
and cooling the chip and the surrounding system is a major expense in warehouse scale 
computers (see Chapter 6).

ANSWER
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 1.8 The Sea Change: The Switch from 
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. 
Figure 1.17 shows the improvement in response time of programs for desktop 
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per 
year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of one program running 
on the single processor, as of 2006 all desktop and server companies are shipping 
microprocessors with multiple processors per chip, where the benefit is often more 
on throughput than on response time. To reduce confusion between the words 
processor and microprocessor, companies refer to processors as “cores,” and 
such microprocessors are generically called multicore microprocessors. Hence, a 
“quadcore” microprocessor is a chip that contains four processors or four cores.

In the past, programmers could rely on innovations in hardware, architecture, 
and compilers to double performance of their programs every 18 months without 
having to change a line of code. Today, for programmers to get significant 
improvement in response time, they need to rewrite their programs to take 
advantage of multiple processors. Moreover, to get the historic benefit of running 
faster on new microprocessors, programmers will have to continue to improve the 
performance of their code as the number of cores increases.

To reinforce how the software and hardware systems work together, we use a 
special section, Hardware/Software Interface, throughout the book, with the first 
one appearing below. These elements summarize important insights at this critical 
interface.

Up to now, most 
software has been like 
music written for a 
solo performer; with 
the current generation 
of chips we’re getting a 
little experience with 
duets and quartets and 
other small ensembles; 
but scoring a work for 
large orchestra and 
chorus is a different 
kind of challenge.
Brian Hayes, Computing 
in a Parallel Universe, 
2007.

Parallelism has always been crucial to performance in computing, but it was often 
hidden. Chapter 4 will explain pipelining, an elegant technique that runs programs 
faster by overlapping the execution of instructions. This optimization is one 
example of instruction-level parallelism, where the parallel nature of the hardware 
is abstracted away so the programmer and compiler can think of the hardware as 
executing instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to rewrite 
their programs to be parallel had been the “third rail” of computer architecture, 
for companies in the past that depended on such a change in behavior failed (see 

 Section 6.15). From this historical perspective, it’s startling that the whole IT 
industry has bet its future that programmers will finally successfully switch to 
explicitly parallel programming.

Hardware/
Software 
Interface
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Why has it been so hard for programmers to write explicitly parallel programs? 
The first reason is that parallel programming is by definition performance 
programming, which increases the difficulty of programming. Not only does the 
program need to be correct, solve an important problem, and provide a useful 
interface to the people or other programs that invoke it; the program must also be 
fast. Otherwise, if you don’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer 
must divide an application so that each processor has roughly the same amount to 
do at the same time, and that the overhead of scheduling and coordination doesn’t 
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters 
working on the same story could potentially write a story eight times faster. To achieve 
this increased speed, one would need to break up the task so that each reporter had 
something to do at the same time. Thus, we must schedule the sub-tasks. If anything 
went wrong and just one reporter took longer than the seven others did, then the 
benefits of having eight writers would be diminished. Thus, we must balance the 
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 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz 
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz 
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz 

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

 Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

31,999

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0)

 34,967

FIGURE 1.17 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780 
as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and 
organizational ideas. The higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of 
seven larger in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and 
long memory latency have slowed uniprocessor performance recently, to about 22% per year.
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load evenly to get the desired speedup. Another danger would be if reporters had 
to spend a lot of time talking to each other to write their sections. You would also 
fall short if one part of the story, such as the conclusion, couldn’t be written until all 
the other parts were completed. Thus, care must be taken to reduce communication 
and synchronization overhead. For both this analogy and parallel programming, the 
challenges include scheduling, load balancing, time for synchronization, and overhead 
for communication between the parties. As you might guess, the challenge is stiffer with 
more reporters for a newspaper story and more processors for parallel programming.

To reflect this sea change in the industry, the next five chapters in this edition of the 
book each has a section on the implications of the parallel revolution to that chapter:

■	 Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually 
independent parallel tasks need to coordinate at times, such as to say when 
they have completed their work. This chapter explains the instructions used 
by multicore processors to synchronize tasks.

■	 Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword  
Parallelism. Perhaps the simplest form of parallelism to build involves  
computing on elements in parallel, such as when multiplying two vectors. 
Subword parallelism takes advantage of the resources supplied by Moore’s 
Law to provide wider arithmetic units that can operate on many operands 
simultaneously.

■	 Chapter 4, Section 4.10: Parallelism via Instructions. Given the difficulty of 
explicitly parallel programming, tremendous effort was invested in the 1990s 
in having the hardware and the compiler uncover implicit parallelism, initially 
via pipelining. This chapter describes some of these aggressive techniques, 
including fetching and executing multiple instructions concurrently 
and guessing on the outcomes of decisions, and executing instructions 
speculatively using prediction.

■	 Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache 
Coherence. One way to lower the cost of communication is to have all 
processors use the same address space, so that any processor can read or 
write any data. Given that all processors today use caches to keep a temporary 
copy of the data in faster memory near the processor, it’s easy to imagine that 
parallel programming would be even more difficult if the caches associated 
with each processor had inconsistent values of the shared data. This chapter 
describes the mechanisms that keep the data in all caches consistent.

■	 Chapter 5, Section 5.11: Parallelism and Memory Hierarchy: Redundant  
Arrays of Inexpensive Disks. This section describes how using many disks 
in conjunction can offer much higher throughput, which was the original 
inspiration of Redundant Arrays of Inexpensive Disks (RAID). The real 
popularity of RAID proved to be the much greater dependability offered by 
including a modest number of redundant disks. The section explains the 
differences in performance, cost, and dependability between the various RAID 
levels.
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In addition to these sections, there is a full chapter on parallel processing. Chapter 
6 goes into more detail on the challenges of parallel programming; presents the 
two contrasting approaches to communication of shared addressing and explicit 
message passing; describes a restricted model of parallelism that is easier to  
program; discusses the difficulty of benchmarking parallel processors; introduces 
a new simple performance model for multicore microprocessors; and, finally, 
describes and evaluates four examples of multicore microprocessors using this 
model.

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running 
example to show how each type of parallelism can significantly increase performance.

 Appendix B describes an increasingly popular hardware component that  
is included with desktop computers, the graphics processing unit (GPU). Invented 
to accelerate graphics, GPUs are becoming programming platforms in their own 
right. As you might expect, given these times, GPUs rely on parallelism.

 Appendix B describes the NVIDIA GPU and highlights parts of its parallel 
programming environment.

 1.9 Real Stuff: Benchmarking the  
Intel Core i7

Each chapter has a section entitled “Real Stuff ” that ties the concepts in the book 
with a computer you may use every day. These sections cover the technology 
underlying modern computers. For this first “Real Stuff ” section, we look at 
how integrated circuits are manufactured and how performance and power are 
measured, with the Intel Core i7 as the example.

SPEC CPU Benchmark
A computer user who runs the same programs day in and day out would be the 
perfect candidate to evaluate a new computer. The set of programs run would form 
a workload. To evaluate two computer systems, a user would simply compare 
the execution time of the workload on the two computers. Most users, however, 
are not in this situation. Instead, they must rely on other methods that measure 
the performance of a candidate computer, hoping that the methods will reflect 
how well the computer will perform with the user’s workload. This alternative is 
usually followed by evaluating the computer using a set of benchmarks—programs 
specifically chosen to measure performance. The benchmarks form a workload that 
the user hopes will predict the performance of the actual workload. As we noted 
above, to make the common case fast, you first need to know accurately which case 
is common, so benchmarks play a critical role in computer architecture.

SPEC (System Performance Evaluation Cooperative) is an effort funded and 
supported by a number of computer vendors to create standard sets of benchmarks 
for modern computer systems. In 1989, SPEC originally created a benchmark 

workload A set of 
programs run on a 
computer that is either 
the actual collection of 
applications run by a user 
or constructed from real 
programs to approximate 
such a mix. A typical 
workload specifies both 
the programs and the 
relative frequencies.

benchmark A program 
selected for use in 
comparing computer 
performance.

I thought [computers] 
would be a universally 
applicable idea, like a 
book is. But I didn’t 
think it would develop 
as fast as it did, because 
I didn’t envision we’d 
be able to get as many 
parts on a chip as 
we finally got. The 
transistor came along 
unexpectedly. It all 
happened much faster 
than we expected.
J. Presper Eckert, 
coinventor of ENIAC, 
speaking in 1991
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set focusing on processor performance (now called SPEC89), which has evolved 
through five generations. The latest is SPEC CPU2006, which consists of a set of 12 
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006). 
The integer benchmarks vary from part of a C compiler to a chess program to a 
quantum computer simulation. The floating-point benchmarks include structured 
grid codes for finite element modeling, particle method codes for molecular 
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.18 describes the SPEC integer benchmarks and their execution time 
on the Intel Core i7 and shows the factors that explain execution time: instruction 
count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5.

To simplify the marketing of computers, SPEC decided to report a single number 
summarizing all 12 integer benchmarks. Dividing the execution time of a reference 
processor by the execution time of the evaluated computer normalizes the execution 
time measurements; this normalization yields a measure, called the SPECratio, which 
has the advantage that bigger numeric results indicate faster performance. That is, 
the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary 
measurement is obtained by taking the geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, apply the geometric 
mean so that it gives the same relative answer no matter what computer is used to 
normalize the results. If we averaged the normalized execution time values with an 
arithmetic mean, the results would vary depending on the computer we choose as the 
reference.

Description Name
Instruction
Count x 109 CPI

Clock cycle time
(seconds x 10–9)

Execution
T ime  

(seconds)

Reference
Time  

(seconds) SPECratio

Interpreted string processing perl  2252    0.60    0.376  508  9770   19.2 

Block-sorting bzip2  2390   0.70   0.376  629  9650   15.4 
compression

GNU C compiler gcc  794   1.20   0.376  358  8050   22.5 

Combinatorial optimization mcf  221   2.66   0.376  221  9120   41.2 

Go game (AI) go  1274   1.10   0.376  527  10490   19.9 

Search gene sequence hmmer  2616   0.60   0.376  590  9330   15.8 

Chess game (AI) sjeng  1948   0.80   0.376  586  12100   20.7 

Quantum computer libquantum               659   0.44   0.376  109  20720   190.0 

simulation

Video compression h264avc  3793   0.50   0.376  713  22130   31.0 

Discrete event  omnetpp  367   2.10   0.376  290  6250   21.5 
simulation library

Games/path finding  astar  1250   1.00   0.376  470  7020   14.9 

XML parsing xalancbmk  1045   0.70   0.376  275  6900   25.1 

Geometric mean       –                          –                     –                     –   –    25.7 –

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 36 explains, 
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in 
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. The single number 
quoted as SPECINTC2006 is the geometric mean of the SPECratios.
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The formula for the geometric mean is

Execution time ratioi
i

n
n

�1
∏

where Execution time ratio
i
 is the execution time, normalized to the reference computer, 

for the ith program of a total of n in the workload, and

a a a ani
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SPEC Power Benchmark
Given the increasing importance of energy and power, SPEC added a benchmark 
to measure power. It reports power consumption of servers at different workload 
levels, divided into 10% increments, over a period of time. Figure 1.19 shows the 
results for a server using Intel Nehalem processors similar to the above.

Target Load %
Performance  

(ssj_ops)
Average Power  

(watts)

 100% 865,618 258

 90% 786,688 242

 80% 698,051 224

 70% 607,826 204

 60% 521,391 185

 50% 436,757 170

 40% 345,919 157

 30% 262,071 146

 20% 176,061 135

 10% 86,784 121

 0% 0 80

  Overall Sum  4,787,166 1922

   ∑ssj_ops / ∑power =  2490

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650 
with 16 GB of DRAM and one 100 GB SSD disk.

SPECpower started with another SPEC benchmark for Java business applications 
(SPECJBB2005), which exercises the processors, caches, and main memory as well 
as the Java virtual machine, compiler, garbage collector, and pieces of the operating 
system. Performance is measured in throughput, and the units are business 
operations per second. Once again, to simplify the marketing of computers, SPEC 
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boils these numbers down to one number, called “overall ssj_ops per watt.” The 
formula for this single summarizing metric is

overall ssj_ops per watt ssj_ops power�
� �
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where ssj_opsi is performance at each 10% increment and poweri is power 
consumed at each performance level.

 1.10 Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every 
chapter, is to explain some commonly held misconceptions that you might 
encounter. We call them fallacies. When discussing a fallacy, we try to give a 
counterexample. We also discuss pitfalls, or easily made mistakes. Often pitfalls 
are generalizations of principles that are true in a limited context. The purpose of 
these sections is to help you avoid making these mistakes in the computers you 
may design or use. Cost/performance fallacies and pitfalls have ensnared many a 
computer architect, including us. Accordingly, this section suffers no shortage of 
relevant examples. We start with a pitfall that traps many designers and reveals an 
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall 
performance by an amount proportional to the size of the improvement.

The great idea of making the common case fast has a demoralizing corollary 
that has plagued designers of both hardware and software. It reminds us that the 
opportunity for improvement is affected by how much time the event consumes.

A simple design problem illustrates it well. Suppose a program runs in 100 
seconds on a computer, with multiply operations responsible for 80 seconds of this 
time. How much do I have to improve the speed of multiplication if I want my 
program to run five times faster?

The execution time of the program after making the improvement is given by 
the following simple equation known as Amdahl’s Law:

                                            Executiontimeaf�er improvement

Execution timea�ected by improvement
Amount oof improvement

Execution time una�ected

For this problem:

Execution timea�er improvement
seconds

seconds
80

100 80
n

( )

Amdahl’s Law  
A rule stating that 
the performance 
enhancement possible 
with a given improvement 
is limited by the amount 
that the improved feature 
is used. It is a quantitative 
version of the law of 
diminishing returns.

Science must begin 
with myths, and the 
criticism of myths.
Sir Karl Popper, The 
Philosophy of Science, 
1957
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Since we want the performance to be five times faster, the new execution time 
should be 20 seconds, giving

20 80 20

0 80

 seconds  seconds  seconds

 seconds
n

n

That is, there is no amount by which we can enhance-multiply to achieve a fivefold 
increase in performance, if multiply accounts for only 80% of the workload. The 
performance enhancement possible with a given improvement is limited by the amount 
that the improved feature is used. In everyday life this concept also yields what we call 
the law of diminishing returns.

We can use Amdahl’s Law to estimate performance improvements when we 
know the time consumed for some function and its potential speedup. Amdahl’s 
Law, together with the CPU performance equation, is a handy tool for evaluating 
possible enhancements. Amdahl’s Law is explored in more detail in the exercises.

Amdahl’s Law is also used to argue for practical limits to the number of parallel 
processors. We examine this argument in the Fallacies and Pitfalls section of 
Chapter 6.

Fallacy: Computers at low utilization use little power.
Power efficiency matters at low utilizations because server workloads vary. 
Utilization of servers in Google’s warehouse scale computer, for example, is 
between 10% and 50% most of the time and at 100% less than 1% of the time. Even 
given 5 years to learn how to run the SPECpower benchmark well, the specially 
configured computer with the best results in 2012 still uses 33% of the peak power 
at 10% of the load. Systems in the field that are not configured for the SPECpower 
benchmark are surely worse.

Since servers’ workloads vary but use a large fraction of peak power, Luiz 
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve 
“energy-proportional computing.” If future servers used, say, 10% of peak power at 
10% workload, we could reduce the electricity bill of datacenters and become good 
corporate citizens in an era of increasing concern about CO2 emissions.

Fallacy: Designing for performance and designing for energy efficiency are 
unrelated goals.

Since energy is power over time, it is often the case that hardware or software 
optimizations that take less time save energy overall even if the optimization takes 
a bit more energy when it is used. One reason is that all the rest of the computer is 
consuming energy while the program is running, so even if the optimized portion 
uses a little more energy, the reduced time can save the energy of the whole system.

Pitfall: Using a subset of the performance equation as a performance metric.
We have already warned about the danger of predicting performance based on 
simply one of the clock rate, instruction count, or CPI. Another common mistake 
is to use only two of the three factors to compare performance. Although using 
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two of the three factors may be valid in a limited context, the concept is also 
easily misused. Indeed, nearly all proposed alternatives to the use of time as the 
performance metric have led eventually to misleading claims, distorted results, or 
incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given 
program, MIPS is simply

MIPS
Instruction count

Execution time 106

Since MIPS is an instruction execution rate, MIPS specifies performance inversely 
to execution time; faster computers have a higher MIPS rating. The good news 
about MIPS is that it is easy to understand, and quicker computers mean bigger 
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing computers. 
First, MIPS specifies the instruction execution rate but does not take into account 
the capabilities of the instructions. We cannot compare computers with different 
instruction sets using MIPS, since the instruction counts will certainly differ. 
Second, MIPS varies between programs on the same computer; thus, a computer 
cannot have a single MIPS rating. For example, by substituting for execution time, 
we see the relationship between MIPS, clock rate, and CPI:

MIPS
Instruction count

Instruction count CPI
Clock rate

Clo

106

cck rate
CPI 106

The CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer 
in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new 
program executes more instructions but each instruction is faster, MIPS can vary 
independently from performance!

Consider the following performance measurements for a program:

million instructions  
per second (MIPS)  
A measurement of 
program execution speed 
based on the number of 
millions of instructions. 
MIPS is computed as the 
instruction count divided 
by the product of the 
execution time and 106.

Check  
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?
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 1.11 Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance computers 
will have in the future, it’s a safe bet that they will be much better than they are 
today. To participate in these advances, computer designers and programmers 
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierarchical 
layers, with each lower layer hiding details from the level above. This great idea 
of abstraction is fundamental to understanding today’s computer systems, but it 
does not mean that designers can limit themselves to knowing a single abstraction. 
Perhaps the most important example of abstraction is the interface between 
hardware and low-level software, called the instruction set architecture. Maintaining 
the instruction set architecture as a constant enables many implementations of 
that architecture—presumably varying in cost and performance—to run identical 
software. On the downside, the architecture may preclude introducing innovations 
that require the interface to change.

There is a reliable method of determining and reporting performance by using 
the execution time of real programs as the metric. This execution time is related to 
other important measurements we can make by the following equation:

Seconds
Program

Instructions
Program

Clock cycles
Instruction

SSeconds
Clock cycle

We will use this equation and its constituent factors many times. Remember, 
though, that individually the factors do not determine performance: only the 
product, which equals execution time, is a reliable measure of performance.

Where … the ENIAC 
is equipped with 
18,000 vacuum tubes 
and weighs 30 tons, 
computers in the 
future may have 1,000 
vacuum tubes and 
perhaps weigh just  
1½ tons.
Popular Mechanics, 
March 1949

Execution time is the only valid and unimpeachable measure of 
performance. Many other metrics have been proposed and found wanting. 
Sometimes these metrics are flawed from the start by not reflecting 
execution time; other times a metric that is sound in a limited context 
is extended and used beyond that context or without the additional 
clarification needed to make it valid.

The BIG  
Picture
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The key hardware technology for modern processors is silicon. Equal in 
importance to an understanding of integrated circuit technology is an understanding 
of the expected rates of technological change, as predicted by Moore’s Law. While 
silicon fuels the rapid advance of hardware, new ideas in the organization of 
computers have improved price/performance. Two of the key ideas are exploiting 
parallelism in the program, normally today via multiple processors, and exploiting 
locality of accesses to a memory hierarchy, typically via caches.

Energy efficiency has replaced die area as the most critical resource of 
microprocessor design. Conserving power while trying to increase performance 
has forced the hardware industry to switch to multicore microprocessors, thereby 
requiring the software industry to switch to programming parallel hardware. 
Parallelism is now required for performance.

Computer designs have always been measured by cost and performance, as well 
as other important factors such as energy, dependability, cost of ownership, and 
scalability. Although this chapter has focused on cost, performance, and energy, 
the best designs will strike the appropriate balance for a given market among all 
the factors.

Road Map for This Book
At the bottom of these abstractions is the five classic components of a computer: 
datapath, control, memory, input, and output (refer to Figure 1.5). These five 
components also serve as the framework for the rest of the chapters in this book:

■	 Datapath: Chapter 3, Chapter 4, Chapter 6, and  Appendix B

■	 Control: Chapter 4, Chapter 6, and  Appendix B

■	 Memory: Chapter 5

■	 Input: Chapters 5 and 6

■	 Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit parallelism, 
Chapter 6 describes the explicitly parallel multicore microprocessors that are at the 
heart of the parallel revolution, and  Appendix B describes the highly parallel 
graphics processor chip. Chapter 5 describes how a memory hierarchy exploits 
locality. Chapter 2 describes instruction sets—the interface between compilers and 
the computer—and emphasizes the role of compilers and programming languages 
in using the features of the instruction set. Chapter 3 describes how computers 
handle arithmetic data. Appendix A introduces logic design.
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 1.12 Historical Perspective and Further 
Reading

For each chapter in the text, a section devoted to a historical perspective can be 
found online on a site that accompanies this book. We may trace the development 
of an idea through a series of computers or describe some important projects, and 
we provide references in case you are interested in probing further.

The historical perspective for this chapter provides a background for some of the 
key ideas presented in this opening chapter. Its purpose is to give you the human 
story behind the technological advances and to place achievements in their historical 
context. By studying the past, you may be better able to understand the forces that 
will shape computing in the future. Each Historical Perspective section online ends 
with suggestions for further reading, which are also collected separately online under 
the section “Further Reading.” The rest of  Section 1.12 is found online.

 1.13 Exercises

The relative time ratings of exercises are shown in square brackets after each 
exercise number. On average, an exercise rated [10] will take you twice as long as 
one rated [5]. Sections of the text that should be read before attempting an exercise 
will be given in angled brackets; for example, <§1.4> means you should have read 
Section 1.4, Under the Covers, to help you solve this exercise.

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and 
describe four other types of computers.

1.2 [5] <§1.2> The eight great ideas in computer architecture are similar to ideas 
from other fields. Match the eight ideas from computer architecture, “Design for 
Moore’s Law,” “Use Abstraction to Simplify Design,” “Make the Common Case 
Fast,” “Performance via Parallelism,” “Performance via Pipelining,” “Performance 
via Prediction,” “Hierarchy of Memories,” and “Dependability via Redundancy” to 
the following ideas from other fields:

a. Assembly lines in automobile manufacturing

b. Suspension bridge cables

c. Aircraft and marine navigation systems that incorporate wind information

d. Express elevators in buildings

1.12

An active field of 
science is like an 
immense anthill; the 
individual almost 
vanishes into the mass 
of minds tumbling over 
each other, carrying 
information from place 
to place, passing it 
around at the speed of 
light.
Lewis Thomas, “Natural 
Science,” in The Lives of 
a Cell, 1974

马德
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1.12    Historical Perspective and Further 
Reading

For each chapter in the text, a section devoted to a historical perspective can 
be found online. We may trace the development of an idea through a series of 
machines or describe some important projects, and we provide references in case 
you are interested in probing further.

The historical perspective for this chapter provides a background for some of the 
key ideas presented therein. Its purpose is to give you the human story behind the 
technological advances and to place achievements in their historical context. By 
learning the past, you may be better able to understand the forces that will shape 
computing in the future. Each historical perspective section ends with suggestions 
for additional reading, which are also collected separately in the online section 
“Further Reading.”

The First Electronic Computers
J. Presper Eckert and John Mauchly at the Moore School of the University of 
Pennsylvania built what is widely accepted to be the world’s first operational 
electronic, general-purpose computer. This machine, called ENIAC (Electronic 
Numerical Integrator and Calculator), was funded by the United States Army and 
started working during World War II but was not publicly disclosed until 1946. 
ENIAC was a general-purpose machine used for computing artillery-firing tables. 
Figure e1.12.1 shows the U-shaped computer, which was 80 feet long by 8.5 feet 

An active field of 
science is like an 
immense anthill; the 
individual almost 
vanishes into the mass 
of minds tumbling over 
each other, carrying 
information from place 
to place, passing it 
around at the speed of 
light.
Lewis Thomas, “Natural 
Science,” in The Lives of 
a Cell, 1974

FIGURE e1.12.1 ENIAC, the world’s first general-purpose electronic computer.
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high and several feet wide. Each of the 20 10-digit registers was 2 feet long. In total, 
ENIAC used 18,000 vacuum tubes.

In size, ENIAC was two orders of magnitude bigger than machines built today, 
yet it was more than eight orders of magnitude slower, performing 1900 additions 
per second. ENIAC provided conditional jumps and was programmable, clearly 
distinguishing it from earlier calculators. Programming was done manually by 
plugging cables and setting switches, and data were entered on punched cards. 
Programming for typical calculations required from half an hour to a whole day. 
ENIAC was a general-purpose machine, limited primarily by a small amount of 
storage and tedious programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group 
wanted to improve the way programs were entered and discussed storing 
programs as numbers; von Neumann helped crystallize the ideas and wrote a 
memo proposing a stored-program computer called EDVAC (Electronic Discrete 
Variable Automatic Computer). Herman Goldstine distributed the memo and put 
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, whose 
names were omitted. This memo has served as the basis for the commonly used 
term von Neumann computer. Several early pioneers in the computer field believe 
that this term gives too much credit to von Neumann, who wrote up the ideas, and  
too little to the engineers, Eckert and Mauchly, who worked on the machines. For  
this reason, the term does not appear elsewhere in this book or in the online 
sections.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School to 
attend the latter part of a series of lectures on developments in electronic computers. 
When he returned to Cambridge, Wilkes decided to embark on a project to build 
a stored-program computer named EDSAC (Electronic Delay Storage Automatic 
Calculator). EDSAC started working in 1949 and was the world’s first full-scale, 
operational, stored-program computer [Wilkes, 1985]. (A small prototype called 
the Mark-I, built at the University of Manchester in 1948, might be called the first 
operational stored-program machine.) Section 2.5 explains the stored-program 
concept.

In 1947, Eckert and Mauchly applied for a patent on electronic computers. The 
dean of the Moore School demanded that the patent be turned over to the university, 
which may have helped Eckert and Mauchly conclude that they should leave. Their 
departure crippled the EDVAC project, delaying completion until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study (IAS) 
at Princeton in 1946. Together with Arthur Burks, they issued a report based on 
the memo written earlier [Burks et  al., 1946]. The paper was incredible for the 
period; reading it today, you would never guess this landmark paper was written 
more than 50 years ago, because it discusses most of the architectural concepts 
seen in modern computers. This paper led to the IAS machine built by Julian 
Bigelow. It had a total of 1024 40-bit words and was roughly 10 times faster than 
ENIAC. The group thought about uses for the machine, published a set of reports, 
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and encouraged visitors. These reports and visitors inspired the development of a 
number of new computers.

Recently, there has been some controversy about the work of John Atanasoff, 
who built a small-scale electronic computer in the early 1940s. His machine, 
designed at Iowa State University, was a special-purpose computer that was never 
completely operational. Mauchly briefly visited Atanasoff before he built ENIAC. 
The presence of the Atanasoff machine, together with delays in filing the ENIAC 
patents (the work was classified and patents could not be filed until after the war) 
and the distribution of von Neumann’s EDVAC paper, was used to break the Eckert-
Mauchly patent. Though controversy still rages over Atanasoff ’s role, Eckert and 
Mauchly are usually given credit for building the first working, general-purpose, 
electronic computer [Stern, 1980].

Another pioneering computer that deserves credit was a special-purpose 
machine built by Konrad Zuse in Germany in the late 1930s and early 1940s. 
Although Zuse had the design for a programmable computer ready, the German 
government decided not to fund scientific investigations taking more than 2 years 
because the bureaucrats expected the war would be won by that deadline.

Across the English Channel, during World War II special-purpose electronic 
computers were built to decrypt intercepted German messages. A team at Bletchley 
Park, including Alan Turing, built the Colossus in 1943. The machines were kept 
secret until 1970; after the war, the group had little impact on commercial British 
computers.

While work on ENIAC went forward, Howard Aiken was building an electro-
mechanical computer called the Mark-I at Harvard (a name that Manchester later 
adopted for its machine). He followed the Mark-I with a relay machine, the Mark-II, 
and a pair of vacuum tube machines, the Mark-III and Mark-IV. In contrast to earlier 
machines like EDSAC, which used a single memory for instructions and data, the 
Mark-III and Mark-IV had separate memories for instructions and data. The machines 
were regarded as reactionary by the advocates of stored-program computers; the term 
Harvard architecture was coined to describe machines with distinct memories. Paying 
respect to history, this term is used today in a different sense to describe machines 
with a single main memory but with separate caches for instructions and data.

The Whirlwind project was begun at MIT in 1947 and was aimed at applications 
in real-time radar signal processing. Although it led to several inventions, its most 
important innovation was magnetic core memory. Whirlwind had 2048 16-bit 
words of magnetic core. Magnetic cores served as the main memory technology 
for nearly 30 years.

Commercial Developments
In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer 
Corporation. Their first machine, the BINAC, was built for Northrop and was 
shown in August 1949. After some financial difficulties, their firm was acquired 
by Remington-Rand, where they built the UNIVAC I (Universal Automatic 
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Computer), designed to be sold as a general-purpose computer (Figure e1.12.2). 
Originally delivered in June 1951, UNIVAC I sold for about $1 million and was the 
first successful commercial computer—48 systems were built! This early machine, 
along with many other fascinating pieces of computer lore, may be seen at the 
Computer History Museum in Mountain View, California.

FIGURE e1.12.2 UNIVAC I, the first commercial computer in the United States. It correctly 
predicted the outcome of the 1952 presidential election, but its initial forecast was withheld from broadcast 
because experts doubted the use of such early results.

IBM had been in the punched card and office automation business but didn’t 
start building computers until 1950. The first IBM computer, the IBM 701, shipped 
in 1952, and eventually 19 units were sold. In the early 1950s, many people 
were pessimistic about the future of computers, believing that the market and 
opportunities for these “highly specialized” machines were quite limited.

In 1964, after investing $5 billion, IBM made a bold move with the announcement 
of the System/360. An IBM spokesman said the following at the time:
We are not at all humble in this announcement. This is the most important product 
announcement that this corporation has ever made in its history. It’s not a computer 
in any previous sense. It’s not a product, but a line of products … that spans in 
performance from the very low part of the computer line to the very high.
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Moving the idea of the architecture abstraction into commercial reality, IBM 
announced six implementations of the System/360 architecture that varied in price 
and performance by a factor of 25. Figure e1.12.3 shows four of these models. IBM 
bet its company on the success of a computer family, and IBM won. The System/360 
and its successors dominated the large computer market.

About a year later, Digital Equipment Corporation (DEC) unveiled the PDP-8,  
the first commercial minicomputer. This small machine was a breakthrough 
in low-cost design, allowing DEC to offer a computer for under $20,000. 
Minicomputers were the forerunners of microprocessors, with Intel inventing the 
first microprocessor in 1971—the Intel 4004.

FIGURE e1.12.3 IBM System/360 computers: models 40, 50, 65, and 75 were all introduced in 1964. These four models 
varied in cost and performance by a factor of almost 10; it grows to 25 if we include models 20 and 30 (not shown). The clock rate, range of 
memory sizes, and approximate price for only the processor and memory of average size: (a) model 40, 1.6 MHz, 32 KB–256 KB, $225,000; (b) 
model 50, 2.0 MHz, 128 KB–256 KB, $550,000; (c) model 65, 5.0 MHz, 256 KB–1 MB, $1,200,000; and (d) model 75, 5.1 MHz, 256 KB–1 MB, 
$1,900,000. Adding I/O devices typically increased the price by factors of 1.8 to 3.5, with higher factors for cheaper models.
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In 1963 came the announcement of the first supercomputer. This announcement 
came neither from the large companies nor even from the high-tech centers. 
Seymour Cray led the design of the Control Data Corporation CDC 6600 in 
Minnesota. This machine included many ideas that are beginning to be found 
in the latest microprocessors. Cray later left CDC to form Cray Research, Inc.,  
in Wisconsin. In 1976, he announced the Cray-1 (Figure e1.12.4). This machine was 
simultaneously the fastest in the world, the most expensive, and the computer with 
the best cost/performance for scientific programs.

FIGURE e1.12.4 Cray-1, the first commercial vector supercomputer, announced in 1976. 
This machine had the unusual distinction of being both the fastest computer for scientific applications and 
the computer with the best price/performance for those applications. Viewed from the top, the computer 
looks like the letter C. Seymour Cray passed away in 1996 because of injuries sustained in an automobile 
accident. At the time of his death, this 70-year-old computer pioneer was working on his vision of the next 
generation of supercomputers. (See www.cray.com for more details.)

While Seymour Cray was creating the world’s most expensive computer, other 
designers around the world were looking at using the microprocessor to create a 
computer so cheap that you could have it at home. There is no single fountainhead 
for the personal computer, but in 1977, the Apple IIe (Figure e1.12.5) from Steve 
Jobs and Steve Wozniak set standards for low cost, high volume, and high reliability 
that defined the personal computer industry.

http://www.cray.com
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However, even with a 4-year head start, Apple’s personal computers finished 
second in popularity. The IBM Personal Computer, announced in 1981, became 
the best-selling computer of any kind; its success gave Intel the most popular 
microprocessor and Microsoft the most popular operating system. Today, the 
most popular CD is the Microsoft operating system, even though it costs many 
times more than a music CD! Of course, over the more than 30 years that the 
IBM-compatible personal computer has existed, it has evolved greatly. In fact, the 
first personal computers had 16-bit processors and 64 kilobytes of memory, and a 
low-density, slow floppy disk was the only nonvolatile storage! Floppy disks were 
originally developed by IBM for loading diagnostic programs in mainframes, but 
were a major I/O device in personal computers for almost 20 years before the advent 
of CDs and networking made them obsolete as a method for exchanging data.

Of course, Intel microprocessors have also evolved since the first PC, which used 
a 16-bit processor with an 8-bit external interface! In Chapter 2, we write about the 
evolution of the Intel architecture.

The first personal computers were quite simple, with little or no graphics 
capability, no pointing devices, and primitive operating systems compared to 
those of today. The computer that inspired many of the architectural and software 
concepts that characterize the modern desktop machines was the Xerox Alto, 
shown in Figure e1.12.6. The Alto was created as an experimental prototype of a 
future computer; there were several hundred Altos built, including a significant 

FIGURE e1.12.5 The Apple IIc Plus. Designed by Steve Wozniak, the Apple IIc set standards of cost 
and reliability for the industry.
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FIGURE e1.12.6 The Xerox Alto was the primary inspiration for the modern desktop 
computer. It included a mouse, a bit-mapped scheme, a Windows-based user interface, and a local network 
connection.

number that were donated to universities. Among the technologies incorporated 
in the Alto were:

■	 a bit-mapped graphics display integrated with a computer (earlier graphics 
displays acted as terminals, usually connected to larger computers)

■	 a mouse, which was invented earlier, but included on every Alto and used 
extensively in the user interface

■	 a local area network (LAN), which became the precursor to the Ethernet

■	 a user interface based on Windows and featuring a WYSIWYG (what you see 
is what you get) editor and interactive drawing programs
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In addition, both file servers and print servers were developed and interfaced 
via the local area network, and connections between the local area network and 
the wide area ARPAnet produced the first versions of Internet-style networking. 
The Xerox Alto was incredibly influential and clearly affected the design of a 
wide variety of computers and software systems, including the Apple Macintosh,  
the IBM-compatible PC, MacOS and Windows, and Sun and other early 
workstations.

Measuring Performance
From the earliest days of computing, designers have specified performance goals—
ENIAC was to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch 
(7030) was to be 100 times faster than the fastest computer then in existence. What 
wasn’t clear, though, was how this performance was to be measured.

The original measure of performance was the time required to perform an 
individual operation, such as addition. Since most instructions took the same 
execution time, the timing of one was the same as the others. As the execution times 
of instructions in a computer became more diverse, however, the time required for 
one operation was no longer useful for comparisons.

To consider these differences, an instruction mix was calculated by measuring 
the relative frequency of instructions in a computer across many programs. 
Multiplying the time for each instruction by its weight in the mix gave the user the 
average instruction execution time. (If measured in clock cycles, average instruction 
execution time is the same as average CPI.) Since instruction sets were similar, this 
was a more precise comparison than add times. From average instruction execution 
time, then, it was only a small step to MIPS. MIPS had the virtue of being easy to 
understand; hence, it grew in popularity.

The Quest for an Average Program
As processors were becoming more sophisticated and relied on memory hierarchies 
(the topic of Chapter 5) and pipelining (the topic of Chapter 4), a single execution 
time for each instruction no longer existed; neither execution time nor MIPS, 
therefore, could be calculated from the instruction mix and the manual.

Although it might seem obvious today that the right thing to do would have been 
to develop a set of real applications that could be used as standard benchmarks, this 
was a difficult task until relatively recent times. Variations in operating systems 
and language standards made it hard to create large programs that could be moved 
from computer to computer simply by recompiling.

Instead, the next step was benchmarking using synthetic programs. The 
Whetstone synthetic program was created by measuring scientific programs 
written in Algol-60 (see Curnow and Wichmann’s [1976] description). This 
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program was converted to Fortran and was widely used to characterize scientific 
program performance. Whetstone performance is typically quoted in Whetstones 
per second—the number of executions of a single iteration of the Whetstone 
benchmark! Dhrystone is another synthetic benchmark that is still used in some 
embedded computing circles (see Weicker’s [1984] description and methodology).

About the same time Whetstone was developed, the concept of kernel benchmarks 
gained popularity. Kernels are small, time-intensive pieces from real programs that 
are extracted and then used as benchmarks. This approach was developed primarily 
for benchmarking high-end computers, especially supercomputers. Livermore 
Loops and Linpack are the best-known examples. The Livermore Loops consist of 
a series of 21 small loop fragments. Linpack consists of a portion of a linear algebra 
subroutine package. Kernels are best used to isolate the performance of individual 
features of a computer and to explain the reasons for differences in the performance 
of real programs. Because scientific applications often use small pieces of code that 
execute for a long time, characterizing performance with kernels is most popular 
in this application class. Although kernels help illuminate performance, they 
frequently overstate the performance on real applications.

SPECulating about Performance
An important advance in performance evaluation was the formation of the System 
Performance Evaluation Cooperative (SPEC) group in 1988. SPEC comprises 
representatives of many computer companies—the founders being Apollo/ 
Hewlett-Packard, DEC, MIPS, and Sun—who have agreed on a set of real programs 
and inputs that all will run. It is worth noting that SPEC couldn’t have come into 
being before portable operating systems and the popularity of high-level languages. 
Now compilers, too, are accepted as a proper part of the performance of computer 
systems and must be measured in any evaluation.

History teaches us that while the SPEC effort may be useful with current computers, 
it will not meet the needs of the next generation without changing. In 1991, a throughput 
measure was added, based on running multiple versions of the benchmark. It is most 
useful for evaluating timeshared usage of a uniprocessor or a multiprocessor. Other 
system benchmarks that include OS-intensive and I/O-intensive activities have also 
been added. Another change was the decision to drop some benchmarks and add 
others. One result of the difficulty in finding benchmarks was that the initial version 
of the SPEC benchmarks (called SPEC89) contained six floating-point benchmarks 
but only four integer benchmarks. Calculating a single summary measurement using 
the geometric mean of execution times normalized to a VAX-11/780 meant that this 
measure favored computers with strong floating-point performance.
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In 1992, a new benchmark set (called SPEC92) was introduced. It incorporated 
additional benchmarks, dropped matrix300, and provided separate means (SPEC 
INT and SPECFP) for integer and floating-point programs. In addition, the 
SPECbase measure, which disallows program-specific optimization flags, was 
added to provide users with a performance measurement that would more closely 
match what they might experience on their own programs. The SPECFP numbers 
show the largest increase versus the base SPECFP measurement, typically ranging 
from 15% to 30% higher.

In 1995, the benchmark set was once again updated, adding some new integer 
and floating-point benchmarks, as well as removing some benchmarks that suffered 
from flaws or had running times that had become too small given the factor of 
20 or more performance improvement since the first SPEC release. SPEC95 also 
changed the base computer for normalization to a Sun SPARC Station 10/40, since 
operating versions of the original base computer were becoming difficult to find!

The most recent version of SPEC is SPEC2006. What is perhaps most surprising 
is that all floating-point programs in SPEC2006 are new, and for integer programs 
just two are from SPEC2000, one from SPEC95, none from SPEC92, and one from 
SPEC89. The sole survivor from SPEC89 is the gcc compiler.

SPEC has also added benchmark suites beyond the original suites targeted at 
CPU performance. In 2008, SPEC provided benchmark sets for graphics, high-
performance scientific computing, object-oriented computing, file systems, Web 
servers and clients, Java, engineering CAD applications, and power.

The Growth of Embedded Computing
Embedded processors have been around for a very long time; in fact, the first 
minicomputers and the first microprocessors were originally developed for 
controlling functions in a laboratory or industrial application. For many years, the 
dominant use of embedded processors was for industrial control applications, and 
although this use continued to grow, the processors tended to be very cheap and 
the performance relatively low. For example, the best-selling processor in the world 
remains an 8-bit micro controller used in cars, some home appliances, and other 
simple applications.

The late 1980s and early 1990s saw the emergence of new opportunities for 
embedded processors, ranging from more advanced video games and set-top boxes 
to cell phones and personal digital assistants. The rapidly increasing number of 
information appliances and the growth of networking have driven dramatic surges 
in the number of embedded processors, as well as the performance requirements. 
To evaluate performance, the embedded community was inspired by SPEC to 
create the Embedded Microprocessor Benchmark Consortium (EEMBC). Started in 
1997, it consists of a collection of kernels organized into suites that address different 
portions of the embedded industry. They announced the second generation of 
these benchmarks in 2007.
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Year Name
Size

(cu. ft.)
Power
(watts)

Performance
(adds/sec)

Memory
(KB) Price

Price/
performance
vs. UNIVAC 

Adjusted
price 

(2007 $)

Adjusted
price/

performance
vs. UNIVAC 

1951 UNIVAC I 1000 125,000 2000 48 $1,000,000 0,000,001 $7,670,724 00,000,001

1964 IBM S/360
model 50

60 10,000 500,000 64 $1,000,000 0,000,263 $6,018,798 00,000,319

1965 PDP-8    8 500 330,000 4 0,0$16,000 0,010,855 0,0$94,685 00,013,367

1976 Cray-1   58 60,000 166,000,000 32,000 $4,000,000 0,021,842 $13,509,798 00,047,127

1981 IBM PC    1 000,150 240,000 256 0,00 $3000 0,042,105 0,00 $6859 00,134,208

1991 HP 9000/
model 750

   2 000,500 50,000,000 16,384 0,00 $7400 3,556,188 0,00$11,807 16,241,889

1996 Intel PPro
PC (200 MHz)

   2 000,500 400,000,000 16,384 0,00 $4400 47,846,890 $6211 247,021,234

2003 Intel Pentium 4 
PC (3.0 GHz)

2 500 6,000,000,000 262,144 $1600 1,875,000,000 $2009 11,451,750,000

2007 AMD Barcelona 
PC (2.5 GHz)

2 250 20,000,000,000 2,097,152 $800 12,500,000,000 $800 95,884,051,042 

FIGURE e1.12.7 Characteristics of key commercial computers since 1950, in actual dollars and in 2007 dollars 
adjusted for inflation. The last row assumes we can fully utilize the potential performance of the four cores in Barcelona. In contrast to 
Figure e1.12.3, here the price of the IBM S/360 model 50 includes I/O devices. (Source: The Computer History Museum and Producer Price Index 
for Industrial Commodities.)

A Half-Century of Progress
Since 1951, there have been thousands of new computers using a wide range of 
technologies and having widely varying capabilities. Figure e1.12.7 summarizes 
the key characteristics of some machines mentioned in this section and  
shows the dramatic changes that have occurred in just over 50 years. After  
adjusting for inflation, price/performance has improved by almost 100 billion in  
55 years, or about 58% per year. Another way to say it is we’ve seen a factor of  
10,000 improvement in cost and a factor of 10,000,000 improvement in 
performance.

Readers interested in computer history should consult Annals of the History of 
Computing, a journal devoted to the history of computing. Several books describing 
the early days of computing have also appeared, many written by the pioneers 
including Goldstine [1972], Metropolis et al. [1980], and Wilkes [1985].
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e. Library reserve desk

f. Increasing the gate area on a CMOS transistor to decrease its switching time

g. Adding electromagnetic aircraft catapults (which are electrically powered  
as opposed to current steam-powered models), allowed by the increased power 
generation offered by the new reactor technology

h. Building self-driving cars whose control systems partially rely on existing sensor 
systems already installed into the base vehicle, such as lane departure systems and 
smart cruise control systems

1.3 [2] <§1.3> Describe the steps that transform a program written in a high-level 
language such as C into a representation that is directly executed by a computer 
processor.

1.4 [2] <§1.4> Assume a color display using 8 bits for each of the primary colors 
(red, green, blue) per pixel and a frame size of 1280 × 1024.

a. What is the minimum size in bytes of the frame buffer to store a frame?

b. How long would it take, at a minimum, for the frame to be sent over a 100 Mbit/s 
network?

 1.5 [4] <§1.6> Consider three different processors P1, P2, and P3 executing  
the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a 
2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI  
of 2.2.

a. Which processor has the highest performance expressed in instructions per second?

b. If the processors each execute a program in 10 seconds, find the number of  
cycles and the number of instructions.

c. We are trying to reduce the execution time by 30%, but this leads to an increase  
of 20% in the CPI. What clock rate should we have to get this time reduction?

 1.6 [20] <§1.6> Consider two different implementations of the same instruction 
set architecture. The instructions can be divided into four classes according to  
their CPI (classes A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 
3, and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.

Given a program with a dynamic instruction count of 1.0E6 instructions divided 
into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, 
which is faster: P1 or P2?

a. What is the global CPI for each implementation?

b. Find the clock cycles required in both cases.

马德

马德
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 1.7 [15] <§1.6> Compilers can have a profound impact on the performance 
of an application. Assume that for a program, compiler A results in a dynamic 
instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B 
results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.

a. Find the average CPI for each program given that the processor has a clock cycle 
time of 1 ns.

b. Assume the compiled programs run on two different processors. If the execution 
times on the two processors are the same, how much faster is the clock of the 
processor running compiler A’s code versus the clock of the processor running 
compiler B’s code?

c. A new compiler is developed that uses only 6.0E8 instructions and has an  
average CPI of 1.1. What is the speedup of using this new compiler versus using 
compiler A or B on the original processor?

 1.8 The Pentium 4 Prescott processor, released in 2004, had a clock rate of 
3.6 GHz and voltage of 1.25 V. Assume that, on average, it consumed 10 W of static  
power and 90 W of dynamic power.

The Core i5 Ivy Bridge, released in 2012, has a clock rate of 3.4 GHz and voltage 
of 0.9 V. Assume that, on average, it consumed 30 W of static power and 40 W of 
dynamic power.

1.8.1 [5] < §1.7> For each processor find the average capacitive loads.

1.8.2 [5] < §1.7> Find the percentage of the total dissipated power comprised by 
static power and the ratio of static power to dynamic power for each technology.

1.8.3 [15] < §1.7> If the total dissipated power is to be reduced by 10%, how much 
should the voltage be reduced to maintain the same leakage current? Note: power  
is defined as the product of voltage and current.

 1.9 Assume for arithmetic, load/store, and branch instructions, a processor has 
CPIs of 1, 12, and 5, respectively. Also assume that on a single processor a program 
requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store 
instructions, and 256 million branch instructions. Assume that each processor has 
a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number 
of arithmetic and load/store instructions per processor is divided by 0.7 × p (where 
p is the number of processors) but the number of branch instructions per processor 
remains the same.

1.9.1 [5] < §1.7> Find the total execution time for this program on 1, 2, 4, and 8 
processors, and show the relative speedup of the 2, 4, and 8 processors result relative 
to the single processor result.

马德
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1.9.2 [10] <§§1.6, 1.8> If the CPI of the arithmetic instructions was doubled, 
what would the impact be on the execution time of the program on 1, 2, 4, or 8 
processors?

1.9.3 [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be 
reduced in order for a single processor to match the performance of four processors 
using the original CPI values?

 1.10 Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has 
0.020 defects/cm2. Assume a 20 cm diameter wafer has a cost of 15, contains 100 
dies, and has 0.031 defects/cm2.

1.10.1 [10] <§1.5> Find the yield for both wafers.

1.10.2 [5] <§1.5> Find the cost per die for both wafers.

1.10.3 [5] <§1.5> If the number of dies per wafer is increased by 10% and the 
defects per area unit increases by 15%, find the die area and yield.

1.10.4 [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to 
0.95. Find the defects per area unit for each version of the technology given a die 
area of 200 mm2.

 1.11 The results of the SPEC CPU2006 bzip2 benchmark running on an AMD 
Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a 
reference time of 9650 s.

1.11.1 [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns.

1.11.2 [5] <§1.9> Find the SPECratio.

1.11.3 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions 
of the benchmark is increased by 10% without affecting the CPI.

1.11.4 [5] <§§1.6, 1.9> Find the increase in CPU time if the number of instructions 
of the benchmark is increased by 10% and the CPI is increased by 5%.

1.11.5 [5] <§§1.6, 1.9> Find the change in the SPECratio for this change.

1.11.6 [10] <§1.6> Suppose that we are developing a new version of the AMD 
Barcelona processor with a 4 GHz clock rate. We have added some additional 
instructions to the instruction set in such a way that the number of instructions  
has been reduced by 15%. The execution time is reduced to 700 s and the new 
SPECratio is 13.7. Find the new CPI.

1.11.7 [10] <§1.6> This CPI value is larger than obtained in 1.11.1 as the clock 
rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the  
CPI is similar to that of the clock rate. If they are dissimilar, why?

1.11.8 [5] <§1.6> By how much has the CPU time been reduced?
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1.11.9 [10] <§1.6> For a second benchmark, libquantum, assume an execution 
time of 960 ns, CPI of 1.61, and clock rate of 3 GHz. If the execution time is  
reduced by an additional 10% without affecting the CPI and with a clock rate of 
4 GHz, determine the number of instructions.

1.11.10 [10] <§1.6> Determine the clock rate required to give a further 10% 
reduction in CPU time while maintaining the number of instructions and with the 
CPI unchanged.

1.11.11 [10] <§1.6> Determine the clock rate if the CPI is reduced by 15% and 
the CPU time by 20% while the number of instructions is unchanged.

1.12 Section 1.10 cites as a pitfall the utilization of a subset of the performance 
equation as a performance metric. To illustrate this, consider the following two 
processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the 
execution of 5.0E9 instructions. P2 has a clock rate of 3 GHz, an average CPI of 
0.75, and requires the execution of 1.0E9 instructions.

1.12.1 [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the 
largest clock rate as having the highest performance. Check if this is true for P1 and 
P2.

1.12.2 [10] <§§1.6, 1.10> Another fallacy is to consider that the processor executing 
the largest number of instructions will need a larger CPU time. Considering that 
processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of 
processors P1 and P2 do not change, determine the number of instructions that P2 
can execute in the same time that P1 needs to execute 1.0E9 instructions.

1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of 
instructions per second) to compare the performance of two different processors, 
and consider that the processor with the largest MIPS has the largest performance. 
Check if this is true for P1 and P2.

1.12.4 [10] <§1.10> Another common performance figure is MFLOPS (millions 
of floating-point operations per second), defined as

MFLOPS No  FP operations execution time 1E6. /( )

but this figure has the same problems as MIPS. Assume that 40% of the instructions 
executed on both P1 and P2 are floating-point instructions. Find the MFLOPS 
figures for the processors.

1.13 Another pitfall cited in Section 1.10 is expecting to improve the overall 
performance of a computer by improving only one aspect of the computer. Consider 
a computer running a program that requires 250 s, with 70 s spent executing FP 
instructions, 85 s executed L/S instructions, and 40 s spent executing branch 
instructions.
1.13.1 [5] <§1.10> By how much is the total time reduced if the time for FP 
operations is reduced by 20%?

马德
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1.13.2 [5] <§1.10> By how much is the time for INT operations reduced if the 
total time is reduced by 20%?

1.13.3 [5] <§1.10> Can the total time can be reduced by 20% by reducing only 
the time for branch instructions?

1.14 Assume a program requires the execution of 50 × 106 FP instructions,  
110 × 106 INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch 
instructions. The CPI for each type of instruction is 1, 1, 4, and 2, respectively. 
Assume that the processor has a 2 GHz clock rate.

1.14.1 [10] <§1.10> By how much must we improve the CPI of FP instructions if 
we want the program to run two times faster?

1.14.2 [10] <§1.10> By how much must we improve the CPI of L/S instructions  
if we want the program to run two times faster?

1.14.3 [5] <§1.10> By how much is the execution time of the program improved 
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and 
Branch is reduced by 30%?

1.15 [5] <§1.8> When a program is adapted to run on multiple processors in 
a multiprocessor system, the execution time on each processor is comprised of 
computing time and the overhead time required for locked critical sections and/or 
to send data from one processor to another.

Assume a program requires t = 100 s of execution time on one processor. When run 
p processors, each processor requires t/p s, as well as an additional 4 s of overhead, 
irrespective of the number of processors. Compute the per-processor execution 
time for 2, 4, 8, 16, 32, 64, and 128 processors. For each case, list the corresponding 
speedup relative to a single processor and the ratio between actual speedup versus 
ideal speedup (speedup if there was no overhead).

§1.1, page 10: Discussion questions: many answers are acceptable.
§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds, 
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000 
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than 
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than 
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.
§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 
high volume can make the extra investment to reduce die size by, say, 10% a good 
economic decision, but it doesn’t have to be true.
§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.
§1.6, page 40: b.
§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to  
Check Yourself
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 2.1 Introduction

To command a computer’s hardware, you must speak its language. The words 
of a computer’s language are called instructions, and its vocabulary is called an 
instruction set. In this chapter, you will see the instruction set of a real computer, 
both in the form written by people and in the form read by the computer. We 
introduce instructions in a top-down fashion. Starting from a notation that looks like 
a restricted programming language, we refine it step-by-step until you see the actual 
language of a real computer. Chapter 3 continues our downward descent, unveiling 
the hardware for arithmetic and the representation of floating-point numbers.

You might think that the languages of computers would be as diverse as those of 
people, but in reality, computer languages are quite similar, more like regional dialects 
than independent languages. Hence, once you learn one, it is easy to pick up others.

The chosen instruction set is RISC-V, which was originally developed at UC 
Berkeley starting in 2010.

To demonstrate how easy it is to pick up other instruction sets, we will also take 
a quick look at two other popular instruction sets.

1. MIPS is an elegant example of the instruction sets designed since the 1980s. 
In several respects, RISC-V follows a similar design.

2. The Intel x86 originated in the 1970s, but still today powers both the PC and 
the Cloud of the post-PC era.

This similarity of instruction sets occurs because all computers are constructed 
from hardware technologies based on similar underlying principles and because 
there are a few basic operations that all computers must provide. Moreover, 
computer designers have a common goal: to find a language that makes it easy 
to build the hardware and the compiler while maximizing performance and 
minimizing cost and energy. This goal is time-honored; the following quote was 
written before you could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction 
sets] that are in abstract adequate to control and cause the execution of any 
sequence of operations.… The really decisive considerations from the present 
point of view, in selecting an [instruction set], are more of a practical nature: 
simplicity of the equipment demanded by the [instruction set], and the clarity of 
its application to the actually important problems together with the speed of its 
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s 
computers as it was for those of the 1950s. The goal of this chapter is to teach 
an instruction set that follows this advice, showing both how it is represented in 

instruction set The 
vocabulary of commands 
understood by a given 
architecture.
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hardware and the relationship between high-level programming languages and this 
more primitive one. Our examples are in the C programming language;  Section 
2.15 shows how these would change for an object-oriented language like Java.

By learning how to represent instructions, you will also discover the secret of 
computing: the stored-program concept. Moreover, you will exercise your “foreign 
language” skills by writing programs in the language of the computer and running them 
on the simulator that comes with this book. You will also see the impact of programming 
languages and compiler optimization on performance. We conclude with a look at the 
historical evolution of instruction sets and an overview of other computer dialects.

We reveal our first instruction set a piece at a time, giving the rationale along with 
the computer structures. This top-down, step-by-step tutorial weaves the components 
with their explanations, making the computer’s language more palatable. Figure 2.1 
gives a sneak preview of the instruction set covered in this chapter.

 2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The RISC-V assembly 
language notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each RISC-V arithmetic instruction performs only 

one operation and must always have exactly three variables. For example, suppose 
we want to place the sum of four variables b, c, d, and e into variable a. (In this 
section, we are being deliberately vague about what a “variable” is; in the next 
section, we’ll explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c    // The sum of b and c is placed in a
add a, a, d    // The sum of b, c, and d is now in a
add a, a, e    // The sum of b, c, d, and e is now in a

Thus, it takes three instructions to sum the four variables.
The words to the right of the double slashes (//) on each line above are 

comments for the human reader, so the computer ignores them. Note that unlike 
other programming languages, each line of this language can contain at most one 
instruction. Another difference from C is that comments always terminate at the 
end of a line.

The natural number of operands for an operation like addition is three: the 
two numbers being added together and a place to put the sum. Requiring every 
instruction to have exactly three operands, no more and no less, conforms to the 
philosophy of keeping the hardware simple: hardware for a variable number of 

stored-program 
concept The idea that 
instructions and data of 
many types can be stored 
in memory as numbers 
and thus be easy to 
change, leading to the 
stored-program computer.

There must certainly 
be instructions 
for performing 
the fundamental 
arithmetic operations.
Burks, Goldstine, and 
von Neumann, 1947
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RISC-V operands

Name Example Comments

32 registers x0-x31
Fast locations for data.  In RISC-V, data must be in registers to perform arithmetic.
Register x0 always equals 0.

261 memory 
words

Memory[0], Memory[8], …,
Memory[18,446,744,073,709,551,
608]

Accessed only by data transfer instructions. RISC-V uses byte addresses, so
sequential doubleword accesses differ by 8. Memory holds data structures,
arrays, and spilled registers.

RISC-V assembly language

Meaning Comments

Add add x5, x6, x7 Three register operands; add

Subtract sub x5, x6, x7 Three register operands; subtract

Add immediate addi x5, x6, 20 Used to add constants
Arithmetic

Data transfer

Logical

Load doubleword ld x5, 40(x6) Doubleword from memory to register

Store doubleword sd x5, 40(x6) Doubleword from register to memory

Load word lw x5, 40(x6) Word from memory to register

Load word, unsigned lwu x5, 40(x6) Unsigned word from memory to register
Store word sw x5, 40(x6)

x5 = x6 + x7

x5 = x6 - x7

x5 = x6 + 20

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]
Memory[x6 + 40] = x5 Word from register to memory

Load halfword lh x5, 40(x6) Halfword from memory to registerx5 = Memory[x6 + 40]
Load halfword, 
unsigned

lhu x5, 40(x6) Unsigned halfword from memory 
to register

x5 = Memory[x6 + 40]

Store halfword sh x5, 40(x6) Halfword from register to memory

Load byte lb x5, 40(x6) Byte from memory to register

Load byte, unsigned lbu x5, 40(x6) Byte unsigned from memory to register

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]
Store byte sb x5, 40(x6) Byte from register to memory

Load reserved lr.d x5, (x6) Load; 1st half of atomic swap

Store conditional sc.d x7, x5, (x6) Store; 2nd half of atomic swap

Load upper 
immediate

lui x5, 0x12345 Loads 20-bit constant shifted left 
12 bits

And

Memory[x6 + 40] = x5

x5 = Memory[x6]

Memory[x6] = x5; x7 = 0/1

x5 = 0x12345000

and x5, x6, x7 Three reg. operands; bit-by-bit AND

Three reg. operands; bit-by-bit XOR

x5 = x6 & x7
Inclusive or or x5, x6, x8 Three reg. operands; bit-by-bit ORx5 = x6 | x8

Exclusive or xor x5, x6, x9 x5 = x6 ^ x9

Bit-by-bit AND reg. with constantAnd immediate andi x5, x6, 20 x5 = x6 & 20

Bit-by-bit OR reg. with constantInclusive or immediate ori x5, x6, 20 x5 = x6 | 20
Bit-by-bit XOR reg. with constantExclusive or immediate xori x5, x6, 20 x5 = x6 ^ 20

ExampleInstructionCategory

Shift

Shift left logical sll x5, x6, x7 Shift left by register

Arithmetic shift right by register

x5 = x6 << x7
Shift right logical srl x5, x6, x7 Shift right by registerx5 = x6 >> x7

Shift right arithmetic sra x5, x6, x7 x5 = x6 >> x7

Shift left by immediateShift left logical 
immediate

slli x5, x6, 3 x5 = x6 << 3

Shift right by immediateShift right logical 
immediate

srli x5, x6, 3 x5 = x6 >> 3

Arithmetic shift right by immediateShift right arithmetic 
immediate

srai x5, x6, 3 x5 = x6 >> 3

FIGURE 2.1 RISC-V assembly language revealed in this chapter. This information is also found in Column 1 of the RISC-V 
Reference Data Card at the front of this book.
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operands is more complicated than hardware for a fixed number. This situation 
illustrates the first of three underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.
We can now show, in the two examples that follow, the relationship of programs 

written in higher-level programming languages to programs in this more primitive 
notation.

Compiling Two C Assignment Statements into RISC-V

This segment of a C program contains the five variables a, b, c, d, and e. Since 
Java evolved from C, this example and the next few work for either high-level 
programming language:

a = b + c;
d = a − e;

The compiler translates from C to RISC-V assembly language instructions. 
Show the RISC-V code produced by a compiler.

A RISC-V instruction operates on two source operands and places the result 
in one destination operand. Hence, the two simple statements above compile 
directly into these two RISC-V assembly language instructions:

add a, b, c
sub d, a, e

Conditional 
branch

Unconditional 
branch

PC-relative branch if registers equal

PC-relative branch if registers less

if (x5 == x6) go to PC+100
PC-relative branch if registers not equalif (x5 != x6) go to PC+100

if (x5 < x6) go to PC+100

PC-relative branch if registers greater 
or equal

if (x5 >= x6) go to PC+100

PC-relative branch if registers less,
unsigned

if (x5 < x6) go to PC+100

PC-relative branch if registers greater
or equal, unsigned

if (x5 >= x6) go to PC+100

jal x1, 100 PC-relative procedure callx1 = PC+4; go to PC+100
jalr x1, 100(x5) Procedure return; indirect callx1 = PC+4; go to x5+100

Branch if equal beq x5, x6, 100
Branch if not equal bne x5, x6, 100

Branch if less than blt x5, x6, 100

Branch if greater or 
equal

bge x5, x6, 100

Branch if less, unsigned bltu x5, x6, 100

Branch if greater or 
equal, unsigned

bgeu x5, x6, 100

Jump and link

Jump and link register

FIGURE 2.1 (Continued).

EXAMPLE

ANSWER
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Compiling a Complex C Assignment into RISC-V

A somewhat complicated statement contains the five variables f, g, h, i, and j:

f = (g + h) − (i + j);

What might a C compiler produce?

The compiler must break this statement into several assembly instructions, 
since only one operation is performed per RISC-V instruction. The first 
RISC-V instruction calculates the sum of g and h. We must place the result 
somewhere, so the compiler creates a temporary variable, called t0:

add t0, g, h // temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and 
j before we can subtract. Thus, the second instruction places the sum of i and 
j in another temporary variable created by the compiler, called t1:

add t1, i, j // temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and 
places the difference in the variable f, completing the compiled code:

sub f, t0, t1 // f gets t0 − t1, which is (g + h) − (i + j)

Elaboration: To increase portability, Java was originally envisioned as relying on 
a software interpreter. The instruction set of this interpreter is called Java bytecodes 
(see  Section 2.15), which is quite different from the RISC-V instruction set. To get 
performance close to the equivalent C program, Java systems today typically compile 
Java bytecodes into the native instruction sets like RISC-V. Because this compilation is 
normally done much later than for C programs, such Java compilers are often called Just 
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers 
in the start-up process, and Section 2.13 shows the performance consequences of 
compiling versus interpreting Java programs.

EXAMPLE

ANSWER

Check  
Yourself

For a given function, which programming language likely takes the most lines of 
code? Put the three representations below in order.

1. Java

2. C

3. RISC-V assembly language
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 2.3 Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions 
are restricted; they must be from a limited number of special locations built directly 
in hardware called registers. Registers are primitives used in hardware design that 
are also visible to the programmer when the computer is completed, so you can 
think of registers as the bricks of computer construction. The size of a register in 
the RISC-V architecture is 64 bits; groups of 64 bits occur so frequently that they 
are given the name doubleword in the RISC-V architecture. (Another popular size 
is a group of 32 bits, called a word in the RISC-V architecture.)

One major difference between the variables of a programming language and registers 
is the limited number of registers, typically 32 on current computers, like RISC-V. (See 

 Section 2.21 for the history of the number of registers.) Thus, continuing in our 
top-down, stepwise evolution of the symbolic representation of the RISC-V language, 
in this section we have added the restriction that the three operands of RISC-V 
arithmetic instructions must each be chosen from one of the 32 64-bit registers.

The reason for the limit of 32 registers may be found in the second of our three 
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.
A very large number of registers may increase the clock cycle time simply because 
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be 
faster than 32. Even so, the truth behind such observations causes computer designers 
to take them seriously. In this case, the designer must balance the craving of 
programs for more registers with the designer’s desire to keep the clock cycle fast. 
Another reason for not using more than 32 is the number of bits it would take in 
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction; 
as we shall see in that chapter, effective use of registers is critical to program 
performance.

Although we could simply write instructions using numbers for registers, from 
0 to 31, the RISC-V convention is x followed by the number of the register, except 
for a few register names that we will cover later.

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for 
instance, the assignment statement from our earlier example:

f = (g + h) − (i + j);

word A natural unit 
of access in a computer, 
usually a group of 32 bits.

doubleword Another 
natural unit of access in a 
computer, usually a group 
of 64 bits; corresponds to 
the size of a register in the 
RISC-V architecture.

EXAMPLE



68 Chapter 2 Instructions: Language of the Computer

The variables f, g, h, i, and j are assigned to the registers x19, x20, x21, x22, 
and x23, respectively. What is the compiled RISC-V code?

The compiled program is very similar to the prior example, except we replace 
the variables with the register names mentioned above plus two temporary 
registers, x5 and x6, which correspond to the temporary variables above:

add x5, x20, x21 // register x5 contains g + h
add x6, x22, x23 // register x6 contains i + j
sub x19, x5, x6 //  f gets x5 – x6, which is (g + h) − (i + j)

Memory Operands
Programming languages have simple variables that contain single data elements, 
as in these examples, but they also have more complex data structures—arrays and 
structures. These composite data structures can contain many more data elements 
than there are registers in a computer. How can a computer represent and access 
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated 
on page 61. The processor can keep only a small amount of data in registers, but 
computer memory contains billions of data elements. Hence, data structures 
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in RISC-V 
instructions; thus, RISC-V must include instructions that transfer data between 
memory and registers. Such instructions are called data transfer instructions.  
To access a word or doubleword in memory, the instruction must supply the 
memory address. Memory is just a large, single-dimensional array, with the 
address acting as the index to that array, starting at 0. For example, in Figure 2.2, 
the address of the third data element is 2, and the value of memory [2] is 10.

data transfer 
instruction A command 
that moves data between 
memory and registers.

address A value used to 
delineate the location of 
a specific data element 
within a memory array.

ANSWER

Processor Memory

Address Data

1

101

10

100

0

1

2

3

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these 
elements were doublewords, these addresses would be incorrect, since RISC-V actually uses byte addressing, 
with each doubleword representing 8 bytes. Figure 2.3 shows the correct memory addressing for sequential 
doubleword addresses.
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The data transfer instruction that copies data from memory to a register is 
traditionally called load. The format of the load instruction is the name of the 
operation followed by the register to be loaded, then register and a constant used to 
access memory. The sum of the constant portion of the instruction and the contents 
of the second register forms the memory address. The real RISC-V name for this 
instruction is ld, standing for load doubleword.

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 doublewords and that the compiler has 
associated the variables g and h with the registers x20 and x21 as before. Let’s 
also assume that the starting address, or base address, of the array is in x22. 
Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of the 
operands is in memory, so we must first transfer A[8] to a register. The address 
of this array element is the sum of the base of the array A, found in register x22, 
plus the number to select element 8. The data should be placed in a temporary 
register for use in the next instruction. Based on Figure 2.2, the first compiled 
instruction is

ld  x9, 8(x22) // Temporary reg x9 gets A[8]

(We’ll be making a slight adjustment to this instruction, but we’ll use this 
simplified version for now.) The following instruction can operate on the value 
in x9 (which equals A[8]) since it is in a register. The instruction must add h 
(contained in x21) to A[8] (contained in x9) and put the sum in the register 
corresponding to g (associated with x20):

add  x20, x21, x9 // g = h + A[8]

The register added to form the address (x22) is called the base register, and the 
constant in a data transfer instruction (8) is called the offset.

EXAMPLE

ANSWER

In addition to associating variables with registers, the compiler allocates data 
structures like arrays and structures to locations in memory. The compiler can then 
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, virtually all architectures today 
address individual bytes. Therefore, the address of a doubleword matches the 
address of one of the 8 bytes within the doubleword, and addresses of sequential 
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The instruction complementary to load is traditionally called store; it copies data 
from a register to memory. The format of a store is similar to that of a load: the 
name of the operation, followed by the register to be stored, then the base register, 
and finally the offset to select the array element. Once again, the RISC-V address is 
specified in part by a constant and in part by the contents of a register. The actual 
RISC-V name is sd, standing for store doubleword.

Processor Memory

Byte Address Data

1

101

10

100

0

8

16

24

FIGURE 2.3 Actual RISC-V memory addresses and contents of memory for those 
doublewords. The changed addresses are highlighted to contrast with Figure 2.2. Since RISC-V addresses 
each byte, doubleword addresses are multiples of 8: there are 8 bytes in a doubleword.

Elaboration: In many architectures, words must start at addresses that are multiples 
of 4 and doublewords must start at addresses that are multiples of 8. This requirement is 
called an alignment restriction. (Chapter 4 suggests why alignment leads to faster data 
transfers.) RISC-V and Intel x86 do not have alignment restrictions, but MIPS does.

alignment restriction  
A requirement that data 
be aligned in memory on 
natural boundaries.
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As the addresses in loads and stores are binary numbers, we can see why the DRAM for 
main memory comes in binary sizes rather than in decimal sizes. That is, in gibibytes 
(230) or tebibytes (240), not in gigabytes (109) or terabytes (1012); see Figure 1.1.

doublewords differ by 8. For example, Figure 2.3 shows the actual RISC-V addresses 
for the doublewords in Figure 2.2; the byte address of the third doubleword is 16.

Computers divide into those that use the address of the leftmost or “big end” 
byte as the doubleword address versus those that use the rightmost or “little end” 
byte. RISC-V belongs to the latter camp, referred to as little-endian. Since the order 
matters only if you access the identical data both as a doubleword and as eight 
individual bytes, few need to be aware of the “endianness.”

Byte addressing also affects the array index. To get the proper byte address in 
the code above, the offset to be added to the base register x22 must be 8 × 8, or 64, 
so that the load address will select A[8] and not A[8/8]. (See the related Pitfall on 
page 159 of Section 2.19.)
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Compiling Using Load and Store

Assume variable h is associated with register x21 and the base address of the 
array A is in x22. What is the RISC-V assembly code for the C assignment 
statement below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the 
operands are in memory, so we need even more RISC-V instructions. The first 
two instructions are the same as in the prior example, except this time we use 
the proper offset for byte addressing in the load register instruction to select 
A[8], and the add instruction places the sum in x9:

ld x9, 64(x22) // Temporary reg x9 gets A[8]
add x9, x21, x9 // Temporary reg x9 gets h + A[8]

The final instruction stores the sum into A[12], using 96 (8 × 12) as the 
offset and register x22 as the base register.

sd x9, 96(x22) // Stores h + A[8] back into A[12]

Load doubleword and store doubleword are the instructions that copy 
doublewords between memory and registers in the RISC-V architecture. Some 
brands of computers use other instructions along with load and store to transfer 
data. An architecture with such alternatives is the Intel x86, described in Section 
2.17.

EXAMPLE

ANSWER
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Many programs have more variables than computers have registers. Consequently, 
the compiler tries to keep the most frequently used variables in registers and places 
the rest in memory, using loads and stores to move variables between registers and 
memory. The process of putting less frequently used variables (or those needed 
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be 
slower than registers, since there are fewer registers. This suggestion is indeed the 
case; data accesses are faster if data are in registers instead of memory.

Moreover, data are more useful when in a register. A RISC-V arithmetic 
instruction can read two registers, operate on them, and write the result. A RISC-V 
data transfer instruction only reads one operand or writes one operand, without 
operating on it.
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Elaboration: Let’s put the energy and performance of registers versus memory into 
perspective. Assuming 64-bit data, registers are roughly 200 times faster (0.25 vs. 50 
nanoseconds) and are 10,000 times more energy efficient (0.1 vs. 1000 picoJoules) than 
DRAM in 2015. These large differences led to caches, which reduce the performance 
and energy penalties of going to memory (see Chapter 5).

Constant or Immediate Operands
Many times a program will use a constant in an operation—for example, 
incrementing an index to point to the next element of an array. In fact, more than 
half of the RISC-V arithmetic instructions have a constant as an operand when 
running the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant 
from memory to use one. (The constants would have been placed in memory when 
the program was loaded.) For example, to add the constant 4 to register x22, we 
could use the code

ld x9, AddrConstant4(x3)    // x9 = constant 4
add x22, x22, x9          //   x22 = x22 + x9 (where x9 == 4)

assuming that x3 + AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arithmetic 

instructions in which one operand is a constant. This quick add instruction with 
one constant operand is called add immediate or addi. To add 4 to register x22, 
we just write

addi   x22, x22, 4   // x22 = x22 + 4

Constant operands occur frequently; indeed, addi is the most popular 
instruction in most RISC-V programs. By including constants inside arithmetic 
instructions, operations are much faster and use less energy than if constants were 
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by 
offering useful variations. For example, you can negate the value in a register by 
using the sub instruction with zero for the first operand. Hence, RISC-V dedicates 
register x0 to be hard-wired to the value zero. Using frequency to justify the 
inclusions of constants is another example of the great idea from Chapter 1 of 
making the common case fast.

Thus, registers take less time to access and have higher throughput than memory, 
making data in registers both considerably faster to access and simpler to use. 
Accessing registers also uses much less energy than accessing memory. To achieve 
the highest performance and conserve energy, an instruction set architecture must 
have enough registers, and compilers must use registers efficiently.
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Check  
Yourself

Given the importance of registers, what is the rate of increase in the number of 
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s Law, which predicts doubling the 
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the 
computer, there is inertia in instruction set architecture, and so the number 
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the RISC-V registers in this book are 64 bits wide, the RISC-V 
architects conceived multiple variants of the ISA. In addition to this variant, known as 
RV64, a variant named RV32 has 32-bit registers, whose reduced cost make RV32 
better suited to very low-cost processors.

Elaboration: The RISC-V offset plus base register addressing is an excellent match to 
structures as well as arrays, since the register can point to the beginning of the structure 
and the offset can select the desired element. We’ll see such an example in Section 2.13.

Elaboration: The register in the data transfer instructions was originally invented to 
hold an index of an array with the offset used for the starting address of an array. Thus, 
the base register is also called the index register. Today’s memories are much larger, 
and the software model of data allocation is more sophisticated, so the base address of 
the array is normally passed in a register since it won’t fit in the offset, as we shall see.

Elaboration: The migration from 32-bit address computers to 64-bit address 
computers left compiler writers a choice of the size of data types in C. Clearly, pointers 
should be 64 bits, but what about integers? Moreover, C has the data types int, long 
int, and long long int. The problems come from converting from one data type to 
another and having an unexpected overflow in C code that is not fully standard compliant, 
which unfortunately is not rare code. The table below shows the two popular options:

Operating System pointers int long int long long int

Microsoft Windows 64 bits 32 bits 32 bits 64 bits

Linux, Most Unix 64 bits 32 bits 64 bits 64 bits

While each compiler could have different choices, generally the compilers associated 
with each operating system make the same decision. To keep the examples simple, 
in this book we’ll assume pointers are all 64 bits and declare all C integers as long 
long int to keep them the same size. We also follow C99 standard and declare 
variables used as indexes to arrays to be size_t, which guarantees they are the right 
size no matter how big the array. They are typically declared the same as long int.
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 2.4 Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught 
to think in base 10, but numbers may be represented in any base. For example, 123 
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic 
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are 
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all 
information is composed of binary digits or bits. This fundamental building block 
can be one of two values, which can be thought of as several alternatives: high or 
low, on or off, true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d i� Base

where i starts at 0 and increases from right to left. This representation leads to an 
obvious way to number the bits in the doubleword: simply use the power of the 
base for that bit. We subscript decimal numbers with ten and binary numbers with 
two. For example,

1011two

represents

  (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20)ten

= (1 × 8)    + (0 × 4)   + (1 × 2)    + (1 × 1)ten

=  8 + 0 + 2 + 1ten

= 11ten

We number the bits 0, 1, 2, 3, … from right to left in a doubleword. The drawing 
below shows the numbering of bits within a RISC-V doubleword and the placement 
of the number 1011two, (which we must unfortunately split in half to fit on the page 
of the book):

Since doublewords are drawn vertically as well as horizontally, leftmost and 
rightmost may be unclear. Hence, the phrase least significant bit is used to refer to 
the rightmost bit (bit 0 above) and most significant bit to the leftmost bit (bit 63).

binary digit Also  
called bit. One of 
the two numbers in 
base 2, 0 or 1, that are 
the components of 
information.

least significant bit The 
rightmost bit in an 
RISC-V doubleword.

most significant bit The 
leftmost bit in an RISC-V 
doubleword.
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The RISC-V doubleword is 64 bits long, so we can represent 264 different 64-bit 
patterns. It is natural to let these combinations represent the numbers from 0 to 264 
−1 (18,446,774,073,709,551,615ten):

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000two = 0ten

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

. . .               . . .

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = 18,446,774,073,709,551,613ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = 18,446,744,073,709,551,614ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = 18,446,744,073,709,551,615ten

That is, 64-bit binary numbers can be represented in terms of the bit value times 
a power of 2 (here xi means the ith bit of x):

( ) ( ) ( ) ( ) ( )x x x x x63
63

62
62

61
61

1
1

0
02 2 2 2 2�

For reasons we will shortly see, these positive numbers are called unsigned numbers.

Base 2 is not natural to human beings; we have 10 fingers and so find base 10 
natural. Why didn’t computers use decimal? In fact, the first commercial computer 
did offer decimal arithmetic. The problem was that the computer still used on 
and off signals, so a decimal digit was simply represented by several binary digits. 
Decimal proved so inefficient that subsequent computers reverted to all binary, 
converting to base 10 only for the relatively infrequent input/output events.

Keep in mind that the binary bit patterns above are simply representatives 
of numbers. Numbers really have an infinite number of digits, with almost all 
being 0 except for a few of the rightmost digits. We just don’t normally show 
leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary 
bit patterns. If the number that is the proper result of such operations cannot be 
represented by these rightmost hardware bits, overflow is said to have occurred. 
It’s up to the programming language, the operating system, and the program to 
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a 
representation that distinguishes the positive from the negative. The most obvious 
solution is to add a separate sign, which conveniently can be represented in a single 
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s 
not obvious where to put the sign bit. To the right? To the left? Early computers 
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tried both. Second, adders for sign and magnitude may need an extra step to set 
the sign because we can’t know in advance what the proper sign will be. Finally, a 
separate sign bit means that sign and magnitude has both a positive and a negative 
zero, which can lead to problems for inattentive programmers. Because of these 
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what 
would be the result for unsigned numbers if we tried to subtract a large number 
from a small one. The answer is that it would try to borrow from a string of leading 
0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the final solution was to pick 
the representation that made the hardware simple: leading 0s mean positive, and 
leading 1s mean negative. This convention for representing signed binary numbers 
is called two’s complement representation:

00000000 00000000 00000000 00000000 00000000 00000000 00000000two = 0ten

00000000 00000000 00000000 00000000 00000000 00000000 00000001two = 1ten

00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

. . .                        . . .

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = 9,223,372,036,854,775,805ten

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = 9,223,372,036,854,775,806ten

01111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = 9,223,372,036,854,775,807ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000two = − 9,223,372,036,854,775,808ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001two = − 9,223,372,036,854,775,807ten

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = − 9,223,372,036,854,775,806ten

…                          . . .

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101two = − 3ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = − 2ten

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111two = − 1ten

The positive half of the numbers, from 0 to 9,223,372,036,854,775,807ten (2
63−1), 

use the same representation as before. The following bit pattern (1000 … 0000two) 
represents the most negative number −9,223,372,036,854,775,808ten (−263). It is 
followed by a declining set of negative numbers: −9,223,372,036,854,775,807ten (1000 
… 0001two) down to −1ten (1111 … 1111two).

Two’s complement does have one negative number that has no corresponding 
positive number: −9,223,372,036,854,775,808ten. Such imbalance was also a 
worry to the inattentive programmer, but sign and magnitude had problems for 
both the programmer and the hardware designer. Consequently, every computer 
today uses two’s complement binary representations for signed numbers.
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Two’s complement representation has the advantage that all negative numbers 
have a 1 in the most significant bit. Thus, hardware needs to test only this bit to 
see if a number is positive or negative (with the number 0 is considered positive). 
This bit is often called the sign bit. By recognizing the role of the sign bit, we can 
represent positive and negative 64-bit numbers in terms of the bit value times a 
power of 2:

( ) ( ) ( ) ( ) ( )x x x x x63
63

62
62

61
61

1
1

0
02 2 2 2 2�

The sign bit is multiplied by −263, and the rest of the bits are then multiplied by 
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 64-bit two’s complement number?

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111100two

Substituting the number’s bit values into the formula above:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 0 2 0 2

2 2 2

63 62 61 1 1 0

63 62

�
661 22 0 0

9 223 372 036 854 775 80 9 223 372 036 8
�

, , , , , , , , , ,8ten 554 775 804
4

, , ten

ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hardware 
to represent the result, so can an operation on two’s complement numbers. Overflow 
occurs when the leftmost retained bit of the binary bit pattern is not the same as the 
infinite number of digits to the left (the sign bit is incorrect): a 0 on the left of the bit 
pattern when the number is negative or a 1 when the number is positive.

EXAMPLE

ANSWER
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Signed versus unsigned applies to loads as well as to arithmetic. The function of a 
signed load is to copy the sign repeatedly to fill the rest of the register—called sign 
extension—but its purpose is to place a correct representation of the number within 
that register. Unsigned loads simply fill with 0s to the left of the data, since the 
number represented by the bit pattern is unsigned.

When loading a 64-bit doubleword into a 64-bit register, the point is moot; 
signed and unsigned loads are identical. RISC-V does offer two flavors of byte 
loads: load byte unsigned (lbu) treats the byte as an unsigned number and thus 
zero-extends to fill the leftmost bits of the register, while load byte (lb) works with 
signed integers. Since C programs almost always use bytes to represent characters 
rather than consider bytes as very short signed integers, lbu is used practically 
exclusively for byte loads.

Unlike the signed numbers discussed above, memory addresses naturally start at 
0 and continue to the largest address. Put another way, negative addresses make 
no sense. Thus, programs want to deal sometimes with numbers that can be 
positive or negative and sometimes with numbers that can be only positive. Some 
programming languages reflect this distinction. C, for example, names the former 
integers (declared as long long int in the program) and the latter unsigned integers 
(unsigned long long int). Some C style guides even recommend declaring the 
former as signed long long int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement 
numbers. The first shortcut is a quick way to negate a two’s complement binary 
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. 
This shortcut is based on the observation that the sum of a number and its inverted 
representation must be 111 … 111two, which represents −1. Since x x 1, 
therefore x x 1 0  or x x1 . (We use the notation x to mean invert 
every bit in x from 0 to 1 and vice versa.)

Negation Shortcut

Negate 2ten, and then check the result by negating −2ten.

2ten =  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two
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Negating this number by inverting the bits and adding one,

Going the other direction,

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two

is first inverted and then incremented:

Our next shortcut tells us how to convert a binary number represented in n bits 
to a number represented with more than n bits. The shortcut is to take the most 
significant bit from the smaller quantity—the sign bit—and replicate it to fill the 
new bits of the larger quantity. The old nonsign bits are simply copied into the right 
portion of the new doubleword. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and −2ten to 64-bit binary numbers.

The 16-bit binary version of the number 2 is

00000000 00000010two = 2ten

It is converted to a 64-bit number by making 48 copies of the value in the most 
significant bit (0) and placing that in the left of the doubleword. The right part 
gets the old value:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000010two = 2ten

EXAMPLE

ANSWER
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Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 0010two

becomes

Creating a 64-bit version of the negative number means copying the sign bit 
48 times and placing it on the left:

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110two = −2ten

This trick works because positive two’s complement numbers really have an infinite 
number of 0s on the left and negative two’s complement numbers have an infinite 
number of 1s. The binary bit pattern representing a number hides leading bits to fit 
the width of the hardware; sign extension simply restores some of them.

Summary
The main point of this section is that we need to represent both positive and 
negative integers within a computer, and although there are pros and cons to any 
option, the unanimous choice since 1965 has been two’s complement.

Elaboration: For signed decimal numbers, we used “−” to represent negative 
because there are no limits to the size of a decimal number. Given a fixed data size, 
binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; therefore, we 
do not normally use “+” or “−” with binary or hexadecimal notation.

What is the decimal value of this 64-bit two’s complement number?

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111000two

1)  −4ten

2)  −8ten

3)  −16ten

4) 18,446,744,073,709,551,609ten

Elaboration: Two’s complement gets its name from the rule that the unsigned sum 
of an n-bit number and its n-bit negative is 2n; hence, the negation or complement of a 
number x is 2n − x, or its “two’s complement.”

1111  1111  1111  1101two

+                1two

= 1111  1111  1111  1110two

Check  
Yourself
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A third alternative representation to two’s complement and sign and magnitude is 
called one’s complement. The negative of a one’s complement is found by inverting 
each bit, from 0 to 1 and from 1 to 0, or x. This relation helps explain its name since 
the complement of x is 2n − x − 1. It was also an attempt to be a better solution than 
sign and magnitude, and several early scientific computers did use the notation. This 
representation is similar to two’s complement except that it also has two 0s: 00 … 00two 
is positive 0 and 11 … 11two is negative 0. The most negative number, 10 … 000two, 
represents −2,147,483,647ten, and so the positives and negatives are balanced. One’s 
complement adders did need an extra step to subtract a number, and hence two’s 
complement dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3, 
is to represent the most negative value by 00 … 000two and the most positive value by 
11 … 11two, with 0 typically having the value 10 … 00two. This representation is called a 
biased notation, since it biases the number such that the number plus the bias has a 
non-negative representation.

 2.5 Representing Instructions in the 
Computer

We are now ready to explain the difference between the way humans instruct 
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic 
signals and may be represented as numbers. In fact, each piece of an instruction 
can be considered as an individual number, and placing these numbers side by 
side forms the instruction. The 32 registers of RISC-V are just referred to by their 
number, from 0 to 31.

Translating a RISC-V Assembly Instruction into a Machine 
Instruction

Let’s do the next step in the refinement of the RISC-V language as an example. 
We’ll show the real RISC-V language version of the instruction represented 
symbolically as

add x9, x20, x21

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

0 21 20 0 9 51

one’s complement A 
notation that represents 
the most negative value 
by 10 … 000two and the 
most positive value by 
01 … 11two, leaving an 
equal number of negatives 
and positives but ending 
up with two zeros, one 
positive (00 … 00two) and 
one negative (11 … 11two). 
The term is also used to 
mean the inversion of 
every bit in a pattern: 0 to 
1 and 1 to 0.
biased notation A 
notation that represents 
the most negative value  
by 00 … 000two and the 
most positive value by  
11 … 11two, with 0 
typically having the 
value 10 … 00two, thereby 
biasing the number such 
that the number plus the 
bias has a non-negative 
representation.

EXAMPLE

ANSWER
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Each of these segments of an instruction is called a field. The first, fourth, 
and sixth fields (containing 0, 0, and 51 in this case) collectively tell the RISC-V 
computer that this instruction performs addition. The second field gives 
the number of the register that is the second source operand of the addition 
operation (21 for x21), and the third field gives the other source operand for 
the addition (20 for x20). The fifth field contains the number of the register 
that is to receive the sum (9 for x9). Thus, this instruction adds register x20 to 
register x21 and places the sum in register x9.

This instruction can also be represented as fields of binary numbers instead 
of decimal:

0000000 10101 10100 000 01001 0110011

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

This layout of the instruction is called the instruction format. As you can see 
from counting the number of bits, this RISC-V instruction takes exactly 32 bits—a 
word, or one half of a doubleword. In keeping with our design principle that 
simplicity favors regularity, RISC-V instructions are all 32 bits long.

To distinguish it from assembly language, we call the numeric version of 
instructions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tiresome 
strings of binary numbers. We avoid that tedium by using a higher base than 
binary that converts easily into binary. Since almost all computer data sizes are 
multiples of 4, hexadecimal (base 16) numbers are popular. As base 16 is a power 
of 2, we can trivially convert by replacing each group of four binary digits by a 
single hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal 
and binary.

instruction format A 
form of representation of 
an instruction composed 
of fields of binary 
numbers.

machine 
language Binary 
representation used for 
communication within a 
computer system.

hexadecimal Numbers 
in base 16.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.4 The hexadecimal–binary conversion table. Just replace one hexadecimal digit by the corresponding four binary digits, 
and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion, 
we will subscript decimal numbers with ten, binary numbers with two, and 
hexadecimal numbers with hex. (If there is no subscript, the default is base 10.) By 
the way, C and Java use the notation 0xnnnn for hexadecimal numbers.
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Binary to Hexadecimal and Back

Convert the following 8-digit hexadecimal and 32-bit binary numbers into the 
other base:

eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 1111two

Using Figure 2.4, the answer is just a table lookup one way:

eca8  6420hex

1110   1100   1010   1000   0110  0100   0010   0000two

And then the other direction:

0001   0011 0101    0111 1001  1011    1101   1111two

1357 9bdfhex

RISC-V Fields
RISC-V fields are given names to make them easier to discuss:

funct7 rs2 rs1 funct3 rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

Here is the meaning of each name of the fields in RISC-V instructions:

n	 opcode: Basic operation of the instruction, and this abbreviation is its 
traditional name.

n	 rd: The register destination operand. It gets the result of the operation.

n	 funct3: An additional opcode field.

n	 rs1: The first register source operand.

n	 rs2: The second register source operand.

n	 funct7: An additional opcode field.

opcode The field that 
denotes the operation and 
format of an instruction.

EXAMPLE

ANSWER
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A problem occurs when an instruction needs longer fields than those shown 
above. For example, the load register instruction must specify two registers and a 
constant. If the address were to use one of the 5-bit fields in the format above, the 
largest constant within the load register instruction would be limited to only 25−1 
or 31. This constant is used to select elements from arrays or data structures, and 
it often needs to be much larger than 31. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same 
length and the desire to have a single instruction format. This conflict leads us to 
the final hardware design principle:

Design Principle 3: Good design demands good compromises.
The compromise chosen by the RISC-V designers is to keep all instructions the 

same length, thereby requiring distinct instruction formats for different kinds of 
instructions. For example, the format above is called R-type (for register). A second 
type of instruction format is I-type and is used by arithmetic operands with one 
constant operand, including addi, and by load instructions. The fields of the I-type 
format are

immediate rs1 funct3 rd opcode

12 bits 5 bits 3 bits 5 bits 7 bits

The 12-bit immediate is interpreted as a two’s complement value, so it can 
represent integers from −211 to 211−1. When the I-type format is used for load 
instructions, the immediate represents a byte offset, so the load doubleword 
instruction can refer to any doubleword within a region of ±211 or 2048 bytes (±28 
or 256 doublewords) of the base address in the base register rd. We see that more 
than 32 registers would be difficult in this format, as the rd and rs1 fields would 
each need another bit, making it harder to fit everything in one word.

Let’s look at the load register instruction from page 71:

ld x9, 64(x22) // Temporary reg x9 gets A[8]

Here, 22 (for x22) is placed in the rs1 field, 64 is placed in the immediate 
field, and 9 (for x9) is placed in the rd field. We also need a format for the store 
doubleword instruction, sd, which needs two source registers (for the base address 
and the store data) and an immediate for the address offset. The fields of the S-type 
format are

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

The 12-bit immediate in the S-type format is split into two fields, which supply 
the lower 5 bits and upper 7 bits. The RISC-V architects chose this design because it 
keeps the rs1 and rs2 fields in the same place in all instruction formats. Keeping the 
instruction formats as similar as possible reduces hardware complexity. Similarly, 
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the opcode and funct3 fields are the same size in all locations, and they are always 
in the same place.

In case you were wondering, the formats are distinguished by the values in the 
opcode field: each format is assigned a distinct set of opcode values in the first  
field (opcode) so that the hardware knows how to treat the rest of the instruction. 
Figure 2.5 shows the numbers used in each field for the RISC-V instructions 
covered so far.

Instruction Format funct7 rs2 rs1 funct3 rd opcode

Instruction Format immediate rs1 funct3 rd opcode

add (add)

sub (sub)

R

R

0000000 0110011

01100110100000

reg

reg

reg

reg

000

000

reg

reg

Instruction Format immed
-iate

rs2 rs1 funct3 immed
-iate

opcode

sd (store doubleword) S address 0100011reg reg 011 address

addi (add immediate)

ld (load doubleword)

I

I

constant 0010011

0000011address

reg

reg

000

011

reg

reg

FIGURE 2.5 RISC-V instruction encoding. In the table above, “reg” means a register number between 0 
and 31 and “address” means a 12-bit address or constant. The funct3 and funct7 fields act as additional opcode 
fields.

Translating RISC-V Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes 
to what the computer executes. If x10 has the base of the array A and x21 
corresponds to h, the assignment statement

A[30] = h + A[30] + 1;

is compiled into

ld x9, 240(x10) // Temporary reg x9 gets A[30]
add x9, x21, x9 // Temporary reg x9 gets h+A[30]
addi x9, x9, 1 // Temporary reg x9 gets h+A[30]+1
sd x9, 240(x10) // Stores h+A[30]+1 back into A[30]

What is the RISC-V machine language code for these three instructions?

EXAMPLE

ANSWER
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For convenience, let’s first represent the machine language instructions using 
decimal numbers. From Figure 2.5, we can determine the three machine 
language instructions:

immediate rs1 funct3 rd opcode

240 10 3 9 3

funct7 rs2 rs1 funct3 rd opcode

0 9 21 0 9 51

immediate rs1 funct3 rd opcode

1 9 0 9 19

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode

7 9 10 3 16 35

The ld instruction is identified by 3 (see Figure 2.5) in the opcode field  
and 3 in the funct3 field. The base register 10 is specified in the rs1 field, and 
the destination register 9 is specified in the rd field. The offset to select A[30] 
(240 = 30 × 8) is found in the immediate field.

The add instruction that follows is specified with 51 in the opcode field, 0 
in the funct3 field, and 0 in the funct7 field. The three register operands (9, 21, 
and 9) are found in the rd, rs1, and rs2 fields.

The subsequent addi instruction is specified with 19 in the opcode field 
and 0 in the funct3 field. The register operands (9 and 9) are found in the rd 
and rs1 fields, and the constant addend 1 is found in the immediate field.

The sd instruction is identified with 35 in the opcode field and 3 in the 
funct3 field. The register operands (9 and 10) are found in the rs2 and rs1 
fields, respectively. The address offset 240 is split across the two immediate 
fields. Since the upper part of the immediate holds bits 5 and above, we can 
decompose the offset 240 by dividing by 25. The upper part of the immediate 
holds the quotient, 7, and the lower part holds the remainder, 16.

Since 240ten = 0000 1111 0000two, the binary equivalent to the decimal form is:

immediate rs1 funct3 rd opcode

000011110000 01010 011 01001 0000011

funct7 rs2 rs1 funct3 rd opcode

0000000 01001 10101 000 01001 0110011

immediate rs1 funct3 rd opcode
000000000001 01001 000 01001 0010011

immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode
0000111 01001 01010 011 10000 0100011
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Elaboration: RISC-V assembly language programmers aren’t forced to use addi 
when working with constants. The programmer simply writes add, and the assembler 
generates the proper opcode and the proper instruction format depending on whether 
the operands are all registers (R-type) or if one is a constant (I-type). We use the explicit 
names in RISC-V for the different opcodes and formats as we think it is less confusing 
when introducing assembly language versus machine language.

Elaboration: Although RISC-V has both add and sub instructions, it does not have 
a subi counterpart to addi. This is because the immediate field represents a two’s 
complement integer, so addi can be used to subtract constants.

The desire to keep all instructions the same size conflicts with the desire to have 
as many registers as possible. Any increase in the number of registers uses up at 
least one more bit in every register field of the instruction format. Given these 
constraints and the design principle that smaller is faster, most instruction sets 
today have 16 or 32 general-purpose registers.

Hardware/ 
Software  
Interface

Figure 2.6 summarizes the portions of RISC-V machine language described in 
this section. As we shall see in Chapter 4, the similarity of the binary representations 
of related instructions simplifies hardware design. These similarities are another 
example of regularity in the RISC-V architecture.

R-type Instructions funct7 rs2 rs1 funct3 rd opcode Example

S-type Instructions immed
-iate

rs2 rs1 funct3 immed
-iate

opcode Example

add (add)

sub (sub)

0000000

0100000

00011 add x1, x2, x3

sub x1, x2, x300011

00010

00010

000

000 00001

00001 0110011

0110011

sd (store doubleword) 0011111 00001 sd x1, 1000(x2)00010 011 01000 0100011

I-type Instructions immediate rs1 funct3 rd opcode Example

addi (add immediate)

ld (load doubleword)

001111101000

001111101000

addi x1, x2, 1000

ld x1, 1000 (x2)

00010

00010

000

011 00001

00001 0010011

0000011

FIGURE 2.6 RISC-V architecture revealed through Section 2.5. The three RISC-V instruction formats so far are R, I, and S. The 
R-type format has two source register operand and one destination register operand. The I-type format replaces one source register operand 
with a 12-bit immediate field. The S-type format has two source operands and a 12-bit immediate field, but no destination register operand. The 
S-type immediate field is split into two parts, with bits 11—5 in the leftmost field and bits 4—0 in the second-rightmost field.
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Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like data.

These principles lead to the stored-program concept; its invention let 
the computing genie out of its bottle. Figure 2.7 shows the power of the 
concept; specifically, memory can contain the source code for an editor 
program, the corresponding compiled machine code, the text that the 
compiled program is using, and even the compiler that generated the 
machine code.

One consequence of instructions as numbers is that programs are often 
shipped as files of binary numbers. The commercial implication is that 
computers can inherit ready-made software provided they are compatible 
with an existing instruction set. Such “binary compatibility” often leads 
industry to align around a small number of instruction set architectures.

The BIG 
Picture

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs 
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch 
happens simply by loading memory with programs and data and then telling the computer to begin executing 
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the 
memory hardware and the software of computer systems. Specifically, the memory technology needed for 
data can also be used for programs, and programs like compilers, for instance, can translate code written in a 
notation far more convenient for humans into code that the computer can understand.
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What RISC-V instruction does this represent? Choose from one of the four options 
below.

funct7 rs2 rs1 funct3 rd opcode

32 9 10 000 11 51

1. sub x9, x10, x11

2. add x11, x9, x10

3. sub x11, x10, x9

4. sub x11, x9, x10

 2.6 Logical Operations

Although the first computers operated on full words, it soon became clear that 
it was useful to operate on fields of bits within a word or even on individual bits. 
Examining characters within a word, each of which is stored as 8 bits, is one example 
of such an operation (see Section 2.9). It follows that operations were added to 
programming languages and instruction set architectures to simplify, among other 
things, the packing and unpacking of bits into words. These instructions are called 
logical operations. Figure 2.8 shows logical operations in C, Java, and RISC-V.

Check  
Yourself

“Contrariwise,” 
continued Tweedledee, 
“if it was so, it might 
be; and if it were so, it 
would be; but as  
it isn’t, it ain’t.  
That’s logic.”
Lewis Carroll, 
Alice’s Adventures in 
Wonderland, 1865

Logical operations C operators Java operators RISC-V instructions

Shift left

Shift right

Shift right arithmetic >> >> sra, srai

<< << sll, slli

>> >>> srl, srli

Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit XOR

Bit-by-bit NOT
^

~ ~

^ xor, xori

xori

FIGURE 2.8 C and Java logical operators and their corresponding RISC-V instructions. 
One way to implement NOT is to use XOR with one operand being all ones (FFFF FFFF FFFF FFFFhex).
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The first class of such operations is called shifts. They move all the bits in a 
doubleword to the left or right, filling the emptied bits with 0s. For example, if 
register x19 contained

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001001two = 9ten

and the instruction to shift left by 4 was executed, the new value would be:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 10010000two = 144ten

The dual of a shift left is a shift right. The actual names of the two RISC-V shift 
instructions are shift left logical immediate (slli) and shift right logical immediate 
(srli). The following instruction performs the operation above, if the original 
value was in register x19 and the result should go in register x11:

slli x11, x19, 4 // reg x11 = reg x19 << 4 bits

These shift instructions use the I-type format. Since it isn’t useful to shift a 64-bit 
register by more than 63 bits, only the lower 6 bits of the I-type format’s 12-bit 
immediate are actually used. The remaining 6 bits are repurposed as an additional 
opcode field, funct6.

funct6 immediate rs1 funct3 rd opcode
0 4 19 1 11 19

The encoding of slli is 19 in the opcode field, rd contains 11, funct3 contains 
1, rs1 contains 19, immediate contains 4, and funct6 contains 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the identical 
result as multiplying by 2i, just as shifting a decimal number by i digits is equivalent 
to multiplying by 10i. For example, the above slli shifts by 4, which gives the 
same result as multiplying by 24 or 16. The first bit pattern above represents 9, and 
9 × 16 = 144, the value of the second bit pattern. RISC-V provides a third type of 
shift, shift right arithmetic (srai). This variant is similar to srli, except rather 
than filling the vacated bits on the left with zeros, it fills them with copies of the old 
sign bit. It also provides variants of all three shifts that take the shift amount from 
a register, rather than from an immediate: sll, srl, and sra.

Another useful operation that isolates fields is AND. (We capitalize the word 
to avoid confusion between the operation and the English conjunction.) AND is a 
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are 
1. For example, if register x11 contains

AND A logical bit-by-
bit operation with two 
operands that calculates 
a 1 only if there is a 1 in 
both operands.
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00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000two

and register x10 contains

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000two

then, after executing the RISC-V instruction

and x9, x10, x11   // reg x9 = reg x10 & reg x11

the value of register x9 would be

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there 
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally 
called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR. 
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1. To 
elaborate, if the registers x10 and x11 are unchanged from the preceding example, 
the result of the RISC-V instruction

or x9, x10, x11 // reg x9 = reg x10 | reg x11

is this value in register x9:

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000two

The final logical operation is a contrarian. NOT takes one operand and places a 1 
in the result if one operand bit is a 0, and vice versa. Using our prior notation, it 
calculates x.

In keeping with the three-operand format, the designers of RISC-V decided to 
include the instruction XOR (exclusive OR) instead of NOT. Since exclusive OR 
creates a 0 when bits are the same and a 1 if they are different, the equivalent to 
NOT is an xor 111…111.

If the register x10 is unchanged from the preceding example and register x12 
has the value 0, the result of the RISC-V instruction

xor x9, x10, x12 // reg x9 = reg x10 ^ reg x12

is this value in register x9:

00000000 00000000 00000000 00000000 00000000 00000000 00110001 11000000two

Figure 2.8 above shows the relationship between the C and Java operators and 
the RISC-V instructions. Constants are useful in logical operations as well as in 
arithmetic operations, so RISC-V also provides the instructions and immediate 
(andi), or immediate (ori), and exclusive or immediate (xori).

OR A logical bit-by-
bit operation with two 
operands that calculates 
a 1 if there is a 1 in either 
operand.
NOT A logical bit-by-
bit operation with one 
operand that inverts the 
bits; that is, it replaces 
every 1 with a 0, and 
every 0 with a 1.

XOR A logical bit-by-
bit operation with two 
operands that calculates 
the exclusive OR of the 
two operands. That is, it 
calculates a 1 only if the 
values are different in the 
two operands.
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Elaboration: C allows bit fields or fields to be defined within doublewords, both 
allowing objects to be packed within a doubleword and to match an externally enforced 
interface such as an I/O device. All fields must fit within a single doubleword. Fields are 
unsigned integers that can be as short as 1 bit. C compilers insert and extract fields 
using logical instructions in RISC-V: andi, ori, slli, and srli.

Which operations can isolate a field in a doubleword?

1. AND

2. A shift left followed by a shift right

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five variables 
f through j correspond to the five registers x19 through x23, what is the 
compiled RISC-V code for this C if statement?

if (i == j) f = g + h; else f = g − h;

Figure 2.9 shows a flowchart of what the RISC-V code should do. The first 
expression compares for equality between two variables in registers. It would 
seem that we would want to branch if I and j are equal (beq). In general, the 
code will be more efficient if we test for the opposite condition to branch over 
the code that branches if the values are not equal (bne). Here is the code:

bne x22, x23, Else   // go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the 
operands are allocated to registers, it is just one instruction:

add x19, x20, x21    // f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces 
another kind of branch, often called an unconditional branch. This instruction 
says that the processor always follows the branch. One way to express an 
unconditional branch in RISC-V is to use a conditional branch whose 
condition is always true:

beq x0, x0, Exit    // if 0 == 0, go to Exit

The assignment statement in the else portion of the if statement can again be 
compiled into a single instruction. We just need to append the label Else to 
this instruction. We also show the label Exit that is after this instruction, 
showing the end of the if-then-else compiled code:

Else:sub x19, x20, x21  // f = g − h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language 
programmer from the tedium of calculating addresses for branches, just as it does 
for calculating data addresses for loads and stores (see Section 2.12).

conditional branch An 
instruction that tests a 
value and that allows for 
a subsequent transfer of 
control to a new address 
in the program based on 
the outcome of the test.

The utility of an 
automatic computer lies 
in the possibility of using 
a given sequence of 
instructions repeatedly, 
the number of times it is 
iterated being dependent 
upon the results of the 
computation.… This 
choice can be made 
to depend upon the 
sign of a number (zero 
being reckoned as plus 
for machine purposes). 
Consequently, 
we introduce an 
[instruction] (the 
conditional transfer 
[instruction]) which 
will, depending on the 
sign of a given number, 
cause the proper one 
of two routines to be 
executed.
Burks, Goldstine, and 
von Neumann, 1947

Check  
Yourself

 2.7 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make 
decisions. Based on the input data and the values created during computation, 
different instructions execute. Decision making is commonly represented in 
programming languages using the if statement, sometimes combined with go to 
statements and labels. RISC-V assembly language includes two decision-making 
instructions, similar to an if statement with a go to. The first instruction is

beq rs1, rs2, L1

This instruction means go to the statement labeled L1 if the value in register rs1 
equals the value in register rs2. The mnemonic beq stands for branch if equal. The 
second instruction is

bne rs1, rs2, L1

It means go to the statement labeled L1 if the value in register rs1 does not equal 
the value in register rs2. The mnemonic bne stands for branch if not equal. These 
two instructions are traditionally called conditional branches.
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Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five variables 
f through j correspond to the five registers x19 through x23, what is the 
compiled RISC-V code for this C if statement?

if (i == j) f = g + h; else f = g − h;

Figure 2.9 shows a flowchart of what the RISC-V code should do. The first 
expression compares for equality between two variables in registers. It would 
seem that we would want to branch if I and j are equal (beq). In general, the 
code will be more efficient if we test for the opposite condition to branch over 
the code that branches if the values are not equal (bne). Here is the code:

bne x22, x23, Else   // go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the 
operands are allocated to registers, it is just one instruction:

add x19, x20, x21    // f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces 
another kind of branch, often called an unconditional branch. This instruction 
says that the processor always follows the branch. One way to express an 
unconditional branch in RISC-V is to use a conditional branch whose 
condition is always true:

beq x0, x0, Exit    // if 0 == 0, go to Exit

The assignment statement in the else portion of the if statement can again be 
compiled into a single instruction. We just need to append the label Else to 
this instruction. We also show the label Exit that is after this instruction, 
showing the end of the if-then-else compiled code:

Else:sub x19, x20, x21  // f = g − h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language 
programmer from the tedium of calculating addresses for branches, just as it does 
for calculating data addresses for loads and stores (see Section 2.12).

conditional branch An 
instruction that tests a 
value and that allows for 
a subsequent transfer of 
control to a new address 
in the program based on 
the outcome of the test.

ANSWER

EXAMPLE
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Compilers frequently create branches and labels where they do not appear in 
the programming language. Avoiding the burden of writing explicit labels and 
branches is one benefit of writing in high-level programming languages and is a 
reason coding is faster at that level.

Loops
Decisions are important both for choosing between two alternatives—found in if 
statements—and for iterating a computation—found in loops. The same assembly 
instructions are the building blocks for both cases.

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[i] == k)

    i += 1;

Assume that i and k correspond to registers x22 and x24 and the base of the 
array save is in x25. What is the RISC-V assembly code corresponding to this 
C code?

The first step is to load save[i] into a temporary register. Before we can load 
save[i] into a temporary register, we need to have its address. Before we 
can add i to the base of array save to form the address, we must multiply 
the index i by 8 due to the byte addressing issue. Fortunately, we can use shift 
left, since shifting left by 3 bits multiplies by 23 or 8 (see page 90 in the prior 

EXAMPLE

ANSWER

Hardware/ 
Software  
Interface

f = g + h f = g – h

i = j i ≠ j
i = = j?

Else:

Exit:

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to 
the then part of the if statement, and the right box corresponds to the else part.
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section). We need to add the label Loop to it so that we can branch back to that 
instruction at the end of the loop:

Loop: slli x10, x22, 3   // Temp reg x10 = i * 8

To get the address of save[i], we need to add x10 and the base of save  
in x25:

add x10, x10, x25    // x10 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

ld x9, 0(x10)    // Temp reg x9 = save[i]

The next instruction performs the loop test, exiting if save[i] ≠ k:

bne x9, x24, Exit   // go to Exit if save[i] ≠ k

The following instruction adds 1 to i:

addi x22, x22, 1    // i = i + 1

The end of the loop branches back to the while test at the top of the loop. We 
just add the Exit label after it, and we’re done:

beq x0, x0, Loop    // go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling 
that they are given their own buzzword: a basic block is a sequence of instructions 
without branches, except possibly at the end, and without branch targets or branch 
labels, except possibly at the beginning. One of the first early phases of compilation 
is breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but there are 
many other relationships between two numbers. For example, a for loop may want 
to test to see if the index variable is less than 0. The full set of comparisons is less 
than (<), less than or equal (≤), greater than (>), greater than or equal (≥), equal 
(=), and not equal (≠).

Comparison of bit patterns must also deal with the dichotomy between signed 
and unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit 
represents a negative number and, of course, is less than any positive number, which 
must have a 0 in the most significant bit. With unsigned integers, on the other hand, 
a 1 in the most significant bit represents a number that is larger than any that begins 

basic block A sequence 
of instructions without 
branches (except possibly 
at the end) and without 
branch targets or branch 
labels (except possibly at 
the beginning).

Hardware/
Software 
Interface
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with a 0. (We’ll soon take advantage of this dual meaning of the most significant 
bit to reduce the cost of the array bounds checking.) RISC-V provides instructions 
that handle both cases. These instructions have the same form as beq and bne, but 
perform different comparisons. The branch if less than (blt) instruction compares 
the values in registers rs1 and rs2 and takes the branch if the value in rs1 is smaller, 
when they are treated as two’s complement numbers. Branch if greater than or equal 
(bge) takes the branch in the opposite case, that is, if the value in rs1 is at least the 
value in rs2. Branch if less than, unsigned (bltu) takes the branch if the value in rs1 is 
smaller than the value in rs2 when the values are treated as unsigned numbers. Finally, 
branch if greater than or equal, unsigned (bgeu) takes the branch in the opposite case.

An alternative to providing these additional branch instructions is to set a 
register based upon the result of the comparison, then branch on the value in that 
temporary register with the beq or bne instructions. This approach, used by the 
MIPS instruction set, can make the processor datapath slightly simpler, but it takes 
more instructions to express a program.

Yet another alternative, used by ARM’s instruction sets, is to keep extra bits that 
record what occurred during an instruction. These additional bits, called condition 
codes or flags, indicate, for example, if the result of an arithmetic operation was 
negative, or zero, or resulted in overflow.

Conditional branches then use combinations of these condition codes to 
perform the desired test.

One downside to condition codes is that if many instructions always set them, it will 
create dependencies that will make it difficult for pipelined execution (see Chapter 4).

Bounds Check Shortcut
Treating signed numbers as if they were unsigned gives us a low-cost way of 
checking if 0 ≤ x < y, which matches the index out-of-bounds check for arrays. The 
key is that negative integers in two’s complement notation look like large numbers 
in unsigned notation; that is, the most significant bit is a sign bit in the former 
notation but a large part of the number in the latter. Thus, an unsigned comparison 
of x < y checks if x is negative as well as if x is less than y.

Use this shortcut to reduce an index-out-of-bounds check: branch to 
IndexOutOfBounds if x20 ≥ x11 or if x20 is negative.

The checking code just uses unsigned greater than or equal to do both checks:

bgeu x20, x11, IndexOutOfBounds // if x20 >= x11 or 
x20 < 0, goto IndexOutOfBounds

EXAMPLE

ANSWER
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Hardware/
Software 
Interface

Check  
Yourself

I. C has many statements for decisions and loops, while RISC-V has few. 
Which of the following does or does not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.
2. Fewer decision statements simplify the task of the underlying layer that is 

responsible for execution.
3. More decision statements mean fewer lines of code, which generally 

reduces coding time.
4. More decision statements mean fewer lines of code, which generally 

results in the execution of fewer operations.

II. Why does C provide two sets of operators for AND (& and &&) and two sets 
of operators for OR (| and ||), while RISC-V doesn’t?

1. Logical operations AND and ORR implement & and |, while conditional 
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical 
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply 
inherited from the programming language B, the predecessor of C.

Case/Switch Statement
Most programming languages have a case or switch statement that allows the 
programmer to select one of many alternatives depending on a single value. The 
simplest way to implement switch is via a sequence of conditional tests, turning the 
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of 
addresses of alternative instruction sequences, called a branch address table or 
branch table, and the program needs only to index into the table and then branch 
to the appropriate sequence. The branch table is therefore just an array of double-
words containing addresses that correspond to labels in the code. The program 
loads the appropriate entry from the branch table into a register. It then needs to 
branch using the address in the register. To support such situations, computers like 
RISC-V include an indirect jump instruction, which performs an unconditional 
branch to the address specified in a register. In RISC-V, the jump-and-link register 
instruction (jalr) serves this purpose. We’ll see an even more popular use of this 
versatile instruction in the next section.

Although there are many statements for decisions and loops in programming 
languages like C and Java, the bedrock statement that implements them at the 
instruction set level is the conditional branch.

branch address 
table Also called  
branch table. A table of 
addresses of alternative 
instruction sequences.
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 2.8 Supporting Procedures in Computer 
Hardware

A procedure or function is one tool programmers use to structure programs, both 
to make them easier to understand and to allow code to be reused. Procedures 
allow the programmer to concentrate on just one portion of the task at a time; 
parameters act as an interface between the procedure and the rest of the program 
and data, since they can pass values and return results. We describe the equivalent 
to procedures in Java in  Section 2.15, but Java needs everything from a computer 
that C needs. Procedures are one way to implement abstraction in software.

You can think of a procedure like a spy who leaves with a secret plan, acquires 
resources, performs the task, covers his or her tracks, and then returns to the point 
of origin with the desired result. Nothing else should be perturbed once the mission 
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy 
can’t make assumptions about the spymaster.

Similarly, in the execution of a procedure, the program must follow these six 
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from 
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer, 
so we want to use them as much as possible. RISC-V software follows the following 
convention for procedure calling in allocating its 32 registers:

n	 x10–x17: eight parameter registers in which to pass parameters or return 
values.

n	 x1: one return address register to return to the point of origin.

In addition to allocating these registers, RISC-V assembly language includes an 
instruction just for the procedures: it branches to an address and simultaneously 
saves the address of the following instruction to the destination register rd. The 
jump-and-link instruction (jal) is written

jal x1, ProcedureAddress    // jump to 

ProcedureAddress and write return address to x1

procedure A stored 
subroutine that performs 
a specific task based 
on the parameters with 
which it is provided.

jump-and-link 
instruction An 
instruction that branches 
to an address and 
simultaneously saves the 
address of the following 
instruction in a register 
(usually x1 in RISC-V).
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The link portion of the name means that an address or link is formed that  
points to the calling site to allow the procedure to return to the proper address. 
This “link,” stored in register x1, is called the return address. The return address 
is needed because the same procedure could be called from several parts of the 
program.

To support the return from a procedure, computers like RISC-V use an indirect 
jump, like the jump-and-link instruction (jalr) introduced above to help with 
case statements:

jalr x0, 0(x1)

The jump-and-link register instruction branches to the address stored in 
register x1—which is just what we want. Thus, the calling program, or caller, puts 
the parameter values in x10–x17 and uses jal x1, X to branch to procedure X 
(sometimes named the callee). The callee then performs the calculations, places 
the results in the same parameter registers, and returns control to the caller using 
jalr x0, 0(x1).

Implicit in the stored-program idea is the need to have a register to hold the address 
of the current instruction being executed. For historical reasons, this register is almost 
always called the program counter, abbreviated PC in the RISC-V architecture, 
although a more sensible name would have been instruction address register. The jal 
instruction actually saves PC + 4 in its designation register (usually x1) to link to the 
byte address of the following instruction to set up the procedure return.

Elaboration: The jump-and-link instruction can also be used to perform an 
unconditional branch within a procedure by using x0 as the destination register. Since 
x0 is hard-wired to zero, the effect is to discard the return address:

jal x0, Label // unconditionally branch to Label

Using More Registers
Suppose a compiler needs more registers for a procedure than the eight argument 
registers. Since we must cover our tracks after our mission is complete, any registers 
needed by the caller must be restored to the values that they contained before the 
procedure was invoked. This situation is an example in which we need to spill registers 
to memory, as mentioned in the Hardware/Software Interface section on page 69.

The ideal data structure for spilling registers is a stack—a last-in-first-out queue. 
A stack needs a pointer to the most recently allocated address in the stack to show 
where the next procedure should place the registers to be spilled or where old 
register values are found. In RISC-V, the stack pointer is register x2, also known 
by the name sp. The stack pointer is adjusted by one doubleword for each register 
that is saved or restored. Stacks are so popular that they have their own buzzwords 
for transferring data to and from the stack: placing data onto the stack is called a 
push, and removing data from the stack is called a pop.

return address A link to 
the calling site that allows 
a procedure to return to 
the proper address; in 
RISC-V it is stored in 
register x1.

caller The program that 
instigates a procedure and 
provides the necessary 
parameter values.

callee A procedure that 
executes a series of stored 
instructions based on 
parameters provided by 
the caller and then returns 
control to the caller.

program counter 
(PC) The register 
containing the address 
of the instruction in the 
program being executed.

stack A data structure 
for spilling registers 
organized as a last-in-
first-out queue.

stack pointer A value 
denoting the most 
recently allocated address 
in a stack that shows 
where registers should 
be spilled or where old 
register values can be 
found. In RISC-V, it is 
register sp, or x2.

push Add element to 
stack.

pop Remove element 
from stack.
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By historical precedent, stacks “grow” from higher addresses to lower addresses. 
This convention means that you push values onto the stack by subtracting from the 
stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values 
off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 66 from Section 2.2 into a C procedure:

long long int leaf_example (long long int g, long long 
int h, long long int i, long long int j)
{
    long long int f;

    f = (g + h) − (i + j);
    return f;
}

What is the compiled RISC-V assembly code?

The parameter variables g, h, i, and j correspond to the argument registers 
x10, x11, x12, and x13, and f corresponds to x20. The compiled program 
starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment 
statement in the procedure body is identical to the example on page 67, which 
uses two temporary registers (x5 and x6). Thus, we need to save three registers: 
x5, x6, and x20. We “push” the old values onto the stack by creating space for 
three doublewords (24 bytes) on the stack and then store them:

addi sp, sp, -24    // adjust stack to make room for 3 items
sd x5, 16(sp)     // save register x5 for use afterwards
sd x6, 8(sp)    // save register x6 for use afterwards
sd x20, 0(sp)    // save register x20 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which 

follows the example on page 67:

add x5, x10, x11 // register x5 contains g + h
add x6, x12, x13 // register x6 contains i + j
sub x20, x5, x6 // f = x5 − x6, which is (g + h) − (i + j)

EXAMPLE

ANSWER
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To return the value of f, we copy it into a parameter register:

addi x10, x20, 0 // returns f (x10 = x20 + 0)

Before returning, we restore the three old values of the registers we saved by 
“popping” them from the stack:

ld x20, 0(sp)   // restore register x20 for caller
ld x6, 8(sp)   // restore register x6 for caller
ld x5, 16(sp) // restore register x5 for caller
addi sp, sp, 24 // adjust stack to delete 3 items

The procedure ends with a branch register using the return address:

jalr x0, 0(x1)    // branch back to calling routine

In the previous example, we used temporary registers and assumed their old 
values must be saved and restored. To avoid saving and restoring a register whose 
value is never used, which might happen with a temporary register, RISC-V 
software separates 19 of the registers into two groups:

n	 x5−x7 and x28−x31: temporary registers that are not preserved by the callee 
(called procedure) on a procedure call

n	 x8−x9 and x18−x27: saved registers that must be preserved on a procedure 
call (if used, the callee saves and restores them)

High address

Low address

Contents of register x5  

Contents of register x6  

Contents of register x20

SP

SP

SP

(a) (b) (c)

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) 
after the procedure call. The stack pointer always points to the “top” of the stack, or the last doubleword 
in the stack in this drawing.
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This simple convention reduces register spilling. In the example above, since the 
caller does not expect registers x5 and x6 to be preserved across a procedure call, 
we can drop two stores and two loads from the code. We still must save and restore 
x20, since the callee must assume that the caller needs its value.

Nested Procedures
Procedures that do not call others are called leaf procedures. Life would be simple if 
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other 
spies as part of a mission, who in turn might use even more spies, so do procedures 
invoke other procedures. Moreover, recursive procedures even invoke “clones” 
of themselves. Just as we need to be careful when using registers in procedures, 
attention must be paid when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument 
of 3, by placing the value 3 into register x10 and then using jal x1, A. Then 
suppose that procedure A calls procedure B via jal x1, B with an argument of 
7, also placed in x10. Since A hasn’t finished its task yet, there is a conflict over the 
use of register x10. Similarly, there is a conflict over the return address in register 
x1, since it now has the return address for B. Unless we take steps to prevent the 
problem, this conflict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved on the stack, 
just as we did with the saved registers. The caller pushes any argument registers 
(x10–x17) or temporary registers (x5-x7 and x28-x31) that are needed after the 
call. The callee pushes the return address register x1 and any saved registers (x8-
x9 and x18-x27) used by the callee. The stack pointer sp is adjusted to account 
for the number of registers placed on the stack. Upon the return, the registers are 
restored from memory, and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure 
Linking

Let’s tackle a recursive procedure that calculates factorial:

long long int fact (long long int n)
{
  if (n < 1) return (1);
    else return (n * fact(n − 1));
}

What is the RISC-V assembly code?

The parameter variable n corresponds to the argument register x10. The 
compiled program starts with the label of the procedure and then saves two 
registers on the stack, the return address and x10:

EXAMPLE

ANSWER
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fact:
   addi sp, sp, -16 // adjust stack for 2 items
    sd x1, 8(sp) // save the return address
    sd x10, 0(sp) // save the argument n

The first time fact is called, sd saves an address in the program that called 
fact. The next two instructions test whether n is less than 1, going to L1 if  
n ≥ 1.

addi   x5, x10, -1  // x5 = n - 1
bge   x5, x0, L1   // if (n - 1) >= 0, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to 
0 and places that sum in x10. It then pops the two saved values off the stack 
and branches to the return address:

addi  x10, x0, 1 // return 1
addi  sp, sp, 16 // pop 2 items off stack
jalr  x0, 0(x1)  // return to caller

Before popping two items off the stack, we could have loaded x1 and  
x10. Since x1 and x10 don’t change when n is less than 1, we skip those 
instructions.

If n is not less than 1, the argument n is decremented and then fact is 
called again with the decremented value:

L1: addi x10, x10, -1 // n >= 1: argument gets (n − 1)
      jal x1, fact  // call fact with (n − 1)

The next instruction is where fact returns; its result is in x10 . Now the old 
return address and old argument are restored, along with the stack pointer:

addi  x6, x10, 0  //  return from jal: move result of fact 
(n - 1) to x6:

ld  x10, 0(sp)  // restore argument n
ld  x1, 8(sp)  // restore the return address
addi  sp, sp, 16  // adjust stack pointer to pop 2 items

Next, argument register x10 gets the product of the old argument and the 
result of fact(n - 1), now in x6. We assume a multiply instruction is available, 
even though it is not covered until Chapter 3:

mul   x10, x10, x6   // return n * fact (n − 1)

Finally, fact branches again to the return address:

jalr   x0, 0(x1)   // return to the caller
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A C variable is generally a location in storage, and its interpretation depends both 
on its type and storage class. Example types include integers and characters (see 
Section 2.9). C has two storage classes: automatic and static. Automatic variables 
are local to a procedure and are discarded when the procedure exits. Static variables 
exist across exits from and entries to procedures. C variables declared outside all 
procedures are considered static, as are any variables declared using the keyword 
static. The rest are automatic. To simplify access to static data, some RISC-V 
compilers reserve a register x3 for use as the global pointer, or gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that 
several schemes preserve the stack, guaranteeing that the caller will get the same 
data back on a load from the stack as it stored onto the stack. The stack above sp 
is preserved simply by making sure the callee does not write above sp; sp is itself 
preserved by the callee adding exactly the same amount that was subtracted from 
it; and the other registers are preserved by saving them on the stack (if they are 
used) and restoring them from there.

global pointer The 
register that is reserved to 
point to the static area.

the stack whether or not an explicit frame pointer is used. We’ve been avoiding 
using fp by avoiding changes to sp within a procedure: in our examples, the stack 
is adjusted only on entry to and exit from the procedure.

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need 
space in memory for static variables and for dynamic data structures. Figure 2.13 
shows the RISC-V convention for allocation of memory when running the Linux 
operating system. The stack starts in the high end of the user addresses space (see 
Chapter 5) and grows down. The first part of the low end of memory is reserved, 
followed by the home of the RISC-V machine code, traditionally called the text 
segment. Above the code is the static data segment, which is the place for constants 
and other static variables. Although arrays tend to be a fixed length and thus are a 
good match to the static data segment, data structures like linked lists tend to grow 
and shrink during their lifetimes. The segment for such data structures is traditionally 
called the heap, and it is placed next in memory. Note that this allocation allows 
the stack and heap to grow toward each other, thereby allowing the efficient use of 
memory as the two segments wax and wane.

frame pointer A value 
denoting the location of 
the saved registers and 
local variables for a given 
procedure.

text segment The 
segment of a UNIX object 
file that contains the 
machine language code 
for routines in the source 
file.

Hardware/
Software 
Interface

Saved registers: x8-x9, x18-x27 Temporary registers: x5-x7, x28-x31

Preserved Not preserved

Stack pointer register: x2(sp) Argument/result registers: x10–x17 

Stack above the stack pointer Stack below the stack pointer

Frame pointer: x8(fp) 

Return address: x1(ra) 

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies 
on the global pointer register, discussed in the following subsections, it is also preserved.

Allocating Space for New Data on the Stack
The final complexity is that the stack is also used to store variables that are local 
to the procedure but do not fit in registers, such as local arrays or structures. The 
segment of the stack containing a procedure’s saved registers and local variables is 
called a procedure frame or activation record. Figure 2.12 shows the state of the 
stack before, during, and after the procedure call.

Some RISC-V compilers use a frame pointer fp, or register x8 to point to the 
first doubleword of the frame of a procedure. A stack pointer might change during 
the procedure, and so references to a local variable in memory might have different 
offsets depending on where they are in the procedure, making the procedure harder 
to understand. Alternatively, a frame pointer offers a stable base register within a 
procedure for local memory-references. Note that an activation record appears on 

procedure frame Also 
called activation record. 
The segment of the stack 
containing a procedure’s 
saved registers and local 
variables.
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the stack whether or not an explicit frame pointer is used. We’ve been avoiding 
using fp by avoiding changes to sp within a procedure: in our examples, the stack 
is adjusted only on entry to and exit from the procedure.

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need 
space in memory for static variables and for dynamic data structures. Figure 2.13 
shows the RISC-V convention for allocation of memory when running the Linux 
operating system. The stack starts in the high end of the user addresses space (see 
Chapter 5) and grows down. The first part of the low end of memory is reserved, 
followed by the home of the RISC-V machine code, traditionally called the text 
segment. Above the code is the static data segment, which is the place for constants 
and other static variables. Although arrays tend to be a fixed length and thus are a 
good match to the static data segment, data structures like linked lists tend to grow 
and shrink during their lifetimes. The segment for such data structures is traditionally 
called the heap, and it is placed next in memory. Note that this allocation allows 
the stack and heap to grow toward each other, thereby allowing the efficient use of 
memory as the two segments wax and wane.

frame pointer A value 
denoting the location of 
the saved registers and 
local variables for a given 
procedure.

text segment The 
segment of a UNIX object 
file that contains the 
machine language code 
for routines in the source 
file.

High address

Low address
(a) (b) (c)

Saved argument
registers (if any)

SP

SP

SP

FP

FP

FP

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the 
procedure call. The frame pointer (fp or x8) points to the first doubleword of the frame, often a saved 
argument register, and the stack pointer (sp) points to the top of the stack. The stack is adjusted to make room 
for all the saved registers and any memory-resident local variables. Since the stack pointer may change during 
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it 
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the 
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When 
a frame pointer is used, it is initialized using the address in sp on a call, and sp is restored using fp. This 
information is also found in Column 4 of the RISC-V Reference Data Card at the front of this book.
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C allocates and frees space on the heap with explicit functions. malloc() 
allocates space on the heap and returns a pointer to it, and free() releases space on 
the heap to which the pointer points. C programs control memory allocation, which 
is the source of many common and difficult bugs. Forgetting to free space leads to a 
“memory leak,” which ultimately uses up so much memory that the operating system 
may crash. Freeing space too early leads to “dangling pointers,” which can cause 
pointers to point to things that the program never intended. Java uses automatic 
memory allocation and garbage collection just to avoid such bugs.

Figure 2.14 summarizes the register conventions for the RISC-V assembly 
language. This convention is another example of making the common case fast: 
most procedures can be satisfied with up to eight argument registers, twelve saved 
registers, and seven temporary registers without ever going to memory.

Elaboration: What if there are more than eight parameters? The RISC-V convention is 
to place the extra parameters on the stack just above the frame pointer. The procedure 
then expects the first eight parameters to be in registers x10 through x17 and the rest 
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because 
all references to variables in the stack within a procedure will have the same offset. 
The frame pointer is not necessary, however. The RISC-V C compiler only uses a frame 
pointer in procedures that change the stack pointer in the body of the procedure.

FIGURE 2.13 The RISC-V memory allocation for program and data. These addresses are only a 
software convention, and not part of the RISC-V architecture. The user address space is set to 238 of the potential 
264 total address space given a 64-bit architecture (see Chapter 5). The stack pointer is initialized to 0000 003f 
ffff fff0hex and grows down toward the data segment. At the other end, the program code (“text”) starts 
at 0000 0000 0040 0000hex. The static data starts immediately after the end of the text segment; in this 
example, we assume that address is 0000 0000 1000 0000hex. Dynamic data, allocated by malloc in C 
and by new in Java, is next. It grows up toward the stack in an area called the heap. This information is also 
found in Column 4 of the RISC-V Reference Data Card at the front of this book.

Stack

Dynamic data

Static data

Text

Reserved

SP 0000 003f ffff fff0hex

0000 0000 1000 0000hex

PC 0000 0000 0040 0000hex

0
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Elaboration: Some recursive procedures can be implemented iteratively without using 
recursion. Iteration can significantly improve performance by removing the overhead 
associated with recursive procedure calls. For example, consider a procedure used to 
accumulate a sum:

long long int sum (long long int n, long long int acc) {
   if (n > 0)
      return sum(n − 1, acc + n);
   else
      return acc;

}

Consider the procedure call sum(3,0). This will result in recursive calls to 
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four 
times. This recursive call of sum is referred to as a tail call, and this example use  
of tail recursion can be implemented very efficiently (assume x10 = n, x11 = 
acc, and the result goes into x12):

sum: ble x10, x0, sum_exit  // go to sum_exit if n <= 0
   add x11, x11, x10     // add n to acc
   addi x10, x10, -1           // subtract 1 from n
    jal x0, sum            // jump to sum
sum_exit:
   addi x12, x11, 0           // return value acc
   jalr x0, 0(x1)        // return to caller

FIGURE 2.14 RISC-V register conventions. This information is also found in Column 2 of the 
RISC-V Reference Data Card at the front of this book.

Name
Register
number

Usage
Preserved 

on call?

x0 0 The constant value 0 n.a.

x1 (ra) 1 Return address (link register) yes

x2 (sp) 2 Stack pointer yes

x3 (gp) 3 Global pointer yes

x4 (tp) 4 Thread pointer yes

x5-x7 5–7 Temporaries no

x8-x9 8–9 Saved yes

x10-x17 10–17 Arguments/results no

x18-x27 18–27 Saved yes

x28-x31 28–31 Temporaries no
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Which of the following statements about C and Java is generally true?

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 2.9 Communicating with People

Computers were invented to crunch numbers, but as soon as they became 
commercially viable they were used to process text. Most computers today offer 
8-bit bytes to represent characters, with the American Standard Code for Information 
Interchange (ASCII) being the representation that nearly everyone follows. Figure 
2.15 summarizes ASCII.

Check  
Yourself

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can 
lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a 
backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses 
to mark the end of a string.

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

096 ` 112 p

33 ! 49 097 a 113 q

34 " 50 098 b 114 r

35 # 51 3 6 099 c 115 s

36 $ 52

32  space 48 0 64 @ 80 P

1 65 A 81 Q

2 66 B 82 R

7 C 83 S

4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

!(@ | = > (wow open 
tab at bar is great)
Fourth line of the 
keyboard poem “Hatless 
Atlas,” 1991 (some 
give names to ASCII 
characters: “!” is “wow,” 
“(” is open, “|” is bar, 
and so on).
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ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers. 
How much does storage increase if the number 1 billion is represented in 
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long. 
Thus the storage expansion would be (10 × 8)/32 or 2.5. Beyond the expansion 
in storage, the hardware to add, subtract, multiply, and divide such decimal 
numbers is difficult and would consume more energy. Such difficulties explain 
why computing professionals are raised to believe that binary is natural and 
that the occasional decimal computer is bizarre.

A series of instructions can extract a byte from a doubleword, so load register 
and store register are sufficient for transferring bytes as well as words. Because  
of the popularity of text in some programs, however, RISC-V provides instructions 
to move bytes. Load byte unsigned (lbu) loads a byte from memory, placing  
it in the rightmost 8 bits of a register. Store byte (sb) takes a byte from the  
rightmost 8 bits of a register and writes it to memory. Thus, we copy a byte with 
the sequence

lbu x12, 0(x10)  // Read byte from source
sb x12, 0(x11)  // Write byte to destination

Characters are normally combined into strings, which have a variable number 
of characters. There are three choices for representing a string: (1) the first position 
of the string is reserved to give the length of a string, (2) an accompanying variable 
has the length of the string (as in a structure), or (3) the last position of a string is 
indicated by a character used to mark the end of a string. C uses the third choice, 
terminating a string with a byte whose value is 0 (named null in ASCII). Thus, 
the string “Cal” is represented in C by the following 4 bytes, shown as decimal 
numbers: 67, 97, 108, and 0. (As we shall see, Java uses the first option.)

EXAMPLE

ANSWER
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Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte 
termination convention of C:

void strcpy (char x[], char y[])
{
  size_t i;
  i = 0;
     while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */
    i += 1;
}

What is the RISC-V assembly code?

Below is the basic RISC-V assembly code segment. Assume that base addresses 
for arrays x and y are found in x10 and x11, while i is in x19. strcpy adjusts 
the stack pointer and then saves the saved register x19 on the stack:

strcpy:
   addi sp, sp, -8   // adjust stack for 1 more item
   sd  x19, 0(sp)   // save x19

To initialize i to 0, the next instruction sets x19 to 0 by adding 0 to 0 and 
placing that sum in x19:

add x19, x0, x0 // i = 0+0

This is the beginning of the loop. The address of y[i] is first formed by adding 
i to y[]:

L1: add x5, x19, x11 // address of y[i] in x5

Note that we don’t have to multiply i by 8 since y is an array of bytes and not 
of doublewords, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the 
character into x6:

lbu x6, 0(x5) // x6 = y[i]

EXAMPLE

ANSWER
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A similar address calculation puts the address of x[i] in x7, and then the 
character in x6 is stored at that address.

add   x7, x19, x10  // address of x[i] in x7
sb   x6, 0(x7)    // x[i] = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last 
character of the string:

beq x6, x0, L2

If not, we increment i and loop back:

addi x19, x19, 1 // i = i + 1
jal    x0, L1    // go to L1

If we don’t loop back, it was the last character of the string; we restore x19 and 
the stack pointer, and then return.

L2: ld   x19, 0(sp)  // restore old x19
      addi  sp, sp, 8     // pop 1 doubleword off stack
   jalr  x0, 0(x1)  // return

String copies usually use pointers instead of arrays in C to avoid the operations 
on i in the code above. See Section 2.14 for an explanation of arrays versus 
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could 
allocate i to a temporary register and avoid saving and restoring x19. Hence, 
instead of thinking of these registers as being just for temporaries, we can think of 
them as registers that the callee should use whenever convenient. When a compiler 
finds a leaf procedure, it exhausts all temporary registers before using registers it 
must save.

Characters and Strings in Java
Unicode is a universal encoding of the alphabets of most human languages. Figure 
2.16 gives a list of Unicode alphabets; there are almost as many alphabets in Unicode 
as there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for 
characters. By default, it uses 16 bits to represent a character.



112 Chapter 2 Instructions: Language of the Computer

The RISC-V instruction set has explicit instructions to load and store such 16-
bit quantities, called halfwords. Load half unsigned loads a halfword from memory, 
placing it in the rightmost 16 bits of a register, filling the leftmost 48 bits with 
zeros. Like load byte, load half (lh) treats the halfword as a signed number and 
thus sign-extends to fill the 48 leftmost bits of the register. Store half (sh) takes a 
halfword from the rightmost 16 bits of a register and writes it to memory. We copy 
a halfword with the sequence

lhu x19, 0(x10) // Read halfword (16 bits) from source
sh x19, 0(x11) // Write halfword (16 bits) to dest

Strings are a standard Java class with special built-in support and predefined 
methods for concatenation, comparison, and conversion. Unlike C, Java includes a 
word that gives the length of the string, similar to Java arrays.

Elaboration: RISC-V software is required to keep the stack aligned to “quadword”  
(16 byte) addresses to get better performance. This convention means that a char 
variable allocated on the stack may occupy as much as 16 bytes, even though it needs 
less. However, a C string variable or an array of bytes will pack 16 bytes per quadword, 
and a Java string variable or array of shorts packs 8 halfwords per quadword.

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” 
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 
0370hex, and Cyrillic at 0400hex. The first three columns show 48 blocks that correspond to human languages 
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order. 
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII 
subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn 
more, see www.unicode.org.

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian 
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

http://www.unicode.org
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Elaboration: Reflecting the international nature of the web, most web pages today use 
Unicode instead of ASCII. Hence, Unicode may be even more popular than ASCII today.

Elaboration: RISC-V also includes instructions to move 32-bit values to and from 
memory. Load word unsigned (lwu) loads a 32-bit word from memory into the rightmost 
32 bits of a register, filling the leftmost 32 bits with zeros. Load word (lw) instead fills the 
leftmost 32 bits with copies of bit 31. Store word (sw) takes a word from the rightmost 32 
bits of a register and stores it to memory.

I. Which of the following statements about characters and strings in C and 
Java is true?

1. A string in C takes about half the memory as the same string in Java.
2. Strings are just an informal name for single-dimension arrays of 

characters in C and Java.
3. Strings in C and Java use null (0) to mark the end of a string.
4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000ten takes the most 
memory space?

1. long long int in C
2. string in C
3. string in Java

 2.10 RISC-V Addressing for Wide Immediates 
and Addresses

Although keeping all RISC-V instructions 32 bits long simplifies the hardware, 
there are times where it would be convenient to have 32-bit or larger constants or 
addresses. This section starts with the general solution for large constants, and then 
shows the optimizations for instruction addresses used in branches.

Wide Immediate Operands
Although constants are frequently short and fit into the 12-bit fields, sometimes they 
are bigger.

The RISC-V instruction set includes the instruction Load upper immediate 
(lui) to load a 20-bit constant into bits 12 through 31 of a register. The leftmost 
32 bits are filled with copies of bit 31, and the rightmost 12 bits are filled with 
zeros. This instruction allows, for example, a 32-bit constant to be created with 

Check  
Yourself
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two instructions. lui uses a new instruction format, U-type, as the other formats 
cannot accommodate such a large constant.

Loading a 32-Bit Constant

What is the RISC-V assembly code to load this 64-bit constant into register 
x19?

00000000 00000000 00000000 00000000 00000000 00111101 00000101 00000000

First, we would load bits 12 through 31 with that bit pattern, which is 976 in 
decimal, using lui:

lui  x19, 976 // 976decimal = 0000 0000 0011 1101 0000

The value of register x19 afterward is:

0000000 00000000 00000000 00000000 00000000 00111101 00000000 00000000

The next step is to add in the lowest 12 bits, whose decimal value is 1280:

addi  x19, x19, 1280 // 1280decimal = 00000101 00000000

The final value in register x19 is the desired value:

00000000 00000000 00000000 00000000 00000000 00111101 00000101 00000000

Hardware/ 
Software  
Interface

EXAMPLE

ANSWER

Elaboration: In the previous example, bit 11 of the constant was 0. If bit 11 had 
been set, there would have been an additional complication: the 12-bit immediate 
is sign-extended, so the addend would have been negative. This means that in 
addition to adding in the rightmost 11 bits of the constant, we would have also 
subtracted 212. To compensate for this error, it suffices to add 1 to the constant 
loaded with lui, since the lui constant is scaled by 212.

Either the compiler or the assembler must break large constants into pieces and 
then reassemble them into a register. As you might expect, the immediate field’s 
size restriction may be a problem for memory addresses in loads and stores as well 
as for constants in immediate instructions.
Hence, the symbolic representation of the RISC-V machine language is no longer 
limited by the hardware, but by whatever the creator of an assembler chooses to 
include (see Section 2.12). We stick close to the hardware to explain the architecture 
of the computer, noting when we use the enhanced language of the assembler that 
is not found in the processor.
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Addressing in Branches
The RISC-V branch instructions use the RISC-V instruction format called SB-
type. This format can represent branch addresses from −4096 to 4094, in multiples 
of 2. For reasons revealed shortly, it is only possible to branch to even addresses. 
The SB-type format consists of a 7-bit opcode, a 3-bit function code, two 5-bit 
register operands (rs1 and rs2), and a 12-bit address immediate. The address uses 
an unusual encoding, which simplifies datapath design but complicates assembly. 
The instruction

bne x10, x11, 2000 // if x10 != x11, go to location 2000ten = 0111 1101 0000

could be assembled into this format (it’s actually a bit more complicated, as we will 
see):

0 111110 01011 01010 001 1000 0 1100111

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

where the opcode for conditional branches is 1100111two and bne’s funct3 code is 
001two.

The unconditional jump-and-link instruction (jal) is the only instruction 
that uses the UJ-type format. This instruction consists of a 7-bit opcode, a 5-bit 
destination register operand (rd), and a 20-bit address immediate. The link address, 
which is the address of the instruction following the jal, is written to rd.

Like the SB-type format, the UJ-type format’s address operand uses an unusual 
immediate encoding, and it cannot encode odd addresses. So,

jal x0, 2000 // go to location 2000ten = 0111 1101 0000

is assembled into this format:

0 1111101000 0 00000000 00000 1101111

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

If addresses of the program had to fit in this 20-bit field, it would mean that no 
program could be bigger than 220, which is far too small to be a realistic option 
today. An alternative would be to specify a register that would always be added 
to the branch offset, so that a branch instruction would calculate the following:

Program counter Register Branch o�set

This sum allows the program to be as large as 264 and still be able to use 
conditional branches, solving the branch address size problem. Then the question 
is, which register?

The answer comes from seeing how conditional branches are used. Conditional 
branches are found in loops and in if statements, so they tend to branch to a 
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nearby instruction. For example, about half of all conditional branches in SPEC 
benchmarks go to locations less than 16 instructions away. Since the program 
counter (PC) contains the address of the current instruction, we can branch within 
±210 words of the current instruction, or jump within ±218 words of the current 
instruction, if we use the PC as the register to be added to the address. Almost all 
loops and if statements are smaller than 210 words, so the PC is the ideal choice. 
This form of branch addressing is called PC-relative addressing.

Like most recent computers, RISC-V uses PC-relative addressing for both 
conditional branches and unconditional jumps, because the destination of these 
instructions is likely to be close to the branch. On the other hand, procedure calls 
may require jumping more than 218 words away, since there is no guarantee that 
the callee is close to the caller. Hence, RISC-V allows very long jumps to any 32-
bit address with a two-instruction sequence: lui writes bits 12 through 31 of the 
address to a temporary register, and jalr adds the lower 12 bits of the address to 
the temporary register and jumps to the sum.

Since RISC-V instructions are 4 bytes long, the RISC-V branch instructions could 
have been designed to stretch their reach by having the PC-relative address refer to 
the number of words between the branch and the target instruction, rather than the 
number of bytes. However, the RISC-V architects wanted to support the possibility of 
instructions that are only 2 bytes long, so the branch instructions represent the number 
of halfwords between the branch and the branch target. Thus, the 20-bit address field 
in the jal instruction can encode a distance of ±219 halfwords, or ±1 MiB from the 
current PC. Similarly, the 12-bit field in the conditional branch instructions is also a 
halfword address, meaning that it represents a 13-bit byte address.

Showing Branch Offset in Machine Language

The while loop on page 94 was compiled into this RISC-V assembler code:

Loop:slli x10, x22, 3     // Temp reg x10 = i * 8
 add x10, x10, x25 // x10 = address of save[i]
 ld x9, 0(x10) // Temp reg x9 = save[i]
 bne x9, x24, Exit // go to Exit if save[i] != k
 addi x22, x22, 1 // i = i + 1
 beq x0, x0, Loop // go to Loop
Exit:

If we assume we place the loop starting at location 80000 in memory, what is 
the RISC-V machine code for this loop?

PC-relative 
addressing An 
addressing regime 
in which the address 
is the sum of the 
program counter (PC) 
and a constant in the 
instruction.

EXAMPLE

ANSWER
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The assembled instructions and their addresses are:

Address Instruction

80000 0000000 00011 10110 001 01010 0010011

80004 0000000 11001 01010 000 01010 0110011

80008 0000000 00000 01010 011 01001 0000011

80012 0000000 11000 01001 001 01100 1100011

80016 0000000 00001 10110 000 10110 0010011

80020 1111111 00000 00000 000 01101 1100011

Remember that RISC-V instructions have byte addresses, so addresses of 
sequential words differ by 4. The bne instruction on the fourth line adds 3 words 
or 12 bytes to the address of the instruction, specifying the branch destination 
relative to the branch instruction (12 + 80012) and not using the full destination 
address (80024). The branch instruction on the last line does a similar calculation 
for a backwards branch (−20 + 80020), corresponding to the label Loop.

Hardware/
Software 
Interface

EXAMPLE

ANSWER

addressing mode One 
of several addressing 
regimes delimited by their 
varied use of operands 
and/or addresses.

Most conditional branches are to a nearby location, but occasionally they branch 
far away, farther than can be represented in the 12-bit address in the conditional 
branch instruction. The assembler comes to the rescue just as it did with large 
addresses or constants: it inserts an unconditional branch to the branch target, and 
inverts the condition so that the conditional branch decides whether to skip the 
unconditional branch.

Branching Far Away

Given a branch on register x10 being equal to zero,

beq  x10, x0, L1

replace it by a pair of instructions that offers a much greater branching distance.
These instructions replace the short-address conditional branch:

   bne       x10, x0, L2
     jal      x0, L1
L2:

RISC-V Addressing Mode Summary
Multiple forms of addressing are generically called addressing modes. Figure 
2.17 shows how operands are identified for each addressing mode. The addressing 
modes of the RISC-V instructions are the following:



118 Chapter 2 Instructions: Language of the Computer

1. Immediate addressing, where the operand is a constant within the instruction 
itself.

2. Register addressing, where the operand is a register.

3. Base or displacement addressing, where the operand is at the memory location 
whose address is the sum of a register and a constant in the instruction.

4. PC-relative addressing, where the branch address is the sum of the PC and a 
constant in the instruction.

Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the 
original assembly language. One example is when looking at “core dump.” Figure 
2.18 shows the RISC-V encoding of the opcodes for the RISC-V machine language. 
This figure helps when translating by hand between assembly language and machine 
language.

FIGURE 2.17 Illustration of four RISC-V addressing modes. The operands are shaded in color. The operand of mode 3 is in 
memory, whereas the operand for mode 2 is a register. Note that versions of load and store access bytes, halfwords, words, or doublewords. 
For mode 1, the operand is part of the instruction itself. Mode 4 addresses instructions in memory, with mode 4 adding a long address to the 
PC. Note that a single operation can use more than one addressing mode. Add, for example, uses both immediate (addi) and register (add) 
addressing.

1.  Immediate addressing

2. Register addressing

3.  Base addressing

4.  PC-relative addressing

funct7 rs2 funct3 op

Register

Registers

Word Doubleword

Memory

+Register HalfwordByte

Word

Memory

PC

rs1 rd

immediate funct3 oprs1 rd

immediate funct3 oprs1 rd

funct3 oprs1 immimm rs2

+
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FIGURE 2.18 RISC-V instruction encoding. All instructions have an opcode field, and all formats 
except U-type and UJ-type use the funct3 field. R-type instructions use the funct7 field, and immediate shifts 
(slli, srli, srai) use the funct6 field.

Format Instruction Opcode Funct3 Funct6/7

R-type

add 0110011 000 0000000
sub 0110011 000 0100000
sll 0110011 001 0000000
xor 0110011 100 0000000
srl 0110011 101 0000000
sra 0110011 101 0000000
or 0110011 110 0000000
and 0110011 111 0000000
lr.d 0110011 011 0001000
sc.d 0110011 011 0001100
lb 0000011 000 n.a.
lh 0000011 001 n.a.
lw 0000011 010 n.a.
ld 0000011 011 n.a.

n.a.lbu 0000011 100
lhu 0000011 101 n.a.
lwuI-type 0000011 110 n.a.
addi 0010011 000 n.a.

000000

n.a.
000000
010000

n.a.
n.a.
n.a.

slli 0010011 001
xori 0010011 100
srli 0010011 101
srai 0010011 101
ori 0010011 110
andi 0010011 111
jalr 1100111 000
sb 0100011 000 n.a.

n.a.
n.a.
n.a.

n.a.

n.a.

S-type

SB-type

sh 0100011 001
sw 0100011 010
sd 0100011 111
beq 1100111 000
bne 1100111 001
blt 1100111 100 n.a.
bge 1100111 101 n.a.
bltu 1100111 110

n.a.

n.a.
n.a.

n.a.
n.a.

bgeu
lui

1100111 111
U-type 0110111 n.a.

jalUJ-type 1101111 n.a.
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Decoding Machine Code

What is the assembly language statement corresponding to this machine 
instruction?

00578833hex

The first step is converting hexadecimal to binary:

0000 0000 0101 0111 1000 1000 0011 0011

To know how to interpret the bits, we need to determine the instruction 
format, and to do that we first need to determine the opcode. The opcode is 
the rightmost 7 bits, or 0110011. Searching Figure 2.20 for this value, we see 
that the opcode corresponds to the R-type arithmetic instructions. Thus, we 
can parse the binary format into fields listed in Figure 2.21:

funct7 rs2 rs1 funct3 rd opcode

0000000 00101 01111 000 10000 0110011

We decode the rest of the instruction by looking at the field values. The 
funct7 and funct3 fields are both zero, indicating the instruction is add. The 
decimal values for the register operands are 5 for the rs2 field, 15 for rs1, and 16 
for rd. These numbers represent registers x5, x15, and x16. Now we can reveal 
the assembly instruction:

add x16, x15, x5

Figure 2.19 shows all the RISC-V instruction formats. Figure 2.1 on pages 
64–65 shows the RISC-V assembly language revealed in this chapter. The next 
chapter covers RISC-V instructions for multiply, divide, and arithmetic for real 
numbers.

EXAMPLE

ANSWER

FIGURE 2.19 RISC-V instruction formats.

(Field size)
Name Field Comments

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-type funct7 rs2 rs1 funct3 rd opcode Arithmetic instruction format

I-type rs1 funct3 rd opcode Loads & immediate arithmetic

S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode Stores

SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode Conditional branch format

UJ-type rd opcode Unconditional jump format

U-type rd opcode Upper immediate format

immediate[11:0]

immediate[20,10:1,11,19:12]
immediate[31:12]
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 2.11 
Parallelism and Instructions: 
Synchronization

Parallel execution is easier when tasks are independent, but often they need to 
cooperate. Cooperation usually means some tasks are writing new values that 
others must read. To know when a task is finished writing so that it is safe for 
another to read, the tasks need to synchronize. If they don’t synchronize, there is a 
danger of a data race, where the results of the program can change depending on 
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on pages 44–45 
of Chapter 1. Suppose one reporter needs to read all the prior sections before writing 
a conclusion. Hence, he or she must know when the other reporters have finished 
their sections, so that there is no danger of sections being changed afterwards. That 
is, they had better synchronize the writing and reading of each section so that the 
conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level 
software routines that rely on hardware-supplied synchronization instructions. In 
this section, we focus on the implementation of lock and unlock synchronization 
operations. Lock and unlock can be used straightforwardly to create regions 
where only a single processor can operate, called a mutual exclusion, as well as to 
implement more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiprocessor 
is a set of hardware primitives with the ability to atomically read and modify a 
memory location. That is, nothing else can interpose itself between the read and 
the write of the memory location. Without such a capability, the cost of building 
basic synchronization primitives will be high and will increase unreasonably as the 
processor count increases.

data race Two memory 
accesses form a data race 
if they are from different 
threads to the same 
location, at least one is a 
write, and they occur one 
after another.

I. What is the range of byte addresses for conditional branches in RISC-V  
(K = 1024)?

1. Addresses between 0 and 4K − 1
2. Addresses between 0 and 8K − 1
3. Addresses up to about 2K before the branch to about 2K after
4. Addresses up to about 4K before the branch to about 4K after

II. What is the range of byte addresses for the jump-and-link instruction in 
RISC-V (M = 1024K)?

1. Addresses between 0 and 512K − 1
2. Addresses between 0 and 1M − 1
3. Addresses up to about 512K before the branch to about 512K after
4. Addresses up to about 1M before the branch to about 1M after

Check  
Yourself
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There are a number of alternative formulations of the basic hardware primitives, 
all of which provide the ability to atomically read and modify a location, together 
with some way to tell if the read and write were performed atomically. In general, 
architects do not expect users to employ the basic hardware primitives, but instead 
expect system programmers will use the primitives to build a synchronization 
library, a process that is often complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to 
build a basic synchronization primitive. One typical operation for building 
synchronization operations is the atomic exchange or atomic swap, which inter-
changes a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that 
we want to build a simple lock where the value 0 is used to indicate that the lock 
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set 
the lock by doing an exchange of 1, which is in a register, with the memory address 
corresponding to the lock. The value returned from the exchange instruction is 1 
if some other processor had already claimed access, and 0 otherwise. In the latter 
case, the value is also changed to 1, preventing any competing exchange in another 
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange simultane-
ously: this race is prevented, since exactly one of the processors will perform the 
exchange first, returning 0, and the second processor will return 1 when it does the 
exchange. The key to using the exchange primitive to implement synchronization 
is that the operation is atomic: the exchange is indivisible, and two simultaneous 
exchanges will be ordered by the hardware. It is impossible for two processors 
trying to set the synchronization variable in this manner to both think they have 
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in 
the design of the processor, since it requires both a memory read and a write in a 
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction 
returns a value showing whether the pair of instructions was executed as if the pair 
was atomic. The pair of instructions is effectively atomic if it appears as if all other 
operations executed by any processor occurred before or after the pair. Thus, when 
an instruction pair is effectively atomic, no other processor can change the value 
between the pair of instructions.

In RISC-V this pair of instructions includes a special load called a load-reserved 
doubleword (lr.d) and a special store called a store-conditional doubleword (sc.d). 
These instructions are used in sequence: if the contents of the memory location 
specified by the load-reserved are changed before the store-conditional to the same 
address occurs, then the store-conditional fails and does not write the value to memory. 
The store-conditional is defined to both store the value of a (presumably different) 
register in memory and to change the value of another register to a 0 if it succeeds 
and to a nonzero value if it fails. Thus, sc.d specifies three registers: one to hold the 
address, one to indicate whether the atomic operation failed or succeeded, and one to 
hold the value to be stored in memory if it succeeded. Since the load-reserved returns 
the initial value, and the store-conditional returns 0 only if it succeeds, the following 
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sequence implements an atomic exchange on the memory location specified by the 
contents of x20:

again:lr.d x10, (x20)        // load-reserved
 sc.d x11, x23, (x20)   // store-conditional
 bne x11, x0, again    // branch if store fails
 addi x23, x10, 0      // put loaded value in x23

Any time a processor intervenes and modifies the value in memory between the 
lr.d and sc.d instructions, the sc.d writes a nonzero value into x11, causing 
the code sequence to try again. At the end of this sequence, the contents of x23 and 
the memory location specified by x20 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic 
exchange is also useful for the operating system in dealing with multiple processes 
in a single processor. To make sure nothing interferes in a single processor, the store-
conditional also fails if the processor does a context switch between the two instructions 
(see Chapter 5).

Elaboration: An advantage of the load-reserved/store-conditional mechanism is that it 
can be used to build other synchronization primitives, such as atomic compare and swap 
or atomic fetch-and-increment, which are used in some parallel programming models. 
These involve more instructions between the lr.d and the sc.d, but not too many.

Since the store-conditional will fail after either another attempted store to the load 
reservation address or any exception, care must be taken in choosing which instructions 
are inserted between the two instructions. In particular, only integer arithmetic, forward 
branches, and backward branches out of the load-reserved/store-conditional block can 
safely be permitted; otherwise, it is possible to create deadlock situations where the 
processor can never complete the sc.d because of repeated page faults. In addition, 
the number of instructions between the load-reserved and the store-conditional should 
be small to minimize the probability that either an unrelated event or a competing 
processor causes the store-conditional to fail frequently.

Elaboration: While the code above implemented an atomic exchange, the following 
code would more efficiently acquire a lock at the location in register x20, where the 
value of 0 means the lock was free and 1 to mean lock was acquired:

 addi x12, x0, 1           // copy locked value
again: lr.d x10, (x20)      //  load-reserved to read lock
 bne x10, x0, again      // check if it is 0 yet
 sc.d x11, x12, (x20)   //  attempt to store new value
 bne x11, x0, again            // branch if store fails

We release the lock just using a regular store to write 0 into the location:

sd x0, 0(x20)   // free lock by writing 0
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When do you use primitives like load-reserved and store-conditional?

1. When cooperating threads of a parallel program need to synchronize to get 
proper behavior for reading and writing shared data.

2. When cooperating processes on a uniprocessor need to synchronize for 
reading and writing shared data.

Check  
Yourself

 2.12 Translating and Starting a Program

This section describes the four steps in transforming a C program in a file from 
storage (disk or flash memory) into a program running on a computer. Figure 
2.20 shows the translation hierarchy. Some systems combine these steps to reduce 
translation time, but programs go through these four logical phases. This section 
follows this translation hierarchy.

FIGURE 2.20 A translation hierarchy for C. A high-level language program is first compiled into an assembly language program and 
then assembled into an object module in machine language. The linker combines multiple modules with library routines to resolve all references. 
The loader then places the machine code into the proper memory locations for execution by the processor. To speed up the translation process, 
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use linking loaders that perform the 
last two steps. To identify the type of file, UNIX follows a suffix convention for files: C source files are named x.c, assembly files are x.s, object 
files are named x.o, statically linked library routines are x.a, dynamically linked library routes are x.so, and executable files by default are 
called a.out. MS-DOS uses the suffixes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect.

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program
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Compiler
The compiler transforms the C program into an assembly language program, a 
symbolic form of what the machine understands. High-level language programs 
take many fewer lines of code than assembly language, so programmer productivity 
is much higher.

In 1975, many operating systems and assemblers were written in assembly 
language because memories were small and compilers were inefficient. The 
million-fold increase in memory capacity per single DRAM chip has reduced 
program size concerns, and optimizing compilers today can produce assembly 
language programs nearly as well as an assembly language expert, and sometimes 
even better for large programs.

Assembler
Since assembly language is an interface to higher-level software, the assembler 
can also treat common variations of machine language instructions as if they 
were instructions in their own right. The hardware need not implement these 
instructions; however, their appearance in assembly language simplifies translation 
and programming. Such instructions are called pseudoinstructions.

As mentioned above, the RISC-V hardware makes sure that register x0 
always has the value 0. That is, whenever register x0 is used, it supplies a 0, and 
if the programmer attempts to change the value in x0, the new value is simply 
discarded. Register x0 is used to create the assembly language instruction that 
copies the contents of one register to another. Thus, the RISC-V assembler accepts 
the following instruction even though it is not found in the RISC-V machine 
language:

li x9, 123   // load immediate value 123 into register x9

The assembler converts this assembly language instruction into the machine 
language equivalent of the following instruction:

addi x9, x0, 123 // register x9 gets register x0 + 123

The RISC-V assembler also converts mv (move) into an addi instruction. Thus

mv x10, x11 // register x10 gets register x11

becomes

addi x10, x11, 0 // register x10 gets register x11 + 0

The assembler also accepts j Label to unconditionally branch to a label, as a  
stand-in for jal x0, Label. It also converts branches to faraway locations into 
a branch and a jump. As mentioned above, the RISC-V assembler allows large 
constants to be loaded into a register despite the limited size of the immediate 
instructions. Thus, the load immediate (li) pseudoinstruction introduced above can 

assembly language A 
symbolic language that 
can be translated into 
binary machine language.

pseudoinstruction A 
common variation 
of assembly language 
instructions often treated 
as if it were an instruction 
in its own right.
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create constants larger than addi’s immediate field can contain; the load address (la) 
macro works similarly for symbolic addresses. Finally, it can simplify the instruction 
set by determining which variation of an instruction the programmer wants. For 
example, the RISC-V assembler does not require the programmer to specify the 
immediate version of the instruction when using a constant for arithmetic and logical 
instructions; it just generates the proper opcode. Thus

and x9, x10, 15 // register x9 gets x10 AND 15

becomes

andi x9, x10, 15 // register x9 gets x10 AND 15

We include the “i” on the instructions to remind the reader that andi produces 
a different opcode in a different instruction format than the and instruction with 
no immediate operands.

In summary, pseudoinstructions give RISC-V a richer set of assembly language 
instructions than those implemented by the hardware. If you are going to write 
assembly programs, use pseudoinstructions to simplify your task. To understand 
the RISC-V architecture and be sure to get best performance, however, study the 
real RISC-V instructions found in Figures 2.1 and 2.18.

Assemblers will also accept numbers in a variety of bases. In addition to binary 
and decimal, they usually accept a base that is more succinct than binary yet 
converts easily to a bit pattern. RISC-V assemblers use hexadecimal and octal.

Such features are convenient, but the primary task of an assembler is assembly 
into machine code. The assembler turns the assembly language program into an 
object file, which is a combination of machine language instructions, data, and 
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language 
program, the assembler must determine the addresses corresponding to all labels. 
Assemblers keep track of labels used in branches and data transfer instructions in a 
symbol table. As you might expect, the table contains pairs of symbols and addresses.

The object file for UNIX systems typically contains six distinct pieces:

n	 The object file header describes the size and position of the other pieces of the 
object file.

n	 The text segment contains the machine language code.

n	 The static data segment contains data allocated for the life of the program. 
(UNIX allows programs to use both static data, which is allocated throughout 
the program, and dynamic data, which can grow or shrink as needed by the 
program. See Figure 2.13.)

n	 The relocation information identifies instructions and data words that depend 
on absolute addresses when the program is loaded into memory.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions occupy.
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n	 The symbol table contains the remaining labels that are not defined, such as 
external references.

n	 The debugging information contains a concise description of how the modules 
were compiled so that a debugger can associate machine instructions with C 
source files and make data structures readable.

The next subsection shows how to attach such routines that have already been 
assembled, such as library routines.

Linker
What we have presented so far suggests that a single change to one line of one procedure 
requires compiling and assembling the whole program. Complete retranslation is 
a terrible waste of computing resources. This repetition is particularly wasteful for 
standard library routines, because programmers would be compiling and assembling 
routines that by definition almost never change. An alternative is to compile and 
assemble each procedure independently, so that a change to one line would require 
compiling and assembling only one procedure. This alternative requires a new systems 
program, called a link editor or linker, which takes all the independently assembled 
machine language programs and “stitches” them together. The reason a linker is useful 
is that it is much faster to patch code than it is to recompile and reassemble.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object 
module to resolve all undefined labels. Such references occur in branch instructions 
and data addresses, so the job of this program is much like that of an editor: it finds 
the old addresses and replaces them with the new addresses. Editing is the origin 
of the name “link editor,” or linker for short.

If all external references are resolved, the linker next determines the memory 
locations each module will occupy. Recall that Figure 2.13 on page 106 shows 
the RISC-V convention for allocation of program and data to memory. Since the 
files were assembled in isolation, the assembler could not know where a module’s 
instructions and data would be placed relative to other modules. When the linker 
places a module in memory, all absolute references, that is, memory addresses that 
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typically, 
this file has the same format as an object file, except that it contains no unresolved 
references. It is possible to have partially linked files, such as library routines, that 
still have unresolved addresses and hence result in object files.

linker Also called 
link editor. A systems 
program that combines 
independently assembled 
machine language 
programs and resolves all 
undefined labels into an 
executable file.

executable file A 
functional program in 
the format of an object 
file that contains no 
unresolved references. 
It can contain symbol 
tables and debugging 
information. A “stripped 
executable” does not 
contain that information. 
Relocation information 
may be included for the 
loader.
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Linking Object Files

Link the two object files below. Show updated addresses of the first few 
instructions of the completed executable file. We show the instructions in 
assembly language just to make the example understandable; in reality, the 
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols 
that must be updated in the link process: the instructions that refer to the 
addresses of procedures A and B and the instructions that refer to the addresses 
of data doublewords X and Y.

Object file header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 ld x10, 0(x3)

4 jal x1, 0

. . . . . .
Data segment 0 (X)

. . . . . .
Relocation information Address Instruction type Dependency

0 ld X

4 jal B
Symbol table Label Address

X –
B –

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sd x11, 0(x3)

4 jal x1, 0

. . . . . .
Data segment 0 (Y)

. . . . . .
Relocation information Address Instruction type Dependency

0 sd Y

4 jal A
Symbol table Label Address

Y –
A –

Procedure A needs to find the address for the variable labeled X to put in the 
load instruction and to find the address of procedure B to place in the jal 

EXAMPLE
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instruction. Procedure B needs the address of the variable labeled Y for the 
store instruction and the address of procedure A for its jal instruction.

From Figure 2.14 on page 107, we know that the text segment starts at 
address 0000 0000 0040 0000hex and the data segment at 0000 0000 
1000 0000hex. The text of procedure A is placed at the first address and its data 
at the second. The object file header for procedure A says that its text is 100hex 
bytes and its data is 20hex bytes, so the starting address for procedure B text is 
40 0100hex, and its data starts at 1000 0020hex.

Executable file header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0000 0000 0040 0000hex ld x10, 0(x3)

0000 0000 0040 0004hex jal x1, 252ten

. . . . . .

0000 0000 0040 0100hex sd x11, 32(x3)

0000 0000 0040 0104hex jal x1, -260ten

. . . . . .
Data segment Address

0000 0000 1000 0000hex (X)

. . . . . .

0000 0000 1000 0020hex (Y)

. . . . . .

Now the linker updates the address fields of the instructions. It uses the 
instruction type field to know the format of the address to be edited. We have 
three types here:

1. The jump and link instructions use PC-relative addressing. Thus, for the 
jal at address 40 0004hex to go to 40 0100hex (the address of procedure B),  
it must put (40 0100hex – 40 0004hex) or 252ten in its address field.  
Similarly, since 40 0000hex is the address of procedure A, the jal at  
40 0104hex gets the negative number -260ten (40 0000hex – 40 0104hex) 
in its address field.

2. The load addresses are harder because they are relative to a base register. 
This example uses x3 as the base register, assuming it is initialized 
to 0000 0000 1000 0000hex. To get the address 0000 0000  
1000 0000hex (the address of doubleword X), we place 0ten in the address 
field of ld at address 40 0000hex. Similarly, we place 20hex in the address 
field of sd at address 40 0100hex to get the address 0000 0000 1000 
0020hex (the address of doubleword Y).

3. Store addresses are handled just like load addresses, except that their S-type 
instruction format represents immediates differently than loads’ I-type 
format. We place 32ten in the address field of sd at address 40 0100hex to 
get the address 0000 0000 1000 0020hex (the address of doubleword Y).

ANSWER
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Loader
Now that the executable file is on disk, the operating system reads it to memory and 
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data 
segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the processor registers and sets the stack pointer to the first free 
location.

6. Branches to a start-up routine that copies the parameters into the argument 
registers and calls the main routine of the program. When the main routine 
returns, the start-up routine terminates the program with an exit system call.

Dynamically Linked Libraries
The first part of this section describes the traditional approach to linking libraries 
before the program is run. Although this static approach is the fastest way to call 
library routines, it has a few disadvantages:

n	 The library routines become part of the executable code. If a new version of 
the library is released that fixes bugs or supports new hardware devices, the 
statically linked program keeps using the old version.

n	 It loads all routines in the library that are called anywhere in the executable, 
even if those calls are not executed. The library can be large relative to the 
program; for example, the standard C library on a RISC-V system running 
the Linux operating system is 1.5 MiB.

These disadvantages lead to dynamically linked libraries (DLLs), where the 
library routines are not linked and loaded until the program is run. Both the 
program and library routines keep extra information on the location of nonlocal 
procedures and their names. In the original version of DLLs, the loader ran 
a dynamic linker, using the extra information in the file to find the appropriate 
libraries and to update all external references.

The downside of the initial version of DLLs was that it still linked all routines of 
the library that might be called, versus just those that are called during the running 
of the program. This observation led to the lazy procedure linkage version of DLLs, 
where each routine is linked only after it is called.

Like many innovations in our field, this trick relies on a level of indirection. 
Figure 2.21 shows the technique. It starts with the nonlocal routines calling a set of 

loader A systems 
program that places an 
object program in main 
memory so that it is ready 
to execute.

dynamically linked 
libraries (DLLs) Library 
routines that are linked 
to a program during 
execution.

Virtually every 
problem in computer 
science can be solved 
by another level of 
indirection.
David Wheeler



 2.12 Translating and Starting a Program 131

dummy routines at the end of the program, with one entry per nonlocal routine. 
These dummy entries each contain an indirect branch.

The first time the library routine is called, the program calls the dummy entry 
and follows the indirect branch. It points to code that puts a number in a register 
to identify the desired library routine and then branches to the dynamic linker/
loader. The linker/loader finds the wanted routine, remaps it, and changes the 
address in the indirect branch location to point to that routine. It then branches to 
it. When the routine completes, it returns to the original calling site. Thereafter, the 
call to the library routine branches indirectly to the routine without the extra hops.

FIGURE 2.21 Dynamically linked library via lazy procedure linkage. (a) Steps for the first 
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on 
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by 
remapping it using virtual memory management.
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In summary, DLLs require additional space for the information needed for 
dynamic linking, but do not require that whole libraries be copied or linked. They 
pay a good deal of overhead the first time a routine is called, but only a single 
indirect branch thereafter. Note that the return from the library pays no extra 
overhead. Microsoft’s Windows relies extensively on dynamically linked libraries, 
and it is also the default when executing programs on UNIX systems today.

Starting a Java Program
The discussion above captures the traditional model of executing a program, where 
the emphasis is on fast execution time for a program targeted to a specific instruction 
set architecture, or even a particular implementation of that architecture. Indeed, it 
is possible to execute Java programs just like C. Java was invented with a different 
set of goals, however. One was to run safely on any computer, even if it might slow 
execution time.

Figure 2.22 shows the typical translation and execution steps for Java. Rather 
than compile to the assembly language of a target computer, Java is compiled first 
to instructions that are easy to interpret: the Java bytecode instruction set (see  
Section 2.15). This instruction set is designed to be close to the Java language so that 
this compilation step is trivial. Virtually no optimizations are performed. Like the C 
compiler, the Java compiler checks the types of data and produces the proper operation 
for each type. Java programs are distributed in the binary version of these bytecodes.

Java bytecode  
Instruction from an 
instruction set designed 
to interpret Java 
programs.

Java Virtual Machine 
(JVM) The program that 
interprets Java bytecodes.

FIGURE 2.22 A translation hierarchy for Java. A Java program is first compiled into a binary 
version of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run 
on the interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java 
library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, 
which selectively compiles methods into the native machine language of the machine on which it is running.

Java program

Compiler

Class files (Java bytecodes)

Java Virtual Machine

Compiled Java methods (machine language)

Java library routines (machine language)

Just In Time
compiler

A software interpreter, called a Java Virtual Machine (JVM), can execute Java 
bytecodes. An interpreter is a program that simulates an instruction set architecture. 
For example, the RISC-V simulator used with this book is an interpreter. There is 
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In summary, DLLs require additional space for the information needed for 
dynamic linking, but do not require that whole libraries be copied or linked. They 
pay a good deal of overhead the first time a routine is called, but only a single 
indirect branch thereafter. Note that the return from the library pays no extra 
overhead. Microsoft’s Windows relies extensively on dynamically linked libraries, 
and it is also the default when executing programs on UNIX systems today.

Starting a Java Program
The discussion above captures the traditional model of executing a program, where 
the emphasis is on fast execution time for a program targeted to a specific instruction 
set architecture, or even a particular implementation of that architecture. Indeed, it 
is possible to execute Java programs just like C. Java was invented with a different 
set of goals, however. One was to run safely on any computer, even if it might slow 
execution time.

Figure 2.22 shows the typical translation and execution steps for Java. Rather 
than compile to the assembly language of a target computer, Java is compiled first 
to instructions that are easy to interpret: the Java bytecode instruction set (see  
Section 2.15). This instruction set is designed to be close to the Java language so that 
this compilation step is trivial. Virtually no optimizations are performed. Like the C 
compiler, the Java compiler checks the types of data and produces the proper operation 
for each type. Java programs are distributed in the binary version of these bytecodes.

Java bytecode  
Instruction from an 
instruction set designed 
to interpret Java 
programs.

Java Virtual Machine 
(JVM) The program that 
interprets Java bytecodes.

no need for a separate assembly step since either the translation is so simple that 
the compiler fills in the addresses or JVM finds them at runtime.

The upside of interpretation is portability. The availability of software Java virtual 
machines meant that most people could write and run Java programs shortly after 
Java was announced. Today, Java virtual machines are found in billions of devices, 
in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances in 
performance of the 1980s and 1990s made interpretation viable for many important 
applications, but the factor of 10 slowdown when compared to traditionally 
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java’s 
development was compilers that translated while the program was running. Such 
Just In Time compilers (JIT) typically profile the running program to find where 
the “hot” methods are and then compile them into the native instruction set on 
which the virtual machine is running. The compiled portion is saved for the next 
time the program is run, so that it can run faster each time it is run. This balance 
of interpretation and compilation evolves over time, so that frequently run Java 
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers 
invent betters ways to compile Java on the fly, the performance gap between Java 
and C or C++ is closing.  Section 2.15 goes into much greater depth on the 
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator was the most important 
for the designers of Java?

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

Just In Time compiler 
(JIT) The name 
commonly given to a 
compiler that operates at 
runtime, translating the 
interpreted code segments 
into the native code of the 
computer.

Check  
Yourself

 2.13 A C Sort Example to Put it All Together

One danger of showing assembly language code in snippets is that you will have no 
idea what a full assembly language program looks like. In this section, we derive 
the RISC-V code from two procedures written in C: one to swap array elements 
and one to sort them.
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The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.23. This procedure 
simply swaps two locations in memory. When translating from C to assembly 
language by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by 
putting all the pieces together.

Register Allocation for swap
As mentioned on page 98, the RISC-V convention on parameter passing is to use 
registers x10 to x17. Since swap has just two parameters, v and k, they will be found 
in registers x10 and x11. The only other variable is temp, which we associate with 
register x5 since swap is a leaf procedure (see page 102). This register allocation 
corresponds to the variable declarations in the first part of the swap procedure in 
Figure 2.23.

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Recall that the memory address for RISC-V refers to the byte address, and so 
doublewords are really 8 bytes apart. Hence, we need to multiply the index k by 
8 before adding it to the address. Forgetting that sequential doubleword addresses 
differ by 8 instead of by 1 is a common mistake in assembly language programming. 

FIGURE 2.23 A C procedure that swaps two locations in memory. This subsection uses this 
procedure in a sorting example.

void swap(long long int v[], size_t k) 
{ 

 long long int temp; 
 temp = v[k]; 
 v[k] = v[k+1]; 
 v[k+1] = temp; 

}
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Hence, the first step is to get the address of v[k] by multiplying k by 8 via a shift 
left by 3:

slli  x6, x11, 3       // reg x6 = k * 8
add   x6, x10, x6         // reg x6 = v + (k * 8)

Now we load v[k] using x6, and then v[k+1] by adding 8 to x6:

ld  x5, 0(x6)    // reg x5 (temp) = v[k]
ld  x7, 8(x6)   // reg x7 = v[k + 1]
            // refers to next element of v

Next we store x9 and x11 to the swapped addresses:

sd  x7, 0(x6)   // v[k] = reg x7
sd  x5, 8(x6)    // v[k+1] = reg x5 (temp)

Now we have allocated registers and written the code to perform the operations 
of the procedure. What is missing is the code for preserving the saved registers 
used within swap. Since we are not using saved registers in this leaf procedure, 
there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine. All that remains is to add the procedure 
label and the return branch.

swap:

slli x6, x11, 3 // reg x6 = k * 8
 add x6, x10, x6 // reg x6 = v + (k * 8)
 ld x5, 0(x6) // reg x5 (temp) = v[k]
 ld x7, 8(x6) // reg x7 = v[k + 1]
 sd x7, 0(x6) // v[k] = reg x7
 sd x5, 8(x6) // v[k+1] = reg x5 (temp)
 jalr x0, 0(x1) // return to calling routine

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language, we’ll 
try a second, longer example. In this case, we’ll build a routine that calls the swap 
procedure. This program sorts an array of integers, using bubble or exchange sort, 
which is one of the simplest if not the fastest sorts. Figure 2.24 shows the C version 
of the program. Once again, we present this procedure in several steps, concluding 
with the full procedure.
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Register Allocation for sort

The two parameters of the procedure sort, v and n, are in the parameter registers 
x10 and x11, and we assign register x19 to i and register x20 to j.

Code for the Body of the Procedure sort

The procedure body consists of two nested for loops and a call to swap that includes 
parameters. Let’s unwrap the code from the outside to the middle.

The first translation step is the first for loop:

for (i = 0; i < n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and 
iteration increment. It takes just one instruction to initialize i to 0, the first part of 
the for statement:

li  x19, 0

(Remember that li is a pseudoinstruction provided by the assembler for the 
convenience of the assembly language programmer; see page 125.) It also takes just 
one instruction to increment i, the last part of the for statement:

addi x19, x19, 1 // i += 1

The loop should be exited if i < n is not true or, said another way, should be 
exited if i ≥ n. This test takes just one instruction:

for1tst: bge x19, x11, exit1 // go to exit1 if x19 ≥ x1 (i≥n)

The bottom of the loop just branches back to the loop test:

    j for1tst  // branch to test of outer loop

exit1:

The skeleton code of the first for loop is then

  li x19, 0          // i = 0
for1tst:
  bge x19, x11, exit1   //  go to exit1 if x19 ≥ x1 (i≥n)

   …

FIGURE 2.24 A C procedure that performs a sort on the array v.

void sort (long long int v[], size_t int n)
{
 size_t i, j;
 for (i = 0; i < n; i += 1) {
  for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {
  swap(v,j);
  }
 }
}
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        (body of first for loop)
   …

     addi x19, x19, 1  // i += 1
     j for1tst        //  branch to test of outer loop
exit1:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {

The initialization portion of this loop is again one instruction:

addi  x20, x19, -1 // j = i – 1

The decrement of j at the end of the loop is also one instruction:

addi  x20, x20, -1 j -= 1

The loop test has two parts. We exit the loop if either condition fails, so the first 
test must exit the loop if it fails (j < 0):

for2tst:
  blt x20, x0, exit2 // go to exit2 if x20 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, then j ≥ 0.
The second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤ v[j + 

1]. First we create the address by multiplying j by 8 (since we need a byte address) 
and add it to the base address of v:

slli   x5, x20, 3    // reg x5 = j * 8
add    x5, x10, x5    // reg x5 = v + (j * 8)

Now we load v[j]:

ld    x6, 0(x5)    // reg x6 = v[j]

Since we know that the second element is just the following doubleword, we add 
8 to the address in register x5 to get v[j + 1]:

ld   x7, 8(x5)    // reg x7 = v[j + 1]

We test v[j] ≤ v[j + 1] to exit the loop:

ble   x6, x7, exit2 // go to exit2 if x6 ≤ x7

The bottom of the loop branches back to the inner loop test:

j     for2tst      // branch to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

addi x20, x19, -1 // j = i - 1
for2tst:  blt x20, x0, exit2 // go to exit2 if x20 < 0 (j < 0)
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 slli x5, x20, 3 // reg x5 = j * 8
 add x5, x10, x5 // reg x5 = v + (j * 8)
 ld x6, 0(x5) // reg x6 = v[j]
 ld x7, 8(x5) // reg x7 = v[j + 1]
 ble  x6, x7, exit2 // go to exit2 if x6 ≤ x7
 . . .
 (body of second for loop)
 . . .
 addi x20, x20, -1 // j -= 1
 j for2tst // branch to test of inner loop

exit2:

The Procedure Call in sort

The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal x1, swap

Passing Parameters in sort

The problem comes when we want to pass parameters because the sort procedure 
needs the values in registers x10 and x11, yet the swap procedure needs to have its 
parameters placed in those same registers. One solution is to copy the parameters 
for sort into other registers earlier in the procedure, making registers x10 and 
x11 available for the call of swap. (This copy is faster than saving and restoring 
on the stack.) We first copy x10 and x11 into x21 and x22 during the procedure:

mv x21, x10 // copy parameter x10 into x21
mv x22, x11 // copy parameter x11 into x22

Then we pass the parameters to swap with these two instructions:

mv x10, x21 // first swap parameter is v
mv x11, x20 // second swap parameter is j

Preserving Registers in sort

The only remaining code is the saving and restoring of registers. Clearly, we must 
save the return address in register x1, since sort is a procedure and is itself called. 
The sort procedure also uses the callee-saved registers x19, x20, x21, and x22, so 
they must be saved. The prologue of the sort procedure is then

addi sp, sp, -40 //  make room on stack for 5 regs
sd x1, 32(sp) // save x1 on stack
sd x22, 24(sp) // save x22 on stack
sd x21, 16(sp) // save x21 on stack
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sd x20, 8(sp) // save x20 on stack
sd x19, 0(sp) // save x19 on stack

The tail of the procedure simply reverses all these instructions, and then adds a 
jalr to return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.25, being careful to replace references 
to registers x10 and x11 in the for loops with references to registers x21 and x22. 
Once again, to make the code easier to follow, we identify each block of code with 

Saving registers

sort: addi sp, sp, -40 # make room on stack for 5 registers
sd x1, 32(sp) # save return address on stack
sd x22, 24(sp) # save x22 on stack
sd x21, 16(sp) # save x21 on stack
sd x20, 8(sp) # save x20 on stack
sd x19, 0(sp) # save x19 on stack

Procedure body

Move parameters
mv x21, x10 # copy parameter x10 into x21
mv x22, x11 # copy parameter x11 into x22

Outer loop

li x19, 0 # i = 0
for1tst:bge x19, x22, exit1 # go to exit1 if i >= n

Inner loop

addi x20, x19, -1 # j = i - 1
# go to exit2 if j < 0for2tst:blt x20, x0, exit2 

slli x5, x20, 3
add x5, x21, x5
ld x6, 0(x5)
ld x7, 8(x5)
ble x6, x7, exit2

# x5 = j * 8
# x5 = v + (j * 8)
# x6 = v[j]
# x7 = v[j + 1]
# go to exit2 if x6 < x7

Pass parameters
and call

mv x10, x21
mv x11, x20
jal x1, swap

# first swap parameter is v
# second swap parameter is j
# call swap

Inner loop addi x20, x20, -1
j for2tst

j for2tst
# go to for2tst

Outer loop exit2: addi x19, x19, 1 # i += 1
j for1tst # go to for1tst

Restoring registers 

exit1: ld x19, 0(sp)
ld x20, 8(sp)
ld x21, 16(sp)
ld x22, 24(sp)
ld x1, 32(sp)
addi sp, sp, 40

# restore x19 from stack
# restore x20 from stack
# restore x21 from stack
# restore x22 from stack
# restore return address from stack
# restore stack pointer

Procedure return 

jalr x0, 0(x1) # return to calling routine

FIGURE 2.25 RISC-V assembly version of procedure sort in Figure 2.27.
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its purpose in the procedure. In this example, nine lines of the sort procedure in 
C became 34 lines in the RISC-V assembly language.

Elaboration: One optimization that works with this example is procedure inlining. 
Instead of passing arguments in parameters and invoking the code with a jal 
instruction, the compiler would copy the code from the body of the swap procedure 
where the call to swap appears in the code. Inlining would avoid four instructions in this 
example. The downside of the inlining optimization is that the compiled code would be 
bigger if the inlined procedure is called from several locations. Such a code expansion 
might turn into lower performance if it increased the cache miss rate; see Chapter 5.

Figure 2.26 shows the impact of compiler optimization on sort program 
performance, compile time, clock cycles, instruction count, and CPI. Note that 
unoptimized code has the best CPI, and O1 optimization has the lowest instruction 
count, but O3 is the fastest, reminding us that time is the only accurate measure of 
program performance.

Figure 2.27 compares the impact of programming languages, compilation 
versus interpretation, and algorithms on performance of sorts. The fourth column 
shows that the unoptimized C program is 8.3 times faster than the interpreted 
Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times faster than 
the unoptimized C and within a factor of 1.13 of the highest optimized C code. 
(  Section 2.15 gives more details on interpretation versus compilation of Java 
and the Java and jalr code for Bubble Sort.) The ratios aren’t as close for Quicksort 
in Column 5, presumably because it is harder to amortize the cost of runtime 
compilation over the shorter execution time. The last column demonstrates the 
impact of a better algorithm, offering three orders of magnitude a performance 
increase by when sorting 100,000 items. Even comparing interpreted Java in 
Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats 
Bubble Sort by a factor of 50 (0.05 × 2468, or 123 times faster than the unoptimized 
C code versus 2.41 times faster).

Understanding  
Program  

Performance

FIGURE 2.26 Comparing performance, instruction count, and CPI using compiler 
optimization for Bubble Sort. The programs sorted 100,000 32-bit words with the array initialized to 
random values. These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system 
bus with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.

Relative 
performance

Clock cycles 
(millions)

Instruction count 
(millions) CPIgcc optimization

None 1.00 158,615 114,938  1.38 

O1 (medium) 2.37 66,990   37,470 1.79 

O2 (full) 2.38 66,521 39,993 1.66 

O3 (procedure integration) 2.41 65,747 44,993 1.46 
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 2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing 
assembly code that uses arrays and array indices to the assembly code that uses 
pointers offers insights about pointers. This section shows C and RISC-V assembly 
versions of two procedures to clear a sequence of doublewords in memory: one 
using array indices and one with pointers. Figure 2.28 shows the two C procedures.

The purpose of this section is to show how pointers map into RISC-V 
instructions, and not to endorse a dated programming style. We’ll see the impact of 
modern compiler optimization on these two procedures at the end of the section.

FIGURE 2.27 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative 
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and 
execution option. These programs were run on the same system as in Figure 2.29. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot 
version 1.3.1.

Language Execution method Optimization
Bubble Sort relative 

performance
Quicksort relative 

performance
Speedup Quicksort 

vs. Bubble Sort

C Compiler None 1.00 1.00 2468

Compiler O1 2.37 1.50 1562

Compiler O2 2.38 1.50 1555

Compiler O3 2.41 1.91 1955

Java Interpreter – 0.12 0.05 1050

JIT compiler – 2.13 0.29 338

FIGURE 2.28 Two C procedures for setting an array to all zeros. clear1 uses indices, 
while clear2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. 
The address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The 
declarations declare that array and p are pointers to integers. The first part of the for loop in clear2 
assigns the address of the first element of array to the pointer p. The second part of the for loop tests to see 
if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the bottom 
part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a 
pointer to integers, the compiler will generate RISC-V instructions to increment p by eight, the number of 
bytes in an RISC-V integer. The assignment in the loop places 0 in the object pointed to by p.

clear1(long long int array[], size_t int size)
{
 size_t i;
 for (i = 0; i < size; i += 1)
  array[i] = 0;
}
clear2(long long int *array, size_t int size)
{
 long long int *p;
 for (p = &array[0]; p < &array[size]; p = p + 1)
  *p = 0;
}
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Array Version of Clear
Let’s start with the array version, clear1, focusing on the body of the loop and 
ignoring the procedure linkage code. We assume that the two parameters array and 
size are found in the registers x10 and x11, and that i is allocated to register x5.

The initialization of i, the first part of the for loop, is straightforward:

li  x5, 0  // i = 0 (register x5 = 0)

To set array[i] to 0 we must first get its address. Start by multiplying i by 8 
to get the byte address:

loop1: slli  x6, x5, 3  // x6 = i * 8

Since the starting address of the array is in a register, we must add it to the index 
to get the address of array[i] using an add instruction:

add x7, x10, x6  // x7 = address of array[i]

Finally, we can store 0 in that address:

sd x0, 0(x7)  // array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

addi x5, x5, 1  // i = i + 1

The loop test checks if i is less than size:

blt x5, x11, loop1 // if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the RISC-V code for 
clearing an array using indices:

 li x5, 0 // i = 0
loop1: slli x6, x5, 3 // x6 = i * 8
 add x7, x10, x6 // x7 = address of array[i]
 sd x0, 0(x7) // array[i] = 0
 addi x5, x5, 1 // i = i + 1
 blt x5, x11, loop1 // if (i < size) go to loop1

(This code works as long as size is greater than 0; ANSI C requires a test of size 
before the loop, but we’ll skip that legality here.)

Pointer Version of Clear
The second procedure that uses pointers allocates the two parameters array and 
size to the registers x10 and x11 and allocates p to register x5. The code for the 
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second procedure starts with assigning the pointer p to the address of the first 
element of the array:

mv  x5, x10  // p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sd  x0, 0(x5)  // Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration 
increment, which changes p to point to the next doubleword:

addi  x5, x5, 8  // p = p + 8

Incrementing a pointer by 1 means moving the pointer to the next sequential object 
in C. Since p is a pointer to integers declared as long long int, each of which 
uses 8 bytes, the compiler increments p by 8.

The loop test is next. The first step is calculating the address of the last element 
of array. Start with multiplying size by 8 to get its byte address:

slli  x6, x11, 3  // x6 = size * 8

and then we add the product to the starting address of the array to get the address 
of the first doubleword after the array:

add  x7, x10, x6   //  x7 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

bltu x5, x7, loop2   // if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero 
an array:

 mv x5, x10 // p = address of array[0]
loop2: sd x0, 0(x5) // Memory[p] = 0
 addi x5, x5, 8 // p = p + 8
 slli  x6, x11, 3 // x6 = size * 8
 add   x7, x10, x6 // x7 = address of array[size]

 bltu x5, x7, loop2 // if (p<&array[size]) go to loop2

As in the first example, this code assumes size is greater than 0.
Note that this program calculates the address of the end of the array in every 

iteration of the loop, even though it does not change. A faster version of the code 
moves this calculation outside the loop:

 mv x5, x10 // p = address of array[0]
 slli x6, x11, 3 // x6 = size * 8
 add x7, x10, x6 //  x7 = address of array[size]
loop2: sd x0, 0(x5) // Memory[p] = 0
 addi x5, x5, 8 // p = p + 8
 bltu x5, x7, loop2 //  if (p < &array[size]) go to loop2
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 2.15 Advanced Material: Compiling C and 
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java 
is executed. Because the compiler will significantly affect the performance of a 
computer, understanding compiler technology today is critical to understanding 

2.15

Comparing the Two Versions of Clear
Comparing the two code sequences side by side illustrates the difference between 
array indices and pointers (the changes introduced by the pointer version are 
highlighted):

li   x5, 0 // i = 0 mv   x5, x10 // p = address of array[0]

loop1: slli x6, x5, 3 // x6 = i * 8 slli x6, x11, 3 // x6 = size * 8

add  x7, x10, x6 // x7 = address of array[i] add  x7, x10, x6 // x7 = address of array[size]

sd   x0, 0(x7) // array[i] = 0 loop2: sd   x0, 0(x5) // Memory[p] = 0

addi x5, x5, 1 // i = i + 1 addi x5, x5, 8 // p = p + 8

blt  x5, x11, loop1 // if (i < size) go to loop1 bltu x5, x7, loop2 // if (p < &array[size]) go to loop2

The version on the left must have the “multiply” and add inside the loop 
because i is incremented and each address must be recalculated from the new 
index. The memory pointer version on the right increments the pointer p directly. 
The pointer version moves the scaling shift and the array bound addition outside 
the loop, thereby reducing the instructions executed per iteration from five to 
three. This manual optimization corresponds to the compiler optimization of 
strength reduction (shift instead of multiply) and induction variable elimination 
(eliminating array address calculations within loops).  Section 2.15 describes 
these two and many other optimizations.

Elaboration: As mentioned earlier, a C compiler would add a test to be sure that 
size is greater than 0. One way would be to branch to the instruction after the loop 
with blt x0, x11, afterLoop.

People were once taught to use pointers in C to get greater efficiency than that 
available with arrays: “Use pointers, even if you can’t understand the code.” Modern 
optimizing compilers can produce code for the array version that is just as good. 
Most programmers today prefer that the compiler do the heavy lifting.

Understanding  
Program  

Performance
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2.15    Advanced Material: Compiling C and 
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java 
is executed. Because the compiler will significantly affect the performance of a 
computer, understanding compiler technology today is critical to understanding 
performance. Keep in mind that the subject of compiler construction is usually 
taught in a one- or two-semester course, so our introduction will necessarily only 
touch on the basics.

The second part of this section, starting on page 150.e15, is for readers interested 
in seeing how an objected-oriented language like Java executes on the RISC-V 
architecture. It shows the Java bytecodes used for interpretation and the RISC-V code 
for the Java version of some of the C segments in prior sections, including Bubble 
Sort. It covers both the Java virtual machine and just-in-time (JIT) compilers.

Compiling C
This first part of the section introduces the internal anatomy of a compiler. To 
start, Figure e2.15.1 shows the structure of recent compilers, and we describe the 
optimizations in the order of the passes of that structure.

FIGURE e2.15.1 The structure of a modern optimizing compiler consists of a number of 
passes or phases. Logically, each pass can be thought of as running to completion before the next occurs. 
In practice, some passes may handle one procedure at a time, essentially interleaving with another pass.

Dependencies
Language dependent;
machine independent

Somewhat language dependent;
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Front end per
language

Function
Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called 
procedure integration)

Including global and local
optimizations  register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation
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To illustrate the concepts in this part of this section, we will use the C version of 
a while loop from page 95:

while (save[i] == k)
       i += 1;

The Front End
The function of the front end is to read in a source program; check the syntax 
and semantics; and translate the source program to an intermediate form that 
interprets most of the language-specific operation of the program. As we will see, 
intermediate forms are usually simple, and some are, in fact, similar to the Java 
bytecodes (see Figure e2.15.8).

The front end is typically broken into four separate functions:

1. Scanning reads in individual characters and creates a string of tokens. 
Examples of tokens are reserved words, names, operators, and punctuation 
symbols. In the above example, the token sequence is while, (, save, 
[, i, ], ==, k, ), i, +=, 1. A word like while is recognized as 
a reserved word in C, but save, i, and j are recognized as names, and 1 is 
recognized as a number.

2. Parsing takes the token stream, ensures the syntax is correct, and produces 
an abstract syntax tree, which is a representation of the syntactic structure of 
the program. Figure e2.15.2 shows what the abstract syntax tree might look 
like for this program fragment.

3. Semantic analysis takes the abstract syntax tree and checks the program for 
semantic correctness. Semantic checks normally ensure that variables and 
types are properly declared and that the types of operators and objects match, 
a step called type checking. During this process, a symbol table representing 
all the named objects—classes, variables, and functions—is usually created 
and used to type-check the program.

4. Generation of the intermediate representation (IR) takes the symbol table and 
the abstract syntax tree and generates the intermediate representation that is 
the output of the front end. Intermediate representations usually use simple 
operations on a small set of primitive types, such as integers, characters, and 
reals. Java bytecodes represent one type of intermediate form. In modern 
compilers, the most common intermediate form looks much like the 
RISC-V instruction set but with an infinite number of virtual registers; later, 
we describe how to map these virtual registers to a finite set of real registers. 
Figure e2.15.3 shows how our example might be represented in such an 
intermediate form.

The intermediate form specifies the functionality of the program in a manner 
independent of the original source. After this front end has created the intermediate 
form, the remaining passes are largely language independent.
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High-Level Optimizations
High-level optimizations are transformations that are done at something close to 
the source level.

The most common high-level transformation is probably procedure inlining, 
which replaces a call to a function by the body of the function, substituting the 
caller’s arguments for the procedure’s parameters. Other high-level optimizations 
involve loop transformations that can reduce loop overhead, improve memory 
access, and exploit the hardware more effectively. For example, in loops that 
execute many iterations, such as those traditionally controlled by a for statement, 
the optimization of loop-unrolling is often useful. Loop-unrolling involves taking 
a loop, replicating the body multiple times, and executing the transformed loop 
fewer times. Loop-unrolling reduces the loop overhead and provides opportunities 
for many other optimizations. Other types of high-level transformations include 

while statement 

while  ydob tnemetats noitidnoc 

expression �� assignment 

�� comparison left-hand side expression 

identifier factor 

l number 

1 

 k yarra expression 

expression expression 

factor factor 

array access identifier 

identifier factor 

save identifier 

i 

FIGURE e2.15.2 An abstract syntax tree for the while example. The roots of the tree consist 
of the informational tokens such as numbers and names. Long chains of straight-line descendents are often 
omitted in constructing the tree.

loop-unrolling  
A technique to get more 
performance from loops 
that access arrays, in 
which multiple copies of 
the loop body are made 
and instructions from 
different iterations are 
scheduled together.
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sophisticated loop transformations such as interchanging nested loops and 
blocking loops to obtain better memory behavior; see Chapter 5 for examples.

Local and Global Optimizations
Within the pass dedicated to local and global optimization, three classes of 
optimization are performed:

1. Local optimization works within a single basic block. A local optimization 
pass is often run as a precursor and successor to global optimization to 
“clean up” the code before and after global optimization.

2. Global optimization works across multiple basic blocks; we will see an 
example of this shortly.

3. Global register allocation allocates variables to registers for regions of the 
code. Register allocation is crucial to getting good performance in modern 
processors.

Several optimizations are performed both locally and globally, including 
common subexpression elimination, constant propagation, copy propagation, 
dead store elimination, and strength reduction. Let’s look at some simple examples 
of these optimizations.

loop:
  # comments are written like this--source code often included
  # while (save[i] == k)
  la   r100, save         # r100 = &save[0]
  ld   r101, i
  li   r102, 8
  mul  r103, r101, r102
  add  r104, r103, r100
  ld   r105, 0(r104)      # r105 = save[i]
  ld   r106, k
  bne  r105, r106, exit
  # i += 1
  ld   r106, i
  addi r107, r106, i      # increment
  sd   r107, i
  j    loop               # next iteration
exit:

FIGURE e2.15.3 The while loop example is shown using a typical intermediate representation.  
In practice, the names save, i, and k would be replaced by some sort of address, such as a reference to either 
the local stack pointer or a global pointer, and an offset, similar to the way save[i] is accessed. Note that the 
format of the RISC-V instructions is different from the rest of the chapter, because they represent intermediate 
representations here using rXX notation for virtual registers.
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Common subexpression elimination finds multiple instances of the same 
expression and replaces the second one by a reference to the first. Consider, for 
example, a code segment to add 4 to an array element:

x[i] = x[i] + 4

The address calculation for x[i] occurs twice and is identical since neither the 
starting address of x nor the value of i changes. Thus, the calculation can be reused. 
Let’s look at the intermediate code for this fragment, since it allows several other 
optimizations to be performed. The unoptimized intermediate code is on the left. On 
the right is the optimized code, using common subexpression elimination to replace 
the second address calculation with the first. Note that the register allocation has 
not yet occurred, so the compiler is using virtual register numbers like r100 here.

// x[i] + 4 // x[i] + 4
la r100,x la r100,x
ld r101,i ld r101,i
mul r102,r101,8 slli r102,r101,3
add r103,r100,r102 add r103,r100,r102
ld r104, 0(r103) ld r104, 0(r103)
// // value of x[i] is in r104
addi r105, r104,4 addi r105, r104,4
la r106,x sd r105, 0(r103)
ld r107,i
mul r108,r107,8
add r109,r106,r107
sd r105,0(r109)

If the same optimization were possible across two basic blocks, it would then be 
an instance of global common subexpression elimination.

Let’s consider some of the other optimizations:

■	 Strength reduction replaces complex operations by simpler ones and can be 
applied to this code segment, replacing the mul by a shift left.

■	 Constant propagation and its sibling constant folding find constants in code 
and propagate them, collapsing constant values whenever possible.

■	 Copy propagation propagates values that are simple copies, eliminating the 
need to reload values and possibly enabling other optimizations, such as 
common subexpression elimination.

■	 Dead store elimination finds stores to values that are not used again and 
eliminates the store; its “cousin” is dead code elimination, which finds unused 
code—code that cannot affect the result of the program—and eliminates it. 
With the heavy use of macros, templates, and the similar techniques designed 
to reuse code in high-level languages, dead code occurs surprisingly often.
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Compilers must be conservative. The first task of a compiler is to produce correct 
code; its second task is usually to produce fast code, although other factors, such as 
code size, may sometimes be important as well. Code that is fast but incorrect—for 
any possible combination of inputs—is simply wrong. Thus, when we say a compiler 
is “conservative,” we mean that it performs an optimization only if it knows with 
100% certainty that, no matter what the inputs, the code will perform as the user 
wrote it. Since most compilers translate and optimize one function or procedure 
at a time, most compilers, especially at lower optimization levels, assume the worst 
about function calls and about their own parameters.

Programmers concerned about the performance of critical loops, especially in real-
time or embedded applications, can find themselves staring at the assembly language 
produced by a compiler and wondering why the compiler failed to perform some 
global optimization or to allocate a variable to a register throughout a loop. The 
answer often lies in the dictate that the compiler be conservative. The opportunity for 
improving the code may seem obvious to the programmer, but then the programmer 
often has knowledge that the compiler does not have, such as the absence of aliasing 
between two pointers or the absence of side effects by a function call. The compiler 
may indeed be able to perform the transformation with a little help, which could 
eliminate the worst-case behavior that it must assume. This insight also illustrates 
an important observation: programmers who use pointers to try to improve 
performance in accessing variables, especially pointers to values on the stack that 
also have names as variables or as elements of arrays, are likely to disable many 
compiler optimizations. The result is that the lower-level pointer code may run no 
better, or perhaps even worse, than the higher-level code optimized by the compiler.

Understanding 
Program 

Performance

Global Code Optimizations

Many global code optimizations have the same aims as those used in the local 
case, including common subexpression elimination, constant propagation, copy 
propagation, and dead store and dead code elimination.

There are two other important global optimizations: code motion and induction 
variable elimination. Both are loop optimizations; that is, they are aimed at code 
in loops. Code motion finds code that is loop invariant: a particular piece of 
code computes the same value on every iteration of the loop and, hence, may be 
computed once outside the loop. Induction variable elimination is a combination of 
transformations that reduce overhead on indexing arrays, essentially replacing array 
indexing with pointer accesses. Rather than examine induction variable elimination 
in depth, we point the reader to Section 2.14, which compares the use of array 
indexing and pointers; for most loops, a modern optimizing compiler can perform 
the transformation from the more obvious array code to the faster pointer code.
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Implementing Local Optimizations

Local optimizations are implemented on basic blocks by scanning the basic block 
in instruction execution order, looking for optimization opportunities. In the 
assignment statement example on page 150.e6, the duplication of the entire address 
calculation is recognized by a series of sequential passes over the code. Here is how 
the process might proceed, including a description of the checks that are needed:

1. Determine that the two LDA operations return the same result by observing 
that the operand x is the same and that the value of its address has not been 
changed between the two LDA operations.

2. Replace all uses of R106 in the basic block by R101.

3. Observe that i cannot change between the two LDURs that reference it. So 
replace all uses of R107 with R101.

4. Observe that the MUL instructions now have the same input operands, so 
that R108 may be replaced by R102.

5. Observe that now the two ADD instructions have identical input operands 
(R100 and R102), so replace the R109 with R103.

6. Use dead store code elimination to delete the second set of LDA,LDUR, 
MUL, and ADD instructions since their results are unused.

Throughout this process, we need to know when two instances of an operand 
have the same value. This is easy to determine when they refer to virtual registers, 
since our intermediate representation uses such registers only once, but the 
problem can be trickier when the operands are variables in memory, even though 
we are only considering references within a basic block.

It is reasonably easy for the compiler to make the common subexpression 
elimination determination in a conservative fashion in this case; as we will see in 
the next subsection, this is more difficult when branches intervene.

Implementing Global Optimizations

To understand the challenge of implementing global optimizations, let’s consider 
a few examples:

■	 Consider the case of an opportunity for common subexpression elimination, 
say, of an IR statement like ADD Rx, R20, R50. To determine whether two 
such statements compute the same value, we must determine whether the 
values of R20 and R50 are identical in the two statements. In practice, this 
means that the values of R20 and R50 have not changed between the first 
statement and the second. For a single basic block, this is easy to decide; it is 
more difficult for a more complex program structure involving multiple basic 
blocks and branches.

■	 Consider the second LDUR of i into R107 within the earlier example: how do 
we know whether its value is used again? If we consider only a single basic 
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block, and we know that all uses of R107 are within that block, it is easy to see. 
As optimization proceeds, however, common subexpression elimination and 
copy propagation may create other uses of a value. Determining that a value is 
unused and the code is dead is more difficult in the case of multiple basic blocks.

■	 Finally, consider the load of k in our loop, which is a candidate for code 
motion. In this simple example, we might argue that it is easy to see that k 
is not changed in the loop and is, hence, loop invariant. Imagine, however, a 
more complex loop with multiple nestings and if statements within the body. 
Determining that the load of k is loop invariant is harder in such a case.

The information we need to perform these global optimizations is similar: we 
need to know where each operand in an IR statement could have been changed or 
defined (use-definition information). The dual of this information is also needed: 
that is, finding all the uses of that changed operand (definition-use information). 
Data flow analysis obtains both types of information.

Global optimizations and data flow analysis operate on a control flow graph, where 
the nodes represent basic blocks and the arcs represent control flow between basic 
blocks. Figure e2.15.4 shows the control flow graph for our simple loop example, 
with one important transformation introduced. We describe the transformation in 
the caption, but see if you can discover it, and why it was done, on your own!

FIGURE e2.15.4 A control flow graph for the while loop example. Each node represents a basic 
block, which terminates with a branch or by sequential fall-through into another basic block that is also 
the target of a branch. The IR statements have been numbered for ease in referring to them. The important 
transformation performed was to move the while test and conditional branch to the end. This eliminates the 
unconditional branch that was formerly inside the loop and places it before the loop. This transformation 
is so important that many compilers do it during the generation of the IR. The mul was also replaced with 
(“strength-reduced to”) an slli.

9.     ld r1, i
10.   addi r2, r1, 1
11.   sd r2, i

1.   la r3, save
2.   ld r4, i
3.   slli r5, r4, 3
4.   add r6, r5, r3
5.   ld r7, 0(r6)
6.   ld r8, k
7.   beq r7, r8, head
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Suppose we have computed the use-definition information for the control flow 
graph in Figure e2.15.4. How does this information allow us to perform code 
motion? Consider IR statements number 1 and 6: in both cases, the use-definition 
information tells us that there are no definitions (changes) of the operands of these 
statements within the loop. Thus, these IR statements can be moved outside the 
loop. Notice that if the LDA of save and the LDUR of k are executed once, just prior 
to the loop entrance, the computational effect is the same, but the program now 
runs faster since these two statements are outside the loop. In contrast, consider 
IR statement 2, which loads the value of i. The definitions of i that affect this 
statement are both outside the loop, where i is initially defined, and inside the loop 
in statement 10 where it is stored. Hence, this statement is not loop invariant.

Figure e2.15.5 shows the code after performing both code motion and induction 
variable elimination, which simplifies the address calculation. The variable i can 
still be register allocated, eliminating the need to load and store it every time, and 
we will see how this is done in the next subsection.

Before we turn to register allocation, we need to mention a caveat that also 
illustrates the complexity and difficulty of optimizers. Remember that the compiler 
must be cautious. To be conservative, a compiler must consider the following 
question: Is there any way that the variable k could possibly ever change in this 
loop? Unfortunately, there is one way. Suppose that the variable k and the variable 
i actually refer to the same memory location, which could happen if they were 
accessed by pointers or reference parameters.

FIGURE e2.15.5 The control flow graph showing the representation of the while loop 
example after code motion and induction variable elimination. The number of instructions in 
the inner loop has been reduced from 10 to 6.

ld r2, i
addi r7, r6, 1
addi r4, r4, 8
sd r7, i

la r1, save
ld r6, k
ld r2, i
slli r3, r2, 3
add r4, r3, r1

ld r5, 0(r4)
beq r5, r6, head
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I am sure that many readers are saying, “Well, that would certainly be a stupid 
piece of code!” Alas, this response is not open to the compiler, which must 
translate the code as it is written. Recall too that the aliasing information must 
also be conservative; thus, compilers often find themselves negating optimization 
opportunities because of a possible alias that exists in one place in the code or 
because of incomplete information about aliasing.

Register Allocation
Register allocation is perhaps the most important optimization for modern 
load-store architectures. Eliminating a load or a store gets rid of an instruction. 
Furthermore, register allocation enhances the value of other optimizations, such as 
common subexpression elimination. Fortunately, the trend toward larger register 
counts in modern architectures has made register allocation simpler and more 
effective. Register allocation is done on both a local basis and a global basis, that is, 
across multiple basic blocks but within a single function. Local register allocation 
is usually done late in compilation, as the final code is generated. Our focus here is 
on the more challenging and more opportunistic global register allocation.

Modern global register allocation uses a region-based approach, where a 
region (sometimes called a live range) represents a section of code during which 
a particular variable could be allocated to a particular register. How is a region 
selected? The process is iterative:

1. Choose a definition (change) of a variable in a given basic block; add that 
block to the region.

2. Find any uses of that definition, which is a data flow analysis problem; add 
any basic blocks that contain such uses, as well as any basic block that the 
value passes through to reach a use, to the region.

3. Find any other definitions that also can affect a use found in the previous 
step and add the basic blocks containing those definitions, as well as the 
blocks the definitions pass through to reach a use, to the region.

4. Repeat steps 2 and 3 using the definitions discovered in step 3 until 
convergence.

The set of basic blocks found by this technique has a special property: if the 
designated variable is allocated to a register in all these basic blocks, then there is 
no need for loading and storing the variable.

Modern global register allocators start by constructing the regions for every 
virtual register in a function. Once the regions are constructed, the key question 
is how to allocate a register to each region: the challenge is that certain regions 
overlap and may not use the same register. Regions that do not overlap (i.e., 
share no common basic blocks) can share the same register. One way to record 
the interference among regions is with an interference graph, where each node 
represents a region, and the arcs between nodes represent that the regions have 
some basic blocks in common.



 2.15 Advanced Material: Compiling C and Interpreting Java 144.e11

Once an interference graph has been constructed, the problem of allocating 
registers is equivalent to a famous problem called graph coloring: find a color for 
each node in a graph such that no two adjacent nodes have the same color. If the 
number of colors equals the number of registers, then coloring an interference 
graph is equivalent to allocating a register for each region! This insight was the 
initial motivation for the allocation method now known as region-based allocation, 
but originally called the graph-coloring approach. Figure e2.15.6 shows the flow 
graph representation of the while loop example after register allocation.

What happens if the graph cannot be colored using the number of registers 
available? The allocator must spill registers until it can complete the coloring. By 
doing the coloring based on a priority function that takes into account the number 
of memory references saved and the cost of tying up the register, the allocator 
attempts to avoid spilling for the most important candidates.

Spilling is equivalent to splitting up a region (or live range); if the region is split, 
fewer other regions will interfere with the two separate nodes representing the 
original region. A process of splitting regions and successive coloring is used to 
allow the allocation process to complete, at which point all candidates will have 
been allocated a register. Of course, whenever a region is split, loads and stores 
must be introduced to get the value from memory or to store it there. The location 
chosen to split a region must balance the cost of the loads and stores that must be 
introduced against the advantage of freeing up a register and reducing the number 
of interferences.

FIGURE e2.15.6 The control flow graph showing the representation of the while loop 
example after code motion and induction variable elimination and register allocation, 
using the RISC-V register names. The number of IR statements in the inner loop has now dropped to 
only four from six before register allocation and 10 before any global optimizations. The value of i resides 
in x12 at the end of the loop and may need to be stored eventually to maintain the program semantics. If i 
were unused after the loop, not only could the store be avoided, but also the increment inside the loop could 
be eliminated!

addi x12, x12, 1 
addi x14, x14, 8

la x10, save
ld x11, k
ld x12, i
slli x13, x12, 3
add x14, x13, x10

ld x13, 0(x14)
beq x13, x11, head
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Modern register allocators are incredibly effective in using the large register 
counts available in modern processors. In many programs, the effectiveness of 
register allocation is limited not by the availability of registers but by the possibilities 
of aliasing that cause the compiler to be conservative in its choice of candidates.

Code Generation
The final steps of the compiler are code generation and assembly. Most compilers 
do not use a stand-alone assembler that accepts assembly language source code; 
to save time, they instead perform most of the same functions: filling in symbolic 
values and generating the binary code as the last stage of code generation.

In modern processors, code generation is reasonably straightforward, since 
the simple architectures make the choice of instruction relatively obvious. Code 
generation is more complex for the more complicated architectures, such as the 
x86, since multiple IR instructions may collapse into a single machine instruction. 
In modern compilers, this compilation process uses pattern matching with either a 
tree-based pattern matcher or a pattern matcher driven by a parser.

During code generation, the final stages of machine-dependent optimization 
are also performed. These include some constant folding optimizations, as well as 
localized instruction scheduling (see Chapter 4).

Optimization Summary
Figure e2.15.7 gives examples of typical optimizations, and the last column 

indicates where the optimization is performed in the gcc compiler. It is sometimes 
difficult to separate some of the simpler optimizations—local and processor-
dependent optimizations—from transformations done in the code generator, and 
some optimizations are done multiple times, especially local optimizations, which 
may be performed before and after global optimization as well as during code 
generation.

Today, essentially all programming for desktop and server applications is done in 
high-level languages, as is most programming for embedded applications. This 
development means that since most instructions executed are the output of a 
compiler, an instruction set architecture is mainly a compiler target. With Moore’s 
Law comes the temptation of adding sophisticated operations in an instruction 
set. The challenge is that they may not exactly match what the compiler needs to 
produce or may be so general that they aren’t fast. For example, consider special 
loop instructions found in some computers. Suppose that instead of decrementing 
by one, the compiler wanted to increment by four, or instead of branching on not 
equal zero, the compiler wanted to branch if the index was less than or equal to the 
limit. The loop instruction may be a mismatch. When faced with such objections, 

Hardware/
Software 
Interface
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Elaboration Some more sophisticated compilers, and many research compilers, use 
an analysis technique called interprocedural analysis to obtain more information about 
functions and how they are called. Interprocedural analysis attempts to discover what 
properties remain true across a function call. For example, we might discover that a 
function call can never change any global variables, which might be useful in optimizing 
a loop that calls such a function. Such information is called may-information or flow-
insensitive information and can be obtained reasonably efficiently, although analyzing 
a call to a function F requires analyzing all the functions that F calls, which makes 
the process somewhat time consuming for large programs. A more costly property to 
discover is that a function must always change some variable; such information is called 
must-information or flow-sensitive information. Recall the dictate to be conservative: 
may-information can never be used as must-information—just because a function may 
change a variable does not mean that it must change it. It is conservative, however, to 
use the negation of may-information, so the compiler can rely on the fact that a function 
will never change a variable in optimizations around the call site of that function.

the instruction set designer might next generalize the operation, adding another 
operand to specify the increment and perhaps an option on which branch condition 
to use. Then the danger is that a common case, say, incrementing by one, will be 
slower than a sequence of simple operations.

FIGURE e2.15.7 Major types of optimizations and explanation of each class. The third column shows when these occur 
at different levels of optimization in gcc. The GNU organization calls the three optimization levels medium (O1), full (O2), and full with 
integration of small procedures (O3).
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One of the most important uses of interprocedural analysis is to obtain so-
called alias information. An alias occurs when two names may designate the same 
variable. For example, it is quite helpful to know that two pointers passed to a 
function may never designate the same variable. Alias information is usually flow-
insensitive and must be used conservatively.

Interpreting Java
This second part of the section is for readers interested in seeing how an object-
oriented language like Java executes on an RISC-V architecture. It shows the Java 
bytecodes used for interpretation and the RISC-V code for the Java version of some 
of the C segments in prior sections, including Bubble Sort.

Let’s quickly review the Java lingo to make sure we are all on the same page. The 
big idea of object-oriented programming is for programmers to think in terms 
of abstract objects, and operations are associated with each type of object. New 
types can often be thought of as refinements to existing types, and so the new types 
use some operations for the existing types without change. The hope is that the 
programmer thinks at a higher level, and that code can be reused more readily if 
the programmer implements the common operations on many different types.

This different perspective led to a different set of terms. The type of an object 
is a class, which is the definition of a new data type together with the operations 
that are defined to work on that data type. A particular object is then an instance 
of a class, and creating an object from a class is called instantiation. The operations 
in a class are called methods, which are similar to C procedures. Rather than call 
a procedure as in C, you invoke a method in Java. The other members of a class 
are fields, which correspond to variables in C. Variables inside objects are called 
instance fields. Rather than access a structure with a pointer, Java uses an object 
reference to access an object. The syntax for method invocation is x.y, where x is 
an object reference and y is the method name.

The parent–child relationship between older and newer classes is captured by 
the verb “extends”: a child class extends (or subclasses) a parent class. The child 
class typically will redefine some of the methods found in the parent to match the 
new data type. Some methods work fine, and the child class inherits those methods.

To reduce the number of errors associated with pointers and explicit memory 
deallocation, Java automatically frees unused storage, using a separate garbage 
collector that frees memory when it is full. Hence, new creates a new instance of a 
dynamic object on the heap, but there is no free in Java. Java also requires array 
bounds to be checked at runtime to catch another class of errors that can occur in 
C programs.

object-oriented 
language  
A programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.
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Interpretation
As mentioned before, Java programs are distributed as Java bytecodes, and the Java 
Virtual Machine (JVM) executes Java byte codes. The JVM understands a binary 
format called the class file format. A class file is a stream of bytes for a single class, 
containing a table of valid methods with their bytecodes, a pool of constants that 
acts in part as a symbol table, and other information such as the parent class of this 
class.

When the JVM is first started, it looks for the class method main. To start any 
Java class, the JVM dynamically loads, links, and initializes a class. The JVM loads 
a class by first finding the binary representation of the proper class (class file) and 
then creating a class from that binary representation. Linking combines the class 
into the runtime state of the JVM so that it can be executed. Finally, it executes the 
class initialization method that is included in every class.

Figure e2.15.8 shows Java bytecodes and their corresponding RISC-V instructions, 
illustrating five major differences between the two:

1. To simplify compilation, Java uses a stack instead of registers for operands. 
Operands are pushed on the stack, operated on, and then popped off the 
stack.

2. The designers of the JVM were concerned about code size, so bytecodes vary 
in length between one and five bytes, versus the four-byte, fixed-size RISC-V 
instructions. To save space, the JVM even has redundant instructions of 
varying lengths whose only difference is size of the immediate. This decision 
illustrates a code size variation of our third design principle: make the 
common case small.

3. The JVM has safety features embedded in the architecture. For example, 
array data transfer instructions check to be sure that the first operand is a 
reference and that the second index operand is within bounds.

4. To allow garbage collectors to find all live pointers, the JVM uses different 
instructions to operate on addresses versus integers so that the JVM can 
know what operands contain addresses. RISC-V generally lumps integers 
and addresses together.

5. Finally, unlike RISC-V, Java bytecodes include Java-specific instructions that 
perform complex operations, like allocating an array on the heap or invoking 
a method.
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FIGURE e2.15.8 Java bytecode architecture versus RISC-V. Although many bytecodes are simple, those in the last half-dozen rows 
above are complex and specific to Java. Bytecodes are one to five bytes in length, hence their name. The Java mnemonics uses the prefix i for 
32-bit integer, a for reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a 
16-bit constant. RISC-V uses registers for operands, but the JVM uses a stack. The compiler knows the maximum size of the operand stack for 
each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS: top of stack; NOS: next 
position below TOS; NNOS: next position below NOS; pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to 
the stack. *NOS and *NNOS mean access the memory location pointed to by the address in the stack at those positions. Const[] refers 
to the runtime constant pool of a class created by the JVM, and Frame[] refers to the variables of the local method frame. The missing Java 
bytecodes from Figure e2.1 are a few arithmetic and logical operators, some tricky stack management, compares to 0 and branch, support for 
branch tables, type conversions, more variations of the complex, Java-specific instructions plus operations on floating-point data, 64-bit integers 
(longs), and 16-bit characters.

Java bytecodeOperationCategory
Size 

(bits) Meaning
RISC-V
instr. 

NOS=TOS+NOS; popadd8ddaiddaArithmetic
NOS=TOS–NOS; popsub8busitcartbus
Frame[I8a]= Frame[I8a] + I8baddi8b8Ia8Icniitnemercni

Data transfer load local integer/address iload I8/aload I 8 16 ld TOS=Frame[I8]
load local integer/addres s iload_/aload_{0,1,2,3 } 8 ld TOS=Frame[{0,1,2,3}]
store local integer/addres s istore I8/astore I 8 16 sd Frame[I8]=TOS; pop
load integer/address from a rray iaload/aaloa d 8 ld NOS=*NOS[TOS]; pop
store integer/address into a rray iastore/aastor e 8 sd *NNOS[NOS]=TOS; pop2

pop;]SOT[SON*=SONlh8daolasyarramorfflahdaol
2pop;SOT=]SON[SONN*sh8erotsasyarraotniflaherots

pop;]SOT[SON*=SONlb8daolabyarramorfetybdaol
2pop;SOT=]SON[SONN*sb8erotsabyarraotnietyberots

load immediat e bipush I8 , sipush I1 6 16, 24 addi push; TOS=I8 or I16
load immediat e iconst_{–1,0,1,2,3,4,5 } 8 addi push; TOS={–1,0,1,2,3,4,5}

pop;SON&SOT=SONand8dnaidnalacigoL
pop;SON|SOT=SONor8roiro

pop;SOT<<SON=SONsll8lhsitfeltfihs
pop;SOT>>SON=SONsrl8rhsuithgirtfihs

Conditional 
branch

branch on equa l if_icompeq I1 6 24 beq if TOS == NOS , go to I16; pop2
branch on not equa l if_icompne I1 6 24 bne if TOS != NOS , go to I16; pop2

2pop;61Iotog,SON}=>,>,=<,<{SOTfiblt/bge4261I}eg,tg,el,tl{pmoci_fierapmoc
Unconditional 
jump

61Iotogjal4261Iotogpmuj
jalr8nruteri,ternruter

3+CP=SOT;hsup;61Iotogjal4261Irsjenituorbusotpmuj
Stack 
management

remove from stack pop, pop2 8 pop, pop2
SON=SOT;hsup8pudkcatsnoetacilpud

T=SOT;SOT=SON;SON=T8pawskcatsnosnoitisop2potpaws
Safety check check for null reference ifnull I16, ifnotnull I16 24 if TOS {==,!=} null, go to I16

get length of array arraylength 8 push; TOS = length of array
check if object a type instanceof I16 24 TOS = 1 if TOS matches type of 

Const[I16]; TOS = 0 otherwise

on type
Invocation invoke metho d invokevirtual I16 24 Invoke method in Const[I16] , dispatching 

Allocatio n create new class instanc e new I16 24 Allocate object type Const[I16] on heap

create new array newarray I16 24 Allocate array type Const[I16] on heap
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Compiling a while Loop in Java Using Bytecodes

Compile the while loop from page 95, this time using Java bytecodes:

while (save[i] == k)
         i += 1;

Assume that i, k, and save are the first three local variables. Show the 
addresses of the bytecodes. The RISC-V version of the C loop in Figure e2.15.3 
took six instructions and 24 bytes. How big is the bytecode version?

The first step is to put the array reference in save on the stack:

0 aload_3 // Push local variable 3 (save[]) onto stack

This 1-byte instruction informs the JVM that an address in local variable 3 is 
being put on the stack. The 0 on the left of this instruction is the byte address 
of this first instruction; bytecodes for each method start at 0. The next step is 
to put the index on the stack:

1 iload_1 // Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more 
general instruction that takes 2 bytes to load a local variable onto the stack. The 
next instruction is to get the value from the array element:

2 iaload // Put array element (save[i]) onto stack

This 1-byte instruction checks the prior two operands, pops them off the stack, 
and then puts the value of the desired array element onto the new top of the 
stack. Next, we place k on the stack:

3 iload_2 // Push local variable 2 (k) onto stack

We are now ready for the while test:

4 if_icompne, Exit // Compare and exit if not equal

This 3-byte instruction compares the top two elements of the stack, pops them 
off the stack, and branches if they are not equal. We are finally prepared for the 
body of the loop:

7 iinc, 1, 1 // Increment local variable 1 by 1 (i+=1)

EXAMPLE

ANSWER
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This unusual 3-byte instruction increments a local variable by 1 without using 
the operand stack, an optimization that again saves space. Finally, we return to 
the top of the loop with a 3-byte branch:

10 go to 0 // Go to top of Loop (byte address 0)

Thus, the bytecode version takes seven instructions and 13 bytes, just over 
half the size of the RISC-V C code. (As before, we can optimize this code to 
branch less.)

Compiling for Java
Since Java is derived from C and Java has the same built-in types as C, the assignment 
statement examples in Sections 2.2 to 2.6 are the same in Java as they are in C. The 
same is true for the if statement example in Section 2.7.

The Java version of the while loop is different, however. The designers of C 
leave it up to the programmers to be sure that their code does not exceed the array 
bounds. The designers of Java wanted to catch array bound bugs, and thus require 
the compiler to check for such violations. To check bounds, the compiler needs to 
know what they are. Java includes an extra doubleword in every array that holds 
the upper bound. The lower bound is defined as 0.

Compiling a while Loop in Java

Modify the RISC-V code for the while loop on page 95 to include the array 
bounds checks that are required by Java. Assume that the length of the array is 
located just before the first element of the array.

Let’s assume that Java arrays reserved the first two doublewords of arrays before 
the data start. We’ll see the use of the first doubleword soon, but the second 
doubleword has the array length. Before we enter the loop, let’s load the length 
of the array into a temporary register:

ld x5, 8(x25)  // Temp reg x5 = length of array save

Before we multiply i by 8, we must test to see if it’s less than 0 or greater 
than the last element of the array. The first step is to check if i is less than 0:

Loop: blt x22, x0, IndexOutOfBounds  // if i<0, goto Error

Since the array starts at 0, the index of the last array element is one less than the 
length of the array. Thus, the test of the upper array bound is to be sure that i is 

EXAMPLE

ANSWER



 2.15 Advanced Material: Compiling C and Interpreting Java 144.e19

less than the length of the array. Thus, the second step is to branch to an error 
if it’s greater than or equal to length.

bge x22, x5, IndexOutOfBounds  //if i>=length, goto Error

The next two lines of the RISC-V while loop are unchanged from the C version:

slli x10, x22, 3 // Temp reg x10 = i * 8
add x10, x10, x25 // x10 = address of save[i]

We need to account for the first 16 bytes of an array that are reserved in Java. 
We do that by changing the address field of the load from 0 to 16:

ld x9, 16(x10) // Temp reg x9 = save[i]

The rest of the RISC-V code from the C while loop is fine as is:

bne x9, x24, Exit // go to Exit if save[i] ≠ k
addi x22, x22, 1 // i = i + 1
beq x0, x0, Loop // go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Invoking Methods in Java
The compiler picks the appropriate method depending on the type of object. In 
a few cases, it is unambiguous, and the method can be invoked with no more 
overhead than a C procedure. In general, however, the compiler knows only that 
a given variable contains a pointer to an object that belongs to some subtype of a 
general class. Since it doesn’t know at compile time which subclass the object is, 
and thus which method should be invoked, the compiler will generate code that 
first tests to be sure the pointer isn’t null and then uses the code to load a pointer to 
a table with all the legal methods for that type. The first doubleword of the object 
has the method table address, which is why Java arrays reserve two doublewords. 
Let’s say it’s using the fifth method that was declared for that class. (The method 
order is the same for all subclasses.) The compiler then takes the fifth address from 
that table and invokes the method at that address.

The cost of object orientation in general is that method invocation takes five 
steps:

1. A conditional branch to be sure that the pointer to the object is valid;

2. A load to get the address of the table of available methods;

3. Another load to get the address of the proper method;
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4. Placing a return address into the return register; and finally

5. A branch register to invoke the method.

A Sort Example in Java
Figure e2.15.9 shows the Java version of exchange sort. A simple difference is that 
there is no need to pass the length of the array as a separate parameter, since Java 
arrays include their length: v.length denotes the length of v.

A more significant difference is that Java methods are prepended with keywords 
not found in the C procedures. The sort method is declared public static 
while swap is declared protected static. Public means that sort can be 
invoked from any other method, while protected means swap can only be called by 
other methods within the same package and from methods within derived classes. 
A static method is another name for a class method—methods that perform 
class-wide operations and do not apply to an individual object. Static methods are 
essentially the same as C procedures.

This straightforward translation from C into static methods means there is no 
ambiguity on method invocation, and so it can be just as efficient as C. It also is limited 
to sorting integers, which means a different sort has to be written for each data type.

To demonstrate the object orientation of Java, Figure e2.15.10 shows the 
new version with the changes highlighted. First, we declare v to be of the type 
Comparable and replace v[j] > v[j + 1] with an invocation of compareTo. 
By changing v to this new class, we can use this code to sort many data types.

public A Java keyword 
that allows a method to 
be invoked by any other 
method.

protected A Java key 
word that restricts 
invocation of a method 
to other methods in that 
package.

package Basically a 
directory that contains a 
group of related classes.

static method A method 
that applies to the whole 
class rather than to an 
individual object. It is 
unrelated to static in C.

FIGURE e2.15.9 An initial Java procedure that performs a sort on the array v. Changes from 
Figures e2.24 and e2.26 are highlighted.

public class sort {

   public static void sort (int[] v) {

  for (int i = 0; i < v.length; i += 1) {

   for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

 swap(v, j);

   }

 }

   protected static void swap(int[] v, int k) {

  int temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}
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The method compareTo compares two elements and returns a value greater than 
0 if the parameter is larger than the object, 0 if it is equal, and a negative number 
if it is smaller than the object. These two changes generalize the code so it can 
sort integers, characters, strings, and so on, if there are subclasses of Comparable 
with each of these types and if there is a version of compareTo for each type. 
For pedagogic purposes, we redefine the class Comparable and the method 
compareTo here to compare integers. The actual definition of Comparable in the 
Java library is considerably different.

Starting from the RISC-V code that we generated for C, we show what changes 
we made to create the RISC-V code for Java.

For swap, the only significant differences are that we must check to be sure the 
object reference is not null and that each array reference is within bounds. The first 
test checks that the address in the first parameter is not zero:

swap: beq x10, x0, Error  x10, NullPointer // if X0==0,goto Error

FIGURE e2.15.10 A revised Java procedure that sorts on the array v that can take on more types. Changes from Figure 
e2.15.9 are highlighted.

public class sort {

   public static void sort (Comparable[] v) {

  for (int i = 0; i < v.length; i += 1) {

       for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]); 

 

j –= 1) {

                    swap(v, j);

           }

   }

     

   protected static void swap(Comparable[] v, int k) {

  Comparable temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}

public class Comparable {

  public int(compareTo (int x)

  { return value – x; }

  public int value;

}
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Next, we load the length of v into a register and check that index k is OK.

ld x5, 8(x10) // Temp reg x5 = length of array v
blt x11, x0, IndexOutOfBounds // if k < 0, goto Error
bge x11, x5, IndexOutOfBounds // if k >= length, goto Error

This check is followed by a check that k+1 is within bounds.

addi x6,x11,1 // Temp reg x6 = k+1
blt x6, x0, IndexOutOfBounds // if k+1 < 0, goto Error
bge x6, x5, IndexOutOfBounds // if k+1 >= length, goto Error

Figure e2.15.11 highlights the extra RISC-V instructions in swap that a Java 
compiler might produce. We again must adjust the offset in the load and store to 
account for two doublewords reserved for the method table and length.

Figure e2.15.12 shows the method body for those new instructions for sort. 
(We can take the saving, restoring, and return from Figure e2.28.)

The first test is again to make sure the pointer to v is not null:

beq x10, x0, Error   // if x10==0,goto Error

FIGURE e2.15.11 RISC-V assembly code of the procedure swap in Figure e2.24.

Bounds check

swap: beq x10, x0, NullPointer # If x10==0, goto Error
ld x5, 8(x10) # Temp reg x5 = length of array v

# If k < 0, goto Errorblt x11, x0, IndexOutOfBounds
# If k >= length, goto Errorbge x11, x5, IndexOutOfBounds
# Temp reg x6 = k+1addi x6, x11, 1
# If k+1 < 0, goto Errorblt x6, x0, IndexOutOfBounds

bge x6, x5, IndexOutOfBOunds # If k+1 >= length, goto Error

Method body

slli x11, x11, 3 # reg X11 = k * 8 
add x11, x11, x10 # reg X11 = v + (k * 8) 

ld x12, 0(x11) # reg x12 = v[k]
ld x13, 8(x11) # reg x13 = v[k+1]

ld x13, 0(x11) # v[k] = reg x13
ld x12, 8(x11) # v[k+1] = reg x12

Method return

jalr x0,0(x1) # return to calling routine
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Next, we load the length of the array (we use register x22 to keep it similar to the 
code for the C version of sort):

ld x22, 8(x10) // x22 = length of array v

Now we must ensure that the index is within bounds. Since the first test of the 
inner loop is to test if j is negative, we can skip that initial bound test. That leaves 
the test for too big:

bge x20, x22, IndexOutOfBounds  // if j > = length, goto Error

FIGURE e2.15.12 RISC-V assembly version of the method body of the Java version of sort. The new code is highlighted in 
this figure. We must still add the code to save and restore registers and the return from the RISC-V code found in Figure e2.27. To keep the code 
similar to that figure, we load v.length into x22 instead of into a temporary register. To reduce the number of lines of code, we make the 
simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on the stack.

Method body

Move parameters # Copy parameter x10 into x21mv x21, x10

Test ptr null beq x10, x0, NullPointer # If x10==0, goto Error

Get array length # x22 = length of array vld x22, 8(x10)

Outer loop head
# i = 0li x19, 0

for1tst: bge x19, x22, exit1 # If i >= length, go to exit1

Inner loop head
addi x20, x19, -1 # j = i - 1

for2tst: blt x20, x0, exit1 # If j < 0, goto exit2

Test if j too big bge x20, x22, IndexOutOfBounds # If j >= length, goto error

Get v[j]
slli x5, x20, 3 # x5 = j * 8
add x5, x21, x5 # x5 = v + (j * 8)
ld x6, 0(x5) # x6 = v[j]

Test if j+1 < 0 or 
too big

# x7 = j + 1addi x7, x20, 1
blt x7, x0, IndexOutOfBounds # If j + 1 < 0, goto Error
bge x7, x22, IndexOutOfBounds # If j + 1 >= length, goto Error

Get v[j+1] ld x7, 8(x5) # x7 = v[j+1]

Load method table # x28 = address of method tableld x28, 0(x10)

Get method address # x28 = address of third methodld x28, 16(x28)

Pass parameters # 1st parameter is v[j]mv x10, x6
# 2nd parameter is v[j+1]mv x11, x7

Call method indirectly # Call compareTojalr x1, 0(x28)

Test if should skip
swap

ble x10, x0, exit2 # If result <= 0, skip swap

Pass parameters
and call swap

# 1st parameter is vmv x10, x21
# 2nd parameter is jmv x11, x20
# Invoke swap routine (Figure 2.34)jal x1, swap

Inner loop end addi x20,x20,-1 # j -= 1
j for2tst # Go to for2tst

Outer loop end exit2:

for2tst:

addi x19,x19,1 # i += 1
j for1tst # Go to for1tst



144.e24 2.15 Advanced Material: Compiling C and Interpreting Java

The code for testing j + 1 is quite similar to the code for checking k + 1 in 
swap, so we skip it here.

The key difference is the invocation of compareTo. We first load the address 
of the table of legal methods, which we assume is two doublewords before the 
beginning of the array:

ld x28, 0(x10) // x28 = address of method table

Given the address of the method table for this object, we then get the desired 
method. Let’s assume compareTo is the third method in the Comparable class. 
To pick the address of the third method, we load that address into a temporary 
register:

ld x28, 16(x28)  // x28 = address of third method

We are now ready to call compareTo. The next step is to save the necessary 
registers on the stack. Fortunately, we don’t need the temporary registers or 
argument registers after the method invocation, so there is nothing to save. Thus, 
we simply pass the parameters for compareTo:

mv x10, x6  // 1st parameter of compareTo is v[j]
mv x11, x7 // 2nd parameter of compareTo is v[j+1]

Then, we use the jump-and-link register to invoke compareTo:

jalr x1, 0(x28) // invoke compareTo, and save return address in x1

The method returns, with x10 determining which of the two elements is larger. 
If x10 > 0, then v[j] >v[j+1], and we need to swap. Thus, to skip the swap, 
we need to test if x10 ≤ 0:

ble x10, x0, exit2 // go to exit2 if v[j] ≤ v[j+1]

The RISC-V code for compareTo is left as an exercise.

The main changes for the Java versions of sort and swap are testing for null object 
references and index out-of-bounds errors, and the extra method invocation to 
give a more general compare. This method invocation is more expensive than a 
C procedure call, since it requires, a conditional branch, a pair of chained loads, 
and an indirect branch. As we see in Chapter  4, dependent loads and indirect 
branches can be relatively slow on modern processors. The increasing popularity 
of Java suggests that many programmers today are willing to leverage the high 
performance of modern processors to pay for error checking and code reuse.

Hardware/ 
Software  
Interface
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Elaboration Although we test each reference to j and j + 1 to be sure that these 
indices are within bounds, an assembly language programmer might look at the code 
and reason as follows:

1. The inner for loop is only executed if j ≤ 0 and since j + 1 > j, there is no 
need to test j + 1 to see if it is less than 0.

2. Since i takes on the values, 0, 1, 2, …, (data.length − 1) and since j takes on 
the values i − 1, i − 2, …, 2, 1, 0, there is no need to test if j ≤ data.length 
since the largest value j can be is data.length − 2.

3. Following the same reasoning, there is no need to test whether j + 1 ≤  
data.length since the largest value of j+1 is data.length − 1.

There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that 
lower the effective cost of such bounds checking, but only high optimizing compilers 
can reason this way. Note that if the compiler inlined the swap method into sort, many 
checks would be unnecessary.

Elaboration Look carefully at the code for swap in Figure e2.15.11. See anything 
wrong in the code, or at least in the explanation of how the code works? It implicitly 
assumes that each Comparable element in v is 8 bytes long. Surely, you need much 
more than 8 bytes for a complex subclass of Comparable, which could contain any 
number of fields. Surprisingly, this code does work, because an important property of 
Java’s semantics forces the use of the same, small representation for all variables, 
fields, and array elements that belong to Comparable or its subclasses.

Java types are divided into primitive types—the predefined types for numbers, 
characters, and Booleans—and reference types—the built-in classes like String, 
user-defined classes, and arrays. Values of reference types are pointers (also called 
references) to anonymous objects that are themselves allocated in the heap. For the 
programmer, this means that assigning one variable to another does not create a new 
object, but instead makes both variables refer to the same object. Because these 
objects are anonymous, and programs therefore have no way to refer to them directly, 
a program must use indirection through a variable to read or write any objects’ fields 
(variables). Thus, because the data structure allocated for the array v consists entirely 
of pointers, it is safe to assume they are all the same size, and the same swapping code 
works for all of Comparable’s subtypes.

To write sorting and swapping functions for arrays of primitive types requires that 
we write new versions of the functions, one for each type. This replication is for two 
reasons. First, primitive type values do not include the references to dispatching tables 
that we used on Comparables to determine at runtime how to compare values. 
Second, primitive values come in different sizes: 1, 2, 4, or 8 bytes.

The pervasive use of pointers in Java is elegant in its consistency, with the penalty 
being a level of indirection and a requirement that objects be allocated on the heap. 
Furthermore, in any language where the lifetimes of the heap-allocated anonymous 
objects are independent of the lifetimes of the named variables, fields, and array 
elements that reference them, programmers must deal with the problem of deciding 
when it is safe to deallocate heap-allocated storage. Java’s designers chose to use 
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garbage collection. Of course, use of garbage collection rather than explicit user memory 
management also improves program safety.

C++ provides an interesting contrast. Although programmers can write essentially 
the same pointer-manipulating solution in C++, there is another option. In C++, 
programmers can elect to forgo the level of indirection and directly manipulate an array 
of objects, rather than an array of pointers to those objects. To do so, C++ programmers 
would typically use the template capability, which allows a class or function to be 
parameterized by the type of data on which it acts. Templates, however, are compiled 
using the equivalent of macro expansion. That is, if we declared an instance of sort 
capable of sorting types X and Y, C++ would create two copies of the code for the 
class: one for sort<X> and one for sort<Y>, each specialized accordingly. This solution 
increases code size in exchange for making comparison faster (since the function calls 
would not be indirect, and might even be subject to inline expansion). Of course, the 
speed advantage would be canceled if swapping the objects required moving large 
amounts of data instead of just single pointers. As always, the best design depends on 
the details of the problem.
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performance. Keep in mind that the subject of compiler construction is usually 
taught in a one- or two-semester course, so our introduction will necessarily only 
touch on the basics.

The second part of this section is for readers interested in seeing how an object-
oriented language like Java executes on an RISC-V architecture. It shows the Java 
byte-codes used for interpretation and the RISC-V code for the Java version of 
some of the C segments in prior sections, including Bubble Sort. It covers both the 
Java Virtual Machine and JIT compilers.

The rest of  Section 2.15 can be found online.

 2.16 Real Stuff: MIPS Instructions

The instruction set most similar to RISC-V, MIPS, also originated in academia, 
but is now owned by Imagination Technologies. MIPS and RISC-V share the same 
design philosophy, despite MIPS being 25 years more senior than RISC-V. The 
good news is that if you know RISC-V, it will be very easy to pick up MIPS. To show 
their similarity, Figure 2.29 compares instruction formats for RISC-V and MIPS.

The MIPS ISA has both 32-bit address and 64-bit address versions, sensibly 
called MIPS-32 and MIPS-64. These instruction sets are virtually identical except 
for the larger address size needing 64-bit registers instead of 32-bit registers. Here 
are the common features between RISC-V and MIPS:

n	 All instructions are 32 bits wide for both architectures.

n	 Both have 32 general-purpose registers, with one register being hardwired to 0.

n	 The only way to access memory is via load and store instructions on both 
architectures.

n	 Unlike some architectures, there are no instructions that can load or store 
many registers in MIPS or RISC-V.

n	 Both have instructions that branch if a register is equal to zero and branch if 
a register is not equal to zero.

n	 Both sets of addressing modes work for all word sizes.

One of the main differences between RISC-V and MIPS is for conditional 
branches other than equal or not equal. Whereas RISC-V simply provides branch 
instructions to compare two registers, MIPS relies on a comparison instruction that 
sets a register to 0 or 1 depending on whether the comparison is true. Programmers 
then follow that comparison instruction with a branch on equal to or not equal 
to zero depending on the desired outcome of the comparison. Keeping with its 
minimalist philosophy, MIPS only performs less than comparisons, leaving it up to 
the programmer to switch order of operands or to switch the condition being tested 

object-oriented 
language A 
programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.
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FIGURE 2.29 Instruction formats of RISC-V and MIPS. The similarities result in part from both instruction sets having 32 
registers.

Register-register
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 11 10 6 5 0

MIPS

Load
31 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Store
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Branch
31 25 24 20 19 15 14 12 11 7 6 0

RISC-V
31 26 25 21 20 16 15 0

MIPS

Const(5) Opx(6)

funct7(7)

Op(6) Rs1(5) Rs2(5) Rd(5)

opcode(7)rd(5)funct3(3)rs1(5)rs2(5)

opcode(7)rd(5)funct3(3)rs1(5)immediate(12)

Const(16)Rs2(5)Rs1(5)Op(6)

Op(6)

immediate(7)

Rs1(5) Rs2(5) Const(16)

opcode(7)immediate(5)funct3(3)rs1(5)rs2(5)

Op(6) Rs1(5) Opx/Rs2(5) Const(16)

opcode(7)immediate(7) rs2(5) rs1(5) funct3(3) immediate(5)

by the branch to get all the desired outcomes. MIPS has both signed and unsigned 
versions of the set on less than instructions: slt and sltu.

When we look beyond the core instructions that are most commonly used, the 
other main difference is that the full MIPS is a much larger instruction set than 
RISC-V, as we shall see in Section 2.18.

 2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than 
those found in RISC-V and MIPS. The goal is generally to reduce the number of 
instructions executed by a program. The danger is that this reduction can occur at 
the cost of simplicity, increasing the time a program takes to execute because the 
instructions are slower. This slowness may be the result of a slower clock cycle time 
or of requiring more clock cycles than a simpler sequence.

The path toward operation complexity is thus fraught with peril. Section 2.19 
demonstrates the pitfalls of complexity.

Beauty is altogether in 
the eye of the beholder.
Margaret Wolfe 
Hungerford, Molly 
Bawn, 1877
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Evolution of the Intel x86
RISC-V and MIPS were the vision of single groups working at the same time; the 
pieces of these architectures fit nicely together. Such is not the case for the x86; it 
is the product of several independent groups who evolved the architecture over 
almost 40 years, adding new features to the original instruction set as someone 
might add clothing to a packed bag. Here are important x86 milestones.

n	 1978: The Intel 8086 architecture was announced as an assembly language- 
compatible extension of the then-successful Intel 8080, an 8-bit 
microprocessor. The 8086 is a 16-bit architecture, with all internal registers 
16 bits wide. Unlike RISC-V, the registers have dedicated uses, and hence the 
8086 is not considered a general-purpose register (GPR) architecture.

n	 1980: The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Instead of 
using registers, it relies on a stack (see  Section 2.21 and Section 3.7).

n	 1982: The 80286 extended the 8086 architecture by increasing the address 
space to 24 bits, by creating an elaborate memory-mapping and protection 
model (see Chapter 5), and by adding a few instructions to round out the 
instruction set and to manipulate the protection model.

n	 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a 
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386 
added new addressing modes and additional operations. The expanded 
instructions make the 80386 nearly a general-purpose register machine. The 
80386 also added paging support in addition to segmented addressing (see 
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs 
without change.

n	 1989–95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro 
in 1995 were aimed at higher performance, with only four instructions added 
to the user-visible instruction set: three to help with multiprocessing (see 
Chapter 6) and a conditional move instruction.

n	 1997: After the Pentium and Pentium Pro were shipping, Intel announced that 
it would expand the Pentium and the Pentium Pro architectures with MMX 
(Multi Media Extensions). This new set of 57 instructions uses the floating-
point stack to accelerate multimedia and communication applications. MMX 
instructions typically operate on multiple short data elements at a time, in 
the tradition of single instruction, multiple data (SIMD) architectures (see 
Chapter 6). Pentium II did not introduce any new instructions.

n	 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD 
Extensions) as part of Pentium III. The primary changes were to add eight 
separate registers, double their width to 128 bits, and add a single precision 
floating-point data type. Hence, four 32-bit floating-point operations can be 
performed in parallel. To improve memory performance, SSE includes cache 

general-purpose 
register (GPR) A 
register that can be used 
for addresses or for 
data with virtually any 
instruction.
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prefetch instructions plus streaming store instructions that bypass the caches 
and write directly to memory.

n	 2001: Intel added yet another 144 instructions, this time labeled SSE2. The 
new data type is double precision arithmetic, which allows pairs of 64-bit 
floating-point operations in parallel. Almost all of these 144 instructions are 
versions of existing MMX and SSE instructions that operate on 64 bits of data 
in parallel. Not only does this change enable more multimedia operations; 
it gives the compiler a different target for floating-point operations than 
the unique stack architecture. Compilers can choose to use the eight SSE 
registers as floating-point registers like those found in other computers. This 
change boosted the floating-point performance of the Pentium 4, the first 
microprocessor to include SSE2 instructions.

n	 2003: A company other than Intel enhanced the x86 architecture this time. 
AMD announced a set of architectural extensions to increase the address 
space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address 
space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also 
increases the number of registers to 16 and increases the number of 128-bit 
SSE registers to 16. The primary ISA change comes from adding a new mode 
called long mode that redefines the execution of all x86 instructions with  
64-bit addresses and data. To address the larger number of registers, it adds a 
new prefix to instructions. Depending how you count, long mode also adds 
four to 10 new instructions and drops 27 old ones. PC-relative data addressing 
is another extension. AMD64 still has a mode that is identical to x86  
(legacy mode) plus a mode that restricts user programs to x86 but allows 
operating systems to use AMD64 (compatibility mode). These modes allow 
a more graceful transition to 64-bit addressing than the HP/Intel IA-64 
architecture.

n	 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory 
64 Technology (EM64T). The major difference is that Intel added a 128-bit 
atomic compare and swap instruction, which probably should have been 
included in AMD64. At the same time, Intel announced another generation of 
media extensions. SSE3 adds 13 instructions to support complex arithmetic, 
graphics operations on arrays of structures, video encoding, floating-point 
conversion, and thread synchronization (see Section 2.11). AMD added SSE3 
in subsequent chips and the missing atomic swap instruction to AMD64 to 
maintain binary compatibility with Intel.

n	 2006: Intel announces 54 new instructions as part of the SSE4 instruction set 
extensions. These extensions perform tweaks like sum of absolute differences, 
dot products for arrays of structures, sign or zero extension of narrow data to 
wider sizes, population count, and so on. They also added support for virtual 
machines (see Chapter 5).
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n	 2007: AMD announces 170 instructions as part of SSE5, including 46 
instructions of the base instruction set that adds three operand instructions 
like RISC-V.

n	 2011: Intel ships the Advanced Vector Extension that expands the SSE 
register width from 128 to 256 bits, thereby redefining about 250 instructions 
and adding 128 new instructions.

This history illustrates the impact of the “golden handcuffs” of compatibility on 
the x86, as the existing software base at each step was too important to jeopardize 
with significant architectural changes.

Whatever the artistic failures of the x86, keep in mind that this instruction set 
largely drove the PC generation of computers and still dominates the Cloud portion 
of the post-PC era. Manufacturing 350M x86 chips per year may seem small 
compared to 14 billion ARM chips, but many companies would love to control 
such a market. Nevertheless, this checkered ancestry has led to an architecture that 
is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section 
with the care you would need to write x86 programs; the goal instead is to give you 
familiarity with the strengths and weaknesses of the world’s most popular desktop 
architecture.

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this 
section we concentrate on the 32-bit subset that originated with the 80386. We start 
our explanation with the registers and addressing modes, move on to the integer 
operations, and conclude with an examination of instruction encoding.

x86 Registers and Data Addressing Modes
The registers of the 80386 show the evolution of the instruction set (Figure 2.30). 
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits, 
prefixing an E to their name to indicate the 32-bit version. We’ll refer to them 
generically as GPRs (general-purpose registers). The 80386 contains only eight 
GPRs. This means RISC-V and MIPS programs can use four times as many.

Figure 2.31 shows the arithmetic, logical, and data transfer instructions are 
two-operand instructions. There are two important differences here. The x86 
arithmetic and logical instructions must have one operand act as both a source 
and a destination; RISC-V and MIPS allow separate registers for source and 
destination. This restriction puts more pressure on the limited registers, since one 
source register must be modified. The second important difference is that one of 
the operands can be in memory. Thus, virtually any instruction may have one 
operand in memory, unlike RISC-V and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of 
addresses within the instruction. These so-called displacements can be 8 bits or  
32 bits.



150 Chapter 2 Instructions: Language of the Computer

FIGURE 2.30 The 80386 register set. Starting with the 80386, the top eight registers were extended 
to 32 bits and could also be used as general-purpose registers.

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

FIGURE 2.31 Instruction types for the arithmetic, logical, and data transfer instructions. 
The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode. 
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.33 
(not EIP or EFLAGS).

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate
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Although a memory operand can use any addressing mode, there are restrictions 
on which registers can be used in a mode. Figure 2.32 shows the x86 addressing 
modes and which GPRs cannot be used with each mode, as well as how to get the 
same effect using RISC-V instructions.

x86 Integer Operations
The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The 
80386 adds 32-bit addresses and data (doublewords) in the x86. (AMD64 adds 64-
bit addresses and data, called quad words; we’ll stick to the 80386 in this section.) 
The data type distinctions apply to register operations as well as memory accesses.

Almost every operation works on both 8-bit data and on one longer data size. 
That size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386 
architects provided a convenient way to specify each version without expanding 
code size significantly. They decided that either 16-bit or 32-bit data dominate most 
programs, and so it made sense to be able to set a default large size. This default 
data size is set by a bit in the code segment register. To override the default data 
size, an 8-bit prefix is attached to the instruction to tell the machine to use the other 
large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes 
to modify instruction behavior. The three original prefixes override the default 
segment register, lock the bus to support synchronization (see Section 2.11), or 
repeat the following instruction until the register ECX counts down to 0. This last 

FIGURE 2.32 x86 32-bit addressing modes with register restrictions and the equivalent RISC-V code. The Base plus 
Scaled Index addressing mode, not found in RISC-V or MIPS, is included to avoid the multiplies by 8 (scale factor of 3) to turn an index in a 
register into a byte address (see Figures 2.26 and 2.28). A scale factor of 1 is used for 16-bit data, and a scale factor of 2 for 32-bit data. A scale 
factor of 0 means the address is not scaled. If the displacement is longer than 12 bits in the second or fourth modes, then the RISC-V equivalent 
mode would need more instructions, usually a lui to load bits 12 through 31 of the displacement, followed by an add to sum these bits 
with the base register. (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are essentially 
identical and we combine them here.)

Description
Register 

restrictions RISC-V equivalent

Address is in a register. Not ESP or EBP ld x10, 0(x11)

Address is contents of base register plus 
displacement.

Not ESP ld x10, 40(x11)

The address is
Base + (2Scale× Index)

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

slli x12, x12, 3
add x11, x11, x12
ld x10, 0(x11)

The address is
Base + (2Scale× Index) + Displacement

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

slli x12, x12, 3
add x11, x11, x12
ld x10, 40(x11)

Mode

Register indirect

Based mode with 8- or 32-bit
displacement

Base plus scaled index

Base plus scaled index with
8- or 32-bit displacement
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prefix was intended to be paired with a byte move instruction to move a variable 
number of bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop.

2. Arithmetic and logic instructions, including test, integer, and decimal 
arithmetic operations.

3. Control flow, including conditional branches, unconditional branches, calls, 
and returns.

4. String instructions, including string move and string compare.

The first two categories are unremarkable, except that the arithmetic and logic 
instruction operations allow the destination to be either a register or a memory 
location. Figure 2.33 shows some typical x86 instructions and their functions.

FIGURE 2.33 Some typical x86 instructions and their functions. A list of frequent operations 
appears in Figure 2.37. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

Instruction Function

je name if equal(condition code) {EIP=name};
EIP–128 <= name < EIP+128

jmp name EIP=name

call name SP=SP–4; M[SP]=EIP+5; EIP=name;

movw EBX,[EDI+45] EBX=M[EDI+45]

push ESI SP=SP–4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765 EAX= EAX+6765

test EDX,#42 Set condition code (fl ags) with EDX and 42

movsl M[EDI]=M[ESI];
EDI=EDI+4; ESI=ESI+4

Conditional branches on the x86 are based on condition codes or flags. Condition 
codes are set as a side effect of an operation; most are used to compare the value of 
a result to 0. Branches then test the condition codes. PC-relative branch addresses 
must be specified in the number of bytes, since unlike RISC-V and MIPS, 80386 
instructions have no alignment restriction.

String instructions are part of the 8080 ancestry of the x86 and are not commonly 
executed in most programs. They are often slower than equivalent software routines 
(see the Fallacy on page 157).

Figure 2.34 lists some of the integer x86 instructions. Many of the instructions 
are available in both byte and word formats.
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x86 Instruction Encoding
Saving the worst for last, the encoding of instructions in the 80386 is complex, with 
many different instruction formats. Instructions for the 80386 may vary from 1 
byte, when there is only one operand, up to 15 bytes.

Figure 2.35 shows the instruction format for several of the example instructions in 
Figure 2.33. The opcode byte usually contains a bit saying whether the operand is 8 bits 
or 32 bits. For some instructions, the opcode may include the addressing mode and 
the register; this is true in many instructions that have the form “register = register op 
immediate.” Other instructions use a “postbyte” or extra opcode byte, labeled “mod, 
reg, r/m,” which contains the addressing mode information. This postbyte is used for 
many of the instructions that address memory. The base plus scaled index mode uses 
a second postbyte, labeled “sc, index, base.”

Instruction Meaning

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are   
alternative names

jmp Unconditional jump—8-bit or 16-bit offset 

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0  
Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory 
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fi ll

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefi x

movs Copies from string source to destination by incrementing ESI and EDI; may be 
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.34 Some typical operations on the x86. Many operations use register-memory format, 
where either the source or the destination may be memory and the other may be a register or immediate 
operand.
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Figure 2.36 shows the encoding of the two postbyte address specifiers for 
both 16-bit and 32-bit modes. Unfortunately, to understand fully which registers 
and which addressing modes are available, you need to see the encoding of all 
addressing modes and sometimes even the encoding of the instructions.

x86 Conclusion
Intel had a 16-bit microprocessor two years before its competitors’ more elegant 
architectures, such as the Motorola 68000, and this head start led to the selection 

FIGURE 2.35 Typical x86 instruction formats. Figure 2.39 shows the encoding of the postbyte. 
Many instructions contain the 1-bit field w, which says whether the operation is a byte or a doubleword. The 
d field in MOV is used in instructions that may move to or from memory and shows the direction of the move. 
The ADD instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are 
either 8 bits or 32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for 
test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. The long length comes from 
extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 
2 bytes, and using the scaled index mode specifier, which adds another byte.

a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8



 2.18 Real Stuff: The Rest of the RISC-V Instruction Set 155

of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that 
the x86 is more difficult to build than computers like RISC-V and MIPS, but the 
large market meant in the PC era that AMD and Intel could afford more resources 
to help overcome the added complexity. What the x86 lacks in style, it rectifies with 
market size, making it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural components 
are not too difficult to implement, as AMD and Intel have demonstrated by rapidly 
improving performance of integer programs since 1978. To get that performance, 
compilers must avoid the portions of the architecture that are hard to implement fast.

In the post-PC era, however, despite considerable architectural and 
manufacturing expertise, x86 has not yet been competitive in the personal mobile 
device.

 2.18 Real Stuff: The Rest of the RISC-V 
Instruction Set

With the goal of making an instruction set architecture suitable for a wide variety 
of computers, the RISC-V architects partitioned the instruction set into a base 
architecture and several extensions. Each is named with a letter of the alphabet, 
and the base architecture is named I for integer. The base architecture has few 
instructions relative to other popular instruction sets today; indeed, this chapter 
has already covered nearly all of them. This section rounds out the base architecture, 
then describes the five standard extensions.

FIGURE 2.36 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding 
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). 
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the 
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1  
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1)  
r/m = 6 when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects 
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in 
Figure 2.35. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+S I =EAX same same same same same

1 CL CX ECX 1 addr=BX+D I =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 fi eld

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “



156 Chapter 2 Instructions: Language of the Computer

Figure 2.37 lists the remaining instructions in the base RISC-V architecture. 
The first instruction, auipc, is used for PC-relative memory addressing. Like the 
lui instruction, it holds a 20-bit constant that corresponds to bits 12 through 31 
of an integer. auipc’s effect is to add this number to the PC and write the sum to a 
register. Combined with an instruction like addi, it is possible to address any byte 
of memory within 4 GiB of the PC. This feature is useful for position-independent 
code, which can execute correctly no matter where in memory it is loaded. It is 
most frequently used in dynamically linked libraries.

The next four instructions compare two integers, then write the Boolean result 
of the comparison to a register. slt and sltu compare two registers as signed 
and unsigned numbers, respectively, then write 1 to a register if the first value is 
less than the second value, or 0 otherwise. slti and sltiu perform the same 
comparisons, but with an immediate for the second operand.

The remaining instructions should all look familiar, as their names are the 
same as other instructions discussed in this chapter, but with the letter w, short for 
word, appended. These instructions perform the same operation as the similarly 
named ones we’ve discussed, except these only operate on the lower 32 bits of their 
operands, ignoring bits 32 through 63. Additionally, they produce sign-extended 
32-bit results: that is, bits 32 through 63 are all the same as bit 31. The RISC-V 
architects included these w instructions because operations on 32-bit numbers 
remain very common on computers with 64-bit addresses. The main reason is that 
the popular data type int remains 32 bits in Java and in most implementations of 
the C language.

FIGURE 2.37 The remaining 14 instructions in the base RISC-V instruction set  
architecture.

Additional Instructions in RISC-V Base Architecture

Format Description

Add upper immediate to PC Add 20-bit upper immediate to PC; write sum to register

Set if less than Compare registers; write Boolean result to register

Set if less than, unsigned Compare registers; write Boolean result to register

Set if less than, immediate Compare registers; write Boolean result to register

Set if less than immediate, unsigned Compare registers; write Boolean result to register

Add word Add 32-bit numbers

Subtract word Subtract 32-bit numbers
Add word immediate

U

R

R

I

I

R

R

I Add constant to 32-bit number
Shift left logical word Shift 32-bit number left by registerR

Shift right logical word Shift 32-bit number right by registerR

Shift right arithmetic word Shift 32-bit number right arithmetically by register

Shift left logical word immedate Shift 32-bit number left by immediate

Shift right logical word immediate Shift 32-bit number right by immediate

R

I

I

Shift right arithmetic word immediate

auipc

slt

sltu

slti

sltiu

addw

subw
addiw
sllw

srlw

sraw

slliw

srliw

sraiw Shift 32-bit number right arithmetically by immediateI

NameInstruction
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That’s it for the base architecture! Figure 2.38 lists the five standard extensions. 
The first, M, adds instructions to multiply and divide integers. Chapter  3 will 
introduce several instructions in the M extension.

The second extension, A, supports atomic memory operations for multiprocessor 
synchronization. The load-reserved (lr.d) and store-conditional (sc.d) 
instructions introduced in Section 2.11 are members of the A extension. Also 
included are versions that operate on 32-bit words (lr.w and sc.w). The remaining 
18 instructions are optimizations of common synchronization patterns, like atomic 
exchange and atomic addition, but do not add any additional functionality over 
load-reserved and store-conditional.

The third and fourth extensions, F and D, provide operations on floating-point 
numbers, which are described in Chapter 3.

The last extension, C, provides no new functionality at all. Rather, it takes the 
most popular RISC-V instructions, like addi, and provides equivalent instructions 
that are only 16 bits in length, rather than 32. It thereby allows programs to be 
expressed in fewer bytes, which can reduce cost and, as we will see in Chapter 5, 
can improve performance. To fit in 16 bits, the new instructions have restrictions 
on their operands: for example, some instructions can only access some of the 32 
registers, and the immediate fields are narrower.

Taken together, the RISC-V base and extensions have 184 instructions, plus 13 
system instructions that will be introduced at the end of Chapter 5.

 2.19 Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.
Part of the power of the Intel x86 is the prefixes that can modify the execution of 
the following instruction. One prefix can repeat the subsequent instruction until 

FIGURE 2.38 The RISC-V instruction set architecture is divided into the base ISA, named 
I, and five standard extensions, M, A, F, D, and C.

RISC-V Base and Extensions

Insn. Count

I

M

A

F

D

C

51

13

22

30

32

36

Base architecture

Integer multiply/divide

Atomic operations

Single-precision floating point

Double-precision floating point

Compressed instructions

DescriptionMnemonic
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a counter steps down to 0. Thus, to move data in memory, it would seem that the 
natural instruction sequence is to use move with the repeat prefix to perform 32-bit 
memory-to-memory moves.

An alternative method, which uses the standard instructions found in all 
computers, is to load the data into the registers and then store the registers back to 
memory. This second version of this program, with the code replicated to reduce 
loop overhead, copies at about 1.5 times as fast. A third version, which uses the 
larger floating-point registers instead of the integer registers of the x86, copies at 
about 2.0 times as fast as the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.
At one time compilers for programming languages produced naïve instruction 

sequences; the increasing sophistication of compilers means the gap between 
compiled code and code produced by hand is closing fast. In fact, to compete 
with current compilers, the assembly language programmer needs to understand 
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory 
hierarchy).

This battle between compilers and assembly language coders is another situation 
in which humans are losing ground. For example, C offers the programmer a 
chance to give a hint to the compiler about which variables to keep in registers 
versus spilled to memory. When compilers were poor at register allocation, such 
hints were vital to performance. In fact, some old C textbooks spent a fair amount 
of time giving examples that effectively use register hints. Today’s C compilers 
generally ignore these hints, because the compiler does a better job at allocation 
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly 
language are the protracted time spent coding and debugging, the loss in portability, 
and the difficulty of maintaining such code. One of the few widely accepted axioms 
of software engineering is that coding takes longer if you write more lines, and it 
clearly takes many more lines to write a program in assembly language than in C 
or Java. Moreover, once it is coded, the next danger is that it will become a popular 
program. Such programs always live longer than expected, meaning that someone 
will have to update the code over several years and make it work with new releases 
of operating systems and recent computers. Writing in higher-level language 
instead of assembly language not only allows future compilers to tailor the code to 
forthcoming machines; it also makes the software easier to maintain and allows the 
program to run on more brands of computers.

Fallacy: The importance of commercial binary compatibility means successful 
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.39 shows that the x86 
architecture has grown dramatically. The average is more than one instruction per 
month over its 35-year lifetime!
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Pitfall: Forgetting that sequential word or doubleword addresses in machines with 
byte addressing do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming 
that the address of the next word or doubleword can be found by incrementing 
the address in a register by one instead of by the word or doubleword size in bytes. 
Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure 
that includes a pointer to an array that is local to that procedure. Following the 
stack discipline in Figure 2.12, the memory that contains the local array will be 
reused as soon as the procedure returns. Pointers to automatic variables can lead 
to chaos.

 2.20 Concluding Remarks

The two principles of the stored-program computer are the use of instructions that 
are indistinguishable from numbers and the use of alterable memory for programs. 
These principles allow a single machine to aid cancer researchers, financial 
advisers, and novelists in their specialties. The selection of a set of instructions that 

Less is more.
Robert Browning, 
Andrea del Sarto, 1855

FIGURE 2.39 Growth of x86 instruction set over time. While there is clear technical value to 
some of these extensions, this rapid change also increases the difficulty for other companies to try to build 
compatible processors.
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the machine can understand demands a delicate balance among the number of 
instructions needed to execute a program, the number of clock cycles needed by an 
instruction, and the speed of the clock. As illustrated in this chapter, three design 
principles guide the authors of instruction sets in making that tricky tradeoff:

1. Simplicity favors regularity. Regularity motivates many features of the RISC-V 
instruction set: keeping all instructions a single size, always requiring register 
operands in arithmetic instructions, and keeping the register fields in the 
same place in all instruction formats.

2. Smaller is faster. The desire for speed is the reason that RISC-V has 32 
registers rather than many more.

3. Good design demands good compromises. One RISC-V example is the 
compromise between providing for larger addresses and constants in 
instructions and keeping all instructions the same length.

We also saw the great idea from Chapter 1 of making the common cast fast 
applied to instruction sets as well as computer architecture. Examples of making 
the common RISC-V case fast include PC-relative addressing for conditional 
branches and immediate addressing for larger constant operands.

Above this machine level is assembly language, a language that humans can read. 
The assembler translates it into the binary numbers that machines can understand, 
and it even “extends” the instruction set by creating symbolic instructions that aren’t 
in the hardware. For instance, constants or addresses that are too big are broken 
into properly sized pieces, common variations of instructions are given their own 
name, and so on. Figure 2.40 lists the RISC-V instructions we have covered so far, 
both real and pseudoinstructions. Hiding details from the higher level is another 
example of the great idea of abstraction.

Each category of RISC-V instructions is associated with constructs that appear 
in programming languages:

n	 Arithmetic instructions correspond to the operations found in assignment 
statements.

n	 Transfer instructions are most likely to occur when dealing with data 
structures like arrays or structures.

n	 Conditional branches are used in if statements and in loops.

n	 Unconditional branches are used in procedure calls and returns and for case/
switch statements.

These instructions are not born equal; the popularity of the few dominates the 
many. For example, Figure 2.41 shows the popularity of each class of instructions 
for SPEC CPU2006. The varying popularity of instructions plays an important role 
in the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter  3, we reveal more of the 
RISC-V instruction set architecture.
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Format Pseudo RISC-V

Add

Subtract

Add immediate

Load doubleword

Store doubleword

Load word

Load word, unsigned

Store word

R Move

R

I

I

Load immediate

Jump

Load address

mv

li

j

la

addi

addi

jal

lui+addi

S

I

I

S
Load halfword I

Load halfword, unsigned I

Store halfword

Load byte

Load byte, unsigned

S

I

I

Store byte

add

sub

addi

ld 

sd 

lw 

lwu 
sw 
lh 

lhu 

sh 

lb

lbu

sb S

Name Name Real InstructionRISC-V Instructions

Load reserved lr.d R

Store conditional sc.d R

Load upper immediate lui U

And and R

Inclusive or or R

Exclusive or xor R

And immediate andi I

Inclusive or immediate ori I

Exclusive or immediate xori I

Shift left logical sll R

Shift right logical srl R

Shift right arithmetic sra R

Shift left logical immediate slli I

Shift right logical immediate srli I

Shift right arithmetic immediate srai I

Branch if equal beq SB

Branch if not equal bne SB

Branch if less than blt SB

Branch if greater or equal bge SB

Branch if less, unsigned bltu SB

Branch if greatr/eq, unsigned bgeu SB

Jump and link jal UJ

Jump and link register jalr I

FIGURE 2.40 The RISC-V instruction set covered so far, with the real RISC-V instructions on the left 
and the pseudoinstructions on the right. Figure 2.1 shows more details of the RISC-V architecture revealed in 
this chapter. The information given here is also found in Columns 1 and 2 of the RISC-V Reference Data Card at the front 
of the book.
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 2.21 Historical Perspective and Further 
Reading

This section surveys the history of instruction set architectures (ISAs) over 
time, and we give a short history of programming languages and compilers.  
ISAs include accumulator architectures, general-purpose register architectures, 
stack architectures, and a brief history of the x86 and ARM’s 32-bit architecture, 
ARMv7. We also review the controversial subjects of high-level-language 
computer architectures and reduced instruction set computer architectures. The 
history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal,  
Simula, Smalltalk, C++, and Java, and the history of compilers includes the key 
milestones and the pioneers who achieved them. The rest of  Section 2.21 is 
found online.

 2.22 Exercises

2.1 [5] <§2.2> For the following C statement, write the corresponding RISC-V 
assembly code. Assume that the C variables f, g, and h, have already been placed 
in registers x5, x6, and x7 respectively. Use a minimal number of RISC-V assembly 
instructions.

f = g + (h − 5);

2.21

HLL correspondence Integer Fl. Pt.

Frequency

Arithmetic 16%

Data transfer 35%

Logical 12%

Branch 34%

Jump 2%

48%

36%

4%

8%

0%

Operations in assignment statements

References to data structures in memory

Operations in assignment statements

If statements; loops

Procedure calls & returns; switch statements

add, sub, addi

ld, sd, lw, sw, lh, 
sh, lb, sb, lui

and, or, xor, sll, 
srl, sra

beq, bne, blt, bge, 
bltu, bgeu

jal, jalr

RISC-V examplesInstruction class

FIGURE 2.41 RISC-V instruction classes, examples, correspondence to high-level program language 
constructs, and percentage of RISC-V instructions executed by category for the average integer and 
floating point SPEC CPU2006 benchmarks. Figure 3.24 in Chapter 3 shows average percentage of the individual 
RISC-V instructions executed.
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Historical Perspective and Further 
Reading

This section surveys the history of instruction set architectures over time, 
and we give a short history of programming languages and compilers. ISAs 
include accumulator architectures, general-purpose register architectures, stack 
architectures, and a brief history of ARMv7 and the x86. We also review the 
controversial subjects of high-level-language computer architectures and reduced 
instruction set computer architectures. The history of programming languages 
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, 
and the history of compilers includes the key milestones and the pioneers who 
achieved them.

Accumulator Architectures
Hardware was precious in the earliest stored-program computers. Consequently, 
computer pioneers could not afford the number of registers found in today’s 
architectures. In fact, these architectures had a single register for arithmetic 
instructions. Since all operations would accumulate in one register, it was called the 
accumulator, and this style of instruction set is given the same name. For example, 
EDSAC in 1949 had a single accumulator.

The three-operand format of RISC-V suggests that a single register is at least two 
registers shy of our needs. Having the accumulator as both a source operand and 
the destination of the operation fills part of the shortfall, but it still leaves us one 
operand short. That final operand is found in memory. Accumulator architectures 
have the memory-based operand-addressing mode suggested earlier. It follows that 
the add instruction of an accumulator instruction set would look like this:

ADD   200

This instruction means add the accumulator to the word in memory at address 
200 and place the sum back into the accumulator. No registers are specified because 
the accumulator is known to be both a source and a destination of the operation.

The next step in the evolution of instruction sets was the addition of registers 
dedicated to specific operations. Hence, registers might be included to act 
as indices for array references in data transfer instructions, to act as separate 
accumulators for multiply or divide instructions, and to serve as the top-of-stack 
pointer. Perhaps the best-known example of this style of instruction set is found 
in the Intel 80x86. This style of instruction set is labeled extended accumulator, 
dedicated register, or special-purpose register. Like the single-register accumulator 
architectures, one operand may be in memory for arithmetic instructions. Like the 
RISC-V architecture, however, there are also instructions where all the operands 
are registers.

accumulator Archaic 
term for register. On-line 
use of it as a synonym for 
“register” is a fairly reliable 
indication that the user 
has been around quite a 
while.

Eric Raymond, The New 
Hacker’s Dictionary, 1991

2.21
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General-Purpose Register Architectures
The generalization of the dedicated-register architecture allows all the registers 
to be used for any purpose, hence the name general-purpose register. RISC-V is 
an example of a general-purpose register architecture. This style of instruction set 
may be further divided into those that allow one operand to be in memory (as 
found in accumulator architectures), called a register-memory architecture, and 
those that demand that operands always be in registers, called either a load-store 
or a register-register architecture. Figure e2.22.1 shows a history of the number of 
registers in some popular computers.

The first load-store architecture was the CDC 6600 in 1963, considered by many 
to be the first supercomputer. RISC-V, ARMv7, ARMv8, and MIPS are more recent 
examples of a load-store architecture.

load-store 
architecture Also 
called register-
register architecture. 
An instruction set 
architecture in which 
all operations are 
between registers and 
data memory may only 
be accessed via loads or 
stores. Machine Architectural style Year

EDSAC 1949Accumulator1
IBM 701 1953Accumulator1
CDC 6600 1963Load-store8

1964Register-memory16063MBI
DEC PDP-8 1965Accumulator1
DEC PDP-11 1970Register-memory8
Intel 8008 1972Accumulator1
Motorola 6800 1974Accumulator2

1977Register-memory, memory-memory16DEC VAX
Intel 8086 1 Extended accumulator 1978

1980Register-memory16Motorola 68000
Intel 80386 1985Register-memory8

1985Load-store16MRA
1985Load-store32SPIM
1986Load-store32CSIR-APPH
1987Load-store32CRAPS
1992Load-store32PowerPC
1992Load-store32DEC Alpha
2001Load-store128HP/Intel IA-64
2003

2010

Register-memory16

32

AMD64 (EMT64)

RISC-V Load-store

Number of 
general-purpose registers

FIGURE e2.22.1 The number of general-purpose registers in popular architectures over 
the years.

The 80386 was Intel’s attempt to transform the 8086 into a general-purpose 
register-memory instruction set. Perhaps the best-known register-memory 
instruction set is the IBM 360 architecture, first announced in 1964. This instruction 
set is still at the core of IBM’s mainframe computers—responsible for a large part 



 2.21 Historical Perspective and Further Reading 162.e3

of the business of the largest computer company in the world. Register-memory 
architectures were the most popular in the 1960s and the first half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one 
step further in 1977. It allowed an instruction to use any combination of registers 
and memory operands. A style of architecture in which all operands can be in 
memory is called memory-memory. (In truth the VAX instruction set, like almost 
all other instruction sets since the IBM 360, is a hybrid, since it also has general-
purpose registers.)

The Intel x86 has many versions of a 64-bit add to specify whether an operand 
is in memory or is in a register. In addition, the memory operand can be accessed 
with more than seven addressing modes. This combination of address modes and 
register-memory operands means that there are dozens of variants of an x86 add 
instruction. Clearly, this variability makes x86 implementations more challenging.

Compact Code and Stack Architectures
When memory is scarce, it is also important to keep programs small, so architectures 
like the Intel x86, IBM 360, and VAX had variable-length instructions, both to 
match the varying operand specifications and to minimize code size. Intel x86 
instructions are from 1 to 15 bytes long; IBM 360 instructions are 2, 4, or 6 bytes 
long; and VAX instruction lengths are anywhere from 1 to 54 bytes.

One place where code size is still important is embedded applications.  
In recognition of this need, ARM, MIPS, and RISC-V all made versions of 
their instructions sets that offer both 16-bit instruction formats and 32-bit 
instruction formats: Thumb and Thumb-2 for ARM, MIPS-16, and RISC-V 
Compressed. Despite being limited to just two sizes, Thumb, Thumb-2, MIPS-
16, and RISC-V Compressed programs are about 25% to 30% smaller, which 
makes their code sizes smaller than those of the 80x86. Smaller code sizes have 
the added benefit of improving instruction cache hit rates (see Chapter 5).

In the 1960s, a few companies followed a radical approach to instruction sets. 
In the belief that it was too hard for compilers to utilize registers effectively, these 
companies abandoned registers altogether! Instruction sets were based on a 
stack model of execution, like that found in the older Hewlett-Packard handheld 
calculators. Operands are pushed on the stack from memory or popped off the 
stack into memory. Operations take their operands from the stack and then place 
the result back onto the stack. In addition to simplifying compilers by eliminating 
register allocation, stack architectures lent themselves to compact instruction 
encoding, thereby removing memory size as an excuse not to program in high-
level languages.

Memory space was perceived to be precious again for Java, both because 
memory space is limited to keep costs low in embedded applications and because 
programs may be downloaded over the Internet or phone lines as Java applets, and 
smaller programs take less time to transmit. Hence, compact instruction encoding 
was desirable for Java bytecodes.
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High-Level-Language Computer Architectures
In the 1960s, systems software was rarely written in high-level languages. For example, 
virtually every commercial operating system before UNIX was programmed in 
assembly language, and more recently even OS/2 was originally programmed at that 
same low level. Some people blamed the code density of the instruction sets, rather 
than the programming languages and the compiler technology.

Hence, an architecture design philosophy called high-level-language computer 
architecture was advocated, with the goal of making the hardware more like the 
programming languages. More efficient programming languages and compilers, 
plus expanding memory, doomed this movement to a historical footnote. The 
Burroughs B5000 was the commercial fountainhead of this philosophy, but today 
there is no significant commercial descendant of this 1960s radical.

Reduced Instruction Set Computer Architectures
This language-oriented design philosophy was replaced in the 1980s by RISC 
(reduced instruction set computer). Improvements in programming languages, 
compiler technology, and memory cost meant that less programming was being 
done at the assembly level, so instruction sets could be measured by how well 
compilers used them, in contrast to how skillfully assembly language programmers 
used them.

Virtually all new instruction sets since 1982 have followed this RISC philosophy 
of fixed instruction lengths, load-store instruction sets, limited addressing modes, 
and limited operations. ARMv7, ARMv8 Hitachi SH, IBM PowerPC, MIPS, Sun 
SPARC, and, of course, RISC-V, are all examples of RISC architectures.

A Brief History of the ARMv7
ARM started as the processor for the Acorn computer, hence its original name of 
Acorn RISC Machine. The Berkeley RISC papers influenced its architecture.

One of the most important early applications was emulation of the AM 6502, 
a 16-bit microprocessor. This emulation was to provide most of the software for 
the Acorn computer. As the 6502 had a variable-length instruction set that was 
a multiple of bytes, 6502 emulation helps explain the emphasis on shifting and 
masking in the ARMv7 instruction set.

Its popularity as a low-power embedded computer began with its selection as 
the processor for the ill-fated Apple Newton personal digital assistant. Although 
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility 
to the earlier ARM instruction sets, and they subsequently caught on in several 
markets, including cell phones. Unlike the Newton experience, the extraordinary 
success of cell phones explains why 12 billion ARM processors were shipped in 
2014.

One of the major events in ARM’s history is the 64-bit address extension called 
version 8. ARM took the opportunity to redesign the instruction set to make it look 
much more like MIPS than like earlier ARM versions.



 2.21 Historical Perspective and Further Reading 162.e5

A Brief History of the x86
The ancestors of the x86 were the first microprocessors, produced starting in 1972. 
The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator-style 
architectures. Morse et  al. [1980] describe the evolution of the 8086 from the 
8080 in the late 1970s as an attempt to provide a 16-bit architecture with better 
throughput. At that time, almost all programming for microprocessors was done 
in assembly language—both memory and compilers were in short supply. Intel 
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible” 
with the 8080. The 8086 was never object-code compatible with the 8080, but the 
architectures were close enough that translation of assembly language programs 
could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus, 
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the 
cost of the architecture. This choice, together with the tremendous success of the 
IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM PC was 
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to flourish. As discussed in Section 2.18, the 80286, 80386, 80486, 
Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and AMD64 have 
extended the architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as 
pervasive as the PC, partly because Apple did not allow Mac clones based on the 
68000, and the 68000 did not acquire the same software following that which 
the 8086 enjoys. The Motorola 68000 may have been more significant technically 
than the 8086, but the impact of IBM’s selection and open architecture strategy 
dominated the technical advantages of the 68000 in the market.

Some argue that the inelegance of the x86 instruction set is unavoidable, the 
price that must be paid for rampant success by any architecture. We reject that 
notion. Obviously, no successful architecture can jettison features that were 
added in previous implementations, and over time, some features may be seen as 
undesirable. The awkwardness of the x86 begins at its core with the 8086 instruction 
set and was exacerbated by the architecturally inconsistent expansions found in the 
8087, 80286, 80386, MMX, SSE, SSE2, SSE3, SSE4, AMD64 (EM64T), and AVX.

A counterexample is the IBM 360/370 architecture, which is much older than 
the x86. It dominated the mainframe market just as the x86 dominated the PC 
market. Due undoubtedly to a better base and more compatible enhancements, 
this instruction set makes much more sense than the x86 50 years after its first 
implementation.

Extending the x86 to 64-bit addressing means the architecture may last for 
several more decades. Instruction set anthropologists of the future will peel off 
layer after layer from such architectures until they uncover artifacts from the 
first microprocessor. Given such a find, how will they judge today’s computer 
architecture?
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A Brief History of Programming Languages
In 1954, John Backus led a team at IBM to create a more natural notation for scientific 
programming. The goal of Fortran, for “FORmula TRANslator,” was to reduce the 
time to develop programs. Fortran included many ideas found in programming 
languages today, including assignment statements, expressions, typed variables, 
loops, and arrays. The development of the language and the compiler went hand 
in hand. This language became a standard that has evolved over time to improve 
programmer productivity and program portability. The evolutionary steps are 
Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial computer, the 704, which 
was also the cradle of another important programming language: Lisp. John 
McCarthy invented the “LISt Processing” language in 1958. Its mantra is that 
programming can be considered as manipulating lists, so the language contains 
operations to follow links and to compose new lists from old ones. This list notation 
is used for the code as well as the data, so modifying or composing Lisp programs is 
common. The big contribution was dynamic data structures and, hence, pointers. 
Given that its inventor was a pioneer in artificial intelligence, Lisp became popular 
in the AI community. Lisp has no type declarations, and Lisp traditionally reclaims 
storage automatically via built-in garbage collection. Lisp was originally interpreted, 
although compilers were later developed for it.

Fortran inspired the international community to invent a programming language 
that was more natural to express algorithms than Fortran, with less emphasis on 
coding. This language became Algol, for “ALGOrithmic Language.” Like Fortran, 
it included type declarations, but it added recursive procedure calls, nested if-then-
else statements, while loops, begin-end statements to structure code, and call-by-
name. Algol-60 became the classic language for academics to teach programming 
in the 1960s.

Although engineers, AI researchers, and computer scientists had their own 
programming languages, the same could not be said for business data processing. 
Cobol, for “COmmon Business-Oriented Language,” was developed as a standard 
for this purpose contemporary with Algol-60. Cobol was created to be easy to read, 
so it follows English vocabulary and punctuation. It added records to programming 
languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed 
to update Algol-60. He was bothered by the complexity of the result, and so he 
wrote a minority report to show that a programming language could combine 
the algorithmic power of Algol-60 with the record structure from Cobol and be 
simple to understand, easy to implement, yet still powerful. This minority report 
became Pascal. It was first implemented with an interpreter and a set of Pascal 
bytecodes. The ease of implementation led to its being widely deployed, much 
more than Algol-68, and it soon replaced Algol-60 as the most popular language 
for academics to teach programming.
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In the same period, Dennis Ritchie invented the C programming language to 
use in building UNIX. Its inventors say it is not a “very high level” programming 
language or a big one, and it is not aimed at a particular application. Given its 
birthplace, it was very good at systems programming, and the UNIX operating 
system and C compiler were written in C. UNIX’s popularity helped spur C’s 
popularity.

The concept of object orientation is first captured in Simula-67, a simulation 
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen Nygaard 
at the University of Oslo in 1967, it introduced objects, classes, and inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at 
Xerox Palo Alto Research Center to invent Smalltalk in the 1970s. Smalltalk-80 
married the typeless variables and garbage collection from Lisp and the object 
orientation of Simula-67. It relied on interpretation that was defined by a Smalltalk 
virtual machine with a Smalltalk bytecode instruction set. Kay and his colleagues 
argued that processors were getting faster, and that we must eventually be willing 
to sacrifice some performance to improve program development. Another example 
was CLU, which demonstrated that an object-oriented language could be defined 
that allowed compile-time type checking. Simula-67 also inspired Bjarne Stroustrup 
of Bell Labs to develop an object-oriented version of C called C++ in the 1980s.  
C++ became widely used in industry.

Dissatisfied with C++, a group at Sun led by James Gosling invented Oak in the 
early 1990s. It was invented as an object-oriented C dialect for embedded devices 
as part of a major Sun project. To make it portable, it was interpreted and had its 
own virtual machine and bytecode instruction set. Since it was a new language, 
it had a more elegant object-oriented design than C++ and was much easier to 
learn and compile than Smalltalk-80. Since Sun’s embedded project failed, we 
might never have heard of it had someone not made the connection between Oak 
and programmable browsers for the World Wide Web. It was rechristened Java, 
and in 1995, Netscape announced that it would be shipping with its browser. It 
soon became extraordinarily popular. Java had the rare distinction of becoming the 
standard language for new business data processing applications and the favored 
language for academics to teach programming. Java and languages like it encourage 
reuse of code, and hence programmers make heavy use of libraries, whereas in the 
past they were more likely to write everything from scratch.

A Brief History of Compilers
Backus and his group were very concerned that Fortran would be unsuccessful 
if skeptics found examples where the Fortran version ran at half the speed of the 
equivalent assembly language program. Their success with one of the first compilers 
created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described in 
Section 2.15 online. These ad hoc approaches were replaced with a solid theoretical 
foundation for each of these steps. Each time the theory was established, a tool was 
built based on that theory that automated the creation of that step.
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The theoretical roots underlying scanning and parsing derive from automata 
theory, and the relationship between languages and automata was known early. 
The scanning task corresponds to recognition of a language accepted by a finite-
state automata, and parsing corresponds to recognition of a language by a push-
down automata (basically an automata with a stack). Languages are described by 
grammars, which are a set of rules that tell how any legal program can be generated.

The scanning pass of a compiler was well understood early, but parsing is harder. 
The earliest parsers use precedence techniques, which derived from the structure 
of arithmetic statements, and were then generalized. The great breakthrough in 
modern parsing was made by Donald Knuth in the invention of LR-parsing, which 
codified the two key steps in the parsing technique, pushing a token on the stack 
or reducing a set of tokens on the stack using a grammar rule. The strong theory 
formulation for scanning and parsing led to the development of automated tools 
for compiler constructions, such as lex and yacc, the tools developed as part of 
UNIX.

Optimizations occurred in many compilers, and it is harder to determine the 
first examples in most cases. However, Victor Vyssotsky did the first papers on data 
flow analysis in 1963, and William McKeeman is generally credited with the first 
peephole optimizer in 1965. The group at IBM, including John Cocke and Fran 
Allan, developed many of the early optimization concepts, as well as defining and 
extending the concepts of flow analysis. Important contributions were also made 
by Al Aho and Jeff Ullman.

One of the biggest challenges for optimization was register allocation. It was so 
difficult that some architects used stack architectures just to avoid the problem. 
The breakthrough came when researchers working on compilers for the 801, an 
early RISC architecture, recognized that coloring a graph with a minimum number 
of colors was equivalent to allocating a fixed number of registers to the unlimited 
number of virtual registers used in intermediate forms.

Compilers also played an important role in the open-source movement. Richard 
Stallman’s self-appointed mission was to make a public domain version of UNIX. 
He built the GNU C Compiler (gcc) as an open-source compiler in 1987. It soon 
was ported to many architectures, and is used in many systems today.

Further Reading

Bayko, J. [1996]. “Great microprocessors of the past and present,” search for it on the http://www.cpushack.
com/CPU/cpu.html.

A personal view of the history of both representative and unusual microprocessors, from the Intel 4004 to the 
Patriot Scientific ShBoom!

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture, The VAX, Digital Press, Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 8086, IBM 360, and CDC 6600.

http://www.cpushack.com/CPU/cpu.html
http://www.cpushack.com/CPU/cpu.html
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref1
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref2
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Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080 to 8086”, Computer 
13 10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in the 
designs.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.

The Motorola 6800 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, TI 9900, and Zilog 
Z8000.

http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00030-0/sbref4
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2.2 [5] <§2.2> Write a single C statement that corresponds to the two RISC-V 
assembly instructions below.

add f, g, h
add f, i, f

2.3 [5] <§§2.2, 2.3> For the following C statement, write the corresponding 
RISC-V assembly code. Assume that the variables f, g, h, i, and j are assigned to 
registers x5, x6, x7, x28, and x29, respectively. Assume that the base address 
of the arrays A and B are in registers x10 and x11, respectively.

B[8] = A[i−j];

2.4 [10] <§§2.2, 2.3> For the RISC-V assembly instructions below, what is the 
corresponding C statement? Assume that the variables f, g, h, i, and j are assigned 
to registers x5, x6, x7, x28, and x29, respectively. Assume that the base 
address of the arrays A and B are in registers x10 and x11, respectively.

slli x30, x5, 3  // x30 = f*8
add x30, x10, x30  // x30 = &A[f]
slli x31, x6, 3  // x31 = g*8
add x31, x11, x31  // x31 = &B[g]
ld x5, 0(x30)  // f = A[f]

addi x12, x30, 8
ld x30, 0(x12)
add x30, x30, x5
sd x30, 0(x31)

2.5 [5] <§2.3> Show how the value 0xabcdef12 would be arranged in memory 
of a little-endian and a big-endian machine. Assume the data are stored starting at 
address 0 and that the word size is 4 bytes.

2.6 [5] <§2.4> Translate 0xabcdef12 into decimal.

2.7 [5] <§§2.2, 2.3> Translate the following C code to RISC-V. Assume that the 
variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29, 
respectively. Assume that the base address of the arrays A and B are in registers x10 
and x11, respectively. Assume that the elements of the arrays A and B are 8-byte 
words:

B[8] = A[i] + A[j];

2.8 [10] <§§2.2, 2.3> Translate the following RISC-V code to C. Assume that the 
variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29, 

马德
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respectively. Assume that the base address of the arrays A and B are in registers x10 
and x11, respectively.

addi x30, x10, 8
addi  x31, x10, 0
sd x31, 0(x30)
ld x30, 0(x30)
add   x5, x30, x31

2.9 [20] <§§2.2, 2.5> For each RISC-V instruction in Exercise 2.8, show the value 
of the opcode (op), source register (rs1), and destination register (rd) fields. For 
the I-type instructions, show the value of the immediate field, and for the R-type 
instructions, show the value of the second source register (rs2). For non U- and 
UJ-type instructions, show the funct3 field, and for R-type and S-type instructions, 
also show the funct7 field.

2.10 Assume that registers x5 and x6 hold the values 0x8000000000000000 
and 0xD000000000000000, respectively.

2.10.1 [5] <§2.4> What is the value of x30 for the following assembly code?

add x30, x5, x6

2.10.2 [5] <§2.4> Is the result in x30 the desired result, or has there been 
overflow?

2.10.3 [5] <§2.4> For the contents of registers x5 and x6 as specified above, 
what is the value of x30 for the following assembly code?

sub x30, x5, x6

2.10.4 [5] <§2.4> Is the result in x30 the desired result, or has there been 
overflow?

2.10.5 [5] <§2.4> For the contents of registers x5 and x6 as specified above, 
what is the value of x30 for the following assembly code?

add x30, x5, x6
add x30, x30, x5

2.10.6 [5] <§2.4> Is the result in x30 the desired result, or has there been 
overflow?

2.11 Assume that x5 holds the value 128ten.

2.11.1 [5] <§2.4> For the instruction add x30, x5, x6, what is the range(s) 
of values for x6 that would result in overflow?

2.11.2 [5] <§2.4> For the instruction sub x30, x5, x6, what is the range(s) 
of values for x6 that would result in overflow?
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2.11.3 [5] <§2.4> For the instruction sub x30, x6, x5, what is the range(s) 
of values for x6 that would result in overflow?

2.12 [5] <§§2.2, 2.5> Provide the instruction type and assembly language 
instruction for the following binary value:

0000 0000 0001 0000 1000 0000 1011 0011two

Hint: Figure 2.20 may be helpful.

2.13 [5] <§§2.2, 2.5> Provide the instruction type and hexadecimal representation 
of the following instruction:

sd x5, 32(x30)

2.14 [5] <§2.5> Provide the instruction type, assembly language instruction, and 
binary representation of instruction described by the following RISC-V fields:

opcode=0x33, funct3=0x0, funct7=0x20, rs2=5, rs1=7, rd=6

2.15 [5] <§2.5> Provide the instruction type, assembly language instruction, and 
binary representation of instruction described by the following RISC-V fields:

opcode=0x3, funct3=0x3, rs1=27, rd=3, imm=0x4

2.16 Assume that we would like to expand the RISC-V register file to 128 registers 
and expand the instruction set to contain four times as many instructions.

2.16.1 [5] <§2.5> How would this affect the size of each of the bit fields in the 
R-type instructions?

2.16.2 [5] <§2.5> How would this affect the size of each of the bit fields in the 
I-type instructions?

2.16.3 [5] <§§2.5, 2.8, 2.10> How could each of the two proposed changes 
decrease the size of a RISC-V assembly program? On the other hand, how could 
the proposed change increase the size of an RISC-V assembly program?

2.17 Assume the following register contents:

x5 = 0x00000000AAAAAAAA, x6 = 0x1234567812345678

2.17.1 [5] <§2.6> For the register values shown above, what is the value of x7 for 
the following sequence of instructions?

slli x7, x5, 4
or x7, x7, x6

马德
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2.17.2 [5] <§2.6> For the register values shown above, what is the value of x7 for 
the following sequence of instructions?

slli x7, x6, 4

2.17.3 [5] <§2.6> For the register values shown above, what is the value of x7 for 
the following sequence of instructions?

srli x7, x5, 3
andi x7, x7, 0xFEF

2.18 [10] <§2.6> Find the shortest sequence of RISC-V instructions that extracts 
bits 16 down to 11 from register x5 and uses the value of this field to replace bits 31 
down to 26 in register x6 without changing the other bits of registers x5 or x6. (Be 
sure to test your code using x5 = 0 and x6 = 0xffffffffffffffff. Doing so 
may reveal a common oversight.)

2.19 [5] <§2.6> Provide a minimal set of RISC-V instructions that may be used 
to implement the following pseudoinstruction:

not x5, x6   // bit-wise invert

2.20 [5] <§2.6> For the following C statement, write a minimal sequence of 
RISC-V assembly instructions that performs the identical operation. Assume x6 = 
A, and x17 is the base address of C.

A = C[0] << 4;

2.21 [5] <§2.7> Assume x5 holds the value 0x00000000001010000. What is 
the value of x6 after the following instructions?

    bge x5, x0, ELSE
    jal x0, DONE
ELSE: ori x6, x0, 2
DONE:

2.22 Suppose the program counter (PC) is set to 0x20000000.

2.22.1 [5] <§2.10> What range of addresses can be reached using the RISC-V 
jump-and-link (jal) instruction? (In other words, what is the set of possible values 
for the PC after the jump instruction executes?)

2.22.2 [5] <§2.10> What range of addresses can be reached using the RISC-V 
branch if equal (beq) instruction? (In other words, what is the set of possible values 
for the PC after the branch instruction executes?)

马德
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2.23 Consider a proposed new instruction named rpt. This instruction combines 
a loop’s condition check and counter decrement into a single instruction. For 
example rpt x29, loop would do the following:

if (x29 > 0) {
x29 = x29 −1;
goto loop

}

2.23.1 [5] <§2.7, 2.10> If this instruction were to be added to the RISC-V 
instruction set, what is the most appropriate instruction format?

2.23.2 [5] <§2.7> What is the shortest sequence of RISC-V instructions that 
performs the same operation?

2.24 Consider the following RISC-V loop:

LOOP: beq x6, x0, DONE
    addi x6, x6, -1
    addi x5, x5, 2
    jal x0, LOOP
DONE:

2.24.1 [5] <§2.7> Assume that the register x6 is initialized to the value 10. What 
is the final value in register x5 assuming the x5 is initially zero?

2.24.2 [5] <§2.7> For the loop above, write the equivalent C code. Assume that 
the registers x5 and x6 are integers acc and i, respectively.

2.24.3 [5] <§2.7> For the loop written in RISC-V assembly above, assume that 
the register x6 is initialized to the value N. How many RISC-V instructions are 
executed?

2.24.4 [5] <§2.7> For the loop written in RISC-V assembly above, replace the 
instruction “beq x6, x0, DONE” with the instruction “blt x6, x0, DONE” 
and write the equivalent C code.

2.25 [10] <§2.7> Translate the following C code to RISC-V assembly code. Use 
a minimum number of instructions. Assume that the values of a, b, i, and j are in 
registers x5, x6, x7, and x29, respectively. Also, assume that register x10 holds 
the base address of the array D.

for(i=0; i<a; i++)
  for(j=0; j<b; j++)
    D[4*j] = i + j;

马德
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2.26 [5] <§2.7> How many RISC-V instructions does it take to implement the 
C code from Exercise 2.25? If the variables a and b are initialized to 10 and 1 and 
all elements of D are initially 0, what is the total number of RISC-V instructions 
executed to complete the loop?

2.27 [5] <§2.7> Translate the following loop into C. Assume that the C-level 
integer i is held in register x5,x6 holds the C-level integer called result, and 
x10 holds the base address of the integer MemArray.

 addi x6, x0, 0
 addi x29, x0, 100
LOOP: ld x7, 0(x10)
 add x5, x5, x7
 addi x10, x10, 8
 addi x6, x6, 1
 blt x6, x29, LOOP

2.28 [10] <§2.7> Rewrite the loop from Exercise 2.27 to reduce the number of 
RISC-V instructions executed. Hint: Notice that variable i is used only for loop 
control.

2.29 [30] <§2.8> Implement the following C code in RISC-V assembly. Hint: 
Remember that the stack pointer must remain aligned on a multiple of 16.

int fib(int n){
 if (n==0)
  return 0;
 else if (n == 1)
  return 1;
 else
  return fib(n−1) + fib(n−2);
}

2.30 [20] <§2.8> For each function call in Exercise 2.29, show the contents of the 
stack after the function call is made. Assume the stack pointer is originally at address 
0x7ffffffc, and follow the register conventions as specified in Figure 2.11.

2.31 [20] <§2.8> Translate function f into RISC-V assembly language. Assume 
the function declaration for g is int g(int a, int b). The code for function 
f is as follows:

int f(int a, int b, int c, int d){

 return g(g(a,b), c+d);
}

马德
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2.32 [5] <§2.8> Can we use the tail-call optimization in this function? If no, 
explain why not. If yes, what is the difference in the number of executed instructions 
in f with and without the optimization?

2.33 [5] <§2.8> Right before your function f from Exercise 2.31 returns, what do 
we know about contents of registers x10-x14, x8, x1, and sp? Keep in mind that 
we know what the entire function f looks like, but for function g we only know its 
declaration.

2.34 [30] <§2.9> Write a program in RISC-V assembly to convert an ASCII 
string containing a positive or negative integer decimal string to an integer. Your 
program should expect register x10 to hold the address of a null-terminated 
string containing an optional “+” or “−” followed by some combination of the 
digits 0 through 9. Your program should compute the integer value equivalent 
to this string of digits, then place the number in register x10. If a non-digit 
character appears anywhere in the string, your program should stop with the 
value −1 in register x10. For example, if register x10 points to a sequence of three 
bytes 50ten, 52ten, 0ten (the null-terminated string “24”), then when the program 
stops, register x10 should contain the value 24ten. The RISC-V mul instruction 
takes two registers as input. There is no “muli” instruction. Thus, just store the 
constant 10 in a register.

2.35 Consider the following code:

lb x6, 0(x7)

sd x6, 8(x7)

Assume that the register x7 contains the address 0×10000000 and the data at 
address is 0×1122334455667788.

2.35.1 [5] <§2.3, 2.9> What value is stored in 0×10000008 on a big-endian 
machine?

2.35.2 [5] <§2.3, 2.9> What value is stored in 0×10000008 on a little-endian 
machine?

2.36 [5] <§2.10> Write the RISC-V assembly code that creates the 64-bit constant 
0x1122334455667788two and stores that value to register x10.

2.37 [10] <§2.11> Write the RISC-V assembly code to implement the following 
C code as an atomic “set max” operation using the lr.d/sc.d instructions. Here, 
the argument shvar contains the address of a shared variable which should be 
replaced by x if x is greater than the value it points to:
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void setmax(int* shvar, int x) {
// Begin critical section
if (x > *shvar)

*shvar = x;
// End critical section}

}

2.38 [5] <§2.11> Using your code from Exercise 2.37 as an example, explain what 
happens when two processors begin to execute this critical section at the same 
time, assuming that each processor executes exactly one instruction per cycle.

2.39 Assume for a given processor the CPI of arithmetic instructions is 1, the CPI 
of load/store instructions is 10, and the CPI of branch instructions is 3. Assume 
a program has the following instruction breakdowns: 500 million arithmetic 
instructions, 300 million load/store instructions, 100 million branch instructions.

2.39.1 [5] <§§1.6, 2.13> Suppose that new, more powerful arithmetic 
instructions are added to the instruction set. On average, through the use of these 
more powerful arithmetic instructions, we can reduce the number of arithmetic 
instructions needed to execute a program by 25%, while increasing the clock cycle 
time by only 10%. Is this a good design choice? Why?

2.39.2 [5] <§§1.6, 2.13> Suppose that we find a way to double the performance 
of arithmetic instructions. What is the overall speedup of our machine? What if 
we find a way to improve the performance of arithmetic instructions by 10 times?

2.40 Assume that for a given program 70% of the executed instructions are 
arithmetic, 10% are load/store, and 20% are branch.

2.40.1 [5] <§§1.6, 2.13> Given this instruction mix and the assumption that an 
arithmetic instruction requires two cycles, a load/store instruction takes six cycles, 
and a branch instruction takes three cycles, find the average CPI.

2.40.2 [5] <§§1.6, 2.13> For a 25% improvement in performance, how many 
cycles, on average, may an arithmetic instruction take if load/store and branch 
instructions are not improved at all?

2.40.3 [5] <§§1.6, 2.13> For a 50% improvement in performance, how many 
cycles, on average, may an arithmetic instruction take if load/store and branch 
instructions are not improved at all?

2.41 [10] <§2.19> Suppose the RISC-V ISA included a scaled offset addressing 
mode similar to the x86 one described in Section 2.17 (Figure 2.35). Describe 
how you would use scaled offset loads to further reduce the number of assembly 
instructions needed to carry out the function given in Exercise 2.4.
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2.42 [10] <§2.19> Suppose the RISC-V ISA included a scaled offset addressing 
mode similar to the x86 one described in Section 2.17 (Figure 2.35). Describe 
how you would use scaled offset loads to further reduce the number of assembly 
instructions needed to implement the C code given in Exercise 2.7.
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§2.3, page 73: 2) Very slow.
§2.4, page 80: 2) −8ten
§2.5, page 89: 3) sub x11, x10, x9
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 3.1 Introduction

Computer words are composed of bits; thus, words can be represented as binary 
numbers. Chapter 2 shows that integers can be represented either in decimal or 
binary form, but what about the other numbers that commonly occur? For example:

n	 What about fractions and other real numbers?

n	 What happens if an operation creates a number bigger than can be represented?

n	 And underlying these questions is a mystery: How does hardware really 
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries—including representation 
of real numbers, arithmetic algorithms, hardware that follows these algorithms—
and the implications of all this for instruction sets. These insights may explain 
quirks that you have already encountered with computers. Moreover, we show how 
to use this knowledge to make arithmetic-intensive programs go much faster.

 3.2 Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit 
from right to left, with carries passed to the next digit to the left, just as you would 
do by hand. Subtraction uses addition: the appropriate operand is simply negated 
before being added.

Binary Addition and Subtraction

Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in binary.
00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000111two = 7ten

+ 00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000110two = 6ten

= 00000000  00000000  00000000  00000000  00000000  00000000  00000000  00001101two = 13ten

The 4 bits to the right have all the action; Figure 3.1 shows the sums and 
carries. Parentheses identify the carries, with the arrows illustrating how they 
are passed.

Subtraction: Addition’s 
Tricky Pal
No. 10, Top Ten 
Courses for Athletes at a 
Football Factory, David 
Letterman et al., Book of 
Top Ten Lists, 1990

EXAMPLE
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Subtracting 6ten from 7ten can be done directly:

00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000111two = 7ten

– 00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000110two = 6ten

= 00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000001two = 1ten

or via addition using the two’s complement representation of −6:

00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000111two = 7ten

+ 11111111  11111111  11111111  11111111  11111111  11111111  11111111  11111010two = 
_6ten

= 00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000001two = 1ten

Recall that overflow occurs when the result from an operation cannot be 
represented with the available hardware, in this case a 64-bit word. When can 
overflow occur in addition? When adding operands with different signs, overflow 
cannot occur. The reason is the sum must be no larger than one of the operands. 
For example, −10 + 4 = −6. Since the operands fit in 64 bits and the sum is no 
larger than an operand, the sum must fit in 64 bits as well. Therefore, no overflow 
can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but 
it’s just the opposite principle: when the signs of the operands are the same, overflow 
cannot occur. To see this, remember that c − a = c + (−a) because we subtract by 
negating the second operand and then add. Therefore, when we subtract operands 
of the same sign we end up adding operands of different signs. From the prior 
paragraph, we know that overflow cannot occur in this case either.

Knowing when an overflow cannot occur in addition and subtraction is all well 
and good, but how do we detect it when it does occur? Clearly, adding or subtracting 
two 64-bit numbers can yield a result that needs 65 bits to be fully expressed.
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FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds  
1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the 
operation for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out 
of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth 
bit is 1 + 0 + 0, yielding a 1 sum and no carry.
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The lack of a 65th bit means that when an overflow occurs, the sign bit is set with 
the value of the result instead of the proper sign of the result. Since we need just one 
extra bit, only the sign bit can be wrong. Hence, overflow occurs when adding two 
positive numbers and the sum is negative, or vice versa. This spurious sum means 
a carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a 
positive number and get a negative result, or when we subtract a positive number 
from a negative number and get a positive result. Such a ridiculous result means a 
borrow occurred from the sign bit. Figure 3.2 shows the combination of operations, 
operands, and results that indicate an overflow.

We have just seen how to detect overflow for two’s complement numbers in a 
computer. What about overflow with unsigned integers? Unsigned integers are 
commonly used for memory addresses where overflows are ignored.

Fortunately, the compiler can easily check for unsigned overflow using a branch 
instruction. Addition has overflowed if the sum is less than either of the addends, 
whereas subtraction has overflowed if the difference is greater than the minuend.

Appendix A describes the hardware that performs addition and subtraction, 
which is called an Arithmetic Logic Unit or ALU.

Arithmetic Logic 
Unit (ALU) Hardware 
that performs addition, 
subtraction, and usually 
logical operations such as 
AND and OR.

Operation Operand A Operand B
Result 

indicating overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0
A – B ≥ 0 < 0 < 0

A – B < 0 ≥ 0 ≥ 0

FIGURE 3.2 Overflow conditions for addition and subtraction.

Hardware/
Software 
Interface

The computer designer must decide how to handle arithmetic overflows. Although 
some languages like C and Java ignore integer overflow, languages like Ada and 
Fortran require that the program be notified. The programmer or the programming 
environment must then decide what to do when an overflow occurs.

Summary
A major point of this section is that, independent of the representation, the finite 
word size of computers means that arithmetic operations can create results that 
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned 
numbers, although these are almost always ignored because programs don’t want to 
detect overflow for address arithmetic, the most common use of natural numbers. 
Two’s complement presents a greater challenge, yet some software systems require 
recognizing overflow, so today all computers have a way to detect it.
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Check  
Yourself

Some programming languages allow two’s complement integer arithmetic on 
variables declared byte and half, whereas RISC-V only has integer arithmetic 
operations on full words. As we recall from Chapter  2, RISC-V does have data 
transfer operations for bytes and halfwords. What RISC-V instructions should be 
generated for byte and halfword arithmetic operations?

1.	 Load with lb, lh; arithmetic with add, sub, mul, div, using and to mask 
result to 8 or 16 bits after each operation; then store using sb, sh.

2.	 Load with lb, lh; arithmetic with add, sub, mul, div; then store using 
sb, sh.

Elaboration: One feature not generally found in general-purpose microprocessors is 
saturating operations. Saturation means that when a calculation overflows, the result is 
set to the largest positive number or the most negative number, rather than a modulo 
calculation as in two’s complement arithmetic. Saturation is likely what you want for 
media operations. For example, the volume knob on a radio set would be frustrating 
if, as you turned it, the volume would get continuously louder for a while and then 
immediately very soft. A knob with saturation would stop at the highest volume no 
matter how far you turned it. Multimedia extensions to standard instruction sets often 
offer saturating arithmetic.

Elaboration: The speed of addition depends on how quickly the carry into the high-
order bits is computed. There are a variety of schemes to anticipate the carry so that 
the worst-case scenario is a function of the log2 of the number of bits in the adder. 
These anticipatory signals are faster because they go through fewer gates in sequence, 
but it takes many more gates to anticipate the proper carry. The most popular is carry 
lookahead, which Section A.6 in Appendix A describes.

 3.3 Multiplication

Now that we have completed the explanation of addition and subtraction, we are 
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind 
ourselves of the steps of multiplication and the names of the operands. For reasons 
that will become clear shortly, we limit this decimal example to using only the 
digits 0 and 1. Multiplying 1000ten by 1001ten:

Multiplication is 
vexation, Division is 
as bad; The rule of 
three doth puzzle me, 
And practice drives me 
mad.
Anonymous, 
Elizabethan manuscript, 
1570
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The first operand is called the multiplicand and the second the multiplier. 
The final result is called the product. As you may recall, the algorithm learned 
in grammar school is to take the digits of the multiplier one at a time from right 
to left, multiplying the multiplicand by the single digit of the multiplier, and 
shifting the intermediate product one digit to the left of the earlier intermediate 
products.

The first observation is that the number of digits in the product is considerably 
larger than the number in either the multiplicand or the multiplier. In fact, if we 
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and an 
m-bit multiplier is a product that is n + m bits long. That is, n + m bits are required 
to represent all possible products. Hence, like add, multiply must cope with 
overflow because we frequently want a 64-bit product as the result of multiplying 
two 64-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two 
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 × multiplicand) in the proper place 
if the multiplier digit is a 1, or

2. Place 0 (0 × multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication 
of binary numbers must always use 0 and 1, and thus always offers only these two 
choices.

Now that we have reviewed the basics of multiplication, the traditional next 
step is to provide the highly optimized multiply hardware. We break with tradition 
in the belief that you will gain a better understanding by seeing the evolution of 
the multiply hardware and algorithm through multiple generations. For now, let’s 
assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm  
and Hardware
This design mimics the algorithm we learned in grammar school; Figure 3.3 shows 
the hardware. We have drawn the hardware so that data flow from top to bottom to 
resemble more closely the paper-and-pencil method.

Let’s assume that the multiplier is in the 64-bit Multiplier register and that the 
128-bit Product register is initialized to 0. From the paper-and-pencil example 
above, it’s clear that we will need to move the multiplicand left one digit each step, as 
it may be added to the intermediate products. Over 64 steps, a 64-bit multiplicand 
would move 64 bits to the left. Hence, we need a 128-bit Multiplicand register, 
initialized with the 64-bit multiplicand in the right half and zero in the left half. 
This register is then shifted left 1 bit each step to align the multiplicand with the 
sum being accumulated in the 128-bit Product register.
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Multiplicand
Shift left

128 bits

128-bit ALU

Product
Write

128 bits

Control test

Multiplier
Shift right

64 bits

FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register, ALU, and 
Product register are all 128 bits wide, with only the Multiplier register containing 64 bits. (Appendix A 
describes ALUs.) The 64-bit multiplicand starts in the right half of the Multiplicand register and is shifted left 
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with 
the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when 
to write new values into the Product register.

Figure 3.4 shows the three basic steps needed for each bit. The least significant 
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to 
the Product register. The left shift in step 2 has the effect of moving the intermediate 
operands to the left, just as when multiplying with paper and pencil. The shift right 
in step 3 gives us the next bit of the multiplier to examine in the following iteration. 
These three steps are repeated 64 times to obtain the product. If each step took a 
clock cycle, this algorithm would require almost 200 clock cycles to multiply two 
64-bit numbers. The relative importance of arithmetic operations like multiply 
varies with the program, but addition and subtraction may be anywhere from 5 to 
100 times more popular than multiply. Accordingly, in many applications, multiply 
can take several clock cycles without significantly affecting performance. However, 
Amdahl’s Law (see Section 1.10) reminds us that even a moderate frequency for a 
slow operation can limit performance.

This algorithm and hardware are easily refined to take one clock cycle per step. 
The speed up comes from performing the operations in parallel: the multiplier 
and multiplicand are shifted while the multiplicand is added to the product if the 
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of 
the multiplier and gets the preshifted version of the multiplicand. The hardware is 
usually further optimized to halve the width of the adder and registers by noticing 
where there are unused portions of registers and adders. Figure 3.5 shows the 
revised hardware.
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64th repetition?

1a.  Add multiplicand to product and

place the result in Product register

Multiplier0 = 01.  Test

Multiplier0

Start

Multiplier0 = 1

2.  Shift the Multiplicand register left 1 bit

3.  Shift the Multiplier register right 1 bit

No: <64 repetitions

Yes: 64 repetitions

Done

FIGURE 3.4 The first multiplication algorithm, using the hardware shown in Figure 3.3. If the 
least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. Shift the 
multiplicand left and the multiplier right in the next two steps. These three steps are repeated 64 times.

Hardware/
Software 
Interface

Replacing arithmetic by shifts can also occur when multiplying by constants. Some 
compilers replace multiplies by short constants with a series of shifts and adds. 
Because one bit to the left represents a number twice as large in base 2, shifting 
the bits left has the same effect as multiplying by a power of 2. As mentioned in 
Chapter 2, almost every compiler will perform the strength reduction optimization 
of substituting a left shift for a multiply by a power of 2.
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Multiplicand

64 bits

64-bit ALU

Product
Write

129 bits

Control
test

Shift right

FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version 
in Figure 3.3. The Multiplicand register and ALU have been reduced to 64 bits. Now the product is shifted 
right. The separate Multiplier register also disappeared. The multiplier is placed instead in the right half of 
the Product register, which has grown by one bit to 129 bits to hold the carry-out of the adder. These changes 
are highlighted in color.

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten × 3ten, or 0010two × 0011two.

Figure 3.6 shows the value of each register for each of the steps labeled 
according to Figure 3.4, with the final value of 0000 0110two or 6ten. Color is 
used to indicate the register values that change on that step, and the bit circled 
is the one examined to determine the operation of the next step.

EXAMPLE

ANSWER

Iteration Step Multiplier Multiplicand Product

0  Initial values 0011 0000 0010 0000 0000
1 1a: 1 ⇒ Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010

2 1a: 1 ⇒ Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110

3 1: 0 ⇒ No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110

4 1: 0 ⇒ No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.6 Multiply example using algorithm in Figure 3.4. The bit examined to determine the 
next step is circled in color.
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Signed Multiplication
So far, we have dealt with positive numbers. The easiest way to understand how 
to deal with signed numbers is to first convert the multiplier and multiplicand to 
positive numbers and then remember their original signs. The algorithms should 
next be run for 31 iterations, leaving the signs out of the calculation. As we learned 
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, if we 
remember that we are dealing with numbers that have infinite digits, and we are 
only representing them with 64 bits. Hence, the shifting steps would need to extend 
the sign of the product for signed numbers. When the algorithm completes, the 
lower doubleword would have the 64-bit product.

Faster Multiplication
Moore’s Law has provided so much more in resources that hardware designers can 
now build much faster multiplication hardware. Whether the multiplicand is to be 
added or not is known at the beginning of the multiplication by looking at each of 
the 64 multiplier bits. Faster multiplications are possible by essentially providing 
one 64-bit adder for each bit of the multiplier: one input is the multiplicand ANDed 
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the 
right to the inputs of adders on the left, making a stack of adders 64 high. An 
alternative way to organize these 64 additions is in a parallel tree, as Figure 3.7 
shows. Instead of waiting for 64 add times, we wait just the log2 (64) or six 64-bit 
add times.

Product1 Product0Product127 Product126 Product95..32

1 bit 1 bit 1 bit 1 bit

. . .

. . .

. . .. . .

. . . . . .

64 bits

64 bits

64 bits 64 bits 64 bits

64 bits 64 bits

Mplier63 • Mcand Mplier62 • Mcand Mplier61 • Mcand Mplier60 • Mcand Mplier3 • Mcand Mplier2 • Mcand Mplier1 • Mcand Mplier0 • Mcand

FIGURE 3.7 Fast multiplication hardware. Rather than use a single 64-bit adder 63 times, this hardware “unrolls the loop” to use 63 
adders and then organizes them to minimize delay.
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In fact, multiply can go even faster than six add times because of the use of carry 
save adders (see Section A.6 in Appendix A), and because it is easy to pipeline such 
a design to be able to support many multiplies simultaneously (see Chapter 4).

Multiply in RISC-V
To produce a properly signed or unsigned 128-bit product, RISC-V has four 
instructions: multiply (mul), multiply high (mulh), multiply high unsigned (mulhu), 
and multiply high signed-unsigned (mulhsu). To get the integer 64-bit product, 
the programmer uses mul. To get the upper 64 bits of the 128-bit product, the 
programmer uses (mulh) if both operands are signed, (mulhu) if both operands 
are unsigned, or (mulhsu) if one operand is signed and the other is unsigned.

Summary
Multiplication hardware simply shifts and adds, as derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions 
for multiplications by powers of 2. With much more hardware we can do the adds 
in parallel, and do them much faster.

Hardware/
Software 
Interface

Software can use the multiply-high instructions to check for overflow from 64-bit 
multiplication. There is no overflow for 64-bit unsigned multiplication if mulhu’s 
result is zero. There is no overflow for 64-bit signed multiplication if all of the bits 
in mulh’s result are copies of the sign bit of mul’s result.

 3.4 Division

The reciprocal operation of multiply is divide, an operation that is even less frequent 
and even quirkier. It even offers the opportunity to perform a mathematically 
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall 
the names of the operands and the division algorithm from grammar school. For 
reasons similar to those in the previous section, we limit the decimal digits to just 
0 or 1. The example is dividing 1,001,010ten by 1000ten:

Divide et impera.
Latin for “Divide and 
rule,” ancient political 
maxim cited by 
Machiavelli, 1532
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Divide’s two operands, called the dividend and divisor, and the result, called 
the quotient, are accompanied by a second result, called the remainder. Here is 
another way to express the relationship between the components:

Dividend Quotient Divisor Remainder= × +

where the remainder is smaller than the divisor. Infrequently, programs use the 
divide instruction just to get the remainder, ignoring the quotient.

The basic division algorithm from grammar school tries to see how big a number 
can be subtracted, creating a digit of the quotient on each attempt. Our carefully 
selected decimal example uses just the numbers 0 and 1, so it’s easy to figure out 
how many times the divisor goes into the portion of the dividend: it’s either 0 times 
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to 
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the 
quotient and the remainder are nonnegative. The division operands and both 
results are 64-bit values, and we will ignore the sign for now.

A Division Algorithm and Hardware
Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with 
the 64-bit Quotient register set to 0. Each iteration of the algorithm needs to move 
the divisor to the right one digit, so we start with the divisor placed in the left half 
of the 128-bit Divisor register and shift it right 1 bit each step to align it with the 
dividend. The Remainder register is initialized with the dividend.

Figure 3.9 shows three steps of the first division algorithm. Unlike a human, the 
computer isn’t smart enough to know in advance whether the divisor is smaller 

dividend A number 
being divided.

divisor A number that 
the dividend is divided by.

quotient The primary 
result of a division; 
a number that when 
multiplied by the 
divisor and added to the 
remainder produces the 
dividend.

remainder The 
secondary result of 
a division; a number 
that when added to the 
product of the quotient 
and the divisor produces 
the dividend.

Divisor
Shift right

128 bits

128-bit ALU

Remainder
Write

128 bits

Control
test

Quotient
Shift left

64 bits

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder 
register are all 128 bits wide, with only the Quotient register being 62 bits. The 64-bit divisor starts in the 
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with  
the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new 
value into the Remainder register.
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65th repetition?

2a.  Shift the Quotient register to the left,

setting the new rightmost bit to 1

Remainder < 0Remainder ≥ 0
Test Remainder

Start

3.  Shift the Divisor register right 1 bit

No: <65 repetitions

Yes: 65 repetitions

Done

1.  Subtract the Divisor register from the

Remainder register and place the 

result in the Remainder register

2b.  Restore the original value by adding

the Divisor register to the Remainder

register and placing the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive, 
the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder after 
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds 
the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the 
divisor properly, relative to the dividend for the next iteration. These steps are repeated 65 times.
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than the dividend. It must first subtract the divisor in step 1; remember that this 
is how we performed comparison. If the result is positive, the divisor was smaller 
or equal to the dividend, so we generate a 1 in the quotient (step 2a). If the result 
is negative, the next step is to restore the original value by adding the divisor back 
to the remainder and generate a 0 in the quotient (step 2b). The divisor is shifted 
right, and then we iterate again. The remainder and quotient will be found in their 
namesake registers after the iterations complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten, 
or 0000 0111two by 0010two.

Figure 3.10 shows the value of each register for each of the steps, with the 
quotient being 3ten and the remainder 1ten. Notice that the test in step 2 of 
whether the remainder is positive or negative simply checks whether the sign 
bit of the Remainder register is a 0 or 1. The surprising requirement of this 
algorithm is that it takes n + 1 steps to get the proper quotient and remainder.

This algorithm and hardware can be refined to be faster and cheaper. The speed-
up comes from shifting the operands and the quotient simultaneously with the 

EXAMPLE

ANSWER

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem – Div 0000 0010 0000 1110 0111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem – Div 0000 0001 0000 1111 0111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem – Div 0000 0000 1000 1111 1111

2b: Rem < 0 ⇒ +Div, SLL Q, Q0 = 0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem – Div 0000 0000 0100 0000 0011

2a: Rem ≥ 0 ⇒ SLL Q, Q0 = 1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem – Div 0001 0000 0010 0000 0001

2a: Rem ≥ 0 ⇒ SLL Q, Q0 = 1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to 
determine the next step is circled in color.
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Divisor

64 bits

64-bit ALU

Remainder
Write

129 bits

Control
test

Shift left
Shift right

FIGURE 3.11 An improved version of the division hardware. The Divisor register, ALU, and 
Quotient register are all 64 bits wide. Compared to Figure 3.8, the ALU and Divisor registers are halved 
and the remainder is shifted left. This version also combines the Quotient register with the right half of the 
Remainder register. As in Figure 3.5, the Remainder register has grown to 129 bits to make sure the carry out 
of the adder is not lost.

subtraction. This refinement halves the width of the adder and registers by noticing 
where there are unused portions of registers and adders. Figure 3.11 shows the 
revised hardware.

Signed Division
So far, we have ignored signed numbers in division. The simplest solution is to 
remember the signs of the divisor and dividend and then negate the quotient if the 
signs disagree.

Elaboration: The one complication of signed division is that we must also set the 
sign of the remainder. Remember that the following equation must always hold:

Dividend Quotient Divisor Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing 
all the combinations of ±7ten by ±2ten. The first case is easy:

7 2 Quotient 3 Remainder 1: ,

Checking the results:

7 3 2 1 6 1( )
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If we change the sign of the dividend, the quotient must change as well:

7 2 Quotient 3:

Rewriting our basic formula to calculate the remainder:

Remainder Dividend Quotient Divisor 7 3 2
7 6

)( ( )
( )

x
= 11

So,

7 2 Quotient 3  Remainder 1: ,

Checking the results again:

7 3 2 1 6 1( )

The reason the answer isn’t a quotient of −4 and a remainder of +1, which would also 
fit this formula, is that the absolute value of the quotient would then change depending 
on the sign of the dividend and the divisor! Clearly, if

( ) ( )x y x y? ÷

programming would be an even greater challenge. This anomalous behavior is avoided 
by following the rule that the dividend and remainder must have identical signs, no 
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

7 2 Quotient 3  Remainder 1
7 2 Quotient 3  Remainde

: ,
: , rr 1

Thus, the correctly signed division algorithm negates the quotient if the signs of the 
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we would 
like to be able to speed up division by throwing hardware at it. We used many 
adders to speed up multiply, but we cannot do the same trick for divide. The reason 
is that we need to know the sign of the difference before we can perform the next 
step of the algorithm, whereas with multiply we could calculate the 64 partial 
products immediately.
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If we change the sign of the dividend, the quotient must change as well:

7 2 Quotient 3:

Rewriting our basic formula to calculate the remainder:

Remainder Dividend Quotient Divisor 7 3 2
7 6

)( ( )
( )

x
= 11

So,

7 2 Quotient 3  Remainder 1: ,

Checking the results again:

7 3 2 1 6 1( )

The reason the answer isn’t a quotient of −4 and a remainder of +1, which would also 
fit this formula, is that the absolute value of the quotient would then change depending 
on the sign of the dividend and the divisor! Clearly, if

( ) ( )x y x y? ÷

programming would be an even greater challenge. This anomalous behavior is avoided 
by following the rule that the dividend and remainder must have identical signs, no 
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

7 2 Quotient 3  Remainder 1
7 2 Quotient 3  Remainde

: ,
: , rr 1

Thus, the correctly signed division algorithm negates the quotient if the signs of the 
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we would 
like to be able to speed up division by throwing hardware at it. We used many 
adders to speed up multiply, but we cannot do the same trick for divide. The reason 
is that we need to know the sign of the difference before we can perform the next 
step of the algorithm, whereas with multiply we could calculate the 64 partial 
products immediately.

There are techniques to produce more than one bit of the quotient per step. 
The SRT division technique tries to predict several quotient bits per step, using a 
table lookup based on the upper bits of the dividend and remainder. It relies on 
subsequent steps to correct wrong predictions. A typical value today is 4 bits. The 
key is guessing the value to subtract. With binary division, there is only a single 
choice. These algorithms use 6 bits from the remainder and 4 bits from the divisor 
to index a table that determines the guess for each step.

The accuracy of this fast method depends on having proper values in the lookup 
table. The Fallacy on page 224 in Section 3.8 shows what can happen if the table is 
incorrect.

Divide in RISC-V
You may have already observed that the same sequential hardware can be used for 
both multiply and divide in Figures 3.5 and 3.11. The only requirement is a 128-bit 
register that can shift left or right and a 64-bit ALU that adds or subtracts.

To handle both signed integers and unsigned integers, RISC-V has two 
instructions for division and two instructions for remainder: divide (div), divide 
unsigned (divu), remainder (rem), and remainder unsigned (remu).

Summary
The common hardware support for multiply and divide allows RISC-V to 

provide a single pair of 64-bit registers that are used both for multiply and divide. 
We accelerate division by predicting multiple quotient bits and then correcting 
mispredictions later. Figure 3.12 summarizes the enhancements to the RISC-V 
architecture for the last two sections.

Hardware/
Software 
Interface

RISC-V divide instructions ignore overflow, so software must determine whether 
the quotient is too large. In addition to overflow, division can also result in an 
improper calculation: division by 0. Some computers distinguish these two 
anomalous events. RISC-V software must check the divisor to discover division by 
0 as well as overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back 
if the remainder is negative. It simply adds the dividend to the shifted remainder in 
the following step, since (r + d) × 2 − d = r − 2 + d × 2 − d = r × 2 + d. This 
nonrestoring division algorithm, which takes one clock cycle per step, is explored further 
in the exercises; the algorithm above is called restoring division. A third algorithm that 
doesn’t save the result of the subtract if it’s negative is called a nonperforming division 
algorithm. It averages one-third fewer arithmetic operations.



RISC-V assembly language

Category ExampleInstruction Meaning Comments

Arithmetic Add add x5, x6, x7
sub x5, x6, x7

addi x5, x6, 20

slt x5, x6, x7

sltu x5, x6, x7

slti x5, x6, x7

sltiu x5, x6, x7

mul x5, x6, x7

rem x5, x6, x7

x5 = x6 + x7
x5 = x6 - x7

x5 = x6 + 20

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = 1 if x5 < x6, else 0

x5 = x6 × x7 Lower 64 bits of 128-bit product

Three register operands

Subtract Three register operands

Add immediate Used to add constants

Set if less than Three register operands

Set if less than, unsigned Three register operands

Set if less than, immediate Comparison with immediate

Set if less than immediate,
uns.

Comparison with immediate

Multiply

Multiply high mulh x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit signed product

Multiply high, unsigned mulhu x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit unsigned 
product

Multiply high, signed-
unsigned

mulhsu x5, x6, x7 x5 = (x6 × x7) >> 64 Upper 64 bits of 128-bit signed-
unsigned product

Divide div x5, x6, x7 x5 = x6 / x7 Divide signed 64-bit numbers

Divide unsigned divu x5, x6, x7 x5 = x6 / x7 Divide unsigned 64-bit numbers

Data
transfer 

Remainder Remainder of signed 64-bit division

Remainder unsigned remu x5, x6, x7

ld x5, 40(x6)

Remainder of unsigned 64-bit division

Load doubleword Doubleword from memory to register

Store doubleword sd x5, 40(x6)

lw x5, 40(x6)

Doubleword from register to memory

Load word Word from memory to register

Load word, unsigned lwu x5, 40(x6)

sw x5, 40(x6)

Unsigned word from memory to register

Store word Word from register to memory

Load halfword lh x5, 40(x6)

lhu x5, 40(x6)

sh x5, 40(x6)

Halfword from memory to register

Load halfword, unsigned Unsigned halfword from memory to register

Store halfword Halfword from register to memory
Load byte Byte from memory to registerlb x5, 40(x6)

x5 = x6 % x7

x5 = x6 % x7

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5

x5 = Memory[x6 + 40]

x5 = Memory[x6 + 40]

Memory[x6 + 40] = x5
x5 = Memory[x6 + 40]

Logical

Shift

Conditional
branch

Store byte Byte from register to memory

Load reserved Load; 1st half of atomic swap

Store conditional Store; 2nd half of atomic swap

Load upper immediate Loads 20-bit constant shifted left 12 bits

Add upper immediate to PC Used for PC-relative data addressing

And Three reg. operands; bit-by-bit AND

Inclusive or Three reg. operands; bit-by-bit OR

And immediate x5 = x6 & 20 Bit-by-bit AND reg. with constant

Exclusive or immediate xori x5, x6, 20 x5 = x6 ^ 20 Bit-by-bit XOR reg. with constant

Shift left logical sll x5, x6, x7 x5 = x6 << x7 Shift left by register

Shift right logical srl x5, x6, x7 x5 = x6 >> x7 Shift right by register

Exclusive or

sb x5, 40(x6)

lr.d x5, (x6)

sc.d x7, x5, (x6)

lui x5, 0x12345

auipc x5, 0x12345

and x5, x6, x7

or x5, x6, x8

xor x5, x6, x9

andi x5, x6, 20
Inclusive or immediate x5 = x6 | 20 Bit-by-bit OR reg. with constantori x5, x6, 20

Memory[x6 + 40] = x5

x5 = Memory[x6]

Memory[x6] = x5; x7 = 0/1

x5 = 0x12345000

x5 = PC + 0x12345000

x5 = x6 & x7

x5 = x6 | x8

x5 = x6 ^ x9 Three reg. operands; bit-by-bit XOR

Load byte, unsigned Byte halfword from memory to registerlbu x5, 40(x6) x5 = Memory[x6 + 40]

Shift right arithmetic sra x5, x6, x7 x5 = x6 >> x7 Arithmetic shift right by register

Shift left logical immediate slli x5, x6, 3 x5 = x6 << 3 Shift left by immediate

Shift right logical 
immediate

srli x5, x6, 3 x5 = x6 >> 3 Shift right by immediate

Shift right arithmetic 
immediate

srai x5, x6, 3 x5 = x6 >> 3 Arithmetic shift right by immediate

Branch if equal beq x5, x6, 100 if (x5 == x6) go to PC+100 PC-relative branch if registers equal

Branch if not equal bne x5, x6, 100 if (x5 != x6) go to PC+100 PC-relative branch if registers not equal

Branch if less than blt x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less

Branch if greater or equal bge x5, x6, 100 if (x5 >= x6) go to PC+100 PC-relative branch if registers greater or equal

Branch if less, unsigned bltu x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less

Branch if greatr/eq, 
unsigned

bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 PC-relative branch if registers greater or equal

Uncondit-
ional branch

Jump and link jal x1, 100 x1 = PC+4; go to PC+100 PC-relative procedure call

Jump and link register jalr x1, 100(x5) x1 = PC+4; go to x5+100 Procedure return; indirect call

FIGURE 3.12 RISC-V core architecture. RISC-V machine language is listed in the RISC-V Reference Data Card at the front of this 
book.
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 3.5 Floating Point

Going beyond signed and unsigned integers, programming languages support 
numbers with fractions, which are called reals in mathematics. Here are some 
examples of reals:

3.14159265… ten (pi)

2.71828… ten (e)

0.000000001ten or 1.0ten × 10−9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten × 109 (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it was 
bigger than we could represent with a 32-bit signed integer. The alternative notation 
for the last two numbers is called scientific notation, which has a single digit to 
the left of the decimal point. A number in scientific notation that has no leading 
0s is called a normalized number, which is the usual way to write it. For example, 
1.0ten × 10−9 is in normalized scientific notation, but 0.1ten × 10−8 and 10.0ten × 10−10  
are not.

Just as we can show decimal numbers in scientific notation, we can also show 
binary numbers in scientific notation:

1 2two
1.0

To keep a binary number in the normalized form, we need a base that we can 
increase or decrease by exactly the number of bits the number must be shifted to 
have one nonzero digit to the left of the decimal point. Only a base of 2 fulfills our 
need. Since the base is not 10, we also need a new name for decimal point; binary 
point will do fine.

Computer arithmetic that supports such numbers is called floating point 
because it represents numbers in which the binary point is not fixed, as it is for 
integers. The programming language C uses the name float for such numbers. Just 
as in scientific notation, numbers are represented as a single nonzero digit to the 
left of the binary point. In binary, the form is

1 2two.xxxxxxxxx yyyy�

(Although the computer represents the exponent in base 2 as well as the rest of the 
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in the normalized form offers three 
advantages. It simplifies exchange of data that includes floating-point numbers; 
it simplifies the floating-point arithmetic algorithms to know that numbers will 

scientific notation A 
notation that renders 
numbers with a single 
digit to the left of the 
decimal point.

normalized A number 
in floating-point notation 
that has no leading 0s.

floating 
point Computer 
arithmetic that represents 
numbers in which the 
binary point is not fixed.

Speed gets you 
nowhere if you’re 
headed the wrong way.
American proverb
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always be in this form; and it increases the accuracy of the numbers that can 
be stored in a word, since real digits to the right of the binary point replace the 
unnecessary leading 0s.

Floating-Point Representation
A designer of a floating-point representation must find a compromise between 

the size of the fraction and the size of the exponent, because a fixed word size 
means you must take a bit from one to add a bit to the other. This tradeoff is between 
precision and range: increasing the size of the fraction enhances the precision of the 
fraction, while increasing the size of the exponent increases the range of numbers 
that can be represented. As our design guideline from Chapter 2 reminds us, good 
design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The 
representation of a RISC-V floating-point number is shown below, where s is  
the sign of the floating-point number (1 meaning negative), exponent is the value 
of the 8-bit exponent field (including the sign of the exponent), and fraction is 
the 23-bit number. As we recall from Chapter 2, this representation is sign and 
magnitude, since the sign is a separate bit from the rest of the number.

In general, floating-point numbers are of the form

( )1 F 2S E

F involves the value in the fraction field and E involves the value in the exponent 
field; the exact relationship to these fields will be spelled out soon. (We will shortly 
see that RISC-V does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give RISC-V computer arithmetic 
an extraordinary range. Fractions almost as small as 2.0ten × 10−38 and numbers 
almost as large as 2.0ten × 1038 can be represented in a computer. Alas, extraordinary 
differs from infinite, so it is still possible for numbers to be too large. Thus, overflow 
interrupts can occur in floating-point arithmetic as well as in integer arithmetic. 
Notice that overflow here means that the exponent is too large to be represented 
in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as programmers 
will want to know when they have calculated a number that is too large to be 
represented, they will want to know if the nonzero fraction they are calculating 
has become so small that it cannot be represented; either event could result in a 
program giving incorrect answers. To distinguish it from overflow, we call this 
event underflow. This situation occurs when the negative exponent is too large to 
fit in the exponent field.

fraction The value, 
generally between 0 and 
1, placed in the fraction 
field. The fraction is also 
called the mantissa.

exponent In the 
numerical representation 
system of floating-point 
arithmetic, the value that 
is placed in the exponent 
field.

overflow (floating-
point) A situation in 
which a positive exponent 
becomes too large to fit in 
the exponent field.

underflow (floating-
point) A situation 
in which a negative 
exponent becomes too 
large to fit in the exponent 
field.
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One way to reduce the chances of underflow or overflow is to offer another 
format that has a larger exponent. In C, this number is called double, and operations 
on doubles are called double precision floating-point arithmetic; single precision 
floating point is the name of the earlier format.

The representation of a double precision floating-point number takes one RISC-V 
doubleword, as shown below, where s is still the sign of the number, exponent is the 
value of the 11-bit exponent field, and fraction is the 52-bit number in the fraction field.

RISC-V double precision allows numbers almost as small as 2.0ten × 10−308 and 
almost as large as 2.0ten × 10308. Although double precision does increase the exponent 
range, its primary advantage is its greater precision because of the much larger fraction.

Exceptions and Interrupts
What should happen on an overflow or underflow to let the user know that a problem 
occurred? Some computers signal these events by raising an exception, sometimes 
called an interrupt. An exception or interrupt is essentially an unscheduled procedure 
call. The address of the instruction that overflowed is saved in a register, and the 
computer jumps to a predefined address to invoke the appropriate routine for that 
exception. The interrupted address is saved so that in some situations the program 
can continue after corrective code is executed. (Section 4.9 covers exceptions in more 
detail; Chapter 5 describes other situations where exceptions and interrupts occur.) 
RISC-V computers do not raise an exception on overflow or underflow; instead, 
software can read the floating-point control and status register (fcsr) to check whether 
overflow or underflow has occurred.

IEEE 754 Floating-Point Standard
These formats go beyond RISC-V. They are part of the IEEE 754 floating-point 
standard, found in virtually every computer invented since 1980. This standard has 
greatly improved both the ease of porting floating-point programs and the quality 
of computer arithmetic.

To pack even more bits into the number, IEEE 754 makes the leading 1 bit of 
normalized binary numbers implicit. Hence, the number is actually 24 bits long 
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double 
precision (1 + 52). To be precise, we use the term significand to represent the 24- or 

double precision  
A floating-point value 
represented in a 64-bit 
doubleword.

single precision  
A floating-point value 
represented in a 32-bit 
word.

exception Also 
called interrupt. An 
unscheduled event 
that disrupts program 
execution; used to detect 
overflow.

interrupt An exception 
that comes from outside 
of the processor. (Some 
architectures use the 
term interrupt for all 
exceptions.)
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53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or  
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so 
that the hardware won’t attach a leading 1 to it.

Thus 00 … 00two represents 0; the representation of the rest of the numbers uses 
the form from before with the hidden 1 added:

( ) ( )1 1 Fraction 2ES

where the bits of the fraction represent a number between 0 and 1 and E specifies 
the value in the exponent field, to be given in detail shortly. If we number the bits 
of the fraction from left to right s1, s2, s3, …, then the value is

( ) ( ( ) ( ) ( ) ( ) )1 1 s1 2 s2 2 s3 2 s4 2 2S 1 2 3 4 E…

Figure 3.13 shows the encodings of IEEE 754 floating-point numbers. Other 
features of IEEE 754 are special symbols to represent unusual events. For example, 
instead of interrupting on a divide by 0, software can set the result to a bit pattern 
representing +∞ or −∞; the largest exponent is reserved for these special 
symbols. When the programmer prints the results, the program will output an 
infinity symbol. (For the mathematically trained, the purpose of infinity is to form 
topological closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 
or subtracting infinity from infinity. This symbol is NaN, for Not a Number. The 
purpose of NaNs is to allow programmers to postpone some tests and decisions to 
a later time in the program when they are convenient.

The designers of IEEE 754 also wanted a floating-point representation that 
could be easily processed by integer comparisons, especially for sorting. This 
desire is why the sign is in the most significant bit, allowing a quick test of less 
than, greater than, or equal to 0. (It’s a little more complicated than a simple 
integer sort, since this notation is essentially sign and magnitude rather than 
two’s complement.)

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0  Nonzero 0  Nonzero ± denormalized number

1–254 Anything 1–2046 Anything ± floating-point number

255 0 2047 0 ± infinity

255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.13 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the 
sign. Denormalized numbers are described in the Elaboration on page 216. This information is also found in 
Column 4 of the RISC-V Reference Data Card at the front of this book.
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Placing the exponent before the significand also simplifies the sorting of 
floating-point numbers using integer comparison instructions, since numbers with 
bigger exponents look larger than numbers with smaller exponents, as long as both 
exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two’s 
complement or any other notation in which negative exponents have a 1 in the 
most significant bit of the exponent field, a negative exponent will look like a big 
number. For example, 1.0two × 2−1 would be represented in a single precision as

(Remember that the leading 1 is implicit in the significand.) The value 1.0two × 2+1  
would look like the smaller binary number

The desirable notation must therefore represent the most negative exponent as 
00 … 00two and the most positive as 11 … 11two. This convention is called biased 
notation, with the bias being the number subtracted from the normal, unsigned 
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of −1 is 
represented by the bit pattern of the value −1 + 127ten, or 126ten = 0111 1110two, 
and +1 is represented by 1 + 127, or 128ten = 1000 0000two. The exponent bias for 
double precision is 1023. Biased exponent means that the value represented by a 
floating-point number is really

( ) ( ) ( )1 1 Fraction 2 ES xponent Bias−

The range of single precision numbers is then from as small as

21 two
126.00000000000000000000000

to as large as

1 11111111111111111111111 2two
127 ..

Let’s demonstrate.
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Show the IEEE 754 binary representation of the number −0.75ten in single and 
double precision.

The number −0.75ten is also

� �3/4  or 3/2ten ten
2

It is also represented by the binary fraction

� �11 /2  or 11two ten two
2 0.

In scientific notation, the value is

0 0.11 2two

and in normalized scientific notation, it is

1 1 2two
1.

The general representation for a single precision number is

( ) ( ) ( )1 1 Fraction 2 ES xponent 127

Subtracting the bias 127 from the exponent of −1.1two × 2−1 yields

( ) ( . ) ( )1 1 211
two

126 127000 0000 0000 0000 0000 000

The single precision binary representation of −0.75ten is then

The double precision representation is

( ) ( .1 1 11 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0 0
two

1 22 1 232) ( )

Now let’s try going the other direction.

EXAMPLE

ANSWER
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Converting Binary to Decimal Floating Point

What decimal number does this single precision float represent?

The sign bit is 1, the exponent field contains 129, and the fraction field contains 
1 × 2−2 = 1/4, or 0.25. Using the basic equation,

( ) ( ) ( ) ( . )( ) (1 1 Fraction 2 1 1 25 2Exponent Bias 1 129 1S 0 227

21 1 25 2
1 25 4
5

)

.
.
.0

In the next few subsections, we will give the algorithms for floating-point 
addition and multiplication. At their core, they use the corresponding integer 
operations on the significands, but extra bookkeeping is necessary to handle 
the exponents and normalize the result. We first give an intuitive derivation of 
the algorithms in decimal and then give a more detailed, binary version in the 
figures.

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20 
years after the standard to see what changes, if any, should be made. The revised 
standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format 
(“half precision”) and a 128-bit format (“quadruple precision”). The revised standard 
also adds decimal floating point arithmetic.

Elaboration: In an attempt to increase range without removing bits from the 
significand, some computers before the IEEE 754 standard used a base other than 2. 
For example, the IBM 360 and 370 mainframe computers use base 16. Since changing 
the IBM exponent by one means shifting the significand by 4 bits, “normalized” base  
16 numbers can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that 
up to 3 bits must be dropped from the significand, which leads to surprising problems 
in the accuracy of floating-point arithmetic. IBM mainframes now support IEEE 754 as 
well as the old hex format.

EXAMPLE

ANSWER
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Floating-Point Addition
Let’s add numbers in scientific notation by hand to illustrate the problems in 
floating-point addition: 9.999ten × 101 + 1.610ten × 10−1. Assume that we can store 
only four decimal digits of the significand and two decimal digits of the exponent.

 Step 1. To be able to add these numbers properly, we must align the decimal point 
of the number that has the smaller exponent. Hence, we need a form of 
the smaller number, 1.610ten × 10−1, that matches the larger exponent. 
We obtain this by observing that there are multiple representations of 
an unnormalized floating-point number in scientific notation:

1 61 1 161 1 161 1ten
1

te tn en
1. . .0 0 0 0 0 0 0 0 00

 The number on the right is the version we desire, since its exponent 
matches the exponent of the larger number, 9.999ten × 101. Thus, the 
first step shifts the significand of the smaller number to the right until 
its corrected exponent matches that of the larger number. But we can 
represent only four decimal digits so, after shifting, the number is really

0 0 0. 16 1 1�

 Step 2. Next comes the addition of the significands:

�

9 999
0 016

10 015

.

.
.

ten

ten

ten

 The sum is 10.015ten × 101.
 Step 3. This sum is not in normalized scientific notation, so we need to  

adjust it:

1 15 1 1 15 1ten
1

ten
20 0 0 00 0. .

 Thus, after the addition we may have to shift the sum to put it into 
normalized form, adjusting the exponent appropriately. This example 
shows shifting to the right, but if one number were positive and the 
other were negative, it would be possible for the sum to have many 
leading 0s, requiring left shifts. Whenever the exponent is increased 
or decreased, we must check for overflow or underflow—that is, we 
must make sure that the exponent still fits in its field.

 Step 4. Since we assumed that the significand could be only four digits long 
(excluding the sign), we must round the number. In our grammar 
school algorithm, the rules truncate the number if the digit to the 
right of the desired point is between 0 and 4 and add 1 to the digit if 
the number to the right is between 5 and 9. The number

1 15 1ten
2.00 0�
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 is rounded to four digits in the significand to

1 2 1ten
2.00 0�

 since the fourth digit to the right of the decimal point was between 5 
and 9. Notice that if we have bad luck on rounding, such as adding 1 
to a string of 9s, the sum may no longer be normalized and we would 
need to perform step 3 again.

Figure 3.14 shows the algorithm for binary floating-point addition that follows this 
decimal example. Steps 1 and 2 are similar to the example just discussed: adjust the 
significand of the number with the smaller exponent and then add the two significands. 
Step 3 normalizes the results, forcing a check for overflow or underflow. The test for 
overflow and underflow in step 3 depends on the precision of the operands. Recall 
that the pattern of all 0 bits in the exponent is reserved and used for the floating-point 
representation of zero. Moreover, the pattern of all 1 bits in the exponent is reserved for 
indicating values and situations outside the scope of normal floating-point numbers 
(see the Elaboration on page 216). For the example below, remember that for single 
precision, the maximum exponent is 127, and the minimum exponent is −126.

Binary Floating-Point Addition

Try adding the numbers 0.5ten and −0.4375ten in binary using the algorithm in 
Figure 3.14.

Let’s first look at the binary version of the two numbers in normalized scientific 
notation, assuming that we keep 4 bits of precision:

0

0 0 000

0

1

0

.

. .

.

5 1/2 1/2

1 1 2 1. 2

4375

ten ten ten

two two two
1

tten ten ten

two two two

7/16 7/2

111 111 2 1 11

4

00 0 0 0 0. . . 22 2

Now we follow the algorithm:

 Step 1. The significand of the number with the lesser exponent (−1.11two × 2−2) 
is shifted right until its exponent matches the larger number:

1 11 2 111 2two
2

two
1. .0 0

 Step 2. Add the significands:

1 2 111 2 1 2two
1

two
1

two
1. ( . ) .000 0 0 00

EXAMPLE

ANSWER
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Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1.  Compare the exponents of the two numbers;

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

No Exception

FIGURE 3.14 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3.
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 Step 3. Normalize the sum, checking for overflow or underflow:

0 00 0 0 0 0 00
000

31. . .
.

1 2 1 2 1 2
1 2

two two
2

two

two
4

 Since 127 ≥ −4 ≥ −126, there is no overflow or underflow. (The biased 
exponent would be −4 + 127, or 123, which is between 1 and 254, the 
smallest and largest unreserved biased exponents.)

 Step 4. Round the sum:

1 2two
4.000

 The sum already fits exactly in 4 bits, so there is no change to the bits 
due to rounding.

 This sum is then

1 2 1 1

1/2 1/16 625
two

4
two two

ten ten

. . .

.

000 0 000 000 0 000

0 04
tten

 This sum is what we would expect from adding 0.5ten to −0.4375ten.

Many computers dedicate hardware to run floating-point operations as fast as possible. 
Figure 3.15 sketches the basic organization of hardware for floating-point addition.

Floating-Point Multiplication
Now that we have explained floating-point addition, let’s try floating-point 
multiplication. We start by multiplying decimal numbers in scientific notation by 
hand: 1.110ten × 1010 × 9.200ten × 10−5. Assume that we can store only four digits of 
the significand and two digits of the exponent.

 Step 1. Unlike addition, we calculate the exponent of the product by simply 
adding the exponents of the operands together:

New exponent 1 5 50 ( )

 Let’s do this with the biased exponents as well to make sure we obtain 
the same result: 10 + 127 = 137, and −5 + 127 = 122, so

New exponent 137 122 259

 This result is too large for the 8-bit exponent field, so something is 
amiss! The problem is with the bias because we are adding the biases as 
well as the exponents:

New exponent 1 127 5 127 5 2 127 259( ) ( ) ( )0
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Compare

exponents
Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Shift smaller

number right

Add

Normalize

Round

FIGURE 3.15 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.14 correspond 
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is 
larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the 
smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together 
using the big ALU. The normalization step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates 
the final result, which may require normalizing again to produce the actual final result.
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 Accordingly, to get the correct biased sum when we add biased numbers, 
we must subtract the bias from the sum:

New exponent 137 122 127 259 127 132 5 127( )

 and 5 is indeed the exponent we calculated initially.
 Step 2. Next comes the multiplication of the significands:

 There are three digits to the right of the decimal point for each operand, 
so the decimal point is placed six digits from the right in the product 
significand:

1 212 ten0 000.

 If we can keep only three digits to the right of the decimal point, the 
product is 10.212 × 105.

 Step 3. This product is unnormalized, so we need to normalize it:

1 212 1 1 212 1ten
5

ten
60 0 0 0. .

 Thus, after the multiplication, the product can be shifted right one digit 
to put it in normalized form, adding 1 to the exponent. At this point, 
we can check for overflow and underflow. Underflow may occur if both 
operands are small—that is, if both have large negative exponents.

 Step 4. We assumed that the significand is only four digits long (excluding the 
sign), so we must round the number. The number

1 212 1ten
6.0 0�

 is rounded to four digits in the significand to

1 21 1ten
6.0 0�

 Step 5. The sign of the product depends on the signs of the original operands. 
If they are both the same, the sign is positive; otherwise, it’s negative. 
Hence, the product is

1 21 1ten
6.0 0

 The sign of the sum in the addition algorithm was determined by 
addition of the significands, but in multiplication, the signs of the 
operands determine the sign of the product.
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5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1.  Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

No Exception

FIGURE 3.16 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if 
rounding causes the sum to be unnormalized, we must repeat step 3.
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 Once again, as Figure 3.16 shows, multiplication of binary floating-
point numbers is quite similar to the steps we have just completed. 
We start with calculating the new exponent of the product by adding 
the biased exponents, being sure to subtract one bias to get the proper 
result. Next is multiplication of significands, followed by an optional 
normalization step. The size of the exponent is checked for overflow 
or underflow, and then the product is rounded. If rounding leads to 
further normalization, we once again check for exponent size. Finally, 
set the sign bit to 1 if the signs of the operands were different (negative 
product) or to 0 if they were the same (positive product).

Binary Floating-Point Multiplication

Let’s try multiplying the numbers 0.5ten and −0.4375ten, using the steps in 
Figure 3.16.

In binary, the task is multiplying 1.000two × 2−1 by −1.110two × 2−2.

 Step 1. Adding the exponents without bias:

1 2 3( )

 or, using the biased representation:
( ) ( ) ( ) ( )1 127 2 127 127 1 2 127 127 127

3 127 124

 Step 2. Multiplying the significands:

 The product is 1.110000two × 2−3, but we need to keep it to 4 bits, so it is 
1.110two × 2−3.

 Step 3. Now we check the product to make sure it is normalized, and then check 
the exponent for overflow or underflow. The product is already normalized 
and, since 127 ≥ −3 ≥ −126, there is no overflow or underflow. (Using 
the biased representation, 254 ≥ 124 ≥ 1, so the exponent fits.)

 Step 4. Rounding the product makes no change:

1 110 2 3. two

EXAMPLE

ANSWER
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 Step 5. Since the signs of the original operands differ, make the sign of the 
product negative. Hence, the product is

1 110 2 3. two

 Converting to decimal to check our results:

 The product of 0.5ten and −0.4375ten is indeed −0.21875ten.

Floating-Point Instructions in RISC-V
RISC-V supports the IEEE 754 single-precision and double-precision formats with 
these instructions:

n	 Floating-point addition, single (fadd.s) and addition, double (fadd.d)

n	 Floating-point subtraction, single (fsub.s) and subtraction, double (fsub.d)

n	 Floating-point multiplication, single (fmul.s) and multiplication, double (fmul.d)

n	 Floating-point division, single (fdiv.s) and division, double (fdiv.d)

n	 Floating-point square root, single (fsqrt.s) and square root, double (fsqrt.d)

n	 Floating-point equals, single (feq.s) and equals, double (feq.d)

n	 Floating-point less-than, single (flt.s) and less-than, double (flt.d)

n	 Floating-point less-than-or-equals, single (fle.s) and less-than-or-equals, 
double (fle.d)

The comparison instructions, feq, flt, and fle, set an integer register to 0 if the 
comparison is false and 1 if it is true. Software can thus branch on the result of a 
floating-point comparison using the integer branch instructions beq and bne.

The RISC-V designers decided to add separate floating-point registers. They 
are called f0, f1, …, f31. Hence, they included separate loads and stores for 
floating-point registers: fld and fsd for double-precision and flw and fsw for 
single-precision. The base registers for floating-point data transfers which are 
used for addresses remain integer registers. The RISC-V code to load two single 
precision numbers from memory, add them, and then store the sum might look 
like this:

flw   f0, 0(x10) // Load 32-bit F.P. number into f0
flw   f1, 4(x10) // Load 32-bit F.P. number into f1
fadd.s f2, f0, f1 // f2 = f0 + f1, single precision
fsw   f2, 8(x10) // Store 32-bit F.P. number from f2

1 110 2 0 001110 0 00111

7 2 7 32

3

5

. . .

/ /
tw to wo two

ten ten 00 21875. ten
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RISC-V floating-point operands

Name Example Comments

32 floating-point
registers

f0-f31 An f-register can hold either a single-precision floating-point number or a
double-precision floating-point number.

261

memory double
words

Memory[0], Memory[8], …,
Memory[18,446,744,073,709,551,608]

Accessed only by data transfer instructions. RISC-V uses byte addresses,
so sequential doubleword accesses differ by 8. Memory holds data
structures, arrays, and spilled registers.

RISC-V floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single fadd.s f0, f1, f2 f0 = f1 + f2 FP add (single precision)

FP subtract single fsub.s f0, f1, f2 f0 = f1 - f2 FP subtract (single precision)

FP multiply single fmul.s f0, f1, f2 f0 = f1 * f2 FP multiply (single precision)

FP divide single fdiv.s f0, f1, f2 f0 = f1 / f2 FP divide (single precision)

FP square root single fsqrt.s f0, f1 f0 = √f1 FP square root (single precision)

FP add double fadd.d f0, f1, f2 f0 = f1 + f2 FP add (double precision)

FP subtract double fsub.d f0, f1, f2 f0 = f1 - f2 FP subtract (double precision)

FP multiply double fmul.d f0, f1, f2 f0 = f1 * f2 FP multiply (double precision)

FP divide double fdiv.d f0, f1, f2 f0 = f1 / f2 FP divide (double precision)

FP square root double fsqrt.d f0, f1 f0 = √f1 FP square root (double precision)

FP load word flw f0, 4(x5) f0 = Memory[x5 + 4] Load single-precision from memory

FP load doubleword fld f0, 8(x5) f0 = Memory[x5 + 8] Load double-precision from memory

Comparison

Data transfer

FP equality single feq.s x5, f0, f1 x5 = 1 if f0 == f1, else 0 FP comparison (single precision)

FP less than single flt.s x5, f0, f1 x5 = 1 if f0 < f1, else 0 FP comparison (single precision)

FP less than or 
equals single

fle.s x5, f0, f1 x5 = 1 if f0 <= f1, else 0 FP comparison (single precision)

FP equality double feq.d x5, f0, f1 x5 = 1 if f0 == f1, else 0 FP comparison (double precision)

FP less than double flt.d x5, f0, f1 x5 = 1 if f0 < f1, else 0 FP comparison (double precision)
FP less than or 
equals double

fle.d x5, f0, f1 x5 = 1 if f0 <= f1, else 0 FP comparison (double precision)

FP store word fsw f0, 4(x5) Memory[x5 + 4] = f0 Store single-precision from memory

FP store doubleword fsd f0, 8(x5) Memory[x5 + 8] = f0 Store double-precision from memory

FIGURE 3.17 RISC-V floating-point architecture revealed thus far. This information is also found in column 2 of the RISC-V 
Reference Data Card at the front of this book.

A single precision register is just the lower half of a double-precision register. Note 
that, unlike integer register x0, floating-point register f0 is not hard-wired to the 
constant 0.

Figure 3.17 summarizes the floating-point portion of the RISC-V architecture revealed 
in this chapter, with the new pieces to support floating point shown in color. The floating-
point instructions use the same format as their integer counterparts: loads use the I-type 
format, stores use the S-type format, and arithmetic instructions use the R-type format.
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Hardware/
Software 
Interface

One issue that architects face in supporting floating-point arithmetic is whether 
to select the same registers used by the integer instructions or to add a special 
set for floating point. Because programs normally perform integer operations 
and floating-point operations on different data, separating the registers will only 
slightly increase the number of instructions needed to execute a program. The 
major impact is to create a distinct set of data transfer instructions to move data 
between floating-point registers and memory.

The benefits of separate floating-point registers are having twice as many 
registers without using up more bits in the instruction format, having twice the 
register bandwidth by having separate integer and floating-point register sets, and 
being able to customize registers to floating point; for example, some computers 
convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into RISC-V Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)
{
 return ((5.0f/9.0f) *(fahr – 32.0f));
}

Assume that the floating-point argument fahr is passed in f10 and the result 
should also go in f10. What is the RISC-V assembly code?

We assume that the compiler places the three floating-point constants in 
memory within easy reach of register x3. The first two instructions load the 
constants 5.0 and 9.0 into floating-point registers:

f2c:
 flw f0, const5(x3) // f0 = 5.0f
 flw f1, const9(x3) // f1 = 9.0f

They are then divided to get the fraction 5.0/9.0:

fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f

EXAMPLE

ANSWER
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(Many compilers would divide 5.0 by 9.0 at compile time and save the single 
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we 
load the constant 32.0 and then subtract it from fahr (f10):

flw f1, const32(x3) // f1 = 32.0f
fsub.s f10, f10, f1 // f10 = fahr – 32.0f

Finally, we multiply the two intermediate results, placing the product in f10 
 as the return result, and then return

fmul.s f10, f0, f10 // f10 = (5.0f / 9.0f)*(fahr – 32.0f)
jalr  x0, 0(x1) // return

Now let’s perform floating-point operations on matrices, code commonly 
found in scientific programs.

Compiling Floating-Point C Procedure with Two-Dimensional 
Matrices into RISC-V

Most floating-point calculations are performed in double precision. Let’s per-
form matrix multiply of C = C + A * B. It is commonly called DGEMM, for 
Double precision, General Matrix Multiply. We’ll see versions of DGEMM 
again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C, 
A, and B are all square matrices with 32 elements in each dimension.

void mm (double c[][], double a[][], double b[][])
{
 size_t i, j, k;
 for (i = 0; i < 32; i = i + 1)
 for (j = 0; j < 32; j = j + 1)
 for (k = 0; k < 32; k = k + 1)
 c[i][j] = c[i][j] + a[i][k] *b[k][j];
}

The array starting addresses are parameters, so they are in x10, x11, and x12. 
Assume that the integer variables are in x5, x6, and x7, respectively. What is 
the RISC-V assembly code for the body of the procedure?

Note that c[i][j] is used in the innermost loop above. Since the loop index  
is k, the index does not affect c[i][j], so we can avoid loading and storing 

EXAMPLE

ANSWER
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c[i][j] each iteration. Instead, the compiler loads c[i][j] into a register 
outside the loop, accumulates the sum of the products of a[i][k] and 
b[k][j] in that same register, and then stores the sum into c[i][j] upon 
termination of the innermost loop. We keep the code simpler by using the 
assembly language pseudoinstruction li, which loads a constant into a register.

The body of the procedure starts with saving the loop termination value of 
32 in a temporary register and then initializing the three for loop variables:

  mm:...
li x28, 32  // x28 = 32 (row size/loop end)
li x5, 0 // i = 0; initialize 1st for loop

L1: li x6, 0 // j = 0; initialize 2nd for loop
L2: li x7, 0 // k = 0; initialize 3rd for loop

To calculate the address of c[i][j], we need to know how a 32 × 32, two-
dimensional array is stored in memory. As you might expect, its layout is the 
same as if there were 32 single-dimensional arrays, each with 32 elements. So 
the first step is to skip over the i “single-dimensional arrays,” or rows, to get 
the one we want. Thus, we multiply the index in the first dimension by the size 
of the row, 32. Since 32 is a power of 2, we can use a shift instead:

slli x30, x5, 5  // x30 = i * 25(size of row of c)

Now we add the second index to select the jth element of the desired row:

add x30, x30, x6  // x30 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element 
in bytes. Since each element is 8 bytes for double precision, we can instead shift 
left by three:

slli x30, x30, 3  // x30 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of c[i][j], 
and then load the double precision number c[i][j] into f0:

add x30, x10, x30  // x30 = byte address of c[i][j]
fld f0, 0(x30)   // f0 = 8 bytes of c[i][j]

The following five instructions are virtually identical to the last five: calculate 
the address and then load the double precision number b[k][j].

L3: slli x29, x7, 5 // x29 = k * 25(size of row of b)
 add x29, x29, x6 // x29 = k * size(row) + j
 slli x29, x29, 3 // x29 = byte offset of [k][j]
 add x29, x12, x29 // x29 = byte address of b[k][j]
 fld f1, 0(x29) // f1 = 8 bytes of b[k][j]



 3.5 Floating Point 211

Similarly, the next five instructions are like the last five: calculate the address 
and then load the double precision number a[i][k].

slli x29, x5, 5 // x29 = i * 25(size of row of a)
add x29, x29, x7 // x29 = i * size(row) + k
slli x29, x29, 3 // x29 = byte offset of [i][k]
add x29, x11, x29 // x29 = byte address of a[i][k]
fld f2, 0(x29) // f2 = a[i][k]

Now that we have loaded all the data, we are finally ready to do some floating-
point operations! We multiply elements of a and b located in registers f2 and 
f1, and then accumulate the sum in f0.

fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]

The final block increments the index k and loops back if the index is not 32. 
If it is 32, and thus the end of the innermost loop, we need to store the sum 
accumulated in f0 into c[i][j].

addi x7, x7, 1 // k = k + 1
bltu x7, x28, L3 // if (k < 32) go to L3
fsd f0, 0(x30) // c[i][j] = f0

Similarly, these final six instructions increment the index variable of the 
middle and outermost loops, looping back if the index is not 32 and exiting if 
the index is 32.

addi x6, x6, 1 // j = j + 1
bltu x6, x28, L2 // if (j < 32) go to L2
addi x5, x5, 1 // i = i + 1
bltu x5, x28, L1 // if (i < 32) go to L1
. . .

Looking ahead, Figure 3.20 below shows the x86 assembly language code for a 
slightly different version of DGEMM in Figure 3.19.

Elaboration: C and many other programming languages use the array layout 
discussed in the example, called row-major order. Fortran instead uses column-major 
order, whereby the array is stored column by column.
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Elaboration: Another reason for separate integers and floating-point registers is 
that microprocessors in the 1980s didn’t have enough transistors to put the floating-
point unit on the same chip as the integer unit. Hence, the floating-point unit, including 
the floating-point registers, was optionally available as a second chip. Such optional 
accelerator chips are called coprocessor chips. Since the early 1990s, microprocessors 
have integrated floating point (and just about everything else) on chip, and thus the 
term coprocessor chip joins accumulator and core memory as quaint terms that date 
the speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging 
than multiplication. In addition to SRT, another technique to leverage a fast multiplier is 
Newton’s iteration, where division is recast as finding the zero of a function to produce 
the reciprocal 1/c, which is then multiplied by the other operand. Iteration techniques 
cannot be rounded properly without calculating many extra bits. A TI chip solved this 
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point 
data types and operations. Thus, the code in the first example could have well been 
generated for a class method that converted Fahrenheit to Celsius.

The second example above uses multiple dimensional arrays, which are not explicitly 
supported in Java. Java allows arrays of arrays, but each array may have its own length, 
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version 
of this second example would require a good deal of checking code for array bounds, 
including a new length calculation at the end of row accesses. It would also need to 
check that the object reference is not null.

Accurate Arithmetic
Unlike integers, which can represent exactly every number between the smallest and 
largest number, floating-point numbers are normally approximations for a number 
they can’t really represent. The reason is that an infinite variety of real numbers 
exists between, say, 1 and 2, but no more than 253 can be represented exactly in 
double precision floating point. The best we can do is getting the floating-point 
representation close to the actual number. Thus, IEEE 754 offers several modes of 
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware 
to include extra bits in the calculation. In the preceding examples, we were vague 
on the number of bits that an intermediate representation can occupy, but clearly, 
if every intermediate result had to be truncated to the exact number of digits, there 
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits 
on the right during intervening additions, called guard and round, respectively. 
Let’s do a decimal example to illustrate their value.

guard The first of two 
extra bits kept on the 
right during intermediate 
calculations of floating-
point numbers; used 
to improve rounding 
accuracy.

round Method to 
make the intermediate 
floating-point result fit 
the floating-point format; 
the goal is typically to 
find the nearest number 
that can be represented 
in the format. It is also 
the name of the second 
of two extra bits kept 
on the right during 
intermediate floating-
point calculations, which 
improves rounding 
accuracy.
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Rounding with Guard Digits

Add 2.56ten × 100 to 2.34ten × 102, assuming that we have three significant 
decimal digits. Round to the nearest decimal number with three significant 
decimal digits, first with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so 
2.56ten × 100 becomes 0.0256ten × 102. Since we have guard and round digits, we 
are able to represent the two least significant digits when we align exponents. 
The guard digit holds 5 and the round digit holds 6. The sum is

2 3400
0 0256

2 3656

.
.

.

ten

ten

ten

�

Thus the sum is 2.3656ten × 102. Since we have two digits to round, we want values 
0 to 49 to round down and 51 to 99 to round up, with 50 being the tiebreaker. 
Rounding the sum up with three significant digits yields 2.37ten × 102.

Doing this without guard and round digits drops two digits from the 
calculation. The new sum is then

2 34
0 02

2 36

.
.

.

ten

ten

ten

�

The answer is 2.36ten × 102, off by 1 in the last digit from the sum above.

Since the worst case for rounding would be when the actual number is halfway 
between two floating-point representations, accuracy in floating point is normally 
measured in terms of the number of bits in error in the least significant bits of the 
significand; the measure is called the number of units in the last place, or ulp. If 
a number were off by 2 in the least significant bits, it would be called off by 2 ulps. 
Provided there are no overflow, underflow, or invalid operation exceptions, IEEE 
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply 
can require two. A binary product may have one leading 0 bit; hence, the normalizing step 
must shift the product one bit left. This shifts the guard digit into the least significant bit 
of the product, leaving the round bit to help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward +∞), always round down 
(toward −∞), truncate, and round to nearest even. The final mode determines what to 
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS) 
always rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way 
would be to round up this case half the time and round down the other half. IEEE 754 

units in the last place 
(ulp) The number of 
bits in error in the least 
significant bits of the 
significand between 
the actual number and 
the number that can be 
represented.

EXAMPLE

ANSWER
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says that if the least significant bit retained in a halfway case would be odd, add one; 
if it’s even, truncate. This method always creates a 0 in the least significant bit in the 
tie-breaking case, giving the rounding mode its name. This mode is the most commonly 
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results 
as if the intermediate results were calculated to infinite precision and then rounded. To 
support this goal and round to the nearest even, the standard has a third bit in addition 
to guard and round; it is set whenever there are nonzero bits to the right of the round 
bit. This sticky bit allows the computer to see the difference between 0.50 … 00ten and 
0.50 … 01ten when rounding.

The sticky bit may be set, for example, during addition, when the smaller number is 
shifted to the right. Suppose we added 5.01ten × 10−1 to 2.34ten × 102 in the example 
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of 
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the 
sticky bit to remember whether any 1s were shifted off, we would assume the number 
is equal to 2.345000 … 00 and round to the nearest even of 2.34. With the sticky bit 
to remember that the number is larger than 2.345000 … 00, we round instead to 2.35.

Elaboration: RISC-V, MIPS-64, PowerPC, SPARC64, AMD SSE5, and Intel AVX 
architectures all provide a single instruction that does a multiply and add on three 
registers: a = a + (b × c). Obviously, this instruction allows potentially higher floating-point 
performance for this common operation. Equally important is that instead of performing 
two roundings—after the multiply and then after the add—which would happen with 
separate instructions, the multiply add instruction can perform a single rounding after the 
add. A single rounding step increases the precision of multiply add. Such operations with a 
single rounding are called fused multiply add. It was added to the revised IEEE 754-2008 
standard (see  Section 3.11).

Summary
The Big Picture that follows reinforces the stored-program concept from Chapter 2; 
the meaning of the information cannot be determined just by looking at the bits, for 
the same bits can represent a variety of objects. This section shows that computer 
arithmetic is finite and thus can disagree with natural arithmetic. For example, the 
IEEE 754 standard floating-point representation

( ) ( ) ( )1 1 25 Fraction Exponent Bias

is almost always an approximation of the real number. Computer systems must 
take care to minimize this gap between computer arithmetic and arithmetic in the 
real world, and programmers at times need to be aware of the implications of this 
approximation.

sticky bit A bit used in 
rounding in addition to 
guard and round that is 
set whenever there are 
nonzero bits to the right 
of the round bit.

fused multiply add A 
floating-point instruction 
that performs both a 
multiply and an add, but 
rounds only once after 
the add.

The BIG 
Picture

Bit patterns have no inherent meaning. They may represent signed integers, 
unsigned integers, floating-point numbers, instructions, character strings, 
and so on. What is represented depends on the instruction that operates 
on the bits in the word.
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C type Java type Data transfers Operations

long 
long int

long ld, sd add, sub, addi, mul, mulh, 
mulhu, mulhsu, div, divu, 
rem, remu, and, andi, or, 
ori, xor, xori

unsigned 
long 
long int

— ld, sd add, sub, addi, mul, mulh, 
mulhu, mulhsu, div, divu, 
rem, remu, and, andi, or, 
ori, xor, xori

char — lb, sb add, sub, addi, mul, div, 
divu, rem, remu, and, andi, 
or, ori, xor, xori

short char lh, sh add, sub, addi, mul, div, 
divu, rem, remu, and, andi, 
or, ori, xor, xori

float float flw, fsw fadd.s, fsub.s, fmul.s, 
fdiv.s, feq.s, flt.s, fle.s

double double fld, fsd fadd.d, fsub.d, fmul.d, 
fdiv.d, feq.d, flt.d, fle.d

Hardware/ 
Software 
Interface

Check  
Yourself

The major difference between computer numbers and numbers in the 
real world is that computer numbers have limited size and hence limited 
precision; it’s possible to calculate a number too big or too small to be 
represented in a computer word. Programmers must remember these 
limits and write programs accordingly.

The revised IEEE 754-2008 standard added a 16-bit floating-point format with five 
exponent bits. What do you think is the likely range of numbers it could represent?

1. 1.0000 00 × 20 to 1.1111 1111 11 × 231, 0

2. ±1.0000 0000 0 × 2−14 to ± 1.1111 1111 1 × 215, ± 0, ± ∞, NaN

3. ±1.0000 0000 00 × 2−14 to ± 1.1111 1111 11 × 215, ± 0, ± ∞, NaN

4. ±1.0000 0000 00 × 2−15 to ± 1.1111 1111 11 × 214, ± 0, ± ∞, NaN

In the last chapter, we presented the storage classes of the programming language C 
(see the Hardware/Software Interface section in Section 2.7). The table above shows 
some of the C and Java data types, the data transfer instructions, and instructions 
that operate on those types that appear in Chapter 2 and this chapter. Note that Java 
omits unsigned integers.
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Elaboration: To accommodate comparisons that may include NaNs, the standard 
includes ordered and unordered as options for compares. RISC-V does not provide 
instructions for unordered comparisons, but a careful sequence of ordered comparisons 
has the same effect. (Java does not support unordered compares.)

In an attempt to squeeze every bit of precision from a floating-point operation, the 
standard allows some numbers to be represented in unnormalized form. Rather than having 
a gap between 0 and the smallest normalized number, IEEE allows denormalized numbers 
(also known as denorms or subnormals). They have the same exponent as zero but a nonzero 
fraction. They allow a number to degrade in significance until it becomes 0, called gradual 
underflow. For example, the smallest positive single precision normalized number is

1 00000000000000000000000 2 126. two

but the smallest single precision denormalized number is

0 00000000000000000000001 2 1 0 2126 149,. .tw to wo  or

For double precision, the denorm gap goes from 1.0 × 2−1022 to 1.0 × 2−1074.
The possibility of an occasional unnormalized operand has given headaches to 

floating-point designers who are trying to build fast floating-point units. Hence, many 
computers cause an exception if an operand is denormalized, letting software complete 
the operation. Although software implementations are perfectly valid, their lower 
performance has lessened the popularity of denorms in portable floating-point software. 
Moreover, if programmers do not expect denorms, their programs may surprise them.

 3.6 Parallelism and Computer Arithmetic: 
Subword Parallelism

Since every microprocessor in a phone, tablet, or laptop by definition has its own 
graphical display, as transistor budgets increased it was inevitable that support 
would be added for graphics operations.

Many graphics systems originally used 8 bits to represent each of the three 
primary colors plus 8 bits for a location of a pixel. The addition of speakers and 
microphones for teleconferencing and video games suggested support of sound as 
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up 
less space when stored in memory (see Section 2.9), but due to the infrequency of 
arithmetic operations on these data sizes in typical integer programs, there was 
little support beyond data transfers. Architects recognized that many graphics and 
audio applications would perform the same operation on vectors of these data. 
By partitioning the carry chains within a 128-bit adder, a processor could use 
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit 
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands.
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The cost of such partitioned adders was small yet the speedups could be large.
Given that the parallelism occurs within a wide word, the extensions are 

classified as subword parallelism. It is also classified under the more general name 
of data level parallelism. They are known as well as vector or SIMD, for single 
instruction, multiple data (see Section 6.6). The rising popularity of multimedia 
applications led to arithmetic instructions that support narrower operations that 
can easily compute in parallel. As of this writing, RISC-V does not have additional 
instructions to exploit subword parallelism, but the next section presents a real-
world example of such an architecture.

 3.7 Real Stuff: Streaming SIMD Extensions 
and Advanced Vector Extensions in x86

The original MMX (MultiMedia eXtension) for the x86 included instructions 
that operate on short vectors of integers. Later, SSE (Streaming SIMD Extension) 
provided instructions that operate on short vectors of single-precision floating-point 
numbers. Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture 
as part of SSE2, including double precision floating-point registers and operations. 
It included eight 64-bit registers that can be used for floating-point operands. AMD 
expanded the number to 16 registers, called XMM, as part of AMD64, which Intel 
relabeled EM64T for its use. Figure 3.18 summarizes the SSE and SSE2 instructions.

Data transfer Arithmetic Compare

MOV[AU]{SS|PS|SD|PD}
xmm, {mem|xmm}

ADD{SS|PS|SD|PD} xmm,{mem|xmm} CMP{SS|PS|SD|PD}

SUB{SS|PS|SD|PD} xmm,{mem|xmm}

MOV[HL]{PS|PD} xmm,
{mem|xmm}

MUL{SS|PS|SD|PD} xmm,{mem|xmm}

DIV{SS|PS|SD|PD} xmm,{mem|xmm}

SQRT{SS|PS|SD|PD} {mem|xmm}

MAX{SS|PS|SD|PD} {mem|xmm}

MIN{SS|PS|SD|PD} {mem|xmm}

FIGURE 3.18 The SSE/SSE2 floating-point instructions of the x86. xmm means one operand is 
a 128-bit SSE2 register, and {mem|xmm} means the other operand is either in memory or it is an SSE2 register. 
The table uses regular expressions to show the variations of instructions. Thus, MOV[AU]{SS|PS|SD|PD} 
represents the eight instructions MOVASS,MOVAPS,MOVASD,MOVAPD,MOVUSS,MOVUPS,MOVUSD, 
and MOVUPD. We use square brackets [] to show single-letter alternatives: A means the 128-bit operand is 
aligned in memory; U means the 128-bit operand is unaligned in memory; H means move the high half of the 
128-bit operand; and L means move the low half of the 128-bit operand. We use the curly brackets {} with a 
vertical bar | to show multiple letter variations of the basic operations: SS stands for Scalar Single precision 
floating point, or one 32-bit operand in a 128-bit register; PS stands for Packed Single precision floating 
point, or four 32-bit operands in a 128-bit register; SD stands for Scalar Double precision floating point, or 
one 64-bit operand in a 128-bit register; PD stands for Packed Double precision floating point, or two 64-bit 
operands in a 128-bit register.
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In addition to holding a single precision or double precision number in a register, 
Intel allows multiple floating-point operands to be packed into a single 128-bit SSE2 
register: four single precision or two double precision. Thus, the 16 floating-point 
registers for SSE2 are actually 128 bits wide. If the operands can be arranged in 
memory as 128-bit aligned data, then 128-bit data transfers can load and store multiple 
operands per instruction. This packed floating-point format is supported by arithmetic 
operations that can compute simultaneously on four singles (PS) or two doubles (PD).

In 2011, Intel doubled the width of the registers again, now called YMM, with 
Advanced Vector Extensions (AVX). Thus, a single operation can now specify eight 
32-bit floating-point operations or four 64-bit floating-point operations. The 
legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM 
registers. Thus, to go from 128-bit and 256-bit operations, you prepend the letter 
“v” (for vector) in front of the SSE2 assembly language operations and then use the 
YMM register names instead of the XMM register name. For example, the SSE2 
instruction to perform two 64-bit floating-point additions

addpd %xmm0, %xmm4

becomes

vaddpd %ymm0, %ymm4

which now produces four 64-bit floating-point multiplies. Intel has announced 
plans to widen the AVX registers to first 512 bits and later 1024 bits in later editions 
of the x86 architecture.

Elaboration: AVX also added three address instructions to x86. For example, vaddpd 
can now specify

vaddpd %ymm0, %ymm1, %ymm4  // %ymm4 = %ymm0 + %ymm1

instead of the standard, two address version

addpd %xmm0, %xmm4 // %xmm4 = %xmm4 + %xmm0

(Unlike RISC-V, the destination is on the right in x86.) Three addresses can reduce the 
number of registers and instructions needed for a computation.

 3.8 Going Faster: Subword Parallelism  
and Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same 
code on the Intel Core i7 first without AVX and then with it. Figure 3.19 shows an 
unoptimized version of a matrix-matrix multiply written in C. As we saw in Section 3.5,  
this program is commonly called DGEMM, which stands for Double precision 
GEneral Matrix Multiply. Starting with this edition, we have added a new section 
entitled “Going Faster” to demonstrate the performance benefit of adapting software 
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to the underlying hardware, in this case the Sandy Bridge version of the Intel Core 
i7 microprocessor. This new section in Chapters 3, 4, 5, and 6 will incrementally 
improve DGEMM performance using the ideas that each chapter introduces.

Figure 3.20 shows the x86 assembly language output for the inner loop of Figure 
3.19. The five floating point-instructions start with a v like the AVX instructions, 
but note that they use the XMM registers instead of YMM, and they include sd 
in the name, which stands for scalar double precision. We’ll define the subword 
parallel instructions shortly.

While compiler writers may eventually be able to produce high-quality code 
routinely that uses the AVX instructions of the x86, for now we must “cheat” by 
using C intrinsics that more or less tell the compiler exactly how to produce good 
code. Figure 3.21 shows the enhanced version of Figure 3.19 for which the Gnu C 
compiler produces AVX code. Figure 3.22 shows annotated x86 code that is the 
output of compiling using gcc with the –O3 level of optimization.

The declaration on line 6 of Figure 3.21 uses the __m256d data type, which 
tells the compiler the variable will hold four double-precision floating-point values. 
The intrinsic _mm256_load_pd() also on line 6 uses AVX instructions to load 
four double-precision floating-point numbers in parallel (_pd) from the matrix C 
into c0. The address calculation C+i+j*n on line 6 represents element C[i+j*n]. 
Symmetrically, the final step on line 11 uses the intrinsic _mm256_store_pd() 
to store four double-precision floating-point numbers from c0 into the matrix C. 
As we’re going through four elements each iteration, the outer for loop on line 4 
increments i by 4 instead of by 1 as on line 3 of Figure 3.19.

1. void dgemm (size_t n, double* A, double* B, double* C)

2. {

3. for (size_t i = 0; i < n; ++i)

4. for (size_t j = 0; j < n; ++j)

5. {

6. double cij = C[i+j*n]; /* cij = C[i][j] */

7. for(size_t k = 0; k < n; k++ )

8. cij += A[i+k*n] * B[k+j*n]; /*cij+=A[i][k]*B[k][j]*/

9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

FIGURE 3.19 Unoptimized C version of a double precision matrix multiply, widely known 
as DGEMM for Double-precision GEneral Matrix Multiply. Because we are passing the matrix 
dimension as the parameter n, this version of DGEMM uses single-dimensional versions of matrices C, A, 
and B and address arithmetic to get better performance instead of using the more intuitive two-dimensional 
arrays that we saw in Section 3.5. The comments remind us of this more intuitive notation.
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1. vmovsd (%r10),%xmm0 // Load 1 element of C into %xmm0
2. mov    %rsi,%rcx // register %rcx = %rsi
3. xor    %eax,%eax // register %eax = 0
4. vmovsd (%rcx),%xmm1 // Load 1 element of B into %xmm1
5. add    %r9,%rcx // register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1  // Multiply %xmm1,element of A
7. add    $0x1,%rax // register %rax = %rax + 1
8. cmp    %eax,%edi // compare %eax to %edi
9. vaddsd %xmm1,%xmm0,%xmm0 // Add %xmm1, %xmm0
10. jg     30 <dgemm+0x30> // jump if %eax > %edi
11. add    $0x1,%r11 // register %r11 = %r11 + 1
12. vmovsd %xmm0,(%r10) // Store %xmm0 into C element

FIGURE 3.20 The x86 assembly language for the body of the nested loops generated by compiling the unoptimized C 
code in Figure 3.19. Although it is dealing with just 64 bits of data, the compiler uses the AVX version of the instructions instead of SSE2 
presumably so that it can use three address per instruction instead of two (see the Elaboration in Section 3.7).

1. //include <x86intrin.h>

2. void dgemm (size_t n, double* A, double* B, double* C)

3. {

4.   for ( size_t i = 0; i < n; i+=4 )

5.     for ( size_t j = 0; j < n; j++ ) {

6.       __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7.       for( size_t k = 0; k < n; k++ )

8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n), 

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12.     }

13. }

FIGURE 3.21 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions for 
the x86. Figure 3.22 shows the assembly language produced by the compiler for the inner loop.
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Inside the loops, on line 9 we first load four elements of A again using _mm256_
load_pd(). To multiply these elements by one element of B, on line 10 we first use 
the intrinsic _mm256_broadcast_sd(), which makes four identical copies of the 
scalar double precision number—in this case an element of B—in one of the YMM 
registers. We then use _mm256_mul_pd() on line 9 to multiply the four double-
precision results in parallel. Finally, _mm256_add_pd() on line 8 adds the four 
products to the four sums in c0.

Figure 3.22 shows resulting x86 code for the body of the inner loops produced by the 
compiler. You can see the five AVX instructions—they all start with v and four of the 
five use pd for packed double precision—that correspond to the C intrinsics mentioned 
above. The code is very similar to that in Figure 3.20 above: both use 12 instructions, the 
integer instructions are nearly identical (but different registers), and the floating-point 
instruction differences are generally just going from scalar double (sd) using XMM 
registers to packed double (pd) with YMM registers. The one exception is line 4 of 
Figure 3.22. Every element of A must be multiplied by one element of B. One solution is 
to place four identical copies of the 64-bit B element side-by-side into the 256-bit YMM 
register, which is just what the instruction vbroadcastsd does.

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure 
3.19 runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of 
a 2.6 GHz Intel Core i7 (Sandy Bridge). The optimized code in Figure 3.21 performs 
at 6.4 GigaFLOPS. The AVX version is 3.85 times as fast, which is very close to the 
factor of 4.0 increase that you might hope for from performing four times as many 
operations at a time by using subword parallelism.

1. vmovapd (%r11),%ymm0 // Load 4 elements of C into %ymm0

2. mov    %rbx,%rcx // register %rcx = %rbx

3. xor    %eax,%eax // register %eax = 0

4. vbroadcastsd (%rax,%r8,1),%ymm1 // Make 4 copies of B element

5. add    $0x8,%rax // register %rax = %rax + 8

6. vmulpd (%rcx),%ymm1,%ymm1 // Parallel mul %ymm1,4 A elements

7. add    %r9,%rcx // register %rcx = %rcx + %r9

8. cmp    %r10,%rax // compare %r10 to %rax

9. vaddpd %ymm1,%ymm0,%ymm0 // Parallel add %ymm1, %ymm0

10. jne    50 <dgemm+0x50> // jump if not %r10 != %rax

11. add    $0x1,%esi // register % esi = % esi + 1

12. vmovapd %ymm0,(%r11) // Store %ymm0 into 4 C elements

FIGURE 3.22 The x86 assembly language for the body of the nested loops generated by compiling the optimized C 
code in Figure 3.21. Note the similarities to Figure 3.20, with the primary difference being that the five floating-point operations are now 
using YMM registers and using the pd versions of the instructions for packed double precision instead of the sd version for scalar double 
precision.
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Elaboration: As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode 
that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7 
(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above 
are with Turbo mode turned off. If we turn it on, we improve all the results by the increase 
in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized DGEMM and 8.1 
GFLOPS with AVX. Turbo mode works particularly well when using only a single core of 
an eight-core chip, as in this case, as it lets that single core use much more than its fair 
share of power since the other cores are idle.

 3.9 Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the 
limited precision of computer arithmetic and the unlimited precision of natural 
arithmetic.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power 
of 2, a right shift is the same as an integer division by a power of 2.
Recall that a binary number x, where xi means the ith bit, represents the number

… ( ) ( ) ( ) ( )x x x x3 3 2 2 1 1 0 02 2 2 2

Shifting the bits of c right by n bits would seem to be the same as dividing by 
2n. And this is true for unsigned integers. The problem is with signed integers. For 
example, suppose we want to divide −5ten by 4ten; the quotient should be −1ten. The 
two’s complement representation of −5ten is

11111111 11111111 11111111 11111111 11111111 11111111 111111111 11111011two

According to this fallacy, shifting right by two should divide by 4ten (22):

00111111 11111111 11111111 11111111 11111111 11111111 111111111 11111110two

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift 
right is actually 4,611,686,018,427,387,902ten instead of −1ten.

A solution would be to have an arithmetic right shift that extends the sign bit 
instead of shifting in 0s. A 2-bit arithmetic shift right of −5ten produces

11111111 11111111 11111111 11111111 11111111 11111111 111111111 11111110two

The result is −2ten instead of −1ten; close, but no cigar.

Thus mathematics 
may be defined as the 
subject in which we 
never know what we 
are talking about, nor 
whether what we are 
saying is true.
Bertrand Russell, Recent 
Words on the Principles 
of Mathematics, 1901
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Pitfall: Floating-point addition is not associative.
Associativity holds for a sequence of two’s complement integer additions, even if the 
computation overflows. Alas, because floating-point numbers are approximations 
of real numbers and because computer arithmetic has limited precision, it does 
not hold for floating-point numbers. Given the great range of numbers that can be 
represented in floating point, problems occur when adding two large numbers of 
opposite signs plus a small number. For example, let’s see if c + (a + b) = (c + a) + b.  
Assume c = −1.5ten × 1038, a = 1.5ten × 1038, and b = 1.0, and that these are all single 
precision numbers.

c a b( ) . ( . . )

. ( .

1 5 10 1 5 10 1 0

1 5 10 1 5

38 38

38
ten ten

ten tenn

ten ten

ten

10
0 0

1 5 10 1 5 10 1 0
0 0

38

38 38

)
.

( ) ( . . ) .
( .

c a b
)) .

.
1 0

1 0

Since floating-point numbers have limited precision and result in approximations 
of real results, 1.5ten × 1038 is so much larger than 1.0ten that 1.5ten × 1038 + 1.0 is still 
1.5ten × 1038. That is why the sum of c, a, and b is 0.0 or 1.0, depending on the order 
of the floating-point additions, so c + (a + b) ≠ (c + a) + b. Therefore, floating-
point addition is not associative.

Fallacy: Parallel execution strategies that work for integer data types also work for 
floating-point data types.

Programs have typically been written first to run sequentially before being rewritten 
to run concurrently, so a natural question is, “Do the two versions get the same 
answer?” If the answer is no, you presume there is a bug in the parallel version that 
you need to track down.

This approach assumes that computer arithmetic does not affect the results when 
going from sequential to parallel. That is, if you were to add a million numbers 
together, you would get the same results whether you used one processor or 1000 
processors. This assumption holds for two’s complement integers, since integer 
addition is associative. Alas, since floating-point addition is not associative, the 
assumption does not hold.

A more vexing version of this fallacy occurs on a parallel computer where the 
operating system scheduler may use a different number of processors depending on 
what other programs are running on a parallel computer. As the varying number 
of processors from each run would cause the floating-point sums to be calculated 
in different orders, getting slightly different answers each time despite running 
identical code with identical input may flummox unaware parallel programmers.

Given this quandary, programmers who write parallel code with floating-point 
numbers need to verify whether the results are credible, even if they don’t give the 



224 Chapter 3 Arithmetic for Computers

exact same answer as the sequential code. The field that deals with such issues is called 
numerical analysis, which is the subject of textbooks in its own right. Such concerns are 
one reason for the popularity of numerical libraries such as LAPACK and ScaLAPAK, 
which have been validated in both their sequential and parallel forms.

Fallacy: Only theoretical mathematicians care about floating-point accuracy.
Newspaper headlines of November 1994 prove this statement is a fallacy (see 
Figure 3.23). The following is the inside story behind the headlines.

The Pentium uses a standard floating-point divide algorithm that generates 
multiple quotient bits per step, using the most significant bits of divisor and 
dividend to guess the next 2 bits of the quotient. The guess is taken from a lookup 
table containing −2, −1, 0, +1, or +2. The guess is multiplied by the divisor and 
subtracted from the remainder to generate a new remainder. Like nonrestoring 
division, if a previous guess gets too large a remainder, the partial remainder is 
adjusted in a subsequent pass.

Evidently, there were five elements of the table from the 80486 that Intel 
engineers thought could never be accessed, and they optimized the PLA to return 
0 instead of 2 in these situations on the Pentium. Intel was wrong: while the first 11 

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994, 
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and 
Infoworld. The Pentium floating-point divide bug even made the “Top 10 List” of the David Letterman Late 
Show on television. Intel eventually took a $300 million write-off to replace the buggy chips.
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bits were always correct, errors would show up occasionally in bits 12 to 52, or the 
4th to 15th decimal digits.

A math professor at Lynchburg College in Virginia, Thomas Nicely, discovered the 
bug in September 1994. After calling Intel technical support and getting no official 
reaction, he posted his discovery on the Internet. This post led to a story in a trade 
magazine, which in turn caused Intel to issue a press release. It called the bug a glitch 
that would affect only theoretical mathematicians, with the average spreadsheet 
user seeing an error every 27,000 years. IBM Research soon counterclaimed that the 
average spreadsheet user would see an error every 24 days. Intel soon threw in the 
towel by making the following announcement on December 21:

We at Intel wish to sincerely apologize for our handling of the recently publicized 
Pentium processor flaw. The Intel Inside symbol means that your computer has 
a microprocessor second to none in quality and performance. Thousands of Intel 
employees work very hard to ensure that this is true. But no microprocessor is 
ever perfect. What Intel continues to believe is technically an extremely minor 
problem has taken on a life of its own. Although Intel firmly stands behind the 
quality of the current version of the Pentium processor, we recognize that many 
users have concerns. We want to resolve these concerns. Intel will exchange the 
current version of the Pentium processor for an updated version, in which this 
floating-point divide flaw is corrected, for any owner who requests it, free of 
charge anytime during the life of their computer.

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did 
not get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper 
would it have been to fix the bug in July 1994? What was the cost to repair the 
damage to Intel’s reputation? And what is the corporate responsibility in disclosing 
bugs in a product so widely used and relied upon as a microprocessor?

 3.10 Concluding Remarks

Over the decades, computer arithmetic has become largely standardized, greatly 
enhancing the portability of programs. Two’s complement binary integer arithmetic 
is found in every computer sold today, and if it includes floating point support, it 
offers the IEEE 754 binary floating-point arithmetic.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the 
constraints of limited precision. This limit may result in invalid operations through 
calculating numbers larger or smaller than the predefined limits. Such anomalies, 
called “overflow” or “underflow,” may result in exceptions or interrupts, emergency 
events similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions 
in more detail.
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Floating-point arithmetic has the added challenge of being an approximation 
of real numbers, and care needs to be taken to ensure that the computer number 
selected is the representation closest to the actual number. The challenges of 
imprecision and limited representation of floating point are part of the inspiration 
for the field of numerical analysis. The switch to parallelism will shine the 
searchlight on numerical analysis again, as solutions that were long considered 
safe on sequential computers must be reconsidered when trying to find the fastest 
algorithm for parallel computers that still achieves a correct result.

Data-level parallelism, specifically subword parallelism, offers a simple path to 
higher performance for programs that are intensive in arithmetic operations for 
either integer or floating-point data. We showed that we could speed up matrix 
multiply nearly fourfold by using instructions that could execute four floating-
point operations at a time.

With the explanation of computer arithmetic in this chapter comes a description 
of much more of the RISC-V instruction set.

Figure 3.24 ranks the popularity of the twenty most common RISC-V 
instructions the for SPEC CPU2006 integer and floating-point benchmarks. As you 
can see, a relatively small number of instructions dominate these rankings. This 

RISC-V Instruction Name Frequency Cumulative

Add immediate addi
Load doubleword ld
Load fl. pt. double fld
Add registers add
Load word lw
Store doubleword sd
Branch if not equal bne

Shift left immediate slli
Fused mul-add double fmadd.d
Branch if equal beq
Add immediate word addiw
Store fl. pt. double fsd
Multiply fl. pt. double fmul.d
Load upper immediate lui
Store word sw
Jump and link jal
Branch if less than blt
Add word addw
Subtract fl. pt. double fsub.d

Branch if greater/equal bge

14.36%
8.27%
6.83%
6.23%
4.38%
4.29%
4.14%

3.65%
3.49%
3.27%
2.86%
2.24%
2.02%
1.56%
1.52%
1.38%
1.37%
1.34%
1.28%

1.27%

14.36%
22.63%
29.46%
35.69%
40.07%
44.36%
48.50%

52.15%
55.64%
58.91%
61.77%
64.00%
66.02%
67.59%
69.10%
70.49%
71.86%
73.19%
74.47%

75.75%

FIGURE 3.24 The frequency of the RISC-V instructions for the SPEC CPU2006 benchmarks. 
The 20 most popular instructions, which collectively account for 76% of all instructions executed, are 
included in the table. Pseudoinstructions are converted into RISC-V before execution, and hence do not 
appear here, explaining in part the popularity of addi.
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Gresham’s Law (“Bad 
money drives out 
Good”) for computers 
would say, “The Fast 
drives out the Slow 
even if the Fast is 
wrong.”
W. Kahan, 1992

observation has significant implications for the design of the processor, as we will 
see in Chapter 4.

No matter what the instruction set or its size—RISC-V, MIPS, x86—never forget 
that bit patterns have no inherent meaning. The same bit pattern may represent a 
signed integer, unsigned integer, floating-point number, string, instruction, and 
so on. In stored-program computers, it is the operation on the bit pattern that 
determines its meaning.

 3.12 Historical Perspective and Further 
Reading

This section surveys the history of the floating point going back to von 
Neumann, including the surprisingly controversial IEEE standards effort, plus 
the rationale for the 80-bit stack architecture for floating point in the x86. See 
the rest of  Section 3.11 online.

 3.12 Exercises

3.1 [5] <§3.2> What is 5ED4 − 07A4 when these values represent unsigned 16-
bit hexadecimal numbers? The result should be written in hexadecimal. Show your 
work.

3.2 [5] <§3.2> What is 5ED4 − 07A4 when these values represent signed 16-
bit hexadecimal numbers stored in sign-magnitude format? The result should be 
written in hexadecimal. Show your work.

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base 
16 (hexadecimal) an attractive numbering system for representing values in 
computers?

3.4 [5] <§3.2> What is 4365 − 3412 when these values represent unsigned 12-bit 
octal numbers? The result should be written in octal. Show your work.

3.5 [5] <§3.2> What is 4365 − 3412 when these values represent signed 12-bit 
octal numbers stored in sign-magnitude format? The result should be written in 
octal. Show your work.

3.6 [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate 
185–122. Is there overflow, underflow, or neither?

3.11

Never give in, never 
give in, never, never, 
never—in nothing, 
great or small, large or 
petty—never give in.
Winston Churchill, 
address at Harrow 
School, 1941
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3.11    Historical Perspective and Further 
Reading

This section surveys the history of the floating point going back to von Neumann, 
including the surprisingly controversial IEEE standards effort, the rationale for 
the 80-bit stack architecture for floating point in the IA-32, and an update on the 
next round of the standard.

At first it may be hard to imagine a subject of less interest than the correctness 
of computer arithmetic or its accuracy, and harder still to understand why a subject 
so old and mathematical should be so contentious. Computer arithmetic is as old 
as computing itself, and some of the subject’s earliest notions, like the economical 
reuse of registers during serial multiplication and division, still command respect 
today. Maurice Wilkes [1985] recalled a conversation about that notion during his 
visit to the United States in 1946, before the earliest stored-program computer had 
been built:

… a project under von Neumann was to be set up at the Institute of Advanced 
Studies in Princeton.… Goldstine explained to me the principal features of the 
design, including the device whereby the digits of the multiplier were put into the 
tail of the accumulator and shifted out as the least significant part of the product 
was shifted in. I expressed some admiration at the way registers and shifting 
circuits were arranged … and Goldstine remarked that things of that nature came 
very easily to von Neumann.
There is no controversy here; it can hardly arise in the context of exact integer 

arithmetic, so long as there is general agreement on what integer the correct result 
should be. However, as soon as approximate arithmetic enters the picture, so does 
controversy, as if one person’s “negligible” must be another’s “everything.”

The First Dispute
Floating-point arithmetic kindled disagreement before it was ever built. John von 
Neumann was aware of Konrad Zuse’s proposal for a computer in Germany in 
1939 that was never built, probably because the floating point made it appear too 
complicated to finish before the Germans expected World War II to end. Hence, 
von Neumann refused to include it in the computer he built at Princeton. In an 
influential report coauthored in 1946 with H. H. Goldstine and A. W. Burks, he 
gave the arguments for and against floating point. In favor:

… to retain in a sum or product as many significant digits as possible and … to free 
the human operator from the burden of estimating and inserting into a problem 
“scale factors”—multiplication constants which serve to keep numbers within the 
limits of the machine.

Gresham’s Law (“Bad 
money drives out 
Good”) for computers 
would say, “The Fast 
drives out the Slow 
even if the Fast is 
wrong.”
W. Kahan, 1992
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Floating point was excluded for several reasons:
There is, of course, no denying the fact that human time is consumed in arranging 
for the introduction of suitable scale factors. We only argue that the time consumed 
is a very small percentage of the total time we will spend in preparing an interesting 
problem for our machine. The first advantage of the floating point is, we feel, 
somewhat illusory. In order to have such a floating point, one must waste memory 
capacity which could otherwise be used for carrying more digits per word. It would 
therefore seem to us not at all clear whether the modest advantages of a floating 
binary point offset the loss of memory capacity and the increased complexity of the 
arithmetic and control circuits.

The argument seems to be that most bits devoted to exponent fields would be bits 
wasted. Experience has proven otherwise.

One software approach to accommodate reals without floating-point hardware 
was called floating vectors; the idea was to compute at runtime one scale factor 
for a whole array of numbers, choosing the scale factor so that the array’s biggest 
number would barely fill its field. By 1951, James H. Wilkinson had used this scheme 
extensively for matrix computations. The problem proved to be that a program 
might encounter a very large value, and hence the scale factor must accommodate 
these rare sizeable numbers. The common numbers would thus have many leading 
0s, since all numbers had to use a single scale factor. Accuracy was sacrificed, 
because the least significant bits had to be lost on the right to accommodate leading 
0s. This wastage became obvious to practitioners on early computers that displayed 
all their memory bits as dots on cathode ray tubes (like TV screens) because the 
loss of precision was visible. Where floating point deserved to be used, no practical 
alternative existed.

Thus, true floating-point hardware became popular because it was useful. By 
1957, floating-point hardware was almost ubiquitous. A decimal floating-point 
unit was available for the IBM 650, and soon the IBM 704, 709, 7090, 7094 … series 
would offer binary floating-point hardware for double as well as single precision.

As a result, everybody had floating point, but every implementation was 
different.

Diversity versus Portability
Since roundoff introduces some error into almost all floating-point operations, 
to complain about another bit of error seems picayune. So for 20 years, nobody 
complained much that those operations behaved a little differently on different 
computers. If software required clever tricks to circumvent those idiosyncrasies and 
finally deliver results correct in all but the last several bits, such tricks were deemed 
part of the programmer’s art. For a long time, matrix computations mystified most 
people who had no notion of error analysis; perhaps this continues to be true. That 
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may be why people are still surprised that numerically stable matrix computations 
depend upon the quality of arithmetic in so few places, far fewer than are generally 
supposed. Books by Wilkinson and widely used software packages like Linpack 
and Eispack sustained a false impression, widespread in the early 1970s, that a 
modicum of skill sufficed to produce portable numerical software.

“Portable” here means that the software is distributed as source code in some 
standard language to be compiled and executed on practically any commercially 
significant computer, and that it will then perform its task as well as any other 
program performs that task on that computer. Insofar as numerical software has 
often been thought to consist entirely of computer-independent mathematical 
formulas, its portability has commonly been taken for granted; the mistake in that 
presumption will become clear shortly.

Packages like Linpack and Eispack cost so much to develop—over a hundred 
dollars per line of Fortran delivered—that they could not have been developed 
without U.S. government subsidy; their portability was a precondition for that 
subsidy. But nobody thought to distinguish how various components contributed 
to their cost. One component was algorithmic—devise an algorithm that deserves 
to work on at least one computer despite its roundoff and over-/underflow 
limitations. Another component was the software engineering effort required to 
achieve and confirm portability to the diverse computers commercially significant 
at the time; this component grew more onerous as ever more diverse floating-point 
arithmetics blossomed in the 1970s. And yet scarcely anybody realized how much 
that diversity inflated the cost of such software packages.

A Backward Step
Early evidence that somewhat different arithmetics could engender grossly different 
software development costs was presented in 1964. It happened at a meeting of 
SHARE, the IBM mainframe users’ group, at which IBM announced System/360, 
the successor to the 7094 series. One of the speakers described the tricks he had 
been forced to devise to achieve a level of quality for the S/360 library that was not 
quite so high as he had previously achieved for the 7094.

Von Neumann could have foretold part of the trouble, had he still been alive. 
In 1948, he and Goldstine had published a lengthy error analysis so difficult and 
so pessimistic that hardly anybody paid attention to it. It did predict correctly, 
however, that computations with larger arrays of data would probably fall prey 
to roundoff more often. IBM S/360s had bigger memories than 7094s, so data 
arrays could grow larger, and they did. To make matters worse, the S/360s had 
narrower single precision words (32 bits versus 36) and used a cruder arithmetic 
(hexadecimal or base 16 versus binary or base 2) with consequently poorer worst-
case precision (21 significant bits versus 27) than the old 7094s. Consequently, 
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software that had almost always provided (barely) satisfactory accuracy on 7094s 
too often produced inaccurate results when run on S/360s. The quickest way to 
recover adequate accuracy was to replace old codes’ single precision declarations 
with double precision before recompilation for the S/360. This practice exercised 
S/360 double precision far more than had been expected.

The early S/360’s worst troubles were caused by lack of a guard digit in double 
precision. This lack showed up in multiplication as a failure of identities like 1.0* 
x = x because multiplying x by 1.0 dropped x’s last hexadecimal digit (4 bits). 
Similarly, if x and y were very close but had different exponents, subtraction 
dropped off the last digit of the smaller operand before computing x − y. This 
final aberration in double precision undermined a precious theorem that single 
precision then (and now) honored: If 1/2 ≤x/y ≤2, then no rounding error can 
occur when x − y is computed; it must be computed exactly.

Innumerable computations had benefited from this minor theorem, most often 
unwittingly, for several decades before its first formal announcement and proof. 
We had been taking all this stuff for granted.

The identities and theorems about exact relationships that persisted, despite 
roundoff, with reasonable implementations of approximate arithmetic were not 
appreciated until they were lost. Previously, it had been thought that the things to 
matter were precision (how many significant digits were carried) and range (the 
spread between over-/underflow thresholds). Since the S/360’s double precision 
had more precision and wider range than the 7094’s, software was expected to 
continue to work at least as well as before. But it didn’t.

Programmers who had matured into program managers were appalled at 
the cost of converting 7094 software to run on S/360s. A small subcommittee of 
SHARE proposed improvements to the S/360 floating point. This committee was 
surprised and grateful to get a fair part of what they asked for from IBM, including 
all-important guard digits. By 1968, these had been retrofitted to S/360s in the 
field at considerable expense; worse than that was customers’ loss of faith in IBM’s 
infallibility (a lesson learned by Intel 30 years later). IBM employees who can 
remember the incident still shudder.

The People Who Built the Bombs
Seymour Cray was associated for decades with the CDC and Cray computers that 
were, when he built them, the world’s biggest and fastest. He always understood 
what his customers wanted most: speed. And he gave it to them even if, in so doing, 
he also gave them arithmetics more “interesting” than anyone else’s. Among his 
customers have been the great government laboratories like those at Livermore and 
Los Alamos, where nuclear weapons were designed. The challenges of “interesting” 
arithmetics were pretty tame to people who had to overcome Mother Nature’s 
challenges.
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Perhaps all of us could learn to live with arithmetic idiosyncrasy if only one 
computer’s idiosyncrasies had to be endured. Instead, when accumulating different 
computers’ different anomalies, software dies the Death of a Thousand Cuts. Here 
is an example from Cray’s computers:

if (x == 0.0)  y = 17.0 else y = z/x

Could this statement be stopped by a divide-by-zero error? On a CDC 6600 it 
could. The reason was a conflict between the 6600’s adder, where x was compared 
with 0.0, and the multiplier and divider. The adder’s comparison examined x’s 
leading 13 bits, which sufficed to distinguish zero from normal nonzero floating-
point numbers x. The multiplier and divider examined only 12 leading bits. 
Consequently, tiny numbers existed that were nonzero to the adder but zero to the 
multiplier and divider! To avoid disasters with these tiny numbers, programmers 
learned to replace statements like the one above with

if (1.0 * x == 0.0)  y = 17.0 else y = z/x

But this statement is unsafe to use in would-be portable software because it 
malfunctions obscurely on other computers designed by Cray, the ones marketed 
by Cray Research, Inc. If x was so huge that 2.0 * x would overflow, then 1.0 * x 
might overflow too! Overflow happens because Cray computers check the product’s 
exponent before the product’s exponent has been normalized, just to save the delay 
of a single AND gate.

Rounding error anomalies that are far worse than the over-/underflow anomaly 
just discussed also affect Cray computers. The worst error came from the lack of 
a guard digit in add/subtract, an affliction of IBM S/360s. Further bad luck for 
software is occasioned by the way Cray economized his multiplier; about one-
third of the bits that normal multiplier arrays generate have been left out of his 
multipliers, because they would contribute less than a unit to the last place of the 
final Cray-rounded product. Consequently, a Cray multiplier errs by almost a bit 
more than might have been expected. This error is compounded when division 
takes three multiplications to improve an approximate reciprocal of the divisor 
and then multiply the numerator by it. Square root compounds a few more 
multiplication errors.

The fast way drove out the slow, even though the fast was occasionally slightly 
wrong.

Making the World Safe for Floating Point, or Vice Versa
William Kahan was an undergraduate at the University of Toronto in 1953 when he 
learned to program its Ferranti-Manchester Mark-I computer. Because he entered 
the field early, Kahan became acquainted with a wide range of devices and a large 
proportion of the personalities active in computing; the numbers of both were  
small at that time. He has performed computations on slide rules, desktop 
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mechanical calculators, tabletop analog differential analyzers, and so on; he has 
used all but the earliest electronic computers and calculators mentioned in this 
book.

Kahan’s desire to deliver reliable software led to an interest in error analysis that 
intensified during two years of postdoctoral study in England, where he became 
acquainted with Wilkinson. In 1960, he resumed teaching at Toronto, where an 
IBM 7090 had been acquired, and was granted free rein to tinker with its operating 
system, Fortran compiler, and runtime library. (He denies that he ever came near 
the 7090 hardware with a soldering iron but admits asking to do so.) One story from 
that time illuminates how misconceptions and numerical anomalies in computer 
systems can incur awesome hidden costs.

A graduate student in aeronautical engineering used the 7090 to simulate the 
wings he was designing for short takeoffs and landings. He knew such a wing would 
be difficult to control if its characteristics included an abrupt onset of stall, but he 
thought he could avoid that. His simulations were telling him otherwise. Just to be 
sure that roundoff was not interfering, he had repeated many of his calculations in 
double precision and gotten results much like those in single; his wings had stalled 
abruptly in both precisions. Disheartened, the student gave up.

Meanwhile Kahan replaced IBM’s logarithm program (ALOG) with one of 
his own, which he hoped would provide better accuracy. While testing it, Kahan 
reran programs using the new version of ALOG. The student’s results changed 
significantly; Kahan approached him to find out what had happened.

The student was puzzled. Much as the student preferred the results produced 
with the new ALOG—they predicted a gradual stall—he knew they must be wrong 
because they disagreed with his double precision results. The discrepancy between 
single and double precision results disappeared a few days later when a new release 
of IBM’s double precision arithmetic software for the 7090 arrived. (The 7090 had 
no double precision hardware.) He went on to write a thesis about it and to build 
the wings; they performed as predicted. But that is not the end of the story.

In 1963, the 7090 was replaced by a faster 7094 with double precision floating-
point hardware but with otherwise practically the same instruction set as the 7090. 
Only in double precision and only when using the new hardware did the wing stall 
abruptly again. A lot of time was spent to find out why. The 7094 hardware turned 
out, like the superseded 7090 software and the subsequent early S/360s, to lack a 
guard bit in double precision. Like so many programmers on those computers and 
on Cray’s, the student discovered a trick to compensate for the lack of a guard digit; 
he wrote the expression (0.5 — x) + 0.5 in place of 1.0 — x. Nowadays we 
would blush if we had to explain why such a trick might be necessary, but it solved 
the student’s problem.

Meanwhile the lure of California was working on Kahan and his family; they 
came to Berkeley and he to the University of California. An opportunity presented 
itself in 1974 when accuracy questions induced Hewlett-Packard’s calculator 
designers to call in a consultant. The consultant was Kahan, and his work 
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dramatically improved the accuracy of HP calculators, but that is another story. 
Fruitful collaboration with congenial coworkers, however, fortified him for the 
next and crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered to specify the 
“best possible” floating-point arithmetic for all of Intel’s product line, as Moore’s 
Law made it now possible to create a whole floating-point unit on a single chip. The 
floating-point standard was originally started for the iAPX-432, but when it was 
late, Intel started the 8086 as a short-term emergency stand-in until the iAPX-432 
was ready. The iAPX-432 never became popular, so the emergency stand-in became 
the standard-bearer for Intel. The 8087 floating-point coprocessor for the 8086 was 
contemplated. (A coprocessor is simply an additional chip that accelerates a portion 
of the work of a processor; in this case, it accelerated floating-point computation.)

Palmer had obtained his Ph.D. at Stanford a few years before and knew whom 
to call for counsel of perfection—Kahan. They put together a design that obviously 
would have been impossible only a few years earlier and looked not quite possible at 
the time. But a new Israeli team of Intel employees led by Rafi Navé felt challenged 
to prove their prowess to Americans and leaped at an opportunity to put something 
impossible on a chip—the 8087.

By now, floating-point arithmetics that had been merely diverse among 
mainframes had become chaotic among microprocessors, one of which might be 
host to a dozen varieties of arithmetic in ROM firmware or software. Robert G. 
Stewart, an engineer prominent in IEEE activities, got fed up with this anarchy 
and proposed that the IEEE draft a decent floating-point standard. Simultaneously, 
word leaked out in Silicon Valley that Intel was going to put on one chip some 
awesome floating point well beyond anything its competitors had in mind. The 
competition had to find a way to slow Intel down, so they formed a committee to 
do what Stewart requested.

Meetings of this committee began in late 1977 with a plethora of competing 
drafts from innumerable sources and dragged on into 1985, when IEEE Standard 
754 for Binary Floating Point was made official. The winning draft was very close 
to one submitted by Kahan, his student Jerome T. Coonen, and Harold S. Stone, a 
professor visiting Berkeley at the time. Their draft was based on the Intel design, 
with Intel’s permission, of course, as simplified by Coonen. Their harmonious 
combination of features, almost none of them new, had at the outset attracted more 
support within the committee and from outside experts like Wilkinson than any 
other draft, but they had to win nearly unanimous support within the committee 
to win official IEEE endorsement, and that took time.

The First IEEE 754 Chips
In 1980, Intel became tired of waiting and released the 8087 for use in the IBM 
PC. The floating-point architecture of the companion 8087 had to be retrofitted 
into the 8086 opcode space, making it inconvenient to offer two operands per 
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instruction as found in the rest of the 8086. Hence the decision for one operand 
per instruction using a stack: “The designer’s task was to make a Virtue of this 
Necessity.” (Kahan’s [1990] history of the stack architecture selection for the 8087 
is entertaining reading.)

Rather than the classical stack architecture, which has no provision for avoiding 
common subexpressions from being pushed and popped from memory into the 
top of the stack found in registers, Intel tried to combine a flat register file with 
a stack. The reasoning was that the restriction of the top of stack as one operand 
was not so bad since it only required the execution of an FXCH instruction (which 
swapped registers) to get the same result as a two-operand instruction, and FXCH 
was much faster than the floating-point operations of the 8087.

Since floating-point expressions are not that complex, Kahan reasoned that eight 
registers meant that the stack would rarely overflow. Hence, he urged that the 8087 
use this hybrid scheme with the provision that stack overflow or stack underflow 
would interrupt the 8086 so that interrupt software could give the illusion to the 
compiler writer of an unlimited stack for floating-point data.

The Intel 8087 was implemented in Israel, and 7500 miles and 10 time zones 
made communication from California difficult. According to Palmer and Morse 
(The 8087 Primer, J. Wiley, New York, 1984, p. 93):

Unfortunately, nobody tried to write a software stack manager until after the 8087 
was built, and by then it was too late; what was too complicated to perform in 
hardware turned out to be even worse in software. One thing found lacking is the 
ability to conveniently determine if an invalid operation is indeed due to a stack 
overflow.… Also lacking is the ability to restart the instruction that caused the 
stack overflow …

The result is that the stack exceptions are too slow to handle in software. As Kahan 
[1990] says:

Consequently, almost all higher-level languages’ compilers emit inefficient code for 
the 80x87 family, degrading the chip’s performance by typically 50% with spurious 
stores and loads necessary simply to preclude stack over/under-flow.…

I still regret that the 8087’s stack implementation was not quite so neat as my 
original intention.… If the original design had been realized, compilers today 
would use the 80x87 and its descendents more efficiently, and Intel’s competitors 
could more easily market faster but compatible 80x87 imitations.
In 1982, Motorola announced its 68881, which found a place in Sun 3s and 

Macintosh IIs; Apple had been a supporter of the proposal from the beginning. 
Another Berkeley graduate student, George S. Taylor, had soon designed a high-
speed implementation of the proposed standard for an early superminicomputer 
(ELXSI 6400). The standard was becoming de facto before its final draft’s ink was dry.
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An early rush of adoptions gave the computing industry the false impression 
that IEEE 754, like so many other standards, could be implemented easily by 
following a standard recipe. Not true. Only the enthusiasm and ingenuity of its 
early implementors made it look easy.

In fact, to implement IEEE 754 correctly demands extraordinarily diligent 
attention to detail; to make it run fast demands extraordinarily competent 
ingenuity of design. Had the industry’s engineering managers realized this, they 
might not have been so quick to affirm that, as a matter of policy, “We conform to 
all applicable standards.”

IEEE 754 Today
Unfortunately, the compiler-writing community was not represented adequately in 
the wrangling, and some of the features didn’t balance language and compiler issues 
against other points. That community has been slow to make IEEE 754’s unusual 
features available to the applications programmer. Humane exception handling is 
one such unusual feature; directed rounding another. Without compiler support, 
these features have atrophied.

The successful parts of IEEE 754 are that it is a widely implemented standard 
with a common floating-point format, that it requires minimum accuracy to one-
half ulp in the least significant bit, and that operations must be commutative.

The IEEE 754/854 has been implemented to a considerable degree of fidelity in 
at least part of the product line of every North American computer manufacturer. 
The only significant exceptions were the DEC VAX, IBM S/370 descendants, 
and Cray Research vector supercomputers, and all three have been replaced by 
compliant computers.

IEEE rules ask that a standard be revisited periodically for updating. A 
committee started in 2000, and drafts of the revised standards were circulated for 
voting, and these were approved in 2008. The revised standard, IEEE Std 754-2008 
[2008], includes several new types: 16-bit floating point, called half precision; 128-
bit floating point, called quad precision; and three decimal types, matching the 
length of the 32-bit, 64-bit, and 128-bit binary formats. In 1989, the Association for 
Computing Machinery, acknowledging the benefits conferred upon the computing 
industry by IEEE 754, honored Kahan with the Turing Award. On accepting it, he 
thanked his many associates for their diligent support, and his adversaries for their 
blunders. So . . . not all errors are bad.
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Further Reading
If you are interested in learning more about floating point, two publications by 
David Goldberg [1991, 2002] are good starting points; they abound with pointers to 
further reading. Several of the stories told in this section come from Kahan [1972, 
1983]. The latest word on the state of the art in computer arithmetic is often found 
in the Proceedings of the most recent IEEE-sponsored Symposium on Computer 
Arithmetic, held every two years; the 23rd was held in 2016.
Burks, A.W., H.H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of the logical design of 
an electronic computing instrument,” Report to the U.S. Army Ordnance Dept., p. 1; also in Papers of John von 
Neumann, W. Aspray and A. Burks (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers, Los Angeles, 
1987, 97–146.

This classic paper includes arguments against floating-point hardware.

Goldberg, D. [2002]. “Computer arithmetic”. Appendix A of Computer Architecture: A Quantitative Approach, 
third edition, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San Francisco.

A more advanced introduction to integer and floating-point arithmetic, with emphasis on hardware. It covers 
Sections 3.4–3.6 of this book in just 10 pages, leaving another 45 pages for advanced topics.

Goldberg, D. [1991]. “What every computer scientist should know about floating-point arithmetic”, ACM 
Computing Surveys 23(1), 5–48.

Another good introduction to floating-point arithmetic by the same author, this time with emphasis on software.

Kahan, W. [1972]. “A survey of error-analysis,” in Info. Processing 71 (Proc. IFIP Congress 71 in Ljubljana), 
Vol. 2, North-Holland Publishing, Amsterdam, 1214–1239.

This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand,” Proc. Amer. Stat. Assoc. Joint Summer Meetings of 1983, 
Statistical Computing Section, 12–26.

The title refers to silicon and is another source of stories illustrating the importance of accurate arithmetic.

Kahan, W. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Computer Science 
Division, University of California, Berkeley.

What the 8087 floating-point architecture could have been.

Kahan, W. [1997]. Available at http://www.cims.nyu.edu/~dbindel/class/cs279/87stack.pdf.

A collection of memos related to floating point, including “Beastly numbers” (another less famous Pentium bug), 
“Notes on the IEEE floating point arithmetic” (including comments on how some features are atrophying), and 
“The baleful effects of computing benchmarks” (on the unhealthy preoccupation on speed versus correctness, 
accuracy, ease of use, flexibility, …).

Koren, I. [2002]. Computer Arithmetic Algorithms, second edition, A. K. Peters, Natick, MA.

A textbook aimed at seniors and first-year graduate students that explains fundamental principles of basic 
arithmetic, as well as complex operations such as logarithmic and trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.

This computer pioneer’s recollections include the derivation of the standard hardware for multiply and divide 
developed by von Neumann.

http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref2
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref2
http://www.cims.nyu.edu/%7edbindel/class/cs279/87stack.pdf
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref3
http://refhub.elsevier.com/B978-0-12-812275-4.00031-2/sbref4


228 Chapter 3 Arithmetic for Computers

3.7 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored 
in sign-magnitude format. Calculate 185 + 122. Is there overflow, underflow, or 
neither?

3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored 
in sign-magnitude format. Calculate 185 − 122. Is there overflow, underflow, or 
neither?

3.9 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in 
two’s complement format. Calculate 151 + 214 using saturating arithmetic. The 
result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored 
in two’s complement format. Calculate 151 − 214 using saturating arithmetic. The 
result should be written in decimal. Show your work.

3.11 [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 
151+ 214 using saturating arithmetic. The result should be written in decimal. 
Show your work.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the 
product of the octal unsigned 6-bit integers 62 and 12 using the hardware described 
in Figure 3.3. You should show the contents of each register on each step.

3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the 
product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware 
described in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <§3.3> Calculate the time necessary to perform a multiply using the 
approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step of 
the operation takes four time units. Assume that in step 1a an addition is always 
performed—either the multiplicand will be added, or a zero will be. Also assume 
that the registers have already been initialized (you are just counting how long it 
takes to do the multiplication loop itself). If this is being done in hardware, the 
shifts of the multiplicand and multiplier can be done simultaneously. If this is being 
done in software, they will have to be done one after the other. Solve for each case.

3.15 [10] <§3.3> Calculate the time necessary to perform a multiply using the 
approach described in the text (31 adders stacked vertically) if an integer is 8 bits 
wide and an adder takes four time units.

3.16 [20] <§3.3> Calculate the time necessary to perform a multiply using the 
approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes four 
time units.

3.17 [20] <§3.3> As discussed in the text, one possible performance enhancement is 
to do a shift and add instead of an actual multiplication. Since 9 × 6, for example, can 
be written (2 × 2 × 2 + 1) × 6, we can calculate 9 × 6 by shifting 6 to the left three times 
and then adding 6 to that result. Show the best way to calculate 0 × 33 × 0 × 55 using 
shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

马德



 3.12 Exercises 229

3.18 [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 
74 divided by 21 using the hardware described in Figure 3.8. You should show 
the contents of each register on each step. Assume both inputs are unsigned 6-bit 
integers.

3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate 
74 divided by 21 using the hardware described in Figure 3.11. You should show 
the contents of each register on each step. Assume A and B are unsigned 6-bit 
integers. This algorithm requires a slightly different approach than that shown in 
Figure 3.9. You will want to think hard about this, do an experiment or two, or else 
go to the web to figure out how to make this work correctly. (Hint: one possible 
solution involves using the fact that Figure 3.11 implies the remainder register can 
be shifted either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0 × 0C000000 
represent if it is a two’s complement integer? An unsigned integer?

3.21 [10] <§3.5> If the bit pattern 0 × 0C000000 is placed into the Instruction 
Register, what MIPS instruction will be executed?

3.22 [10] <§3.5> What decimal number does the bit pattern 0 × 0C000000 
represent if it is a floating point number? Use the IEEE 754 standard.

3.23 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming the IEEE 754 double precision format.

3.25 [10] <§3.5> Write down the binary representation of the decimal number 
63.25 assuming it was stored using the single precision IBM format (base 16, 
instead of base 2, with 7 bits of exponent).

3.26 [20] <§3.5> Write down the binary bit pattern to represent −1.5625 × 10−1 
assuming a format similar to that employed by the DEC PDP-8 (the leftmost 12 
bits are the exponent stored as a two’s complement number, and the rightmost 24 
bits are the fraction stored as a two’s complement number). No hidden 1 is used. 
Comment on how the range and accuracy of this 36-bit pattern compares to the 
single and double precision IEEE 754 standards.

3.27 [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits wide. 
The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias of 15, 
and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the bit pattern to 
represent −1.5625 × 10−1 assuming a version of this format, which uses an excess-16 
format to store the exponent. Comment on how the range and accuracy of this 16-bit 
floating point format compares to the single precision IEEE 754 standard.

3.28 [20] <§3.5> The Hewlett-Packard 2114, 2115, and 2116 used a format 
with the leftmost 16 bits being the fraction stored in two’s complement format, 
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followed by another 16-bit field which had the leftmost 8 bits as an extension of the 
fraction (making the fraction 24 bits long), and the rightmost 8 bits representing 
the exponent. However, in an interesting twist, the exponent was stored in sign-
magnitude format with the sign bit on the far right! Write down the bit pattern to 
represent −1.5625 × 10−1 assuming this format. No hidden 1 is used. Comment on 
how the range and accuracy of this 32-bit pattern compares to the single precision 
IEEE 754 standard.

3.29 [20] <§3.5> Calculate the sum of 2.6125 × 101 and 4.150390625 × 10−1  
by hand, assuming A and B are stored in the 16-bit half precision described in 
Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the 
nearest even. Show all the steps.

3.30 [30] <§3.5> Calculate the product of –8.0546875 × 100 and −1.79931640625 × 
10–1 by hand, assuming A and B are stored in the 16-bit half precision format described 
in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the 
nearest even. Show all the steps; however, as is done in the example in the text, you 
can do the multiplication in human-readable format instead of using the techniques 
described in Exercises 3.12 through 3.14. Indicate if there is overflow or underflow. 
Write your answer in both the 16-bit floating point format described in Exercise 3.27 
and also as a decimal number. How accurate is your result? How does it compare to 
the number you get if you do the multiplication on a calculator?

3.31 [30] <§3.5> Calculate by hand 8.625 × 101 divided by −4.875 × 100. Show 
all the steps necessary to achieve your answer. Assume there is a guard, a round bit, 
and a sticky bit, and use them if necessary. Write the final answer in both the 16-bit 
floating point format described in Exercise 3.27 and in decimal and compare the 
decimal result to that which you get if you use a calculator.

3.32 [20] <§3.10> Calculate (3.984375 × 10−1 + 3.4375 × 10−1) + 1.771 × 103 
by hand, assuming each of the values is stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit floating point format and in decimal.

3.33 [20] <§3.10> Calculate 3.984375 × 10−1 + (3.4375 × 10−1 + 1.771 × 103) 
by hand, assuming each of the values is stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit floating point format and in decimal.

3.34 [10] <§3.10> Based on your answers to Exercises 3.32 and 3.33, does 
(3.984375 × 10−1 + 3.4375 × 10−1) + 1.771 × 103 = 3.984375 × 10−1 + (3.4375 × 
10−1 + 1.771 × 103)?

3.35 [30] <§3.10> Calculate (3.41796875 × 10−3 × 6.34765625 × 10−3) × 1.05625 × 
102 by hand, assuming each of the values is stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 round 
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bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and write your 
answer in both the 16-bit floating point format and in decimal.

3.36 [30] <§3.10> Calculate 3.41796875 × 10−3 × (6.34765625 × 10−3 × 1.05625 × 
102) by hand, assuming each of the values is stored in the 16-bit half precision format 
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1 round 
bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and write your 
answer in both the 16-bit floating point format and in decimal.

3.37 [10] <§3.10> Based on your answers to Exercises 3.35 and 3.36, does 
(3.41796875 × 10−3 × 6.34765625 × 10−3) × 1.05625 × 102 = 3.41796875 × 10−3 × 
(6.34765625 × 10−3 × 1.05625 × 102)?

3.38 [30] <§3.10> Calculate 1.666015625 × 100 × (1.9760 × 104 + −1.9744 × 
104) by hand, assuming each of the values is stored in the 16-bit half precision 
format described in Exercise 3.27 (and also described in the text). Assume 1 guard, 
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and 
write your answer in both the 16-bit floating point format and in decimal.

3.39 [30] <§3.10> Calculate (1.666015625 × 100 × 1.9760 × 104) + (1.666015625 × 
100 × −1.9744 × 104) by hand, assuming each of the values is stored in the 16-bit half 
precision format described in Exercise 3.27 (and also described in the text). Assume 1 
guard, 1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, 
and write your answer in both the 16-bit floating point format and in decimal.

3.40 [10] <§3.10> Based on your answers to Exercises 3.38 and 3.39, does 
(1.666015625 × 100 × 1.9760 × 104) + (1.666015625 × 100 × −1.9744 × 104) = 
1.666015625 × 100 × (1.9760 × 104 + −1.9744 × 104)?

3.41 [10] <§3.5> Using the IEEE 754 floating point format, write down the bit 
pattern that would represent −1/4. Can you represent −1/4 exactly?

3.42 [10] <§3.5> What do you get if you add −1/4 to itself four times? What is  
−1/4 × 4? Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming 
a floating point format that uses binary numbers in the fraction. Assume there are 
24 bits, and you do not need to normalize. Is this representation exact?

3.44 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming 
a floating point format that uses Binary Coded Decimal (base 10) numbers in 
the fraction instead of base 2. Assume there are 24 bits, and you do not need to 
normalize. Is this representation exact?

3.45 [10] <§3.5> Write down the bit pattern assuming that we are using base 15 
numbers in the fraction of value 1/3 instead of base 2. (Base 16 numbers use the 
symbols 0–9 and A–F. Base 15 numbers would use 0–9 and A–E.) Assume there are 
24 bits, and you do not need to normalize. Is this representation exact?
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3.46 [20] <§3.5> Write down the bit pattern assuming that we are using base 30 
numbers in the fraction of value 1/3 instead of base 2. (Base 16 numbers use the 
symbols 0–9 and A–F. Base 30 numbers would use 0–9 and A–T.) Assume there are 
20 bits, and you do not need to normalize. Is this representation exact?

3.47 [45] <§§3.6, 3.7> The following C code implements a four-tap FIR filter on 
input array sig_in. Assume that all arrays are 16-bit fixed-point values.

for (i = 3;i< 128;i+ +)
sig_out[i] = sig_in[i − 3] * f[0] + sig_in[i − 2] * f[1]
 + sig_in[i − 1] * f[2] + sig_in[i] * f[3];

Assume you are to write an optimized implementation of this code in assembly 
language on a processor that has SIMD instructions and 128-bit registers. Without 
knowing the details of the instruction set, briefly describe how you would 
implement this code, maximizing the use of sub-word operations and minimizing 
the amount of data that is transferred between registers and memory. State all your 
assumptions about the instructions you use.

§3.2, page 177: 2.
§3.5, page 215: 3.

Answers to 
Check Yourself
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 4.1 Introduction

Chapter 1 explains that the performance of a computer is determined by three key 
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI). 
Chapter 2 explains that the compiler and the instruction set architecture determine 
the instruction count required for a given program. However, the implementation 
of the processor determines both the clock cycle time and the number of clock 
cycles per instruction. In this chapter, we construct the datapath and control unit 
for two different implementations of the RISC-V instruction set.

This chapter contains an explanation of the principles and techniques used in 
implementing a processor, starting with a highly abstract and simplified overview 
in this section. It is followed by a section that builds up a datapath and constructs a 
simple version of a processor sufficient to implement an instruction set like RISC-V. 
The bulk of the chapter covers a more realistic pipelined RISC-V implementation, 
followed by a section that develops the concepts necessary to implement more 
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of 
instructions and its impact on program performance, this initial section and Section 
4.5 present the basic concepts of pipelining. Current trends are covered in Section 
4.10, and Section 4.11 describes the recent Intel Core i7 and ARM Cortex-A53 
architectures. Section 4.12 shows how to use instruction-level parallelism to more 
than double the performance of the matrix multiply from Section 3.9. These sections 
provide enough background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance in 
more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learning how 
to build a processor should also cover Sections 4.2, 4.7–4.9. For readers with an interest 
in modern hardware design,  Section 4.13 describes how hardware design languages 
and CAD tools are used to implement hardware, and then how to use a hardware design 
language to describe a pipelined implementation. It also gives several more illustrations 
of how pipelining hardware executes.

A Basic RISC-V Implementation
We will be examining an implementation that includes a subset of the core RISC-V 
instruction set:

■	 The memory-reference instructions load doubleword (ld) and store 
doubleword (sd)

■	 The arithmetic-logical instructions add, sub, and, and or

■	 The conditional branch instruction branch if equal (beq)

This subset does not include all the integer instructions (for example, shift, 
multiply, and divide are missing), nor does it include any floating-point instructions. 
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However, it illustrates the key principles used in creating a datapath and designing 
the control. The implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the 
instruction set architecture determines many aspects of the implementation, and how 
the choice of various implementation strategies affects the clock rate and CPI for the 
computer. Many of the key design principles introduced in Chapter 1 can be illustrated 
by looking at the implementation, such as Simplicity favors regularity. In addition, most 
concepts used to implement the RISC-V subset in this chapter are the same basic ideas 
that are used to construct a broad spectrum of computers, from high-performance 
servers to general-purpose microprocessors to embedded processors.

An Overview of the Implementation

In Chapter  2, we looked at the core RISC-V instructions, including the integer 
arithmetic-logical instructions, the memory-reference instructions, and the branch 
instructions. Much of what needs to be done to implement these instructions is the 
same, independent of the exact class of instruction. For every instruction, the first 
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and 
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers 
to read. For the ld instruction, we need to read only one register, but most 
other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend 
on the instruction class. Fortunately, for each of the three instruction classes 
(memory-reference, arithmetic-logical, and branches), the actions are largely the 
same, independent of the exact instruction. The simplicity and regularity of the 
RISC-V instruction set simplify the implementation by making the execution of 
many of the instruction classes similar.

For example, all instruction classes use the arithmetic-logical unit (ALU) after 
reading the registers. The memory-reference instructions use the ALU for an address 
calculation, the arithmetic-logical instructions for the operation execution, and 
conditional branches for the equality test. After using the ALU, the actions required 
to complete various instruction classes differ. A memory-reference instruction will 
need to access the memory either to read data for a load or write data for a store.  
An arithmetic-logical or load instruction must write the data from the ALU or 
memory back into a register. Lastly, for a conditional branch instruction, we may 
need to change the next instruction address based on the comparison; otherwise, the 
PC should be incremented by four to get the address of the subsequent instruction.

Figure 4.1 shows the high-level view of a RISC-V implementation, focusing on 
the various functional units and their interconnection. Although this figure shows 
most of the flow of data through the processor, it omits two important aspects of 
instruction execution.

First, in several places, Figure 4.1 shows data going to a particular unit as coming 
from two different sources. For example, the value written into the PC can come 



238 Chapter 4 The Processor

from one of two adders, the data written into the register file can come from either 
the ALU or the data memory, and the second input to the ALU can come from 
a register or the immediate field of the instruction. In practice, these data lines 
cannot simply be wired together; we must add a logic element that chooses from 
among the multiple sources and steers one of those sources to its destination. This 
selection is commonly done with a device called a multiplexor, although this device 
might better be called a data selector. Appendix A describes the multiplexor, which 
selects from among several inputs based on the setting of its control lines. The 
control lines are set based primarily on information taken from the instruction 
being executed.

The second omission in Figure 4.1 is that several of the units must be controlled 
depending on the type of instruction. For example, the data memory must read 
on a load and write on a store. The register file must be written only on a load or 

FIGURE 4.1 An abstract view of the implementation of the RISC-V subset showing the 
major functional units and the major connections between them. All instructions start by using 
the program counter to supply the instruction address to the instruction memory. After the instruction is 
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the 
register operands have been fetched, they can be operated on to compute a memory address (for a load or 
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or an equality check 
(for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written 
to a register. If the operation is a load or store, the ALU result is used as an address to either store a value from 
the registers or load a value from memory into the registers. The result from the ALU or memory is written 
back into the register file. Branches require the use of the ALU output to determine the next instruction 
address, which comes either from the adder (where the PC and branch offset are summed) or from an adder 
that increments the current PC by four. The thick lines interconnecting the functional units represent buses, 
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows. 
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot 
where the lines cross.
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an arithmetic-logical instruction. And, of course, the ALU must perform one of 
several operations. (Appendix A describes the detailed design of the ALU.) Like 
the multiplexors, control lines that are set based on various fields in the instruction 
direct these operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors 
added, as well as control lines for the major functional units. A control unit, which 
has the instruction as an input, is used to determine how to set the control lines 
for the functional units and two of the multiplexors. The top multiplexor, which 

FIGURE 4.2 The basic implementation of the RISC-V subset, including the necessary multiplexors and control lines. The 
top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate 
that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle multiplexor, whose 
output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data 
memory (in the case of a load) for writing into the register file. Finally, the bottom-most multiplexor is used to determine whether the second ALU 
input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction (for a load or store). The 
added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and 
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.
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determines whether PC + 4 or the branch destination address is written into the 
PC, is set based on the Zero output of the ALU, which is used to perform the 
comparison of a beq instruction. The regularity and simplicity of the RISC-V 
instruction set mean that a simple decoding process can be used to determine how 
to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which 
requires that we add further functional units, increase the number of connections 
between units, and, of course, enhance a control unit to control what actions 
are taken for different instruction classes. Sections 4.3 and 4.4 describe a simple 
implementation that uses a single long clock cycle for every instruction and follows 
the general form of Figures 4.1 and 4.2. In this first design, every instruction begins 
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle 
must be severely stretched to accommodate the longest instruction. After designing 
the control for this simple computer, we will look at pipelined implementation with 
all its complexities, including exceptions.

How many of the five classic components of a computer—shown on page 235—do 
Figures 4.1 and 4.2 include?

Check  
Yourself

 4.2 Logic Design Conventions

To discuss the design of a computer, we must decide how the hardware logic 
implementing the computer will operate and how the computer is clocked. This 
section reviews a few key ideas in digital logic that we will use extensively in this 
chapter. If you have little or no background in digital logic, you will find it helpful 
to read Appendix A before continuing.

The datapath elements in the RISC-V implementation consist of two different 
types of logic elements: elements that operate on data values and elements that 
contain state. The elements that operate on data values are all combinational, which 
means that their outputs depend only on the current inputs. Given the same input, a 
combinational element always produces the same output. The ALU shown in Figure 
4.1 and discussed in Appendix A is an example of a combinational element. Given a 
set of inputs, it always produces the same output because it has no internal storage.

Other elements in the design are not combinational, but instead contain state. An 
element contains state if it has some internal storage. We call these elements state 
elements because, if we pulled the power plug on the computer, we could restart it 
accurately by loading the state elements with the values they contained before we 
pulled the plug. Furthermore, if we saved and restored the state elements, it would 
be as if the computer had never lost power. Thus, these state elements completely 
characterize the computer. In Figure 4.1, the instruction and data memories, as 
well as the registers, are all examples of state elements.

combinational 
element An operational 
element, such as an AND 
gate or an ALU

state element A memory 
element, such as a register 
or a memory.
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A state element has at least two inputs and one output. The required inputs are 
the data value to be written into the element and the clock, which determines when 
the data value is written. The output from a state element provides the value that 
was written in an earlier clock cycle. For example, one of the logically simplest 
state elements is a D-type flip-flop (see Appendix A), which has exactly these two 
inputs (a value and a clock) and one output. In addition to flip-flops, our RISC-V 
implementation uses two other types of state elements: memories and registers, 
both of which appear in Figure 4.1. The clock is used to determine when the state 
element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because their 
outputs depend on both their inputs and the contents of the internal state. For 
example, the output from the functional unit representing the registers depends 
both on the register numbers supplied and on what was written into the registers 
previously. Appendix A discusses the operation of both the combinational and 
sequential elements and their construction in more detail.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be 
written. It is important to specify the timing of reads and writes, because if a signal 
is written at the same time that it is read, the value of the read could correspond 
to the old value, the newly written value, or even some mix of the two! Computer 
designs cannot tolerate such unpredictability. A clocking methodology is designed 
to make hardware predictable.

For simplicity, we will assume an edge-triggered clocking methodology. An 
edge-triggered clocking methodology means that any values stored in a sequential 
logic element are updated only on a clock edge, which is a quick transition from 
low to high or vice versa (see Figure 4.3). Because only state elements can store a 
data value, any collection of combinational logic must have its inputs come from a 
set of state elements and its outputs written into a set of state elements. The inputs 
are values that were written in a previous clock cycle, while the outputs are values 
that can be used in a following clock cycle.

clocking 
methodology The 
approach used to 
determine when data are 
valid and stable relative to 
the clock.

edge-triggered 
clocking A clocking 
scheme in which all state 
changes occur on a clock 
edge.

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a 
synchronous digital system, the clock determines when elements with state will write values into internal 
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which 
they will not change until after the clock edge) before the active clock edge causes the state to be updated. All 
state elements in this chapter, including memory, are assumed positive edge-triggered; that is, they change 
on the rising clock edge.
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Figure 4.3 shows the two state elements surrounding a block of combinational 
logic, which operates in a single clock cycle: all signals must propagate from state 
element 1, through the combinational logic, and to state element 2 in the time of 
one clock cycle. The time necessary for the signals to reach state element 2 defines 
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is 
written on every active clock edge. In contrast, if a state element is not updated on 
every clock, then an explicit write control signal is required. Both the clock signal 
and the write control signal are inputs, and the state element is changed only when 
the write control signal is asserted and a clock edge occurs.

We will use the word asserted to indicate a signal that is logically high and assert 
to specify that a signal should be driven logically high, and deassert or deasserted 
to represent logically low. We use the terms assert and deassert because when 
we implement hardware, at times 1 represents logically high and at times it can 
represent logically low.

An edge-triggered methodology allows us to read the contents of a register, 
send the value through some combinational logic, and write that register in the 
same clock cycle. Figure 4.4 gives a generic example. It doesn’t matter whether we 
assume that all writes take place on the rising clock edge (from low to high) or on 
the falling clock edge (from high to low), since the inputs to the combinational 
logic block cannot change except on the chosen clock edge. In this book, we use 
the rising clock edge. With an edge-triggered timing methodology, there is no 
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. 
In Appendix A, we briefly discuss additional timing constraints (such as setup and 
hold times) as well as other timing methodologies.

For the 64-bit RISC-V architecture, nearly all of these state and logic elements 
will have inputs and outputs that are 64 bits wide, since that is the width of most 
of the data handled by the processor. We will make it clear whenever a unit has an 
input or output that is other than 64 bits in width. The figures will indicate buses, 
which are signals wider than 1 bit, with thicker lines. At times, we will want to 
combine several buses to form a wider bus; for example, we may want to obtain 
a 64-bit bus by combining two 32-bit buses. In such cases, labels on the bus lines 

control signal A signal 
used for multiplexor 
selection or for directing 
the operation of a 
functional unit; contrasts 
with a data signal, which 
contains information 
that is operated on by a 
functional unit.

asserted The signal is 
logically high or true.

deasserted The signal is 
logically low or false.

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and 
written in the same clock cycle without creating a race that could lead to indeterminate 
data values. Of course, the clock cycle still must be long enough so that the input values are stable when 
the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered 
update of the state element. If feedback were possible, this design could not work properly. Our designs 
in this chapter and the next rely on the edge-triggered timing methodology and on structures like the one 
shown in this figure.

State
element

Combinational logic
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will make it clear that we are concatenating buses to form a wider bus. Arrows 
are also added to help clarify the direction of the flow of data between elements. 
Finally, color indicates a control signal contrary to a signal that carries data; this 
distinction will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock 
cycle, any RISC-V datapath using edge-triggered writes must have more than one 
copy of the register file.

Check 
Yourself

Elaboration: There is also a 32-bit version of the RISC-V architecture, and, naturally 
enough, most paths in its implementation would be 32 bits wide.

 4.3 Building a Datapath

A reasonable way to start a datapath design is to examine the major components 
required to execute each class of RISC-V instructions. Let’s start at the top by 
looking at which datapath elements each instruction needs, and then work our 
way down through the levels of abstraction. When we show the datapath elements, 
we will also show their control signals. We use abstraction in this explanation, 
starting from the bottom up.

Figure 4.5a shows the first element we need: a memory unit to store the 
instructions of a program and supply instructions given an address. Figure 4.5b 
also shows the program counter (PC), which as we saw in Chapter 2 is a register 
that holds the address of the current instruction. Lastly, we will need an adder 
to increment the PC to the address of the next instruction. This adder, which is 
combinational, can be built from the ALU described in detail in Appendix A simply 
by wiring the control lines so that the control always specifies an add operation. We 
will draw such an ALU with the label Add, as in Figure 4.5c, to indicate that it has 
been permanently made an adder and cannot perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from 
memory. To prepare for executing the next instruction, we must also increment the 
program counter so that it points at the next instruction, 4 bytes later. Figure 4.6 
shows how to combine the three elements from Figure 4.5 to form a datapath 
that fetches instructions and increments the PC to obtain the address of the next 
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.19 on page 120). 
They all read two registers, perform an ALU operation on the contents of the 
registers, and write the result to a register. We call these instructions either R-type 
instructions or arithmetic-logical instructions (since they perform arithmetic or 
logical operations). This instruction class includes add, sub, and, and or, which 

datapath element A 
unit used to operate on 
or hold data within a 
processor. In the RISC-V 
implementation, the 
datapath elements include 
the instruction and data 
memories, the register 
file, the ALU, and adders.

program counter 
(PC) The register 
containing the address 
of the instruction in the 
program being executed.
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were introduced in Chapter 2. Recall that a typical instance of such an instruction 
is add x1, x2, x3, which reads x2 and x3 and writes the sum into x1.

The processor’s 32 general-purpose registers are stored in a structure called a 
register file. A register file is a collection of registers in which any register can be 
read or written by specifying the number of the register in the file. The register file 
contains the register state of the computer. In addition, we will need an ALU to 
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read two 
data words from the register file and write one data word into the register file for 
each instruction. For each data word to be read from the registers, we need an input 
to the register file that specifies the register number to be read and an output from 
the register file that will carry the value that has been read from the registers. To 
write a data word, we will need two inputs: one to specify the register number to be 
written and one to supply the data to be written into the register. The register file 
always outputs the contents of whatever register numbers are on the Read register 
inputs. Writes, however, are controlled by the write control signal, which must be 
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we need 
a total of three inputs (two for register numbers and one for data) and two outputs 
(both for data). The register number inputs are 5 bits wide to specify one of 32 
registers (32 = 25), whereas the data input and two data output buses are each 64 
bits wide.

Figure 4.7b shows the ALU, which takes two 64-bit inputs and produces a 64-bit 
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU 
is described in detail in Appendix A; we will review the ALU control shortly when 
we need to know how to set it.

register file A state 
element that consists 
of a set of registers that 
can be read and written 
by supplying a register 
number to be accessed.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an 
adder is needed to compute the next instruction address. The state elements are the instruction 
memory and the program counter. The instruction memory need only provide read access because the 
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational 
logic: the output at any time reflects the contents of the location specified by the address input, and no read 
control signal is needed. (We will need to write the instruction memory when we load the program; this is 
not hard to add, and we ignore it for simplicity.) The program counter is a 64-bit register that is written at the 
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always 
add its two 64-bit inputs and place the sum on its output.
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing 
the program counter. The fetched instruction is used by other parts of the datapath.

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the 
register file and the ALU. The register file contains all the registers and has two read ports and one 
write port. The design of multiported register files is discussed in Section A.8 of Appendix A. The register 
file always outputs the contents of the registers corresponding to the Read register inputs on the outputs; 
no other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the 
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to 
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes 
to the register file are edge-triggered, our design can legally read and write the same register within a clock 
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available to 
a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits 
wide, whereas the lines carrying data values are 64 bits wide. The operation to be performed by the ALU is 
controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in Appendix A. 
We will use the Zero detection output of the ALU shortly to implement conditional branches.
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Next, consider the RISC-V load register and store register instructions, which 
have the general form ld x1, offset(x2) or sd x1, offset(x2). These 
instructions compute a memory address by adding the base register, which is x2, 
to the 12-bit signed offset field contained in the instruction. If the instruction is a 
store, the value to be stored must also be read from the register file where it resides 
in x1. If the instruction is a load, the value read from memory must be written into 
the register file in the specified register, which is x1. Thus, we will need both the 
register file and the ALU from Figure 4.7.

In addition, we will need a unit to sign-extend the 12-bit offset field in the 
instruction to a 64-bit signed value, and a data memory unit to read from or write 
to. The data memory must be written on store instructions; hence, data memory 
has read and write control signals, an address input, and an input for the data to be 
written into memory. Figure 4.8 shows these two elements.

The beq instruction has three operands, two registers that are compared for 
equality, and a 12-bit offset used to compute the branch target address relative to 
the branch instruction address. Its form is beq x1, x2, offset. To implement 
this instruction, we must compute the branch target address by adding the sign-
extended offset field of the instruction to the PC. There are two details in the 
definition of branch instructions (see Chapter 2) to which we must pay attention:

■	 The instruction set architecture specifies that the base for the branch address 
calculation is the address of the branch instruction.

■	 The architecture also states that the offset field is shifted left 1 bit so that it is 
a half word offset; this shift increases the effective range of the offset field by 
a factor of 2.

To deal with the latter complication, we will need to shift the offset field by 1.
As well as computing the branch target address, we must also determine whether 

the next instruction is the instruction that follows sequentially or the instruction at the  
branch target address. When the condition is true (i.e., two operands are equal), the 
branch target address becomes the new PC, and we say that the branch is taken. If  
the operand is not zero, the incremented PC should replace the current PC (just as for 
any other normal instruction); in this case, we say that the branch is not taken.

Thus, the branch datapath must do two operations: compute the branch target 
address and test the register contents. (Branches also affect the instruction fetch 
portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the structure 
of the datapath segment that handles branches. To compute the branch target 
address, the branch datapath includes an immediate generation unit, from Figure 
4.8 and an adder. To perform the compare, we need to use the register file shown 
in Figure 4.7a to supply two register operands (although we will not need to write 
into the register file). In addition, the equality comparison can be done using the 
ALU we designed in Appendix A. Since that ALU provides an output signal that 
indicates whether the result was 0, we can send both register operands to the ALU 

sign-extend To increase 
the size of a data item by 
replicating the high-order 
sign bit of the original 
data item in the high-
order bits of the larger, 
destination data item.

branch target 
address The address 
specified in a branch, 
which becomes the new 
program counter (PC) if 
the branch is taken. In the 
RISC-V architecture, the 
branch target is given by 
the sum of the offset field 
of the instruction and the 
address of the branch.

branch taken  
A branch where the 
branch condition is 
satisfied and the program 
counter (PC) becomes 
the branch target. All 
unconditional branches 
are taken branches.

branch not taken or 
(untaken branch)  
A branch where the 
branch condition is false 
and the program counter 
(PC) becomes the address 
of the instruction that 
sequentially follows the 
branch.
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with the control set to subtract two values. If the Zero signal out of the ALU unit 
is asserted, we know that the register values are equal. Although the Zero output 
always signals if the result is 0, we will be using it only to implement the equality 
test of conditional branches. Later, we will show exactly how to connect the control 
signals of the ALU for use in the datapath.

The branch instruction operates by adding the PC with the 12 bits of the 
instruction shifted left by 1 bit. Simply concatenating 0 to the branch offset 
accomplishes this shift, as described in Chapter 2.

Creating a Single Datapath
Now that we have examined the datapath components needed for the individual 
instruction classes, we can combine them into a single datapath and add the control 
to complete the implementation. This simplest datapath will attempt to execute all 
instructions in one clock cycle. This design means that no datapath resource can be 
used more than once per instruction, so any element needed more than once must 
be duplicated. We therefore need a memory for instructions separate from one for 
data. Although some of the functional units will need to be duplicated, many of the 
elements can be shared by different instruction flows.

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the 
register file and ALU of Figure 4.7, are the data memory unit and the immediate generation 
unit. The memory unit is a state element with inputs for the address and the write data, and a single output 
for the read result. There are separate read and write controls, although only one of these may be asserted on 
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an 
invalid address can cause problems, as we will see in Chapter 5. The immediate generation unit (ImmGen) has 
a 32-bit instruction as input that selects a 12-bit field for load, store, and branch if equal that is sign-extended 
into a 64-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-triggered for 
writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write 
enable is not edge-triggered, our edge-triggered design could easily be adapted to work with real memory 
chips. See Section A.8 of Appendix A for further discussion of how real memory chips work.
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To share a datapath element between two different instruction classes, we may 
need to allow multiple connections to the input of an element, using a multiplexor 
and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory 
instructions datapath are quite similar. The key differences are the following:

■	 The arithmetic-logical instructions use the ALU, with the inputs coming 
from the two registers. The memory instructions can also use the ALU 
to do the address calculation, although the second input is the sign-
extended 12-bit offset field from the instruction.

EXAMPLE

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition 
and a separate adder to compute the branch target as the sum of the PC and the sign-
extended 12 bits of the instruction (the branch displacement), shifted left 1 bit. The unit 
labeled Shift left 1 is simply a routing of the signals between input and output that adds 0two to the low-order 
end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the “shift” is 
constant. Since we know that the offset was sign-extended from 12 bits, the shift will throw away only “sign 
bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC, 
based on the Zero output of the ALU.
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■	 The value stored into a destination register comes from the ALU (for an 
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register file 
and a single ALU to handle both types of instructions, adding any necessary 
multiplexors.

To create a datapath with only a single register file and a single ALU, we must 
support two different sources for the second ALU input, as well as two different 
sources for the data stored into the register file. Thus, one multiplexor is placed 
at the ALU input and another at the data input to the register file. Figure 4.10 
shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the core 
RISC-V architecture by adding the datapath for instruction fetch (Figure 4.6), the 
datapath from R-type and memory instructions (Figure 4.10), and the datapath for 
branches (Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the 
separate pieces. The branch instruction uses the main ALU to compare two register 
operands for equality, so we must keep the adder from Figure 4.9 for computing 
the branch target address. An additional multiplexor is required to select either the 
sequentially following instruction address (PC + 4) or the branch target address to 
be written into the PC.

ANSWER

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows 
how a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors 
are needed, as described in the example.
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I. Which of the following is correct for a load instruction? Refer to Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be sent to the 
register file.

b. MemtoReg should be set to cause the correct register destination to be 
sent to the register file.

c. We do not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have 
separate instruction and data memories, because

a. the formats of data and instructions are different in RISC-V, and hence 
different memories are needed;

b. having separate memories is less expensive;
c. the processor operates in one cycle and cannot use a (single-ported) 

memory for two different accesses within that cycle.

Check  
Yourself

FIGURE 4.11 The simple datapath for the core RISC-V architecture combines the elements 
required by different instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This 
datapath can execute the basic instructions (load-store register, ALU operations, and branches) in a single 
clock cycle. Just one additional multiplexor is needed to integrate branches.
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Now that we have completed this simple datapath, we can add the control unit. 
The control unit must be able to take inputs and generate a write signal for each 
state element, the selector control for each multiplexor, and the ALU control. The 
ALU control is different in a number of ways, and it will be useful to design it first 
before we design the rest of the control unit.

Elaboration: The immediate generation logic must choose between sign-extending 
a 12-bit field in instruction bits 31:20 for load instructions, bits 31:25 and 11:7 for 
store instructions, or bits 31, 7, 30:25, and 11:8 for the conditional branch. Since 
the input is all 32 bits of the instruction, it can use the opcode bits of the instruction 
to select the proper field. RISC-V opcode bit 6 happens to be 0 for data transfer 
instructions and 1 for conditional branches, and RISC-V opcode bit 5 happens to be 0 
for load instructions and 1 for store instructions. Thus, bits 5 and 6 can control a 3:1 
multiplexor inside the immediate generation logic that selects the appropriate 12-bit 
field for load, store, and conditional branch instructions.

 4.4 A Simple Implementation Scheme

In this section, we look at what might be thought of as a simple implementation 
of our RISC-V subset. We build this simple implementation using the datapath of 
the last section and adding a simple control function. This simple implementation 
covers load doubleword (ld), store doubleword (sd), branch if equal (beq), and the 
arithmetic-logical instructions add, sub, and, and or.

The ALU Control
The RISC-V ALU in Appendix A defines the four following combinations of four 
control inputs:

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

Depending on the instruction class, the ALU will need to perform one of 
these four functions. For load and store instructions, we use the ALU to compute 
the memory address by addition. For the R-type instructions, the ALU needs to 
perform one of the four actions (AND, OR, add, or subtract), depending on  
the value of the 7-bit funct7 field (bits 31:25) and 3-bit funct3 field (bits 14:12) in 
the instruction (see Chapter 2). For the conditional branch if equal instruction, the 
ALU subtracts two operands and tests to see if the result is 0.
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We can generate the 4-bit ALU control input using a small control unit that has 
as inputs the funct7 and funct3 fields of the instruction and a 2-bit control field, 
which we call ALUOp. ALUOp indicates whether the operation to be performed 
should be add (00) for loads and stores, subtract and test if zero (01) for beq, or 
be determined by the operation encoded in the funct7 and funct3 fields (10). The 
output of the ALU control unit is a 4-bit signal that directly controls the ALU by 
generating one of the 4-bit combinations shown previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit 
ALUOp control, funct7, and funct3 fields. Later in this chapter, we will see how the 
ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit 
generates the ALUOp bits, which then are used as input to the ALU control that 
generates the actual signals to control the ALU unit—is a common implementation 
technique. Using multiple levels of control can reduce the size of the main control 
unit. Using several smaller control units may also potentially reduce the latency of 
the control unit. Such optimizations are important, since the latency of the control 
unit is often a critical factor in determining the clock cycle time.

There are several different ways to implement the mapping from the 2-bit ALUOp 
field and the funct fields to the four ALU operation control bits. Because only a small 
number of the possible funct field values are of interest and funct fields are used only 
when the ALUOp bits equal 10, we can use a small piece of logic that recognizes the 
subset of possible values and generates the appropriate ALU control signals.

truth table From logic, a 
representation of a logical 
operation by listing all the 
values of the inputs and 
then in each case showing 
what the resulting outputs 
should be.

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and the 
different opcodes for the R-type instruction. The instruction, listed in the first column, determines 
the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the ALUOp code is 
00 or 01, the desired ALU action does not depend on the funct7 or funct3 fields; in this case, we say that we 
“don’t care” about the value of the opcode, and the bits are shown as Xs. When the ALUOp value is 10, then 
the funct7 and funct3 fields are used to set the ALU control input. See Appendix A.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

Instruction 
opcode ALUOp Operation

Funct7 
fi eld

Funct3 
fi eld

Desired 
ALU action

ALU control 
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110

R-type 10 add 0000000 000 add 0010

R-type 10 sub 0100000 000 subtract 0110

R-type 10 and 0000000 111 AND 0000

R-type 10 or 0000000 110 OR 0001
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We can generate the 4-bit ALU control input using a small control unit that has 
as inputs the funct7 and funct3 fields of the instruction and a 2-bit control field, 
which we call ALUOp. ALUOp indicates whether the operation to be performed 
should be add (00) for loads and stores, subtract and test if zero (01) for beq, or 
be determined by the operation encoded in the funct7 and funct3 fields (10). The 
output of the ALU control unit is a 4-bit signal that directly controls the ALU by 
generating one of the 4-bit combinations shown previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit 
ALUOp control, funct7, and funct3 fields. Later in this chapter, we will see how the 
ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit 
generates the ALUOp bits, which then are used as input to the ALU control that 
generates the actual signals to control the ALU unit—is a common implementation 
technique. Using multiple levels of control can reduce the size of the main control 
unit. Using several smaller control units may also potentially reduce the latency of 
the control unit. Such optimizations are important, since the latency of the control 
unit is often a critical factor in determining the clock cycle time.

There are several different ways to implement the mapping from the 2-bit ALUOp 
field and the funct fields to the four ALU operation control bits. Because only a small 
number of the possible funct field values are of interest and funct fields are used only 
when the ALUOp bits equal 10, we can use a small piece of logic that recognizes the 
subset of possible values and generates the appropriate ALU control signals.

truth table From logic, a 
representation of a logical 
operation by listing all the 
values of the inputs and 
then in each case showing 
what the resulting outputs 
should be.

As a step in designing this logic, it is useful to create a truth table for the interesting 
combinations of funct fields and the ALUOp signals, as we’ve done in Figure 4.13; this 
truth table shows how the 4-bit ALU control is set depending on these input fields. 
Since the full truth table is very large, and we don’t care about the value of the ALU 
control for many of these input combinations, we show only the truth table entries 
for which the ALU control must have a specific value. Throughout this chapter, we 
will use this practice of showing only the truth table entries for outputs that must be 
asserted and not showing those that are all deasserted or don’t care. (This practice 
has a disadvantage, which we discuss in Section C.2 of  Appendix C.)

Because in many instances we do not care about the values of some of the inputs, 
and because we wish to keep the tables compact, we also include don’t-care terms. 
A don’t-care term in this truth table (represented by an X in an input column) 
indicates that the output does not depend on the value of the input corresponding 
to that column. For example, when the ALUOp bits are 00, as in the first row of 
Figure 4.13, we always set the ALU control to 0010, independent of the funct fields. 
In this case, then, the funct inputs will be don’t cares in this line of the truth table. 
Later, we will see examples of another type of don’t-care term. If you are unfamiliar 
with the concept of don’t-care terms, see Appendix A for more information.

Once the truth table has been constructed, it can be optimized and then turned 
into gates. This process is completely mechanical. Thus, rather than show the final 
steps here, we describe the process and the result in Section C.2 of  Appendix C.

Designing the Main Control Unit
Now that we have described how to design an ALU that uses the opcode and a 
2-bit signal as its control inputs, we can return to looking at the rest of the control. 
To start this process, let’s identify the fields of an instruction and the control lines 
that are needed for the datapath we constructed in Figure 4.11. To understand 
how to connect the fields of an instruction to the datapath, it is useful to review 

don’t-care term An 
element of a logical 
function in which the 
output does not depend 
on the values of all the 
inputs. Don’t-care terms 
may be specified in 
different ways.

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and funct fields. Only the 
entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does not use the 
encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. While we show all 10 bits of funct fields, note that the only 
bits with different values for the four R-format instructions are bits 30, 14, 13, and 12. Thus, we only need these four funct field bits as input for 
ALU control instead of all 10.

ALUOp Funct7 fi eld Funct3 fi eld

OperationALUOp1 ALUOp0 I[31] I[30] I[29] I[28] I[27] I[26] I[25] I[14] I[13] I[12]

0 0 X X X X X X X X X X 0010

X 1 X X X X X X X X X X 0110

1 X 0 0 0 0 0 0 0 0 0 0 0010

1 X 0 1 0 0 0 0 0 0 0 0 0110

1 X 0 0 0 0 0 0 0 1 1 1 0000

1 X 0 0 0 0 0 0 0 1 1 0 0001
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the formats of the four instruction classes: arithmetic, load, store, and conditional 
branch instructions. Figure 4.14 shows these formats.

There are several major observations about this instruction format that we will 
rely on:

■	 The opcode field, which as we saw in Chapter  2, is always in bits 6:0. 
Depending on the opcode, the funct3 field (bits 14:12) and funct7 field (bits 
31:25) serve as an extended opcode field.

■	 The first register operand is always in bit positions 19:15 (rs1) for R-type 
instructions and branch instructions. This field also specifies the base register 
for load and store instructions.

■	 The second register operand is always in bit positions 24:20 (rs2) for R-type 
instructions and branch instructions. This field also specifies the register 
operand that gets copied to memory for store instructions.

■	 Another operand can also be a 12-bit offset for branch or load-store 
instructions.

■	 The destination register is always in bit positions 11:7 (rd) for R-type 
instructions and load instructions.

The first design principle from Chapter 2—simplicity favors regularity—pays off 
here in specifying control.

opcode The field that 
denotes the operation and 
format of an instruction.

FIGURE 4.14 The four instruction classes (arithmetic, load, store, and conditional branch) use four different 
instruction formats. (a) Instruction format for R-type arithmetic instructions (opcode = 51ten), which have three register operands: rs1, rs2, 
and rd. Fields rs1 and rd are sources, and rd is the destination. The ALU function is in the funct3 and funct7 fields and is decoded by the ALU 
control design in the previous section. The R-type instructions that we implement are add, sub, and, and or. (b) Instruction format for I-type 
load instructions (opcode = 3ten). The register rs1 is the base register that is added to the 12-bit immediate field to form the memory address. 
Field rd is the destination register for the loaded value. (c) Instruction format for S-type store instructions (opcode = 35ten). The register rs1 is 
the base register that is added to the 12-bit immediate field to form the memory address. (The immediate field is split into a 7-bit piece and a 
5-bit piece.) Field rs2 is the source register whose value should be stored into memory. (d) Instruction format for SB-type conditional branch 
instructions (opcode = 99ten). The registers rs1 and rs2 compared. The 12-bit immediate address field is sign-extended, shifted left 1 bit, and 
added to the PC to compute the branch target address.

Name
(Bit position) 31:25 24:20 19:15 14:12 11:7 6:0

(a) R-type funct7 rs2 rs1 funct3 rd opcode

(b) I-type rs1 funct3 rd opcode

(c) S-type immed[11:5] rs2 rs1 funct3 immed[4:0] opcode

(d) SB-type immed[12,10:5] rs2 rs1 funct3 immed[4:1,11] opcode

immediate[11:0]

Fields
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Using this information, we can add the instruction labels to the simple datapath. 
Figure 4.15 shows these additions plus the ALU control block, the write signals for 
state elements, the read signal for the data memory, and the control signals for the 
multiplexors. Since all the multiplexors have two inputs, they each require a single 
control line.

Figure 4.15 shows six single-bit control lines plus the 2-bit ALUOp control  
signal. We have already defined how the ALUOp control signal works, and it is 
useful to define what the six other control signals do informally before we determine 
how to set these control signals during instruction execution. Figure 4.16 describes 
the function of these six control lines.

Now that we have looked at the function of each of the control signals, we 
can look at how to set them. The control unit can set all but one of the control 
signals based solely on the opcode and funct fields of the instruction. The PCSrc 
control line is the exception. That control line should be asserted if the instruction 
is branch if equal (a decision that the control unit can make) and the Zero 
output of the ALU, which is used for the equality test, is asserted. To generate the  
PCSrc signal, we will need to AND together a signal from the control unit, which 
we call Branch, with the Zero signal out of the ALU.

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control 
lines identified. The control lines are shown in color. The ALU control block has also been added, which 
depends on the funct3 field and part of the funct7 field. The PC does not require a write control, since it is 
written once at the end of every clock cycle; the branch control logic determines whether it is written with 
the incremented PC or the branch target address.
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These eight control signals (six from Figure 4.16 and two for ALUOp) can now 
be set based on the input signals to the control unit, which are the opcode bits 6:0. 
Figure 4.17 shows the datapath with the control unit and the control signals.

Before we try to write a set of equations or a truth table for the control unit, it 
will be useful to try to define the control function informally. Because the setting 
of the control lines depends only on the opcode, we define whether each control 
signal should be 0, 1, or don’t care (X) for each of the opcode values. Figure 4.18 
defines how the control signals should be set for each opcode; this information 
follows directly from Figures 4.12, 4.16, and 4.17.

Operation of the Datapath
With the information contained in Figures 4.16 and 4.18, we can design the control 
unit logic, but before we do that, let’s look at how each instruction uses the datapath. 
In the next few figures, we show the flow of three different instruction classes 
through the datapath. The asserted control signals and active datapath elements 
are highlighted in each of these. Note that a multiplexor whose control is 0 has 
a definite action, even if its control line is not highlighted. Multiple-bit control 
signals are highlighted if any constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such 
as add x1, x2, x3. Although everything occurs in one clock cycle, we can think 

FIGURE 4.16 The effect of each of the six control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control 
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an 
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element 
can create timing problems. (See Appendix A for further discussion of this problem.)

Signal name Effect when deasserted Effect when asserted

situpniretsigeretirWehtnoretsigerehT.enoNetirWgeR
written with the value on the Write data input.

ALUSrc The second ALU operand comes 
 le output 

(Read data 2).

The second ALU operand is the sign-extended, 
12 bits of the instruction.

PCSrc The PC is replaced by the output of 
the adder that computes the value 
of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

ehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
address input are put on the Read data 
output.

ehtybdetangisedstnetnocyromemataD.enoNetirWmeM
address input are replaced by the value on 
the Write data input.

MemtoReg The value fed to the register Write 
data input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.
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of four steps to execute the instruction; these steps are ordered by the flow of 
information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, x2 and x3, are read from the register file; also, the main 
control unit computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using portions of 
the opcode to generate the ALU function.

4. The result from the ALU is written into the destination register (x1) in the 
register file.

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 7-bit opcode field from the instruction. 
The outputs of the control unit consist of two 1-bit signals that are used to control multiplexors (ALUSrc and MemtoReg), three signals for 
controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining 
whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control 
signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, 
rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.
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FIGURE 4.19 The datapath in operation for an R-type instruction, such as add x1, x2, x3. The control lines, datapath 
units, and connections that are active are highlighted.

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first 
row of the table corresponds to the R-format instructions (add, sub, and, and or). For all these instructions, the source register fields are rs1 
and rs2, and the destination register field is rd; this defines how the signals ALUSrc is set. Furthermore, an R-type instruction writes a register 
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 
4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set 
to 10 to indicate that the ALU control should be generated from the funct fields. The second and third rows of this table give the control signal 
settings for ld and sd. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to 
perform the memory access. Finally, RegWrite is set for a load to cause the result to be stored in the rd register. The ALUOp field for branch is 
set for subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is 
0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last 
two rows of the table is replaced with X for don’t care. This type of don’t care must be added by the designer, since it depends on knowledge of 
how the datapath works.

Instruction ALUSrc
Memto-

Reg
Reg-
Write

Mem-
Read

Mem -
Write Branch ALUOp1 ALUOp0

R-format 0 0 1 0 0 0 1 0

ld 1 1 1 1 0 0 0 0

sd 1 X 0 0 1 0 0 0

beq 0 X 0 0 0 1 0 1
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Similarly, we can illustrate the execution of a load register, such as

ld x1, offset(x2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and 
asserted control lines for a load. We can think of a load instruction as operating in 
five steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is 
incremented.

2. A register (x2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the 
sign-extended 12 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file (x1).

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active 
are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write 
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to 
the register file would not occur.
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Finally, we can show the operation of the branch-if-equal instruction, such as 
beq x1, x2, offset, in the same fashion. It operates much like an R-format 
instruction, but the ALU output is used to determine whether the PC is written with 
PC + 4 or the branch target address. Figure 4.21 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is 
incremented.

2. Two registers, x1 and x2, are read from the register file.

3. The ALU subtracts one data value from the other data value, both read from 
the register file. The value of PC is added to the sign-extended, 12 bits of 
the instruction (offset) left shifted by one; the result is the branch target 
address.

4. The Zero status information from the ALU is used to decide which adder 
result to store in the PC.

FIGURE 4.21 The datapath in operation for a branch-if-equal instruction. The control lines, datapath units, and connections 
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program 
counter from between the two candidates.
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Finalizing Control
Now that we have seen how the instructions operate in steps, let’s continue with 
the control implementation. The control function can be precisely defined using 
the contents of Figure 4.18. The outputs are the control lines, and the inputs are the 
opcode bits. Thus, we can create a truth table for each of the outputs based on the 
binary encoding of the opcodes.

Figure 4.22 defines the logic in the control unit as one large truth table that 
combines all the outputs and that uses the opcode bits as inputs. It completely 
specifies the control function, and we can implement it directly in gates in an 
automated fashion. We show this final step in Section C.2 in  Appendix C.

Why a Single-Cycle Implementation is not Used Today
Although the single-cycle design will work correctly, it is too inefficient to be used 
in modern designs. To see why this is so, notice that the clock cycle must have the 
same length for every instruction in this single-cycle design. Of course, the longest 
possible path in the processor determines the clock cycle. This path is most likely a 
load instruction, which uses five functional units in series: the instruction memory, 

FIGURE 4.22 The control function for the simple single-cycle implementation is 
completely specified by this truth table. The top half of the table gives the combinations of input 
signals that correspond to the four instruction classes, one per column, that determine the control output 
settings. The bottom portion of the table gives the outputs for each of the four opcodes. Thus, the output 
RegWrite is asserted for two different combinations of the inputs. If we consider only the four opcodes shown 
in this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we 
can detect an R-format instruction with the expression Op4 ∙ Op5, since this is sufficient to distinguish the 
R-format instructions from ld, sd, and beq. We do not take advantage of this simplification, since the rest 
of the RISC-V opcodes are used in a full implementation.

Input or 
output Signal name R-format ld sd beq

1000]6[IstupnI

I[5] 1 0 1 1

I[4] 1 0 0 0

I[3] 0 0 0 0

I[2] 0 0 0 0

I[1] 1 1 1 1

I[0] 1 1 1 1

Outputs ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1
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Check  
Yourself

Never waste time.
American proverb

the register file, the ALU, the data memory, and the register file. Although the CPI 
is 1 (see Chapter 1), the overall performance of a single-cycle implementation is 
likely to be poor, since the clock cycle is too long.

The penalty for using the single-cycle design with a fixed clock cycle is significant, 
but might be considered acceptable for this small instruction set. Historically, early 
computers with very simple instruction sets did use this implementation technique. 
However, if we tried to implement the floating-point unit or an instruction set with 
more complex instructions, this single-cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay 
for all instructions, it’s useless to try implementation techniques that reduce the 
delay of the common case but do not improve the worst-case cycle time. A single-
cycle implementation thus violates the great idea from Chapter 1 of making the 
common case fast. 

In next section, we’ll look at another implementation technique, called 
pipelining, that uses a datapath very similar to the single-cycle datapath but is 
much more efficient by having a much higher throughput. Pipelining improves 
efficiency by executing multiple instructions simultaneously.

 4.5 An Overview of Pipelining

Pipelining is an implementation technique in which multiple instructions are 
overlapped in execution. Today, pipelining is nearly universal.

This section relies heavily on one analogy to give an overview of the pipelining 
terms and issues. If you are interested in just the big picture, you should concentrate 
on this section and then skip to Sections 4.10 and 4.11 to see an introduction  
to the advanced pipelining techniques used in recent processors such as the  
Intel Core i7 and ARM Cortex-A53. If you are curious about exploring the 
anatomy of a pipelined computer, this section is a good introduction to Sections 4.6  
through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

Look at the control signals in Figure 4.22. Can you combine any together? Can 
any control signal output in the figure be replaced by the inverse of another? 
(Hint: take into account the don’t cares.) If so, can you use one signal for the other 
without adding an inverter?

pipelining An 
implementation technique 
in which multiple 
instructions are overlapped 
in execution, much like an 
assembly line.
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When your roommate is done, start over with the next dirty load.
The pipelined approach takes much less time, as Figure 4.23 shows. As soon as the 

washer is finished with the first load and placed in the dryer, you load the washer 
with the second dirty load. When the first load is dry, you place it on the table to start 
folding, move the wet load to the dryer, and put the next dirty load into the washer. 
Next, you have your roommate put the first load away, you start folding the second 
load, the dryer has the third load, and you put the fourth load into the washer. At this 
point all steps—called stages in pipelining—are operating concurrently. As long as we 
have separate resources for each stage, we can pipeline the tasks.

The pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are finished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 

FIGURE 4.23 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for four loads of washing, while pipelined laundry 
takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four 
resources on this two-dimensional time line, but we really have just one of each resource.
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but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 
pipeline, in this case four: washing, drying, folding, and putting away. Therefore, 
pipelined laundry is potentially four times faster than nonpipelined: 20 loads would 
take about five times as long as one load, while 20 loads of sequential laundry takes 
20 times as long as one load. It’s only 2.3 times faster in Figure 4.23, because we 
only show four loads. Notice that at the beginning and end of the workload in the 
pipelined version in Figure 4.23, the pipeline is not completely full; this start-up and 
wind-down affects performance when the number of tasks is not large compared 
to the number of stages in the pipeline. If the number of loads is much larger than 
four, then the stages will be full most of the time and the increase in throughput 
will be very close to four.

The same principles apply to processors where we pipeline instruction 
execution. RISC-V instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers and decode the instruction.

3. Execute the operation or calculate an address.

4. Access an operand in data memory (if necessary).

5. Write the result into a register (if necessary).

Hence, the RISC-V pipeline we explore in this chapter has five stages. The 
following example shows that pipelining speeds up instruction execution just as it 
speeds up the laundry.

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and 
in the rest of this chapter, we limit our attention to seven instructions: load 
doubleword (ld), store doubleword (sd), add (add), subtract (sub), AND 
(and), OR (or), and branch if equal (beq).

Contrast the average time between instructions of a single-cycle 
implementation, in which all instructions take one clock cycle, to a pipelined 
implementation. Assume that the operation times for the major functional 
units in this example are 200 ps for memory access for instructions or data, 
200 ps for ALU operation, and 100 ps for register file read or write. In the 

EXAMPLE
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single-cycle model, every instruction takes exactly one clock cycle, so the clock 
cycle must be stretched to accommodate the slowest instruction.

Figure 4.24 shows the time required for each of the seven instructions. The 
single-cycle design must allow for the slowest instruction—in Figure 4.24 it 
is ld—so the time required for every instruction is 800 ps. Similarly to Figure 
4.23, Figure 4.25 compares nonpipelined and pipelined execution of three load 
register instructions. Thus, the time between the first and fourth instructions 
in the nonpipelined design is 3 × 800 ps or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be 
long enough to accommodate the slowest operation. Just as the single-cycle 
design must take the worst-case clock cycle of 800 ps, even though some 
instructions can be as fast as 500 ps, the pipelined execution clock cycle must 
have the worst-case clock cycle of 200 ps, even though some stages take only 
100 ps. Pipelining still offers a fourfold performance improvement: the time 
between the first and fourth instructions is 3 × 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If the 
stages are perfectly balanced, then the time between instructions on the pipelined 
processor—assuming ideal conditions—is equal to

Time betweeninstructions
Time betweeninstructions

pipelined
no= nnpipelined

Number of pipestages

Under ideal conditions and with a large number of instructions, the speed-up 
from pipelining is approximately equal to the number of pipe stages; a five-stage 
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold 
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The 

FIGURE 4.24 Total time for each instruction calculated from the time for each component. 
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no 
delay.

ANSWER

Instruction class
Instruction 

fetch
Register 

read
ALU 

operation
Data 

access
Register 

write
Total 
time

Load doubleword (ld) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store doubleword (sd) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub, 
and, or)

200 ps 100 ps 200 ps 100 ps 600 ps

sp005sp002sp001sp002)qeb(hcnarB
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example shows, however, that the stages may be imperfectly balanced. Moreover, 
pipelining involves some overhead, the source of which will be clearer shortly. 
Thus, the time per instruction in the pipelined processor will exceed the minimum 
possible, and speed-up will be less than the number of pipeline stages.

However, even our claim of fourfold improvement for our example is not reflected 
in the total execution time for the three instructions: it’s 1400 ps versus 2400 ps. Of 
course, this is because the number of instructions is not large. What would happen 
if we increased the number of instructions? We could extend the previous figures 
to 1,000,003 instructions. We would add 1,000,000 instructions in the pipelined 
example; each instruction adds 200 ps to the total execution time. The total execution 
time would be 1,000,000 × 200 ps + 1400 ps, or 200,001,400 ps. In the nonpipelined 
example, we would add 1,000,000 instructions, each taking 800 ps, so total execution 
time would be 1,000,000 × 800 ps + 2400 ps, or 800,002,400 ps. Under these 

FIGURE 4.25 Single-cycle, nonpipelined execution (top) versus pipelined execution  
(bottom). Both use the same hardware components, whose time is listed in Figure 4.24. In this case, we see 
a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure 
to Figure 4.23. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer 
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, 
either the ALU operation or the memory access. We assume the write to the register file occurs in the first 
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption 
throughout this chapter.
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conditions, the ratio of total execution times for real programs on nonpipelined to 
pipelined processors is close to the ratio of times between instructions:

800 002 400
200 001 400

800
200

4 00, ,
, ,

. ps
 ps

 ps
 ps

� �

Pipelining improves performance by increasing instruction throughput, in 
contrast to decreasing the execution time of an individual instruction, but instruction 
throughput is the important metric because real programs execute billions of 
instructions.

Designing Instruction Sets for Pipelining
Even with this simple explanation of pipelining, we can get insight into the design 
of the RISC-V instruction set, which was designed for pipelined execution.

First, all RISC-V instructions are the same length. This restriction makes it much 
easier to fetch instructions in the first pipeline stage and to decode them in the 
second stage. In an instruction set like the x86, where instructions vary from 1 byte 
to 15 bytes, pipelining is considerably more challenging. Modern implementations 
of the x86 architecture actually translate x86 instructions into simple operations 
that look like RISC-V instructions and then pipeline the simple operations rather 
than the native x86 instructions! (See Section 4.10.)

Second, RISC-V has just a few instruction formats, with the source and 
destination register fields being located in the same place in each instruction.

Third, memory operands only appear in loads or stores in RISC-V. This 
restriction means we can use the execute stage to calculate the memory address and 
then access memory in the following stage. If we could operate on the operands in 
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory 
stage, and then execute stage. We will shortly see the downside of longer pipelines.

Pipeline Hazards
There are situations in pipelining when the next instruction cannot execute in the 
following clock cycle. These events are called hazards, and there are three different 
types.

Structural Hazard

The first hazard is called a structural hazard. It means that the hardware cannot 
support the combination of instructions that we want to execute in the same clock 
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was 
busy doing something else and wouldn’t put clothes away. Our carefully scheduled 
pipeline plans would then be foiled.

structural hazard When 
a planned instruction 
cannot execute in the 
proper clock cycle because 
the hardware does not 
support the combination 
of instructions that are set 
to execute.
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As we said above, the RISC-V instruction set was designed to be pipelined, 
making it fairly easy for designers to avoid structural hazards when designing a 
pipeline. Suppose, however, that we had a single memory instead of two memories. 
If the pipeline in Figure 4.25 had a fourth instruction, we would see that in the 
same clock cycle, the first instruction is accessing data from memory while the 
fourth instruction is fetching an instruction from that same memory. Without two 
memories, our pipeline could have a structural hazard.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait 
for another to complete. Suppose you found a sock at the folding station for which 
no match existed. One possible strategy is to run down to your room and search 
through your clothes bureau to see if you can find the match. Obviously, while you 
are doing the search, loads that have completed drying are ready to fold and those 
that have finished washing are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one 
instruction on an earlier one that is still in the pipeline (a relationship that does not 
really exist when doing laundry). For example, suppose we have an add instruction 
followed immediately by a subtract instruction that uses that sum (x19):

add x19, x0, x1
sub x2, x19, x3

Without intervention, a data hazard could severely stall the pipeline. The add 
instruction doesn’t write its result until the fifth stage, meaning that we would have 
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the 
results would not be satisfactory. These dependences happen just too often and the 
delay is far too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for 
the instruction to complete before trying to resolve the data hazard. For the code 
sequence above, as soon as the ALU creates the sum for the add, we can supply it as 
an input for the subtract. Adding extra hardware to retrieve the missing item early 
from the internal resources is called forwarding or bypassing.

data hazard Also 
called a pipeline data 
hazard. When a planned 
instruction cannot 
execute in the proper 
clock cycle because data 
that are needed to execute 
the instruction are not yet 
available.

forwarding Also called 
bypassing. A method of 
resolving a data hazard 
by retrieving the missing 
data element from 
internal buffers rather 
than waiting for it to 
arrive from programmer-
visible registers or 
memory.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected 
by forwarding. Use the drawing in Figure 4.26 to represent the datapath during 
the five stages of the pipeline. Align a copy of the datapath for each instruction, 
similar to the laundry pipeline in Figure 4.23.

EXAMPLE
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Figure 4.27 shows the connection to forward the value in x1 after the 
execution stage of the add instruction as input to the execution stage of the 
sub instruction.

In this graphical representation of events, forwarding paths are valid only if the 
destination stage is later in time than the source stage. For example, there cannot 
be a valid forwarding path from the output of the memory access stage in the first 
instruction to the input of the execution stage of the following, since that would 
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot 
prevent all pipeline stalls, however. For example, suppose the first instruction was 
a load of x1 instead of an add. As we can imagine from looking at Figure 4.27, the 

ANSWER

FIGURE 4.26 Graphical representation of the instruction pipeline, similar in spirit to 
the laundry pipeline in Figure 4.23. Here we use symbols representing the physical resources with 
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for 
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage, 
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data 
memory; and WB for the write-back stage, with the drawing showing the register file being written. The 
shading indicates the element is used by the instruction. Hence, MEM has a white background because add 
does not access the data memory. Shading on the right half of the register file or memory means the element 
is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is 
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage 
because the register file is written.

Time

add x1, x2, x3 IF MEMID WBEX

200 400 600 800 1000

FIGURE 4.27 Graphical representation of forwarding. The connection shows the forwarding path 
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register 
x1 read in the second stage of sub.
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add x1, x2, x3

sub x4, x1, x5
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IF MEMID WBEX
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order
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desired data would be available only after the fourth stage of the first instruction 
in the dependence, which is too late for the input of the third stage of sub. Hence, 
even with forwarding, we would have to stall one stage for a load-use data hazard, 
as Figure 4.28 shows. This figure shows an important pipeline concept, officially 
called a pipeline stall, but often given the nickname bubble. We shall see stalls 
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like 
these, using either hardware detection and stalls or software that reorders code to 
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

a = b + e;
c = b + f;

Here is the generated RISC-V code for this segment, assuming all variables 
are in memory and are addressable as offsets from x31:

ld  x1, 0(x31) // Load b
ld  x2, 8(x31) // Load e
add   x3, x1, x2 // b + e
sd  x3, 24(x31) // Store a
ld  x4, 16(x31) // Load f
add   x5, x1, x4 // b + f
sd  x5, 32(x31) // Store c

FIGURE 4.28 We need a stall even with forwarding when an R-format instruction following 
a load tries to use the data. Without the stall, the path from memory access stage output to execution 
stage input would be going backward in time, which is impossible. This figure is actually a simplification, 
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be 
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

EXAMPLE
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ld x1, 0(x2)

sub x4, x1, x5

IF MEMID WBEX
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bubble bubble bubble bubble bubble

load-use data hazard  
A specific form of data 
hazard in which the 
data being loaded by a 
load instruction have 
not yet become available 
when they are needed by 
another instruction.

pipeline stall Also called 
bubble. A stall initiated 
in order to resolve a 
hazard.
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Find the hazards in the preceding code segment and reorder the instructions 
to avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence 
on the previous ld instruction. Notice that forwarding eliminates several 
other potential hazards, including the dependence of the first add on the first 
ld and any hazards for store instructions. Moving up the third ld instruction 
to become the third instruction eliminates both hazards:

ld  x1, 0(x31)
ld  x2, 8(x31)
ld  x4, 16(x31)
add  x3,   x1, x2
sd  x3, 24(x31)
add  x5, x1, x4
sd  x5, 32(x31)

On a pipelined processor with forwarding, the reordered sequence will 
complete in two fewer cycles than the original version.

Forwarding yields another insight into the RISC-V architecture, in addition 
to the three mentioned on page 267. Each RISC-V instruction writes at most 
one result and does this in the last stage of the pipeline. Forwarding is harder if 
there are multiple results to forward per instruction or if there is a need to write 
a result early on in instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed 
forward from an earlier instruction to a later instruction. “Bypassing” comes from 
passing the result around the register file to the desired unit.

Control Hazards
The third type of hazard is called a control hazard, arising from the need to make a 
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms 
of a football team. Given how filthy the laundry is, we need to determine whether 
the detergent and water temperature setting we select are strong enough to get the 
uniforms clean but not so strong that the uniforms wear out sooner. In our laundry 
pipeline, we have to wait until the second stage to examine the dry uniform to see 
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its 
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until 
you have the right formula.

This conservative option certainly works, but it is slow.

control hazard Also 
called branch hazard. 
When the proper 
instruction cannot 
execute in the proper 
pipeline clock cycle 
because the instruction 
that was fetched is not the 
one that is needed; that 
is, the flow of instruction 
addresses is not what the 
pipeline expected.

ANSWER
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The equivalent decision task in a computer is the conditional branch instruction. 
Notice that we must begin fetching the instruction following the branch on the 
following clock cycle. Nevertheless, the pipeline cannot possibly know what the 
next instruction should be, since it only just received the branch instruction from 
memory! Just as with laundry, one possible solution is to stall immediately after we 
fetch a branch, waiting until the pipeline determines the outcome of the branch 
and knows what instruction address to fetch from.

Let’s assume that we put in enough extra hardware so that we can test a register, 
calculate the branch address, and update the PC during the second stage of the 
pipeline (see Section 4.8 for details). Even with this added hardware, the pipeline 
involving conditional branches would look like Figure 4.29. The instruction to be 
executed if the branch fails is stalled one extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

Estimate the impact on the clock cycles per instruction (CPI) of stalling on 
branches. Assume all other instructions have a CPI of 1.

Figure 3.28 in Chapter  3 shows that conditional branches are 17% of the 
instructions executed in SPECint2006. Since the other instructions run have a 
CPI of 1, and conditional branches took one extra clock cycle for the stall, then 
we would see a CPI of 1.17 and hence a slowdown of 1.17 versus the ideal case.

FIGURE 4.29 Pipeline showing stalling on every conditional branch as solution to control 
hazards. This example assumes the conditional branch is taken, and the instruction at the destination of 
the branch is the or instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the 
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance, 
however, is the same as would occur if a bubble were inserted.
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If we cannot resolve the branch in the second stage, as is often the case for longer 
pipelines, then we’d see an even larger slowdown if we stall on conditional branches. 
The cost of this option is too high for most computers to use and motivates a second 
solution to the control hazard using one of our great ideas from Chapter 1:

Predict: If you’re sure you have the right formula to wash uniforms, then just 
predict that it will work and wash the second load while waiting for the first load 
to dry.

This option does not slow down the pipeline when you are correct. When you 
are wrong, however, you need to redo the load that was washed while guessing the 
decision.

Computers do indeed use prediction to handle conditional branches. One 
simple approach is to predict always that conditional branches will be untaken. 
When you’re right, the pipeline proceeds at full speed. Only when conditional 
branches are taken does the pipeline stall. Figure 4.30 shows such an example.

FIGURE 4.30 Predicting that branches are not taken as a solution to control hazard. The 
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when 
the branch is taken. As we noted in Figure 4.29, the insertion of a bubble in this fashion simplifies what 
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal 
the details.
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A more sophisticated version of branch prediction would have some conditional 
branches predicted as taken and some as untaken. In our analogy, the dark or 
home uniforms might take one formula while the light or road uniforms might 
take another. In the case of programming, at the bottom of loops are conditional 
branches that branch back to the top of the loop. Since they are likely to be taken 
and they branch backward, we could always predict taken for conditional branches 
that branch to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior 
and don’t account for the individuality of a specific branch instruction. Dynamic 
hardware predictors, in stark contrast, make their guesses depending on the 
behavior of each conditional branch and may change predictions for a conditional 
branch over the life of a program. Following our analogy, in dynamic prediction a 
person would look at how dirty the uniform was and guess at the formula, adjusting 
the next prediction depending on the success of recent guesses.

One popular approach to dynamic prediction of conditional branches is keeping 
a history for each conditional branch as taken or untaken, and then using the 
recent past behavior to predict the future. As we will see later, the amount and 
type of history kept have become extensive, with the result being that dynamic 
branch predictors can correctly predict conditional branches with more than 90% 
accuracy (see Section 4.8). When the guess is wrong, the pipeline control must 
ensure that the instructions following the wrongly guessed conditional branch 
have no effect and must restart the pipeline from the proper branch address. In our 
laundry analogy, we must stop taking new loads so that we can restart the load that 
we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacerbate 
the problem, in this case by raising the cost of misprediction. Solutions to control 
hazards are described in more detail in Section 4.8.

Elaboration: There is a third approach to the control hazard, called a delayed decision. 
In our analogy, whenever you are going to make such a decision about laundry, just place 
a load of non-football clothes in the washer while waiting for football uniforms to dry. 
As long as you have enough dirty clothes that are not affected by the test, this solution 
works fine.

Called the delayed branch in computers, this is the solution actually used by the 
MIPS architecture. The delayed branch always executes the next sequential instruction, 
with the branch taking place after that one instruction delay. It is hidden from the MIPS 
assembly language programmer because the assembler can automatically arrange the 
instructions to get the branch behavior desired by the programmer. MIPS software will 
place an instruction immediately after the delayed branch instruction that is not affected 
by the branch, and a taken branch changes the address of the instruction that follows 
this safe instruction. In our example, the add instruction before the branch in Figure 
4.29 does not affect the branch and can be moved after the branch to hide the branch 
delay fully. Since delayed branches are useful when the branches are short, it is rare to 
see a processor with a delayed branch of more than one cycle. For longer branch delays, 
hardware-based branch prediction is usually used.

branch prediction  
A method of resolving 
a branch hazard that 
assumes a given outcome 
for the conditional branch 
and proceeds from that 
assumption rather than 
waiting to ascertain the 
actual outcome.
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Pipeline Overview Summary
Pipelining is a technique that exploits parallelism between the instructions in 
a sequential instruction stream. It has the substantial advantage that, unlike 
programming a multiprocessor (see Chapter 6), it is fundamentally invisible to the 
programmer.

In the next few sections of this chapter, we cover the concept of pipelining using 
the RISC-V instruction subset from the single-cycle implementation in Section 
4.4 and show a simplified version of its pipeline. We then look at the problems that 
pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the software and the performance implications of 
pipelining, you now have sufficient background to skip to Section 4.10. Section 
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic 
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is implemented 
and the challenges of dealing with hazards, you can proceed to examine the design 
of a pipelined datapath and the basic control, explained in Section 4.6. You can then 
use this understanding to explore the implementation of forwarding and stalls in 
Section 4.7. You can next read Section 4.8 to learn more about solutions to branch 
hazards, and finally see how exceptions are handled in Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using 
only forwarding, or can execute without stalling or forwarding.

Sequence 1 Sequence 2 Sequence 3

ld  x10, 0(x10) add  x11, x10, x10 addi x11, x10, 1

add x11, x10, x10 addi x12, x10, 5 addi x12, x10, 2

addi x14, x11, 5 addi x13, x10, 3

addi x14, x10, 4

addi x15, x10, 5

Check  
Yourself

Outside the memory system, the effective operation of the pipeline is usually 
the most important factor in determining the CPI of the processor and hence its 
performance. As we will see in Section 4.10, understanding the performance of a 
modern multiple-issue pipelined processor is complex and requires understanding 
more than just the issues that arise in a simple pipelined processor. Nonetheless, 
structural, data, and control hazards remain important in both simple pipelines 
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually 
more of a problem in integer programs, which tend to have higher conditional 
branch frequencies as well as less predictable branches. Data hazards can be 

Understanding  
Program  
Performance
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 4.6 Pipelined Datapath and Control

Figure 4.31 shows the single-cycle datapath from Section 4.4 with the pipeline 
stages identified. The division of an instruction into five stages means a five-stage 
pipeline, which in turn means that up to five instructions will be in execution 
during any single clock cycle. Thus, we must separate the datapath into five pieces, 
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.31, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the 

latency (pipeline) The 
number of stages in a 
pipeline or the number 
of stages between two 
instructions during 
execution.

performance bottlenecks in both integer and floating-point programs. Often it 
is easier to deal with data hazards in floating-point programs because the lower 
conditional branch frequency and more regular memory access patterns allow the 
compiler to try to schedule instructions to avoid hazards. It is more difficult to 
perform such optimizations in integer programs that have less regular memory 
accesses, involving more use of pointers. As we will see in Section 4.10, there are 
more ambitious compiler and hardware techniques for reducing data dependences 
through scheduling.

Pipelining increases the number of simultaneously executing instructions 
and the rate at which instructions are started and completed. Pipelining 
does not reduce the time it takes to complete an individual instruction, 
also called the latency. For example, the five-stage pipeline still takes five 
clock cycles for the instruction to complete. In the terms used in Chapter 1, 
pipelining improves instruction throughput rather than individual 
instruction execution time or latency.

Instruction sets can either make life harder or simpler for pipeline 
designers, who must already cope with structural, control, and data 
hazards. Branch prediction and forwarding help make a computer fast 
while still getting the right answers.

The BIG  
Picture

There is less in this 
than meets the eye.
Tallulah  
Bankhead, remark  
to Alexander  
Woollcott, 1922



 4.6 Pipelined Datapath and Control 277

five stages as they complete execution. Returning to our laundry analogy, clothes 
get cleaner, drier, and more organized as they move through the line, and they 
never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

■	 The write-back stage, which places the result back into the register file in the 
middle of the datapath

■	 The selection of the next value of the PC, choosing between the incremented 
PC and the branch address from the MEM stage

Data flowing from right to left do not affect the current instruction; these reverse 
data movements influence only later instructions in the pipeline. Note that the first 
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right-to-left flow of data can lead to data hazards and the second leads to control 
hazards.

One way to show what happens in pipelined execution is to pretend that each 
instruction has its own datapath, and then to place these datapaths on a timeline to 
show their relationship. Figure 4.32 shows the execution of the instructions in Figure 
4.25 by displaying their private datapaths on a common timeline. We use a stylized 
version of the datapath in Figure 4.31 to show the relationships in Figure 4.32.

Figure 4.32 seems to suggest that three instructions need three datapaths. 
Instead, we add registers to hold data so that portions of a single datapath can be 
shared during instruction execution.

For example, as Figure 4.32 shows, the instruction memory is used during 
only one of the five stages of an instruction, allowing it to be shared by following 
instructions during the other four stages. To retain the value of an individual 
instruction for its other four stages, the value read from instruction memory must 
be saved in a register. Similar arguments apply to every pipeline stage, so we must 
place registers wherever there are dividing lines between stages in Figure 4.31. 
Returning to our laundry analogy, we might have a basket between each pair of 
stages to hold the clothes for the next step.

FIGURE 4.32 Instructions being executed using the single-cycle datapath in Figure 4.31, 
assuming pipelined execution. Similar to Figures 4.26 through 4.28, this figure pretends that each 
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage 
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure 
4.31. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the 
register file and sign extender in the instruction decode/register file read stage (ID), and so on. To maintain 
proper time order, this stylized datapath breaks the register file into two logical parts: registers read during 
register fetch (ID) and registers written during write back (WB). This dual use is represented by drawing 
the unshaded left half of the register file using dashed lines in the ID stage, when it is not being written, and 
the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the 
register file is written in the first half of the clock cycle and the register file is read during the second half.
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Figure 4.33 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline register 
to the next. The registers are named for the two stages separated by that register. 
For example, the pipeline register between the IF and ID stages is called IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All 
instructions must update some state in the processor—the register file, memory, 
or the PC—so a separate pipeline register is redundant to the state that is updated. 
For example, a load instruction will place its result in one of the 32 registers, and 
any later instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by 
setting it to a branch destination address. The PC can be thought of as a pipeline 
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline 
registers in Figure 4.33, however, the PC is part of the visible architectural state; 
its contents must be saved when an exception occurs, while the contents of the 
pipeline registers can be discarded. In the laundry analogy, you could think of 
the PC as corresponding to the basket that holds the load of dirty clothes before 
the wash step.

To show how the pipelining works, throughout this chapter we show sequences 
of figures to demonstrate operation over time. These extra pages would seem to 
require much more time for you to understand. Fear not; the sequences take much 

FIGURE 4.33 The pipelined version of the datapath in Figure 4.31. The pipeline registers, in color, separate each pipeline stage. 
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction 
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID 
register must be 96 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 64-bit PC address. 
We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 256, 193, and 128 bits, 
respectively.
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less time than it might appear, because you can compare them to see what changes 
occur in each clock cycle. Section 4.7 describes what happens when there are data 
hazards between pipelined instructions; ignore them for now.

Figures 4.34 through 4.37, our first sequence, show the active portions of the 
datapath highlighted as a load instruction goes through the five stages of pipelined 
execution. We show a load first because it is active in all five stages. As in Figures 
4.26 through 4.28, we highlight the right half of registers or memory when they are 
being read and highlight the left half when they are being written.

We show the instruction ld with the name of the pipe stage that is active in each 
figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.34 shows the instruction being 
read from memory using the address in the PC and then being placed in the 
IF/ID pipeline register. The PC address is incremented by 4 and then written 
back into the PC to be ready for the next clock cycle. This PC is also saved 
in the IF/ID pipeline register in case it is needed later for an instruction, 
such as beq. The computer cannot know which type of instruction is being 
fetched, so it must prepare for any instruction, passing potentially needed 
information down the pipeline.

2. Instruction decode and register file read: The bottom portion of Figure 4.34 
shows the instruction portion of the IF/ID pipeline register supplying the 
immediate field, which is sign-extended to 64 bits, and the register numbers 
to read the two registers. All three values are stored in the ID/EX pipeline 
register, along with the PC address. We again transfer everything that might 
be needed by any instruction during a later clock cycle.

3. Execute or address calculation: Figure 4.35 shows that the load instruction 
reads the contents of a register and the sign-extended immediate from the 
ID/EX pipeline register and adds them using the ALU. That sum is placed in 
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.36 shows the load instruction 
reading the data memory using the address from the EX/MEM pipeline 
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.36 shows the final step: reading 
the data from the MEM/WB pipeline register and writing it into the register 
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed 
in a later pipe stage must be passed to that stage via a pipeline register. Walking 
through a store instruction shows the similarity of instruction execution, as well 
as passing the information for later stages. Here are the five pipe stages of the store 
instruction:
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FIGURE 4.34 IF and ID: First and second pipe stages of an instruction, with the active portions of the datapath in 
Figure 4.33 highlighted. The highlighting convention is the same as that used in Figure 4.26. As in Section 4.2, there is no confusion when 
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2, it 
doesn’t hurt to do potentially extra work, so it sign-extends the constant and reads both registers into the ID/EX pipeline register. We don’t need 
all three operands, but it simplifies control to keep all three.
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1. Instruction fetch: The instruction is read from memory using the address in 
the PC and then is placed in the IF/ID pipeline register. This stage occurs 
before the instruction is identified, so the top portion of Figure 4.34 works 
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipeline 
register supplies the register numbers for reading two registers and extends 
the sign of the immediate operand. These three 64-bit values are all stored 
in the ID/EX pipeline register. The bottom portion of Figure 4.34 for load 
instructions also shows the operations of the second stage for stores. These 
first two stages are executed by all instructions, since it is too early to know 
the type of the instruction. (While the store instruction uses the rs2 field to 
read the second register in this pipe stage, that detail is not shown in this 
pipeline diagram, so we can use the same figure for both.)

3. Execute and address calculation: Figure 4.37 shows the third step; the effective 
address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the data being written 
to memory. Note that the register containing the data to be stored was read in 
an earlier stage and stored in ID/EX. The only way to make the data available 
during the MEM stage is to place the data into the EX/MEM pipeline register 
in the EX stage, just as we stored the effective address into EX/MEM.

FIGURE 4.35 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.33 
used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.
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FIGURE 4.36 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the 
datapath in Figure 4.33 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the 
data are placed in the MEM/WB pipeline register. Next, data are read from the MEM/WB pipeline register and written into the register file in 
the middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.39.
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5. Write-back: The bottom portion of Figure 4.38 shows the final step of the 
store. For this instruction, nothing happens in the write-back stage. Since 
every instruction behind the store is already in progress, we have no way 
to accelerate those instructions. Hence, an instruction passes through a 
stage even if there is nothing to do, because later instructions are already 
progressing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe 
stage to a later pipe stage, the information must be placed in a pipeline register; 
otherwise, the information is lost when the next instruction enters that pipeline 
stage. For the store instruction, we needed to pass one of the registers read in the 
ID stage to the MEM stage, where it is stored in memory. The data were first placed 
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the 
datapath—such as instruction memory, register read ports, ALU, data memory, 
and register write port—can be used only within a single pipeline stage. Otherwise, 
we would have a structural hazard (see page 267). Hence, these components, and 
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see 
it? Which register is changed in the final stage of the load? More specifically, 

FIGURE 4.37 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 4.35, the 
second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this 
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to 
understand.
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FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data are written 
into data memory for the store. Note that the data come from the EX/MEM pipeline register and that nothing is changed in the MEM/WB 
pipeline register. Once the data are written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.
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which instruction supplies the write register number? The instruction in the IF/
ID pipeline register supplies the write register number, yet this instruction occurs 
considerably after the load instruction!

Hence, we need to preserve the destination register number in the load 
instruction. Just as store passed the register value from the ID/EX to the EX/MEM 
pipeline registers for use in the MEM stage, load must pass the register number 
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in the 
WB stage. Another way to think about the passing of the register number is that to 
share the pipelined datapath, we need to preserve the instruction read during the 
IF stage, so each pipeline register contains a portion of the instruction needed for 
that stage and later stages.

Figure 4.39 shows the correct version of the datapath, passing the write register 
number first to the ID/EX register, then to the EX/MEM register, and finally to the 
MEM/WB register. The register number is used during the WB stage to specify 
the register to be written. Figure 4.40 is a single drawing of the corrected datapath, 
highlighting the hardware used in all five stages of the load register instruction in 
Figures 4.34 through 4.36. See Section 4.8 for an explanation of how to make the 
branch instruction work as expected.

Graphically Representing Pipelines
Pipelining can be difficult to master, since many instructions are simultaneously 
executing in a single datapath in every clock cycle. To aid understanding, there are 

FIGURE 4.39 The corrected pipelined datapath to handle the load instruction properly. The write register number now 
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the MEM/
WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color.
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two basic styles of pipeline figures: multiple-clock-cycle pipeline diagrams, such as 
Figure 4.32 on page 278, and single-clock-cycle pipeline diagrams, such as Figures 
4.34 through 4.38. The multiple-clock-cycle diagrams are simpler but do not contain 
all the details. For example, consider the following five-instruction sequence:

ld   x10, 40(x1)
sub    x11, x2, x3
add    x12, x3, x4
ld   x13, 48(x1)
add    x14, x5, x6

Figure 4.41 shows the multiple-clock-cycle pipeline diagram for these 
instructions. Time advances from left to right across the page in these diagrams, 
and instructions advance from the top to the bottom of the page, similar to the 
laundry pipeline in Figure 4.23. A representation of the pipeline stages is placed 
in each portion along the instruction axis, occupying the proper clock cycles. 
These stylized datapaths represent the five stages of our pipeline graphically, but 
a rectangle naming each pipe stage works just as well. Figure 4.42 shows the more 
traditional version of the multiple-clock-cycle pipeline diagram. Note that Figure 
4.41 shows the physical resources used at each stage, while Figure 4.42 uses the 
name of each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath 
during a single clock cycle, and usually all five instructions in the pipeline are 
identified by labels above their respective pipeline stages. We use this type of figure 
to show the details of what is happening within the pipeline during each clock 

FIGURE 4.40 The portion of the datapath in Figure 4.39 that is used in all five stages of a load instruction.
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cycle; typically, the drawings appear in groups to show pipeline operation over a 
sequence of clock cycles. We use multiple-clock-cycle diagrams to give overviews 
of pipelining situations. (  Section 4.13 gives more illustrations of single-clock 
diagrams if you would like to see more details about Figure 4.41.) A single-clock-
cycle diagram represents a vertical slice of one clock cycle through a set of multiple-
clock-cycle diagrams, showing the usage of the datapath by each of the instructions 
in the pipeline at the designated clock cycle. For example, Figure 4.43 shows the 
single-clock-cycle diagram corresponding to clock cycle 5 of Figures 4.41 and 4.42. 
Obviously, the single-clock-cycle diagrams have more detail and take significantly 
more space to show the same number of clock cycles. The exercises ask you to 
create such diagrams for other code sequences.

Check  
Yourself

A group of students were debating the efficiency of the five-stage pipeline when 
one student pointed out that not all instructions are active in every stage of the 
pipeline. After deciding to ignore the effects of hazards, they made the following 
four statements. Which ones are correct?

FIGURE 4.41 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete 
execution of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move 
from left to right. Unlike Figure 4.26, here we show the pipeline registers between each stage. Figure 4.42 shows the traditional way to draw 
this diagram.
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1. Allowing branches and ALU instructions to take fewer stages than the five 
required by the load instruction will increase pipeline performance under all 
circumstances.

FIGURE 4.42 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.41.
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FIGURE 4.43 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.41 and 4.42. 
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.
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Pipelined Control
Just as we added control to the single-cycle datapath in Section 4.4, we now add 
control to the pipelined datapath. We start with a simple design that views the 
problem through rose-colored glasses.

The first step is to label the control lines on the existing datapath. Figure 4.44 
shows those lines. We borrow as much as we can from the control for the simple 

2. Trying to allow some instructions to take fewer cycles does not help, since 
the throughput is determined by the clock cycle; the number of pipe stages 
per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches can take fewer cycles, so there is some 
opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore 
making the pipeline longer, so that instructions take more cycles, but the 
cycles are shorter. This could improve performance.

In the 6600 Computer, 
perhaps even more 
than in any previous 
computer, the control 
system is the difference.
James Thornton, Design 
of a Computer: The 
Control Data 6600, 1970

FIGURE 4.44 The pipelined datapath of Figure 4.39 with the control signals identified. This datapath borrows the control 
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need funct fields of the instruction in 
the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register.
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datapath in Figure 4.17. In particular, we use the same ALU control logic, branch 
logic, and control lines. These functions are defined in Figures 4.12, 4.16, and 4.18. 
We reproduce the key information in Figures 4.45 through 4.47 on a single page to 
make the following discussion easier to absorb.

As was the case for the single-cycle implementation, we assume that the PC is 
written on each clock cycle, so there is no separate write signal for the PC. By the 
same argument, there are no separate write signals for the pipeline registers (IF/
ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are also written 
during each clock cycle.

To specify control for the pipeline, we need only set the control values during 
each pipeline stage. Because each control line is associated with a component active 
in only a single pipeline stage, we can divide the control lines into five groups 
according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and to 
write the PC are always asserted, so there is nothing special to control in this 
pipeline stage.

2. Instruction decode/register file read: The two source registers are always in the 
same location in the RISC-V instruction formats, so there is nothing special 
to control in this pipeline stage.

3. Execution/address calculation: The signals to be set are ALUOp and ALUSrc 
(see Figures 4.45 and 4.46). The signals select the ALU operation and either 
Read data 2 or a sign-extended immediate as inputs to the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead, 
and MemWrite. The branch if equal, load, and store instructions set these 
signals, respectively. Recall that PCSrc in Figure 4.46 selects the next 
sequential address unless control asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between 
sending the ALU result or the memory value to the register file, and 
RegWrite, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged, 
we can use the same control values. Figure 4.47 has the same values as in Section 
4.4, but now the seven control lines are grouped by pipeline stage.
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FIGURE 4.45 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on 
the ALUOp control bits and the different opcodes for the R-type instruction.

Instruction ALUOp operation
Funct7 
fi eld

Funct3 
fi eld

Desired 
ALU action

ALU control 
input

ld 00 load doubleword XXXXXXX XXX add 0010

sd 00 store doubleword XXXXXXX XXX add 0010

beq 01 branch if equal XXXXXXX XXX subtract 0110

R-type 10 add 0000000 000 add 0010

R-type 10 sub 0100000 000 subtract 0110

R-type 10 and 0000000 111 AND 0000

R-type 10 or 0000000 110 OR 0001

FIGURE 4.46 A copy of Figure 4.16. The function of each of six control signals is defined. The ALU control lines (ALUOp) are defined 
in the second column of Figure 4.45. When a 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corresponding 
to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.44. 
If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq 
instruction; otherwise, PCSrc is set to 0.

Signal name Effect when deasserted Effect when asserted

eulavehthtiwnettirwsitupniretsigeretirWehtnoretsigerehT.enoNetirWgeR
on the Write data input.

ALUSrc The second ALU operand comes from the second 
 le output (Read data 2).

The second ALU operand is the sign-extended, 12 bits of the 
instruction.

PCSrc The PC is replaced by the output of the adder that 
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes 
the branch target.

eratupnisserddaehtybdetangisedstnetnocyromemataD.enoNdaeRmeM
put on the Read data output.

eratupnisserddaehtybdetangisedstnetnocyromemataD.enoNetirWmeM
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input 
comes from the ALU.

The value fed to the register Write data input comes from the 
data memory.

FIGURE 4.47 The values of the control lines are the same as in Figure 4.18, but they have 
been shuffled into three groups corresponding to the last three pipeline stages.

Instruction

Execution/address 
calculation stage 

control lines
Memory access stage 

control lines
Write-back stage 

control lines

ALUOp ALUSrc Branch
Mem-
Read

Mem-
Write

Reg-
Write

Memto-
Reg

R-format 10 0 0 0 0 1 0

ld 00 1 0 1 0 1 1

sd 00 1 0 0 1 0 X

beq 01 0 1 0 0 0 X
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Implementing control means setting the seven control lines to these values in 
each stage for each instruction.

Since the rest of the control lines starts with the EX stage, we can create the 
control information during instruction decode for the later stages. The simplest 
way to pass these control signals is to extend the pipeline registers to include 
control information. Figure 4.48 above shows that these control signals are then 
used in the appropriate pipeline stage as the instruction moves down the pipeline, 
just as the destination register number for loads moves down the pipeline in Figure 
4.39. Figure 4.49 shows the full datapath with the extended pipeline registers and 
with the control lines connected to the proper stage. (  Section 4.13 gives more 
examples of RISC-V code executing on pipelined hardware using single-clock 
diagrams, if you would like to see more details.)

FIGURE 4.48 The seven control lines for the final three stages. Note that two of the seven 
control lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM 
pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are 
passed to MEM/WB for use in the WB stage.

WB
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WB

M WB

Control

IF/ID ID/EX EX/MEM MEM/WB

Instruction
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What do you mean, 
why’s it got to be built? 
It’s a bypass. You’ve got 
to build bypasses.
Douglas Adams, The 
Hitchhiker’s Guide to the 
Galaxy, 1979

FIGURE 4.49 The pipelined datapath of Figure 4.44, with the control signals connected to the control portions of the 
pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX 
pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.
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 4.7 Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution 
and how the hardware performs the task. It’s now time to take off the rose-colored 
glasses and look at what happens with real programs. The RISC-V instructions 
in Figures 4.41 through 4.43 were independent; none of them used the results 
calculated by any of the others. Yet, in Section 4.5, we saw that data hazards are 
obstacles to pipelined execution.
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Let’s look at a sequence with many dependences, shown in color:

sub  x2, x1, x3 // Register z2 written by sub
and  x12, x2, x5 //  1st operand(x2) depends on sub
or  x13, x6, x2 // 2nd operand(x2) depends on sub
add  x14, x2, x2 // 1st(x2) & 2nd(x2) depend on sub
sd x15, 100(x2) // Base (x2) depends on sub

The last four instructions are all dependent on the result in register x2 of the 
first instruction. If register x2 had the value 10 before the subtract instruction and 
−20 afterwards, the programmer intends that −20 will be used in the following 
instructions that refer to register x2.

How would this sequence perform with our pipeline? Figure 4.50 illustrates the 
execution of these instructions using a multiple-clock-cycle pipeline representation. 
To demonstrate the execution of this instruction sequence in our current pipeline, 
the top of Figure 4.50 shows the value of register x2, which changes during the 
middle of clock cycle 5, when the sub instruction writes its result.

The last potential hazard can be resolved by the design of the register file 
hardware: What happens when a register is read and written in the same clock 
cycle? We assume that the write is in the first half of the clock cycle and the read 
is in the second half, so the read delivers what is written. As is the case for many 
implementations of register files, we have no data hazard in this case.

Figure 4.50 shows that the values read for register x2 would not be the result of 
the sub instruction unless the read occurred during clock cycle 5 or later. Thus, the 
instructions that would get the correct value of −20 are add and sd; the and and 
or instructions would get the incorrect value 10! Using this style of drawing, such 
problems become apparent when a dependence line goes backward in time.

As mentioned in Section 4.5, the desired result is available at the end of the EX 
stage of the sub instruction or clock cycle 3. When are the data actually needed by 
the and and or instructions? The answer is at the beginning of the EX stage of the 
and and or instructions, or clock cycles 4 and 5, respectively. Thus, we can execute 
this segment without stalls if we simply forward the data as soon as it is available to 
any units that need it before it is ready to read from the register file.

How does forwarding work? For simplicity in the rest of this section, we consider 
only the challenge of forwarding to an operation in the EX stage, which may  
be either an ALU operation or an effective address calculation. This means  
that when an instruction tries to use a register in its EX stage that an earlier 
instruction intends to write in its WB stage, we actually need the values as inputs 
to the ALU.

A notation that names the fields of the pipeline registers allows for a more 
precise notation of dependences. For example, “ID/EX.RegisterRs1” refers to the 
number of one register whose value is found in the pipeline register ID/EX; that 
is, the one from the first read port of the register file. The first part of the name, 
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to the left of the period, is the name of the pipeline register; the second part is 
the name of the field in that register. Using this notation, the two pairs of hazard 
conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1

1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1

2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

The first hazard in the sequence on page 295 is on register x2, between the result  
of sub x2, x1, x3 and the first read operand of and x12, x2, x5. This hazard can 

FIGURE 4.50 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the 
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction 
writes into x2, and all the following instructions read x2. This register is written in clock cycle 5, so the proper value is unavailable before clock 
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The 
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.

Program
execution
order
(in instructions)

sub x2, x1, x3

and x12, x2, x5

or x13, x6, x2

add x14, x2, x2

sd x15, 100(x2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10 
Value of
register x2: 10/–20 –20 –20 –20 –20
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be detected when the and instruction is in the EX stage and the prior instruction is 
in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs1 = x2

Dependence Detection

Classify the dependences in this sequence from page 295:

sub x2, x1, x3 // Register x2 set by sub
and x12, x2, x5 // 1st operand(z2) set by sub
or x13, x6, x2 // 2nd operand(x2) set by sub
add x14, x2, x2 // 1st(x2) & 2nd(x2) set by sub
sd x15, 100(x2) // Index(x2) set by sub

As mentioned above, the sub–and is a type 1a hazard. The remaining hazards 
are as follows:

■	 The sub–or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRs2 = x2

■	 The two dependences on sub–add are not hazards because the register 
file supplies the proper data during the ID stage of add.

■	 There is no data hazard between sub and sd because sd reads x2 the 
clock cycle after sub writes x2.

Because some instructions do not write registers, this policy is inaccurate; 
sometimes it would forward when it shouldn’t. One solution is simply to check 
to see if the RegWrite signal will be active: examining the WB control field of the 
pipeline register during the EX and MEM stages determines whether RegWrite is 
asserted. Recall that RISC-V requires that every use of x0 as an operand must yield 
an operand value of 0. If an instruction in the pipeline has x0 as its destination (for 
example, addi x0, x1, 2), we want to avoid forwarding its possibly nonzero result 
value. Not forwarding results destined for x0 frees the assembly programmer and 
the compiler of any requirement to avoid using x0 as a destination. The conditions 
above thus work properly as long as we add EX/MEM.RegisterRd ≠ 0 to the first 
hazard condition and MEM/WB.RegisterRd ≠ 0 to the second.

Now that we can detect hazards, half of the problem is resolved—but we must 
still forward the proper data.

Figure 4.51 shows the dependences between the pipeline registers and the inputs 
to the ALU for the same code sequence as in Figure 4.50. The change is that the 

EXAMPLE

ANSWER
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dependence begins from a pipeline register, rather than waiting for the WB stage 
to write the register file. Thus, the required data exist in time for later instructions, 
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just 
ID/EX, then we can forward the correct data. By adding multiplexors to the input 
of the ALU, and with the proper controls, we can run the pipeline at full speed in 
the presence of these data hazards.

For now, we will assume the only instructions we need to forward are the four 
R-format instructions: add, sub, and, and or. Figure 4.52 shows a close-up of 
the ALU and pipeline register before and after adding forwarding. Figure 4.53 

FIGURE 4.51 The dependences between the pipeline registers move forward in time, so it is possible to supply the 
inputs to the ALU needed by the and instruction and or instruction by forwarding the results found in the pipeline 
registers. The values in the pipeline registers show that the desired value is available before it is written into the register file. We assume that 
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the 
register file instead of a pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock 
cycle 5 shows register x2 having the value 10 at the beginning and −20 at the end of the clock cycle.

Program
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and x12, x2, x5

or x13, x6, x2
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FIGURE 4.52 On the top are the ALU and pipeline registers before adding forwarding. On 
the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding 
unit. The new hardware is shown in color. This figure is a stylized drawing, however, leaving out details from 
the full datapath such as the sign extension hardware.
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FIGURE 4.53 The control values for the forwarding multiplexors in Figure 4.52. The signed 
immediate that is another input to the ALU is described in the Elaboration at the end of this section.

noitanalpxEecruoSlortnocxuM

ALU result.

 le.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an 
earlier ALU result.

shows the values of the control lines for the ALU multiplexors that select either the 
register file values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forwarding 
multiplexors are found in that stage. Thus, we must pass the operand register 
numbers from the ID stage via the ID/EX pipeline register to determine whether to 
forward values. Before forwarding, the ID/EX register had no need to include space 
to hold the rs1 and rs2 fields. Hence, they were added to ID/EX.

Let’s now write both the conditions for detecting hazards, and the control signals 
to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 10

This case forwards the result from the previous instruction to either input 
of the ALU. If the previous instruction is going to write to the register file, 
and the write register number matches the read register number of ALU 
inputs A or B, provided it is not register 0, then steer the multiplexor to pick 
the value instead from the pipeline register EX/MEM.

2. MEM hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01
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if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage, because we assume that 
the register file supplies the correct result if the instruction in the ID stage reads 
the same register written by the instruction in the WB stage. Such a register file 
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruction 
in the WB stage, the result of the instruction in the MEM stage, and the source 
operand of the instruction in the ALU stage. For example, when summing a vector 
of numbers in a single register, a sequence of instructions will all read and write to 
the same register:

add x1, x1, x2
add x1, x1, x3
add x1, x1, x4
. . .

In this case, the result should be forwarded from the MEM stage because the 
result in the MEM stage is the more recent result. Thus, the control for the MEM 
hazard would be (with the additions highlighted):

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

Figure 4.54 shows the hardware necessary to support forwarding for operations 
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the 
register destination for either an ALU instruction or a load.

If you would like to see more illustrated examples using single-cycle pipeline 
drawings,  Section 4.13 has figures that show two pieces of RISC-V code with 
hazards that cause forwarding.
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Elaboration: Forwarding can also help with hazards when store instructions are 
dependent on other instructions. Since they use just one data value during the MEM 
stage, forwarding is easy. However, consider loads immediately followed by stores, 
useful when performing memory-to-memory copies in the RISC-V architecture. Since 
copies are frequent, we need to add more forwarding hardware to make them run faster. 
If we were to redraw Figure 4.51, replacing the sub and and instructions with ld and 
sd, we would see that it is possible to avoid a stall, since the data exist in the MEM/WB 
register of a load instruction in time for its use in the MEM stage of a store instruction. 
We would need to add forwarding into the memory access stage for this option. We leave 
this modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is 
missing from the datapath in Figure 4.54. Since central control decides between register 
and immediate, and since the forwarding unit chooses the pipeline register for a register 
input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses between 
the ForwardB multiplexor output and the signed immediate. Figure 4.55 shows this 
addition.

FIGURE 4.54 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.49, the additions 
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such 
as the branch hardware and the sign extension hardware.
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Data Hazards and Stalls
As we said in Section 4.5, one case where forwarding cannot save the day is when 
an instruction tries to read a register following a load instruction that writes 
the same register. Figure 4.56 illustrates the problem. The data is still being read 
from memory in clock cycle 4 while the ALU is performing the operation for the 
following instruction. Something must stall the pipeline for the combination of 
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It 
operates during the ID stage so that it can insert the stall between the load and 
the instruction dependent on it. Checking for load instructions, the control for the 
hazard detection unit is this single condition:

if (ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or

(ID/EX.RegisterRd = IF/ID.RegisterRs2)))
stall the pipeline

Data
memory

Registers

ALU

ID/EX EX/MEM MEM/WB

Forwarding
unit

ALUSrc

FIGURE 4.55 A close-up of the datapath in Figure 4.52 shows a 2:1 multiplexor, which has been added to select the 
signed immediate as an ALU input.

If at first you don’t 
succeed, redefine 
success.
Anonymous
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Recall that we are using the RegisterRd to refer the register specified in instruction 
bits 11:7 for both load and R-type instructions. The first line tests to see if the 
instruction is a load: the only instruction that reads data memory is a load. The next 
two lines check to see if the destination register field of the load in the EX stage 
matches either source register of the instruction in the ID stage. If the condition holds, 
the instruction stalls one clock cycle. After this one-cycle stall, the forwarding logic 
can handle the dependence and execution proceeds. (If there were no forwarding, 
then the instructions in Figure 4.56 would need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage 
must also be stalled; otherwise, we would lose the fetched instruction. Preventing 
these two instructions from making progress is accomplished simply by preventing 
the PC register and the IF/ID pipeline register from changing. Provided these 
registers are preserved, the instruction in the IF stage will continue to be read 
using the same PC, and the registers in the ID stage will continue to be read using 

FIGURE 4.56 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) 
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.
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the same instruction fields in the IF/ID pipeline register. Returning to our favorite 
analogy, it’s as if you restart the washer with the same clothes and let the dryer 
continue tumbling empty. Of course, like the dryer, the back half of the pipeline 
starting with the EX stage must be doing something; what it is doing is executing 
instructions that have no effect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In Figure 
4.47, we see that deasserting all seven control signals (setting them to 0) in the EX, 
MEM, and WB stages will create a “do nothing” or nop instruction. By identifying 
the hazard in the ID stage, we can insert a bubble into the pipeline by changing the 
EX, MEM, and WB control fields of the ID/EX pipeline register to 0. These benign 
control values are percolated forward at each clock cycle with the proper effect: no 
registers or memories are written if the control values are all 0.

Figure 4.57 shows what really happens in the hardware: the pipeline execution 
slot associated with the and instruction is turned into a nop and all instructions 
beginning with the and instruction are delayed one cycle. Like an air bubble in 

nops An instruction 
that does no operation to 
change state.

FIGURE 4.57 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing 
the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed 
until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise, the or instruction is fetched in clock cycle 3, but its ID stage is 
delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time 
and no further hazards occur.
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a water pipe, a stall bubble delays everything behind it and proceeds down the 
instruction pipe one stage each clock cycle until it exits at the end. In this example, 
the hazard forces the and and or instructions to repeat in clock cycle 4 what they 
did in clock cycle 3: and reads registers and decodes, and or is refetched from 
instruction memory. Such repeated work is what a stall looks like, but its effect is 
to stretch the time of the and and or instructions and delay the fetch of the add 
instruction.

Figure 4.58 highlights the pipeline connections for both the hazard detection 
unit and the forwarding unit. As before, the forwarding unit controls the ALU 
multiplexors to replace the value from a general-purpose register with the value 
from the proper pipeline register. The hazard detection unit controls the writing 
of the PC and IF/ID registers plus the multiplexor that chooses between the real 
control values and all 0s. The hazard detection unit stalls and deasserts the control 
fields if the load-use hazard test above is true. If you would like to see more details, 

 Section 4.13 gives an example illustrated using single-clock pipeline diagrams 
of RISC-V code with hazards that cause stalling.

FIGURE 4.58 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and 
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.
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Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid 
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while 
the other control signals can be don’t cares.

 4.8 Control Hazards

Thus far, we have limited our concern to hazards involving arithmetic operations 
and data transfers. However, as we saw in Section 4.5, there are also pipeline hazards 
involving conditional branches. Figure 4.59 shows a sequence of instructions and 
indicates when the branch would occur in this pipeline. An instruction must be 
fetched at every clock cycle to sustain the pipeline, yet in our design the decision 
about whether to branch doesn’t occur until the MEM pipeline stage. As mentioned 
in Section 4.5, this delay in determining the proper instruction to fetch is called 
a control hazard or branch hazard, in contrast to the data hazards we have just 
examined.

This section on control hazards is shorter than the previous sections on data 
hazards. The reasons are that control hazards are relatively simple to understand, 
they occur less frequently than data hazards, and there is nothing as effective 
against control hazards as forwarding is against data hazards. Hence, we use 
simpler schemes. We look at two schemes for resolving control hazards and one 
optimization to improve these schemes.

Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. One 
improvement over branch stalling is to predict that the conditional branch will 
not be taken and thus continue execution down the sequential instruction stream. 
If the conditional branch is taken, the instructions that are being fetched and 
decoded must be discarded. Execution continues at the branch target. If conditional 
branches are untaken half the time, and if it costs little to discard the instructions, 
this optimization halves the cost of control hazards. 

Although the compiler generally relies upon the hardware to resolve hazards 
and thereby ensure correct execution, the compiler must understand the 
pipeline to achieve the best performance. Otherwise, unexpected stalls 
will reduce the performance of the compiled code.

The BIG 
Picture

There are a thousand 
hacking at the 
branches of evil to one 
who is striking at the 
root.
Henry David Thoreau, 
Walden, 1854
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To discard instructions, we merely change the original control values to 0s, 
much as we did to stall for a load-use data hazard. The difference is that we must 
also change the three instructions in the IF, ID, and EX stages when the branch 
reaches the MEM stage; for load-use stalls, we just change control to 0 in the ID 
stage and let them percolate through the pipeline. Discarding instructions, then, 
means we must be able to flush instructions in the IF, ID, and EX stages of the 
pipeline.

Reducing the Delay of Branches
One way to improve conditional branch performance is to reduce the cost of the 
taken branch. Thus far, we have assumed the next PC for a branch is selected in the 

flush To discard 
instructions in a pipeline, 
usually due to an 
unexpected event.

FIGURE 4.59 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, …) 
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq 
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those 
three following instructions will begin execution before beq branches to ld at location 72. (Figure 4.29 assumed extra hardware to reduce the 
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)
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MEM stage, but if we move the conditional branch execution earlier in the pipeline, 
then fewer instructions need be flushed. Moving the branch decision up requires 
two actions to occur earlier: computing the branch target address and evaluating 
the branch decision. The easy part of this change is to move up the branch address 
calculation. We already have the PC value and the immediate field in the IF/ID 
pipeline register, so we just move the branch adder from the EX stage to the ID 
stage; of course, the address calculation for branch targets will be performed for all 
instructions, but only used when needed.

The harder part is the branch decision itself. For branch if equal, we would 
compare two register reads during the ID stage to see if they are equal. Equality can 
be tested by XORing individual bit positions of two registers and ORing the XORed 
result. Moving the branch test to the ID stage implies additional forwarding and 
hazard detection hardware, since a branch dependent on a result still in the pipeline 
must still work properly with this optimization. For example, to implement branch 
if equal (and its inverse), we will need to forward results to the equality test logic 
that operates during ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to 
the equality test unit is needed, and complete the equality test so that if 
the instruction is a branch, we can set the PC to the branch target address. 
Forwarding for the operand of branches was formerly handled by the  
ALU forwarding logic, but the introduction of the equality test unit in ID 
will require new forwarding logic. Note that the bypassed source operands  
of a branch can come from either the EX/MEM or MEM/WB pipeline 
registers.

2. Because the value in a branch comparison is needed during ID but may be 
produced later in time, it is possible that a data hazard can occur and a stall 
will be needed. For example, if an ALU instruction immediately preceding 
a branch produces the operand for the test in the conditional branch, a stall 
will be required, since the EX stage for the ALU instruction will occur after 
the ID cycle of the branch. By extension, if a load is immediately followed by 
a conditional branch that depends on the load result, two stall cycles will be 
needed, as the result from the load appears at the end of the MEM cycle but 
is needed at the beginning of ID for the branch.

Despite these difficulties, moving the conditional branch execution to the ID 
stage is an improvement, because it reduces the penalty of a branch to only one 
instruction if the branch is taken, namely, the one currently being fetched. The 
exercises explore the details of implementing the forwarding path and detecting 
the hazard.

To flush instructions in the IF stage, we add a control line, called IF.Flush, 
that zeros the instruction field of the IF/ID pipeline register. Clearing the register 
transforms the fetched instruction into a nop, an instruction that has no action and 
changes no state.
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Pipelined Branch

Show what happens when the branch is taken in this instruction sequence, 
assuming the pipeline is optimized for branches that are not taken, and that we 
moved the branch execution to the ID stage:

36 sub x10, x4, x8
40 beq x1, x3, 16 // PC-relative branch to 40+16*2=72
44 and x12, x2, x5
48 or x13, x2, x6
52 add x14, x4, x2
56 sub x15, x6, x7
. . .
72 ld x4, 50(x7)

Figure 4.60 shows what happens when a conditional branch is taken. Unlike 
Figure 4.59, there is only one pipeline bubble on a taken branch.

Dynamic Branch Prediction
Assuming a conditional branch is not taken is one simple form of branch prediction. 
In that case, we predict that conditional branches are untaken, flushing the 
pipeline when we are wrong. For the simple five-stage pipeline, such an approach, 
possibly coupled with compiler-based prediction, is probably adequate. With 
deeper pipelines, the branch penalty increases when measured in clock cycles. 
Similarly, with multiple issue (see Section 4.10), the branch penalty increases in 
terms of instructions lost. This combination means that in an aggressive pipeline, 
a simple static prediction scheme will probably waste too much performance. As 
we mentioned in Section 4.5, with more hardware it is possible to try to predict 
branch behavior during program execution. 

One approach is to look up the address of the instruction to see if the conditional 
branch was taken the last time this instruction was executed, and, if so, to begin 
fetching new instructions from the same place as the last time. This technique is 
called dynamic branch prediction.

One implementation of that approach is a branch prediction buffer or branch 
history table. A branch prediction buffer is a small memory indexed by the lower 
portion of the address of the branch instruction. The memory contains a bit that 
says whether the branch was recently taken or not.

This prediction uses the simplest sort of buffer; we don’t know, in fact, if the 
prediction is the right one—it may have been put there by another conditional 
branch that has the same low-order address bits. However, this doesn’t affect 
correctness. Prediction is just a hint that we hope is correct, so fetching begins in 
the predicted direction. If the hint turns out to be wrong, the incorrectly predicted 

dynamic branch 
prediction Prediction of 
branches at runtime using 
runtime information.

branch prediction 
buffer Also called 
branch history table. 
A small memory that 
is indexed by the lower 
portion of the address of 
the branch instruction 
and that contains one 
or more bits indicating 
whether the branch was 
recently taken or not.

EXAMPLE

ANSWER
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FIGURE 4.60 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being 
fetched and the single bubble or nop instruction in the pipeline because of the taken branch.
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instructions are deleted, the prediction bit is inverted and stored back, and the 
proper sequence is fetched and executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a 
conditional branch is almost always taken, we can predict incorrectly twice, rather 
than once, when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, and then is not taken 
once. What is the prediction accuracy for this branch, assuming the prediction 
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and last loop 
iterations. Mispredicting the last iteration is inevitable since the prediction 
bit will indicate taken, as the branch has been taken nine times in a row at 
that point. The misprediction on the first iteration happens because the bit is 
flipped on prior execution of the last iteration of the loop, since the branch 
was not taken on that exiting iteration. Thus, the prediction accuracy for this 
branch that is taken 90% of the time is only 80% (two incorrect predictions and 
eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch frequency for 
these highly regular branches. To remedy this weakness, 2-bit prediction schemes 
are often used. In a 2-bit scheme, a prediction must be wrong twice before it is 
changed. Figure 4.61 shows the finite-state machine for a 2-bit prediction scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed 
with the instruction address during the IF pipe stage. If the instruction is predicted 
as taken, fetching begins from the target as soon as the PC is known; as mentioned 
on page 308, it can be as early as the ID stage. Otherwise, sequential fetching and 
executing continue. If the prediction turns out to be wrong, the prediction bits are 
changed as shown in Figure 4.61.

Elaboration: A branch predictor tells us whether a conditional branch is taken, 
but still requires the calculation of the branch target. In the five-stage pipeline, this 
calculation takes one cycle, meaning that taken branches will have a one-cycle penalty. 
One approach is to use a cache to hold the destination program counter or destination 
instruction using a branch target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular 
branch. Researchers noticed that using information about both a local branch 
and the global behavior of recently executed branches together yields greater 
prediction accuracy for the same number of prediction bits. Such predictors are 
called correlating predictors. A typical correlating predictor might have two 2-bit 

branch target buffer  
A structure that caches 
the destination PC or 
destination instruction 
for a branch. It is usually 
organized as a cache with 
tags, making it more 
costly than a simple 
prediction buffer.

correlating predictor  
A branch predictor that 
combines local behavior 
of a particular branch 
and global information 
about the behavior of 
some recent number of 
executed branches.

EXAMPLE

ANSWER
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predictors for each branch, with the choice between predictors made based on 
whether the last executed branch was taken or not taken. Thus, the global branch 
behavior can be thought of as adding additional index bits for the prediction 
lookup.

Another approach to branch prediction is the use of tournament predictors. A 
tournament branch predictor uses multiple predictors, tracking, for each branch, 
which predictor yields the best results. A typical tournament predictor might 
contain two predictions for each branch index: one based on local information and 
one based on global branch behavior. A selector would choose which predictor 
to use for any given prediction. The selector can operate similarly to a 1- or 2-bit 
predictor, favoring whichever of the two predictors has been more accurate. Some 
recent microprocessors use such ensemble predictors.

Elaboration: One way to reduce the number of conditional branches is to add conditional 
move instructions. Instead of changing the PC with a conditional branch, the instruction 
conditionally changes the destination register of the move. For example, the ARMv8 
instruction set architecture has a conditional select instruction called CSEL. It specifies a 
destination register, two source registers, and a condition. The destination register gets a 
value of the first operand if the condition is true and the second operand otherwise. Thus, 
CSEL X8, X11, X4, NE copies the contents of register 11 into register 8 if the condition 
codes say the result of the operation was not equal zero or a copy of register 4 into register 
11 if it was zero. Hence, programs using the ARMv8 instruction set could have fewer 
conditional branches than programs written in RISC-V.

tournament branch 
predictor A branch 
predictor with multiple 
predictions for each 
branch and a selection 
mechanism that chooses 
which predictor to enable 
for a given branch.

FIGURE 4.61 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that 
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used 
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor, 
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of 
its range as the division between taken and not taken.
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Pipeline Summary
We started in the laundry room, showing principles of pipelining in an everyday 
setting. Using that analogy as a guide, we explained instruction pipelining 
step-by-step, starting with the single-cycle datapath and then adding pipeline 
registers, forwarding paths, data hazard detection, branch prediction, and flushing 
instructions on mispredicted branches or load-use data hazards. Figure 4.62 shows 
the final evolved datapath and control. We now are ready for yet another control 
hazard: the sticky issue of exceptions.

Check  
Yourself

Consider three branch prediction schemes: predict not taken, predict taken, and 
dynamic prediction. Assume that they all have zero penalty when they predict 
correctly and two cycles when they are wrong. Assume that the average predict 
accuracy of the dynamic predictor is 90%. Which predictor is the best choice for 
the following branches?

FIGURE 4.62 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so 
it’s missing the ALUsrc Mux from Figure 4.55 and the multiplexor controls from Figure 4.49.
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 4.9 Exceptions

Control is the most challenging aspect of processor design: it is both the hardest 
part to get right and the toughest part to make fast. One of the demanding tasks of 
control is implementing exceptions and interrupts—events other than branches 
that change the normal flow of instruction execution. They were initially created to 
handle unexpected events from within the processor, like an undefined instruction. 
The same basic mechanism was extended for I/O devices to communicate with the 
processor, as we will see in Chapter 5.

Many architectures and authors do not distinguish between interrupts and 
exceptions, often using either name to refer to both types of events. For example, 
the Intel x86 uses interrupt. We use the term exception to refer to any unexpected 
change in control flow without distinguishing whether the cause is internal or 
external; we use the term interrupt only when the event is externally caused. Here 
are examples showing whether the situation is internally generated by the processor 
or externally generated and the name that RISC-V uses:

Type of event From where? RISC-V terminology

System reset External Exception

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Either

Many of the requirements to support exceptions come from the specific 
situation that causes an exception to occur. Accordingly, we will return to this 
topic in Chapter 5, when we will better understand the motivation for additional 
capabilities in the exception mechanism. In this section, we deal with the control 
implementation for detecting types of exceptions that arise from the portions of 
the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often 
on the critical timing path of a processor, which determines the clock cycle time 
and thus performance. Without proper attention to exceptions during design of 
the control unit, attempts to add exceptions to an intricate implementation can 
significantly reduce performance, as well as complicate the task of getting the 
design correct.

exception Also 
called interrupt. An 
unscheduled event 
that disrupts program 
execution; used to detect 
undefined instructions.

interrupt An exception 
that comes from outside 
of the processor. (Some 
architectures use the 
term interrupt for all 
exceptions.)

1. A conditional branch that is taken with 5% frequency

2. A conditional branch that is taken with 95% frequency

3. A conditional branch that is taken with 70% frequency

To make a computer 
with automatic 
program-interruption 
facilities behave 
[sequentially] was 
not an easy matter, 
because the number of 
instructions in various 
stages of processing 
when an interrupt 
signal occurs may be 
large.
Fred Brooks, Jr., 
Planning a Computer 
System: Project Stretch, 
1962
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How Exceptions are Handled in the RISC-V Architecture
The only types of exceptions that our current implementation can generate are 
execution of an undefined instruction or a hardware malfunction. We’ll assume 
a hardware malfunction occurs during the instruction add x11, x12, x11 as 
the example exception in the next few pages. The basic action that the processor 
must perform when an exception occurs is to save the address of the unfortunate 
instruction in the supervisor exception cause register (SEPC) and then transfer 
control to the operating system at some specified address.

The operating system can then take the appropriate action, which may involve 
providing some service to the user program, taking some predefined action in 
response to a malfunction, or stopping the execution of the program and reporting 
an error. After performing whatever action is required because of the exception, 
the operating system can terminate the program or may continue its execution, 
using the SEPC to determine where to restart the execution of the program. In 
Chapter 5, we will look more closely at the issue of restarting the execution.

For the operating system to handle the exception, it must know the reason for 
the exception, in addition to the instruction that caused it. There are two main 
methods used to communicate the reason for an exception. The method used in 
the RISC-V architecture is to include a register (called the Supervisor Exception 
Cause Register or SCAUSE), which holds a field that indicates the reason for the 
exception.

A second method is to use vectored interrupts. In a vectored interrupt, the 
address to which control is transferred is determined by the cause of the exception, 
possibly added to a base register that points to memory range for vectored 
interrupts. For example, we might define the following exception vector addresses 
to accommodate these exception types:

Exception type
Exception vector address to be added  

to a Vector Table Base Register

Undefined instruction 00 0100 0000two

System Error (hardware malfunction) 01 1000 0000two

The operating system knows the reason for the exception by the address at which it 
is initiated. When the exception is not vectored, as in RISC-V, a single entry point for all 
exceptions can be used, and the operating system decodes the status register to find the 
cause. For architectures with vectored exceptions, the addresses might be separated by, 
say, 32 bytes or eight instructions, and the operating system must record the reason for 
the exception and may perform some limited processing in this sequence.

We can perform the processing required for exceptions by adding a few extra 
registers and control signals to our basic implementation and by slightly extending 
control. Let’s assume that we are implementing the exception system with the single 
interrupt entry point being the address 0000 0000 1C09 0000hex. (Implementing 

vectored interrupt An 
interrupt for which 
the address to which 
control is transferred is 
determined by the cause 
of the exception.
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vectored exceptions is no more difficult.) We will need to add two additional 
registers to our current RISC-V implementation:

■	 SEPC: A 64-bit register used to hold the address of the affected instruction. 
(Such a register is needed even when exceptions are vectored.)

■	 SCAUSE: A register used to record the cause of the exception. In the RISC-V 
architecture, this register is 64 bits, although most bits are currently unused. 
Assume there is a field that encodes the two possible exception sources 
mentioned above, with 2 representing an undefined instruction and 12 
representing hardware malfunction.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control hazard. 
For example, suppose there is a hardware malfunction in an add instruction. Just as 
we did for the taken branch in the previous section, we must flush the instructions 
that follow the add instruction from the pipeline and begin fetching instructions 
from the new address. We will use the same mechanism we used for taken branches, 
but this time the exception causes the deasserting of control lines.

When we dealt with branch misprediction, we saw how to flush the instruction 
in the IF stage by turning it into a nop. To flush instructions in the ID stage, we 
use the multiplexor already in the ID stage that zeros control signals for stalls. A 
new control signal, called ID.Flush, is ORed with the stall signal from the hazard 
detection unit to flush during ID. To flush the instruction in the EX phase, we use 
a new signal called EX.Flush to cause new multiplexors to zero the control lines. 
To start fetching instructions from location 0000 0000 1C09 0000hex, which we are 
using as the RISC-V exception address, we simply add an additional input to the 
PC multiplexor that sends 0000 0000 1C09 0000hex to the PC. Figure 4.63 shows 
these changes.

This example points out a problem with exceptions: if we do not stop execution 
in the middle of the instruction, the programmer will not be able to see the original 
value of register x1 because it will be clobbered as the destination register of the 
add instruction. If we assume the exception is detected during the EX stage, we 
can use the EX.Flush signal to prevent the instruction in the EX stage from writing 
its result in the WB stage. Many exceptions require that we eventually complete 
the instruction that caused the exception as if it executed normally. The easiest 
way to do this is to flush the instruction and restart it from the beginning after the 
exception is handled.

The final step is to save the address of the offending instruction in the supervisor 
exception program counter (SEPC). Figure 4.63 shows a stylized version of the 
datapath, including the branch hardware and necessary accommodations to handle 
exceptions.
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Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub x11, x2, x4
44hex and x12, x2, x5
48hex or x13, x2, x6
4Chex add x1, x2, x1
50hex sub x15, x6, x7
54hex ld x16, 100(x7)
. . .

assume the instructions to be invoked on an exception begin like this:

1C090000hex sd  x26, 1000(x10)
1C090004hex sd  x27, 1008(x10)
. . .

EXAMPLE

FIGURE 4.63 The datapath with controls to handle exceptions. The key additions include a new input with the value 0000 0000 
1C09 0000hex in the multiplexor that supplies the new PC value; an SCAUSE register to record the cause of the exception; and an SEPC register 
to save the address of the instruction that caused the exception. The 0000 0000 1C09 0000hex input to the multiplexor is the initial address to 
begin fetching instructions in the event of an exception.
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Show what happens in the pipeline if a hardware malfunction exception 
occurs in the add instruction.

Figure 4.64 shows the events, starting with the add instruction in the EX stage. 
Assume the hardware malfunction is detected during that phase, and 0000 
0000 1C09 0000hex is forced into the PC. Clock cycle 7 shows that the add and 
following instructions are flushed, and the first instruction of the exception-
handling code is fetched. Note that the address of the add instruction is saved: 
4Chex.

We mentioned several examples of exceptions on page 315, and we will see 
others in Chapter 5. With five instructions active in any clock cycle, the challenge 
is to associate an exception with the appropriate instruction. Moreover, multiple 
exceptions can occur simultaneously in a single clock cycle. The solution is to 
prioritize the exceptions so that it is easy to determine which is serviced first. 
In RISC-V implementations, the hardware sorts exceptions so that the earliest 
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specific 
instruction, so the implementation has some flexibility as to when to interrupt the 
pipeline. Hence, the mechanism used for other exceptions works just fine.

The SEPC register captures the address of the interrupted instructions, and the 
SCAUSE register records the highest priority exception in a clock cycle if more 
than one exception occurs.

ANSWER

The hardware and the operating system must work in conjunction so that exceptions 
behave as you would expect. The hardware contract is normally to stop the offending 
instruction in midstream, let  all prior instructions complete, flush all following 
instructions, set a register to show the cause of the exception, save the address of 
the offending instruction, and then branch to a prearranged address. The operating 
system contract is to look at the cause of the exception and act appropriately. For 
an undefined instruction or hardware failure, the operating system normally kills 
the program and returns an indicator of the reason. For an I/O device request or an 
operating system service call, the operating system saves the state of the program, 
performs the desired task, and, at some point in the future, restores the program 
to continue execution. In the case of I/O device requests, we may often choose to 
run another task before resuming the task that requested the I/O, since that task 
may often not be able to proceed until the I/O is complete. Exceptions are why the 
ability to save and restore the state of any task is critical. One of the most important 
and frequent uses of exceptions is handling page faults; Chapter 5 describes these 
exceptions and their handling in more detail.

Hardware/
Software 
Interface
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FIGURE 4.64 The result of an exception due to hardware malfunction in the add instruction. The exception is detected 
during the EX stage of clock 6, saving the address of the add instruction in the SEPC register (4Chex). It causes all the Flush signals to be  
set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted 
to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—sd x26, 1000(x0)—from instruction location 
0000 0000 1C09 0000hex. Note that the and and or instructions, which are prior to the add, still complete.

ld x16, 100(x7) sub x15, x6, x7 add x1, x2, x1 or x13, . . . and x12, . . .

sd x26, 1000(x0)
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Elaboration: The difficulty of always associating the proper exception with the correct 
instruction in pipelined computers has led some computer designers to relax this 
requirement in noncritical cases. Such processors are said to have imprecise interrupts 
or imprecise exceptions. In the example above, PC would normally have 58hex at the start 
of the clock cycle after the exception is detected, even though the offending instruction 
is at address 4Chex. A processor with imprecise exceptions might put 58hex into SEPC and 
leave it up to the operating system to determine which instruction caused the problem. 
RISC-V and the vast majority of computers today support precise interrupts or precise 
exceptions. One reason is designers of a deeper pipeline processor might be tempted 
to record a different value in SEPC, which would create headaches for the OS. To prevent 
them, the deeper pipeline would likely be required to record the same PC that would 
have been recorded in the five-stage pipeline. It is simpler for everyone to just record 
the PC of the faulting instruction instead. (Another reason is to support virtual memory, 
which we shall see in Chapter 5.)

Elaboration: We show that RISC-V uses the exception entry address 
0000 0000 1C09 0000hex, which is chosen somewhat arbitrarily. Many RISC-V computers 
store the exception entry address in a special register named Supervisor Trap Vector 
(STVEC), which the OS can load with a value of its choosing.

precise interrupt Also 
called precise exception. 
An interrupt or exception 
that is always associated 
with the correct 
instruction in pipelined 
computers.

imprecise 
interrupt Also called 
imprecise exception. 
Interrupts or exceptions 
in pipelined computers 
that are not associated 
with the exact instruction 
that was the cause of the 
interrupt or exception.

Check 
Yourself

Which exception should be recognized first in this sequence?

1. xxx x11, x12, x11  // undefined instruction

2. sub x11, x12, x11  // hardware error

 4.10 Parallelism via Instructions

Be forewarned: this section is a brief overview of fascinating but complex topics. 
If you want to learn more details, you should consult our more advanced book, 
Computer Architecture: A Quantitative Approach, fifth edition, where the material 
covered in these 13 pages is expanded to almost 200 pages (including appendices)!

Pipelining exploits the potential parallelism among instructions. This 
parallelism is called, naturally enough, instruction-level parallelism (ILP). There 
are two primary methods for increasing the potential amount of instruction-
level parallelism. The first is increasing the depth of the pipeline to overlap more 
instructions. Using our laundry analogy and assuming that the washer cycle was 
longer than the others were, we could divide our washer into three machines that 
perform the wash, rinse, and spin steps of a traditional washer. We would then 
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move from a four-stage to a six-stage pipeline. To get the full speed-up, we need 
to rebalance the remaining steps so they are the same length, in processors or in 
laundry. The amount of parallelism being exploited is higher, since there are more 
operations being overlapped. Performance is potentially greater since the clock 
cycle can be shorter.

Another approach is to replicate the internal components of the computer so 
that it can launch multiple instructions in every pipeline stage. The general name 
for this technique is multiple issue. A multiple-issue laundry would replace our 
household washer and dryer with, say, three washers and three dryers. You would 
also have to recruit more assistants to fold and put away three times as much 
laundry in the same amount of time. The downside is the extra work to keep all the 
machines busy and transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction execution rate to 
exceed the clock rate or, stated alternatively, the CPI to be less than 1. As mentioned 
in Chapter 1, it is sometimes useful to flip the metric and use IPC, or instructions per 
clock cycle. Hence, a 3-GHz four-way multiple-issue microprocessor can execute a 
peak rate of 12 billion instructions per second and have a best-case CPI of 0.33, 
or an IPC of 3. Assuming a five-stage pipeline, such a processor would have up to 
20 instructions in execution at any given time. Today’s high-end microprocessors 
attempt to issue from three to six instructions in every clock cycle. Even moderate 
designs will aim at a peak IPC of 2. There are typically, however, many constraints 
on what types of instructions may be executed simultaneously, and what happens 
when dependences arise.

There are two main ways to implement a multiple-issue processor, with the 
major difference being the division of work between the compiler and the hardware. 
Because the division of work dictates whether decisions are being made statically 
(that is, at compile time) or dynamically (that is, during execution), the approaches 
are sometimes called static multiple issue and dynamic multiple issue. As we will 
see, both approaches have other, more commonly used names, which may be less 
precise or more restrictive.

Two primary and distinct responsibilities must be dealt with in a multiple-issue 
pipeline:

1. Packaging instructions into issue slots: how does the processor determine 
how many instructions and which instructions can be issued in a given 
clock cycle? In most static issue processors, this process is at least partially 
handled by the compiler; in dynamic issue designs, it is normally dealt with 
at runtime by the processor, although the compiler will often have already 
tried to help improve the issue rate by placing the instructions in a beneficial 
order.

2. Dealing with data and control hazards: in static issue processors, the compiler 
handles some or all the consequences of data and control hazards statically. 
In contrast, most dynamic issue processors attempt to alleviate at least some 
classes of hazards using hardware techniques operating at execution time.

instruction-level 
parallelism The 
parallelism among 
instructions.

multiple issue A 
scheme whereby multiple 
instructions are launched 
in one clock cycle.

static multiple issue An 
approach to implementing 
a multiple-issue processor 
where many decisions 
are made by the compiler 
before execution.

dynamic multiple 
issue An approach to 
implementing a multiple-
issue processor where 
many decisions are made 
during execution by the 
processor.

issue slots The positions 
from which instructions 
could issue in a given 
clock cycle; by analogy, 
these correspond to 
positions at the starting 
blocks for a sprint.
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Although we describe these as distinct approaches, in reality, one approach 
often borrows techniques from the other, and neither approach can claim to be 
perfectly pure.

The Concept of Speculation
One of the most important methods for finding and exploiting more ILP is 
speculation. Based on the great idea of prediction, speculation is an approach 
that allows the compiler or the processor to “guess” about the properties of an 
instruction, to enable execution to begin for other instructions that may depend 
on the speculated instruction. For example, we might speculate on the outcome of 
a branch, so that instructions after the branch could be executed earlier. Another 
example is that we might speculate that a store that precedes a load does not refer to 
the same address, which would allow the load to be executed before the store. The 
difficulty with speculation is that it may be wrong. So, any speculation mechanism 
must include both a method to check if the guess was right and a method to unroll 
or back out the effects of the instructions that were executed speculatively. The 
implementation of this back-out capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the 
compiler can use speculation to reorder instructions, moving an instruction across 
a branch or a load across a store. The processor hardware can perform the same 
transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather different. 
In the case of speculation in software, the compiler usually inserts additional 
instructions that check the accuracy of the speculation and provide a fix-up 
routine to use when the speculation is wrong. In hardware speculation, the 
processor usually buffers the speculative results until it knows they are no longer 
speculative. If the speculation is correct, the instructions are completed by 
allowing the contents of the buffers to be written to the registers or memory. If 
the speculation is incorrect, the hardware flushes the buffers and re-executes the 
correct instruction sequence. Misspeculation typically requires the pipeline to be 
flushed, or at least stalled, and thus further reduces performance.

Speculation introduces one other possible problem: speculating on certain 
instructions may introduce exceptions that were formerly not present. For example, 
suppose a load instruction is moved in a speculative manner, but the address it uses 
is not within bounds when the speculation is incorrect. The result would be that an 
exception that should not have occurred would occur. The problem is complicated 
by the fact that if the load instruction were not speculative, then the exception 
must occur! In compiler-based speculation, such problems are avoided by adding 
special speculation support that allows such exceptions to be ignored until it is 
clear that they really should occur. In hardware-based speculation, exceptions 
are simply buffered until it is clear that the instruction causing them is no longer 
speculative and is ready to complete; at that point, the exception is raised, and 
normal exception handling proceeds.

speculation An 
approach whereby the 
compiler or processor 
guesses the outcome of an 
instruction to remove it as 
a dependence in executing 
other instructions.
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Since speculation can improve performance when done properly and decrease 
performance when done carelessly, significant effort goes into deciding when it 
is appropriate to speculate. Later in this section, we will examine both static and 
dynamic techniques for speculation.

Static Multiple Issue
Static multiple-issue processors all use the compiler to assist with packaging 
instructions and handling hazards. In a static issue processor, you can think of the 
set of instructions issued in a given clock cycle, which is called an issue packet, as 
one large instruction with multiple operations. This view is more than an analogy. 
Since a static multiple-issue processor usually restricts what mix of instructions can 
be initiated in a given clock cycle, it is useful to think of the issue packet as a single 
instruction allowing several operations in certain predefined fields. This view led to 
the original name for this approach: Very Long Instruction Word (VLIW).

Most static issue processors also rely on the compiler to take on some 
responsibility for handling data and control hazards. The compiler’s responsibilities 
may include static branch prediction and code scheduling to reduce or prevent all 
hazards. Let’s look at a simple static issue version of an RISC-V processor, before we 
describe the use of these techniques in more aggressive processors.

An Example: Static Multiple Issue with the RISC-V ISA

To give a flavor of static multiple issue, we consider a simple two-issue RISC-V 
processor, where one of the instructions can be an integer ALU operation or 
branch and the other can be a load or store. Such a design is like that used in 
some embedded processors. Issuing two instructions per cycle will require fetching 
and decoding 64 bits of instructions. In many static multiple-issue processors, and 
essentially all VLIW processors, the layout of simultaneously issuing instructions 
is restricted to simplify the decoding and instruction issue. Hence, we will require 
that the instructions be paired and aligned on a 64-bit boundary, with the ALU 
or branch portion appearing first. Furthermore, if one instruction of the pair 
cannot be used, we require that it be replaced with a nop. Thus, the instructions 
always issue in pairs, possibly with a nop in one slot. Figure 4.65 shows how the 
instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and 
control hazards. In some designs, the compiler takes full responsibility for removing 
all hazards, scheduling the code, and inserting no-ops so that the code executes 
without any need for hazard detection or hardware-generated stalls. In others, the 
hardware detects data hazards and generates stalls between two issue packets, while 
requiring that the compiler avoid all dependences within an instruction packet. 
Even so, a hazard generally forces the entire issue packet containing the dependent 
instruction to stall. Whether the software must handle all hazards or only try to 
reduce the fraction of hazards between separate issue packets, the appearance of 

issue packet The set 
of instructions that 
issues together in one 
clock cycle; the packet 
may be determined 
statically by the compiler 
or dynamically by the 
processor.

Very Long Instruction 
Word (VLIW) A 
style of instruction set 
architecture that launches 
many operations that are 
defined to be independent 
in a single-wide 
instruction, typically with 
many separate opcode 
fields.
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having a large single instruction with multiple operations is reinforced. We will 
assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the first need for 
additional hardware—beyond the usual hazard detection and stall logic—is extra 
ports in the register file (see Figure 4.66). In one clock cycle, we may need to read 
two registers for the ALU operation and two more for a store, and also one write 
port for an ALU operation and one write port for a load. Since the ALU is tied 
up for the ALU operation, we also need a separate adder to calculate the effective 
address for data transfers. Without these extra resources, our two-issue pipeline 
would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor of 
two! Doing so, however, requires that twice as many instructions be overlapped 
in execution, and this additional overlap increases the relative performance loss 
from data and control hazards. For example, in our simple five-stage pipeline, 
loads have a use latency of one clock cycle, which prevents one instruction from 
using the result without stalling. In the two-issue, five-stage pipeline the result of 
a load instruction cannot be used on the next clock cycle. This means that the next 
two instructions cannot use the load result without stalling. Furthermore, ALU 
instructions that had no use latency in the simple five-stage pipeline now have a 
one-instruction use latency, since the results cannot be used in the paired load or 
store. To effectively exploit the parallelism available in a multiple-issue processor, 
more ambitious compiler or hardware scheduling techniques are needed, and static 
multiple issue requires that the compiler take on this role.

use latency Number 
of clock cycles between 
a load instruction and 
an instruction that can 
use the result of the 
load without stalling the 
pipeline.

FIGURE 4.65 Static two-issue pipeline in operation. The ALU and data transfer instructions 
are issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue 
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the 
register writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a 
precise exception model, which become more difficult in multiple-issue processors.

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

BWMEMXEDIFInoitcurtsnihcnarbroULA

BWMEMXEDIFInoitcurtsnierotsrodaoL

BWMEMXEDIFInoitcurtsnihcnarbroULA

BWMEMXEDIFInoitcurtsnierotsrodaoL
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Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for RISC-V?

Loop: ld x31, 0(x20) // x31=array element
    add x31, x31, x21 // add scalar in x21
    sd x31, 0(x20) // store result
    addi x20, x20, -8 // decrement pointer
    blt x22, x20, Loop // compare to loop limit,

// branch if x20 > x22

Reorder the instructions to avoid as many pipeline stalls as possible. Assume 
branches are predicted, so that control hazards are handled by the hardware.

The first three instructions have data dependences, as do the next two. Figure 
4.67 shows the best schedule for these instructions. Notice that just one pair 
of instructions has both issue slots used. It takes five clocks per loop iteration; 
at four clocks to execute five instructions, we get the disappointing CPI of 0.8 
versus the best case of 0.5, or an IPC of 1.25 versus 2.0. Notice that in computing 
CPI or IPC, we do not count any nops executed as useful instructions. Doing 
so would improve CPI, but not performance!

EXAMPLE

ANSWER

FIGURE 4.66 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction 
memory, two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address 
calculations for data transfers and the top ALU handles everything else.
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An important compiler technique to get more performance from loops is loop 
unrolling, where multiple copies of the loop body are made. After unrolling, there 
is more ILP available by overlapping instructions from different iterations.

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For 
simplicity, assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make four 
copies of the loop body. After unrolling and eliminating the unnecessary loop 
overhead instructions, the loop will contain four copies each of ld, add, and 
sd, plus one addi, and one blt. Figure 4.68 shows the unrolled and scheduled 
code.

During the unrolling process, the compiler introduced additional registers 
(x28, x29, x30). The goal of this process, called register renaming, is to 
eliminate dependences that are not true data dependences, but could either 
lead to potential hazards or prevent the compiler from flexibly scheduling the 
code. Consider how the unrolled code would look using only x31. There would 
be repeated instances of ld x31, 0(x20), add x31, x31, x21 followed by sd 
x31, 8(x20), but these sequences, despite using x31, are actually completely 
independent—no data values flow between one set of these instructions and the 
next set. This case is what is called an antidependence or name dependence, 
which is an ordering forced purely by the reuse of a name, rather than a real 
data dependence that is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler to 
move these independent instructions subsequently to better schedule the code. 
The renaming process eliminates the name dependences, while preserving the 
true dependences.

loop unrolling A 
technique to get more 
performance from loops 
that access arrays, in 
which multiple copies of 
the loop body are made 
and instructions from 
different iterations are 
scheduled together.

EXAMPLE

ANSWER

FIGURE 4.67 The scheduled code as it would look on a two-issue RISC-V pipeline. The 
empty slots are no-ops. Note that since we moved the addi before the sd, we had to adjust sd’s offset by 8.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: ld x31, 0(x20) 1

addi x20,  x20, -8 2

add  x31,  x31, x21 3

blt  x22,  x20, Loop 4sd x31, 8(x20)

antidependence 
Also called name 
dependence An 
ordering forced by the 
reuse of a name, typically 
a register, rather than by 
a true dependence that 
carries a value between 
two instructions.

register renaming The 
renaming of registers 
by the compiler or 
hardware to remove 
antidependences.
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Notice now that 12 of the 14 instructions in the loop execute as pairs. It takes 
eight clocks for four loop iterations, which yields an IPC of 14/8 = 1.75. Loop 
unrolling and scheduling more than doubled performance—8 versus 20 clock 
cycles for 4 iterations—partly from reducing the loop control instructions and 
partly from dual issue execution. The cost of this performance improvement is 
using four temporary registers rather than one, as well as more than doubling 
the code size.

Dynamic Multiple-Issue Processors
Dynamic multiple-issue processors are also known as superscalar processors, or 
simply superscalars. In the simplest superscalar processors, instructions issue in 
order, and the processor decides whether zero, one, or more instructions can issue 
in a given clock cycle. Obviously, achieving good performance on such a processor 
still requires the compiler to try to schedule instructions to move dependences 
apart and thereby improve the instruction issue rate. Even with such compiler 
scheduling, there is an important difference between this simple superscalar 
and a VLIW processor: the code, whether scheduled or not, is guaranteed by 
the hardware to execute correctly. Furthermore, compiled code will always run 
correctly independent of the issue rate or pipeline structure of the processor. In 
some VLIW designs, this has not been the case, and recompilation was required 
when moving across different processor models; in other static issue processors, 
code would run correctly across different implementations, but often so poorly as 
to make compilation effectively required.

Many superscalars extend the basic framework of dynamic issue decisions to 
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses 
which instructions to execute in a given clock cycle while trying to avoid hazards 

superscalar An 
advanced pipelining 
technique that enables the 
processor to execute more 
than one instruction per 
clock cycle by selecting 
them during execution.

dynamic pipeline 
scheduling Hardware 
support for reordering 
the order of instruction 
execution to avoid stalls.

FIGURE 4.68 The unrolled and scheduled code of Figure 4.67 as it would look on a static 
two-issue RISC-V pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements 
x20 by 32, the addresses loaded are the original value of x20, then that address minus 8, minus 16, and 
minus 24.

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi x20, x20, -32 ld x28, 0(x20) 1

ld x29, 24(x20) 2

add x28, x28, x21 ld x30, 16(x20) 3

add x29, x29, x21 ld x31, 8(x20) 4

add x30, x30, x21 sd x28, 32(x20) 5

add x31, x31, x21 sd x29, 24(x20) 6

sd x30, 16(x20) 7

blt x22, x20, Loop sd x31, 8(x20) 8
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and stalls. Let’s start with a simple example of avoiding a data hazard. Consider the 
following code sequence:

ld x31, 0(x21)
add x1, x31, x2
sub x23, x23, x3
andi x5, x23, 20

Even though the sub instruction is ready to execute, it must wait for the ld 
and add to complete first, which might take many clock cycles if memory is slow. 
(Chapter 5 explains cache misses, the reason that memory accesses are sometimes 
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either 
fully or partially.

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly 
reordering them to avoid stalls. In such processors, the pipeline is divided into 
three major units: an instruction fetch and issue unit, multiple functional units 
(a dozen or more in high-end designs in 2015), and a commit unit. Figure 4.69 
shows the model. The first unit fetches instructions, decodes them, and sends 
each instruction to a corresponding functional unit for execution. Each functional 
unit has buffers, called reservation stations, which hold the operands and the 
operation. (In the next section, we will discuss an alternative to reservation stations 
used by many recent processors.) As soon as the buffer contains all its operands 
and the functional unit is ready to execute, the result is calculated. When the result 
is completed, it is sent to any reservation stations waiting for this particular result 
as well as to the commit unit, which buffers the result until it is safe to put the 
result into the register file or, for a store, into memory. The buffer in the commit 
unit, often called the reorder buffer, is also used to supply operands, in much the 
same way as forwarding logic does in a statically scheduled pipeline. Once a result 
is committed to the register file, it can be fetched directly from there, just as in a 
normal pipeline.

The combination of buffering operands in the reservation stations and results 
in the reorder buffer provides a form of register renaming, just like that used by 
the compiler in our earlier loop-unrolling example on page 327. To see how this 
conceptually works, consider the following steps:

1. When an instruction issues, it is copied to a reservation station for the 
appropriate functional unit. Any operands that are available in the register 
file or reorder buffer are also immediately copied into the reservation station. 
The instruction is buffered in the reservation station until all the operands 
and the functional unit are available. For the issuing instruction, the register 
copy of the operand is no longer required, and if a write to that register 
occurred, the value could be overwritten.

commit unit The unit in 
a dynamic or out-of-order 
execution pipeline that 
decides when it is safe to 
release the result of an 
operation to programmer-
visible registers and 
memory.

reorder buffer The 
buffer that holds results in 
a dynamically scheduled 
processor until it is safe 
to store the results to 
memory or a register.

reservation station A 
buffer within a functional 
unit that holds the 
operands and the 
operation.
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2. If an operand is not in the register file or reorder buffer, it must be waiting to 
be produced by a functional unit. The name of the functional unit that will 
produce the result is tracked. When that unit eventually produces the result, 
it is copied directly into the waiting reservation station from the functional 
unit bypassing the registers.

These steps effectively use the reorder buffer and the reservation stations to 
implement register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing 
the data flow structure of a program. The processor then executes the instructions 
in some order that preserves the data flow order of the program. This style of 
execution is called an out-of-order execution, since the instructions can be 
executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipeline, 
the instruction fetch and decode unit is required to issue instructions in order, 
which allows dependences to be tracked, and the commit unit is required to write 
results to registers and memory in program fetch order. This conservative mode is 
called in-order commit. Hence, if an exception occurs, the computer can point to 
the last instruction executed, and the only registers updated will be those written 

out-of-order 
execution A situation in 
pipelined execution when 
an instruction blocked 
from executing does 
not cause the following 
instructions to wait.

in-order commit A 
commit in which the 
results of pipelined 
execution are written to 
the programmer visible 
state in the same order 
that instructions are 
fetched.

FIGURE 4.69 The three primary units of a dynamically scheduled pipeline. The final step of 
updating the state is also called retirement or graduation.
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by instructions before the instruction causing the exception. Although the front 
end (fetch and issue) and the back end (commit) of the pipeline run in order, the 
functional units are free to initiate execution whenever the data they need are 
available. Today, all dynamically scheduled pipelines use in-order commit.

Dynamic scheduling is often extended by including hardware-based 
speculation, especially for branch outcomes. By predicting the direction of a 
branch, a dynamically scheduled processor can continue to fetch and execute 
instructions along the predicted path. Because the instructions are committed 
in order, we know whether the branch was correctly predicted before any 
instructions from the predicted path are committed. A speculative, dynamically 
scheduled pipeline can also support speculation on load addresses, allowing load-
store reordering, and using the commit unit to avoid incorrect speculation. In the 
next section, we will look at the use of dynamic scheduling with speculation in 
the Intel Core i7 design.

Given that compilers can also schedule code around data dependences, you might 
ask why a superscalar processor would use dynamic scheduling. There are three 
major reasons. First, not all stalls are predictable. In particular, cache misses 
(see Chapter  5) in the memory hierarchy cause unpredictable stalls. Dynamic 
scheduling allows the processor to hide some of those stalls by continuing to 
execute instructions while waiting for the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch 
prediction, it cannot know the exact order of instructions at compile time, since 
it depends on the predicted and actual behavior of branches. Incorporating 
dynamic speculation to exploit more instruction-level parallelism (ILP) without 
incorporating dynamic scheduling would significantly restrict the benefits of 
speculation.

Third, as the pipeline latency and issue width change from one implementation 
to another, the best way to compile a code sequence also changes. For example, how 
to schedule a sequence of dependent instructions is affected by both issue width 
and latency. The pipeline structure affects both the number of times a loop must be 
unrolled to avoid stalls as well as the process of compiler-based register renaming. 
Dynamic scheduling allows the hardware to hide most of these details. Thus, users 
and software distributors do not need to worry about having multiple versions of 
a program for different implementations of the same instruction set. Similarly, old 
legacy code will get much of the benefit of a new implementation without the need 
for recompilation.

Understanding 
Program 
Performance
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Both pipelining and multiple-issue execution increase peak instruction 
throughput and attempt to exploit instruction-level parallelism (ILP). 
Data and control dependences in programs, however, offer an upper limit 
on sustained performance because the processor must sometimes wait for 
a dependence to be resolved. Software-centric approaches to exploiting 
ILP rely on the ability of the compiler to find and reduce the effects of such 
dependences, while hardware-centric approaches rely on extensions to the 
pipeline and issue mechanisms. Speculation, performed by the compiler 
or the hardware, can increase the amount of ILP that can be exploited via 
prediction, although care must be taken since speculating incorrectly is 
likely to reduce performance.

The BIG 
Picture

Modern, high-performance microprocessors are capable of issuing several 
instructions per clock; unfortunately, sustaining that issue rate is very difficult. For 
example, despite the existence of processors with four to six issues per clock, very 
few applications can sustain more than two instructions per clock. There are two 
primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from 
dependences that cannot be alleviated, thus reducing the parallelism among 
instructions and the sustained issue rate. Although little can be done about true 
data dependences, often the compiler or hardware does not know precisely whether 
a dependence exists or not, and so must conservatively assume the dependence 
exists. For example, code that makes use of pointers, particularly in ways that 
may lead to aliasing, will lead to more implied potential dependences. In contrast, 
the greater regularity of array accesses often allows a compiler to deduce that no 

Hardware/
Software 
Interface
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Energy Efficiency and Advanced Pipelining
The downside to the increasing exploitation of instruction-level parallelism via 
dynamic multiple issue and speculation is potential energy inefficiency. Each 
innovation was able to turn more transistors into performance, but they often did 
so very inefficiently. Now that we have collided with the power wall, we are seeing 
designs with multiple processors per chip where the processors are not as deeply 
pipelined or as aggressively speculative as its predecessors.

The belief is that while the simpler processors are not as fast as their sophisticated 
brethren, they deliver better performance per Joule, so that they can deliver more 
performance per chip when designs are constrained more by energy than they are 
by the number of transistors.

Figure 4.70 shows the number of pipeline stages, the issue width, speculation 
level, clock rate, cores per chip, and power of several past and recent Intel 
microprocessors. Note the drop in pipeline stages and power as companies switch 
to multicore designs.

dependences exist. Similarly, branches that cannot be accurately predicted whether 
at runtime or compile time will limit the ability to exploit ILP. Often, additional 
ILP is available, but the ability of the compiler or the hardware to find ILP that may 
be widely separated (sometimes by the execution of thousands of instructions) is 
limited.

Second, losses in the memory hierarchy (the topic of Chapter 5) also limit the 
ability to keep the pipeline full. Some memory system stalls can be hidden, but 
limited amounts of ILP also limit the extent to which such stalls can be hidden.

FIGURE 4.70 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power. The Pentium 
4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.

Microprocessor Year Clock Rate
Pipeline 
Stages

Issue 
Width

Out-of-Order/
Speculation

Cores/
Chip Power

W51oN15zHM529891684letnI

W011oN25zHM663991muitnePletnI

Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 W

W572seY441zHM03926002eroCletnI

Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 2–4 87 W

Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W
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Elaboration: A commit unit controls updates to the register file and memory. Some 
dynamically scheduled processors update the register file immediately during execution, 
using extra registers to implement the renaming function and preserving the older copy 
of a register until the instruction updating the register is no longer speculative. Other 
processors buffer the result, which, as mentioned above, is typically in a structure called 
a reorder buffer, and the actual update to the register file occurs later as part of the 
commit. Stores to memory must be buffered until commit time either in a store buffer 
(see Chapter 5) or in the reorder buffer. The commit unit allows the store to write to 
memory from the buffer when the buffer has a valid address and valid data, and when 
the store is no longer dependent on predicted branches.

Elaboration: Memory accesses benefit from nonblocking caches, which continue 
servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution 
processors need the cache to allow instructions to execute during a miss.

State whether the following techniques or components are associated primarily 
with a software- or hardware-based approach to exploiting ILP. In some cases, the 
answer may be both.

1. Branch prediction

2. Multiple issue

3. VLIW

4. Superscalar

5. Dynamic scheduling

6. Out-of-order execution

7. Speculation

8. Reorder buffer

9. Register renaming

Check  
Yourself

 4.11 Real Stuff: The ARM Cortex-A53 and Intel 
Core i7 Pipelines

Figure 4.71 describes the two microprocessors we examine in this section, whose 
targets are the two endpoints of the post-PC era.

The ARM Cortex-A53
The ARM Corxtex-A53 runs at 1.5 GHz with an eight-stage pipeline and executes 
the ARMv8 instruction set. It uses dynamic multiple issue, with two instructions 
per clock cycle. It is a static in-order pipeline, in that instructions issue, execute, 
and commit in order. The pipeline consists of three sections for instruction fetch, 
instruction decode, and execute. Figure 4.72 shows the overall pipeline.
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FIGURE 4.71 Specification of the ARM Cortex-A53 and the Intel Core i7 920.

Processor ARM A53 Intel Core i7 920
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FIGURE 4.72 The Cortex-A53 pipeline. The first three stages fetch instructions into a 13-entry instruction queue. The Address 
Generation Unit (AGU) uses a Hybrid Predictor, Indirect Predictor, and a Return Stack to predict branches to try to keep the instruction queue 
full. Instruction decode is three stages and instruction execution is three stages. With two additional stages for floating point and SIMD 
operations.
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The first three stages fetch two instructions at a time and try to keep a 13-entry 
instruction queue full. It uses a 6k-bit hybrid conditional branch predictor, a 
256-entry indirect branch predictor, and an 8-entry return address stack to predict 
future function returns. The prediction of indirect branches takes an additional 
pipeline stage. This design choice will incur extra latency if the instruction queue 
cannot decouple the decode and execute stages from the fetch stage, primarily in 
the case of a branch misprediction or an instruction cache miss. When the branch 
prediction is wrong, it empties the pipeline, resulting in an eight-clock cycle 
misprediction penalty.

The decode stages of the pipeline determine if there are dependences between a 
pair of instructions, which would force sequential execution, and in which pipeline 
of the execution stages to send the instructions.

The instruction execution section primarily occupies three pipeline stages and 
provides one pipeline for load instructions, one pipeline for store instructions, two 
pipelines for integer arithmetic operations, and separate pipelines for integer multiply 
and divide operations. Either instruction from the pair can be issued to the load or 
store pipelines. The execution stages have full forwarding between the pipelines.

Floating-point and SIMD operations add a two more pipeline stages to the 
instruction execution section and feature one pipeline for multiply/divide/square 
root operations and one pipeline for other arithmetic operations.

Figure 4.73 shows the CPI of the Cortex-A53 using the SPEC2006 benchmarks. 
While the ideal CPI is 0.5, the best case achieved is 1.0, the median case is 1.3, and 

FIGURE 4.73 CPI on ARM Cortex-A53 for the SPEC2006 integer benchmarks.
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the worst case is 8.6. For the median case, 60% of the stalls are due to the pipelining 
hazards and 40% are stalls due to the memory hierarchy. Pipeline stalls are caused 
by branch mispredictions, structural hazards, and data dependencies between pairs 
of instructions. Given the static pipeline of the Cortex-A53, it is up to the compiler 
to try to avoid structural hazards and data dependences.

Elaboration: The Cortex-A53 is a configurable core that supports the ARMv8 
instruction set architecture. It is delivered as an IP (Intellectual Property) core. IP cores 
are the dominant form of technology delivery in the embedded, personal mobile device, 
and related markets; billions of ARM and MIPS processors have been created from 
these IP cores.

Note that IP cores are different than the cores in the Intel i7 multicore computers. 
An IP core (which may itself be a multicore) is designed to be incorporated with other 
logic (hence it is the “core” of a chip), including application-specific processors (such 
as an encoder or decoder for video), I/O interfaces, and memory interfaces, and then 
fabricated to yield a processor optimized for a particular application. Although the 
processor core is almost identical logically, the resultant chips have many differences. 
One parameter is the size of the L2 cache, which can vary by a factor of 16.

The Intel Core i7 920
x86 microprocessors employ sophisticated pipelining approaches, using both 
dynamic multiple issue and dynamic pipeline scheduling with out-of-order 
execution and speculation for their pipelines. These processors, however, are still 
faced with the challenge of implementing the complex x86 instruction set, described 
in Chapter  2. Intel fetches x86 instructions and translates them into internal  
RISC-V-like instructions, which Intel calls micro-operations. The micro-operations 
are then executed by a sophisticated, dynamically scheduled, speculative pipeline 
capable of sustaining an execution rate of up to six micro-operations per clock 
cycle. This section focuses on that micro-operation pipeline.

When we consider the design of such processors, the design of the functional 
units, the cache and register file, instruction issue, and overall pipeline control 
become intermingled, making it difficult to separate the datapath from the 
pipeline. Because of this, many engineers and researchers have adopted the term 
microarchitecture to refer to the detailed internal architecture of a processor.

The Intel Core i7 uses a scheme for resolving antidependences and incorrect 
speculation that uses a reorder buffer together with register renaming. Register 
renaming explicitly renames the architectural registers in a processor (16 in the 
case of the 64-bit version of the x86 architecture) to a larger set of physical registers. 
The Core i7 uses register renaming to remove antidependences. Register renaming 
requires the processor to maintain a map between the architectural registers and 
the physical registers, indicating which physical register is the most current copy 
of an architectural register. By keeping track of the renamings that have occurred, 
register renaming offers another approach to recovery in the event of incorrect 
speculation: simply undo the mappings that have occurred since the first incorrectly 

microarchitecture The 
organization of the 
processor, including the 
major functional units, 
their interconnection, and 
control.

architectural 
registers The instruction 
set of visible registers of a 
processor; for example, in 
RISC-V, these are the 32 
integer and 32 floating-
point registers.
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speculated instruction. This undo will cause the state of the processor to return to 
the last correctly executed instruction, keeping the correct mapping between the 
architectural and physical registers.

Figure 4.74 shows the overall organization and pipeline of the Core i7. Below are 
the eight steps an x86 instruction goes through for execution.

1. Instruction fetch—The processor uses a multilevel branch target buffer to 
achieve a balance between speed and prediction accuracy. There is also a 
return address stack to speed up function return. Mispredictions cause a 
penalty of about 15 cycles. Using the predicted address, the instruction fetch 
unit fetches 16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—The predecode 
stage transforms the 16 bytes into individual x86 instructions. This predecode 
is nontrivial since the length of an x86 instruction can be from 1 to 15 bytes 

FIGURE 4.74 The Core i7 pipeline with memory components. The total pipeline depth is 14 
stages, with branch mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The 
six independent units can begin execution of a ready micro-operation each clock cycle.

256 KB unified L2
cache (eight-way)

Register alias table and allocator

128-Entry reorder buffer

36-Entry reservation station

Retirement
register file

ALU
shift

SSE
shuffle
ALU

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

SSE
shuffle
ALU

SSE
shuffle
ALU

Memory order buffer

ALU
shift

ALU
shift

Load
address

Store
address

Store
data

Store
& load

Micro
-code

Complex
macro-op
decoder

28-Entry micro-op loop stream detect buffer

Simple
macro-op
decoder

Simple
macro-op
decoder

Simple
macro-op
decoder

128-Entry
inst. TLB

(four-way)

Instruction
fetch

hardware

18-Entry instruction queue

32 KB Inst. cache (four-way associative)

16-Byte pre-decode + macro-op
fusion, fetch buffer

64-Entry data TLB
(4-way associative)

32-KB dual-ported data
cache (8-way associative)

512-Entry unified
L2 TLB (4-way)

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)



 4.11 Real Stuff: The ARM Cortex-A53 and Intel Core i7 Pipelines 339

and the predecoder must look through a number of bytes before it knows the 
instruction length. Individual x86 instructions are placed into the 18-entry 
instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-
operations (micro-ops). Three of the decoders handle x86 instructions that 
translate directly into one micro-op. For x86 instructions that have more 
complex semantics, there is a microcode engine that is used to produce the 
micro-op sequence; it can produce up to four micro-ops every cycle and 
continues until the necessary micro-op sequence has been generated. The 
micro-ops are placed according to the order of the x86 instructions in the 
28-entry micro-op buffer.

4. The micro-op buffer performs loop stream detection—If there is a small 
sequence of instructions (less than 28 instructions or 256 bytes in length) 
that comprises a loop, the loop stream detector will find the loop and directly 
issue the micro-ops from the buffer, eliminating the need for the instruction 
fetch and instruction decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the 
register tables, renaming the registers, allocating a reorder buffer entry, and 
fetching any results from the registers or reorder buffer before sending the 
micro-ops to the reservation stations.

6. The i7 uses a 36-entry centralized reservation station shared by six functional 
units. Up to six micro-ops may be dispatched to the functional units every 
clock cycle.

7. The individual function units execute micro-ops and then results are sent 
back to any waiting reservation station as well as to the register retirement 
unit, where they will update the register state, once it is known that the 
instruction is no longer speculative. The entry corresponding to the 
instruction in the reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been 
marked as complete, the pending writes in the register retirement unit are 
executed, and the instructions are removed from the reorder buffer.

Elaboration: Hardware in the second and fourth steps can combine or fuse operations 
together to reduce the number of operations that must be performed. Macro-op fusion 
in the second step takes x86 instruction combinations, such as compare followed by a 
branch, and fuses them into a single operation. Microfusion in the fourth step combines 
micro-operation pairs such as load/ALU operation and ALU operation/store and issues 
them to a single reservation station (where they can still issue independently), thus 
increasing the usage of the buffer. In a study of the Intel Core architecture, which also 
incorporated microfusion and macrofusion, Bird et al. [2007] discovered that microfusion 
had little impact on performance, while macrofusion appears to have a modest positive 
impact on integer performance and little impact on floating-point performance.
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Performance of the Intel Core i7 920
Figure 4.75 shows the CPI of the Intel Core i7 for each of the SPEC2006 benchmarks. 
While the ideal CPI is 0.25, the best case achieved is 0.44, the median case is 0.79, 
and the worst case is 2.67.

Although it is difficult to differentiate between pipeline stalls and memory stalls 
in a dynamic out-of-order execution pipeline, we can show the effectiveness of 
branch prediction and speculation. Figure 4.76 shows the percentage of branches 
mispredicted and the percentage of the work (measured by the numbers of micro-
ops dispatched into the pipeline) that does not retire (that is, their results are 
annulled) relative to all micro-op dispatches. The min, median, and max of branch 
mispredictions are 0%, 2%, and 10%. For wasted work, they are 1%, 18%, and 39%.

The wasted work in some cases closely matches the branch misprediction rates, 
such as for gobmk and astar. In several instances, such as mcf, the wasted work 
seems relatively larger than the misprediction rate. This divergence is likely due 
to the memory behavior. With very high data cache miss rates, mcf will dispatch 
many instructions during an incorrect speculation as long as sufficient reservation 
stations are available for the stalled memory references. When a branch among the 
many speculated instructions is finally mispredicted, the micro-ops corresponding 
to all these instructions will be flushed.

FIGURE 4.75 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.
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The Intel Core i7 combines a 14-stage pipeline and aggressive multiple issue to 
achieve high performance. By keeping the latencies for back-to-back operations 
low, the impact of data dependences is reduced. What are the most serious potential 
performance bottlenecks for programs running on this processor? The following 
list includes some possible performance problems, the last three of which can apply 
in some form to any high-performance pipelined processor.

■	 The use of x86 instructions that do not map to a few simple micro-operations

■	 Branches that are difficult to predict, causing misprediction stalls and restarts 
when speculation fails

■	 Long dependences—typically caused by long-running instructions or the 
memory hierarchy—that lead to stalls

■	 Performance delays arising in accessing memory (see Chapter 5) that cause 
the processor to stall

Understanding 
Program 
Performance

FIGURE 4.76 Percentage of branch mispredictions and wasted work due to unfruitful 
speculation of Intel Core i7 920 running SPEC2006 integer benchmarks.
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 4.12 Going Faster: Instruction-Level 
Parallelism and Matrix Multiply

Returning to the DGEMM example from Chapter  3, we can see the impact of 
instruction-level parallelism by unrolling the loop so that the multiple-issue, out-
of-order execution processor has more instructions to work with. Figure 4.77 shows 
the unrolled version of Figure 3.22, which contains the C intrinsics to produce the 
AVX instructions.

Like the unrolling example in Figure 4.68 above, we are going to unroll the loop 
four times. Rather than manually unrolling the loop in C by making four copies of 
each of the intrinsics in Figure 3.22, we can rely on the gcc compiler to do the unrolling 
at −O3 optimization. (We use the constant UNROLL in the C code to control the 
amount of unrolling in case we want to try other values.) We surround each intrinsic 
with a simple for loop with four iterations (lines 9, 15, and 20) and replace the scalar 
C0 in Figure 3.22 with a four-element array c[] (lines 8, 10, 16, and 21).

FIGURE 4.77 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel instructions 
for the x86 (Figure 3.22) and loop unrolling to create more opportunities for instruction-level parallelism. Figure 4.78 
shows the assembly language produced by the compiler for the inner loop, which unrolls the three for-loop bodies to expose instruction-level 
parallelism.

1 //include <x86intrin.h>
2 //define UNROLL (4)
3
4 void dgemm (int n, double* A, double* B, double* C)
5 {
6  for ( int i = 0; i < n; i+=UNROLL*4 )
7   for ( int j = 0; j < n; j++ ) {
8    __m256d c[4];
9    for ( int x = 0; x < UNROLL; x++ )
10     c[x] = _mm256_load_pd(C+i+x*4+j*n);
11
12    for( int k = 0; k < n; k++ )
13    {
14     __m256d b = _mm256_broadcast_sd(B+k+j*n);
15     for (int x = 0; x < UNROLL; x++)
16     c[x] = _mm256_add_pd(c[x],
17      _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
18    }
19
20    for ( int x = 0; x < UNROLL; x++ )
21     _mm256_store_pd(C+i+x*4+j*n, c[x]);
22    }
23  }
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Figure 4.78 shows the assembly language output of the unrolled code. As 
expected, in Figure 4.78 there are four versions of each of the AVX instructions 
in Figure 3.23, with one exception. We only need one copy of the vbroadcastsd 
instruction, since we can use the four copies of the B element in register %ymm0 
repeatedly throughout the loop. Thus, the five AVX instructions in Figure 3.23 
become 17 in Figure 4.78, and the seven integer instructions appear in both, 
although the constants and addressing changes to account for the unrolling. Hence, 
despite unrolling four times, the number of instructions in the body of the loop 
only doubles: from 12 to 24.

FIGURE 4.78 The x86 assembly language for the body of the nested loops generated by compiling the unrolled C code 
in Figure 4.77.

vmovapd (%r11),%ymm4 // Load 4 elements of C into %ymm41

mov    %rbx,%rax // register %rax = %rbx2

xor    %ecx,%ecx // register %ecx = 03

vmovapd 0x20(%r11),%ymm3 // Load 4 elements of C into %ymm34

vmovapd 0x40(%r11),%ymm2 // Load 4 elements of C into %ymm25

vmovapd 0x60(%r11),%ymm1 // Load 4 elements of C into %ymm16

vbroadcastsd (%rcx,%r9,1),%ymm0 // Make 4 copies of B element7

add    $0x8,%rcx // register %rcx = %rcx + 88

vmulpd (%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 9

mm4vaddpd %ymm5,%ymm4,%ymm4 // Parallel add %ymm5, %y10

vmulpd 0x20(%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 11

vaddpd %ymm5,%ymm3,%ymm3 // Parallel add %ymm5, %ymm312

vmulpd 0x40(%rax),%ymm0,%ymm5 // Parallel mul %ymm1,4 A 13

vmulpd 0x60(%rax),%ymm0,%ymm0 // Parallel mul %ymm1,4 A 14

add   %r8,%rax // register %rax = %rax + %r815

cmp    %r10,%rcx // compare %r8 to %rax16

vaddpd %ymm5,%ymm2,%ymm2 // Parallel add %ymm5, %ymm217

vaddpd %ymm0,%ymm1,%ymm1 // Parallel add %ymm0, %ymm118

jne    68 <dgemm+0x68> // branch if %r8 !=   %rax19

add    $0x1,%esi // register % esi = % esi + 120

vmovapd %ymm4,(%r11) // Store %ymm4 into 4 C elements21

vmovapd %ymm3,0x20(%r11) // Store %ymm3 into 4 C elements22

vmovapd %ymm2,0x40(%r11) // Store %ymm2 into 4 C elements23

vmovapd %ymm1,0x60(%r11) // Store %ymm1 into 4 C elements24
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Figure 4.79 shows the performance increase DGEMM for 32 × 32 matrices 
in going from unoptimized to AVX and then to AVX with unrolling. Unrolling 
more than doubles performance, going from 6.4 GFLOPS to 14.6 GFLOPS. 
Optimizations for subword parallelism and instruction-level parallelism result 
in an overall speedup of 8.59 versus the unoptimized DGEMM in Figure 3.21.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are with 
Turbo mode turned off. If we turn it on, like in Chapter 3, we improve all the results by the 
temporary increase in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized 
DGEMM, 8.1 GFLOPS with AVX, and 18.6 GFLOPS with unrolling and AVX. As mentioned 
in Section 3.8, Turbo mode works particularly well in this case because it is using only 
a single core of an eight-core chip.

Elaboration: There are no pipeline stalls despite the reuse of register %ymm5 in lines 
9 to 17 of Figure 4.78 because the Intel Core i7 pipeline renames the registers.

Are the following statements true or false?

1. The Intel Core i7 uses a multiple-issue pipeline to directly execute x86 
instructions.

2. Both the Cortex-A53 and the Core i7 use dynamic multiple issue.

3. The Core i7 microarchitecture has many more registers than x86 requires.

4. The Intel Core i7 uses less than half the pipeline stages of the earlier Intel 
Pentium 4 Prescott (see Figure 4.70).

Check  
Yourself

FIGURE 4.79 Performance of three versions of DGEMM for 32 × 32 matrices. Subword 
parallelism and instruction-level parallelism have led to speedup of almost a factor of 9 over the unoptimized 
code in Figure 3.21.
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 4.14 Fallacies and Pitfalls 345

4.13
  Advanced Topic: An Introduction to Digital 
Design Using a Hardware Design Language 
to Describe and Model a Pipeline and 
More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern 
computer-aided synthesis tools that can create detailed hardware designs from the 
descriptions using both libraries and logic synthesis. Entire books are written on 
such languages and their use in digital design. This section, which appears online, 
gives a brief introduction and shows how a hardware design language, Verilog 
in this case, can be used to describe the processor control both behaviorally and 
in a form suitable for hardware synthesis. It then provides a series of behavioral 
models in Verilog of the five-stage pipeline. The initial model ignores hazards, and 
additions to the model highlight the changes for forwarding, data hazards, and 
branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical 
pipeline representation for readers who want to see more detail on how pipelines 
work for a few sequences of RISC-V instructions.

 4.14 Fallacies and Pitfalls

Fallacy: Pipelining is easy.
Our books testify to the subtlety of correct pipeline execution. Our advanced 

book had a pipeline bug in its first edition, despite its being reviewed by more than 
100 people and being class-tested at 18 universities. The bug was uncovered only 
when someone tried to build the computer in that book. The fact that the Verilog 
to describe a pipeline like that in the Intel Core i7 will be hundreds of thousands of 
lines is an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.
When the number of transistors on-chip and the speed of transistors made a 

five-stage pipeline the best solution, then the delayed branch (see the Elaboration 
on page 274) was a simple solution to control hazards. With longer pipelines, 
superscalar execution, and dynamic branch prediction, it is now redundant. In 
the early 1990s, dynamic pipeline scheduling took too many resources and was 
not required for high performance, but as transistor budgets continued to double 
due to Moore’s Law and logic became much faster than memory, then multiple 
functional units and dynamic pipelining made more sense. Today, concerns about 
power are leading to less aggressive and more efficient designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.
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Advanced Topic: An Introduction to 
Digital Design Using a Hardware Design 
Language to Describe and Model a 
Pipeline and More Pipelining Illustrations

This online section covers hardware description languages and then gives a dozen 
examples of pipeline diagrams, starting on page 366.e18.

As mentioned in Appendix A, Verilog can describe processors for simulation 
or with the intention that the Verilog specification be synthesized. To achieve 
acceptable synthesis results in size and speed, and a behavioral specification 
intended for synthesis must carefully delineate the highly combinational portions 
of the design, such as a datapath, from the control. The datapath can then be 
synthesized using available libraries. A Verilog specification intended for synthesis 
is usually longer and more complex.

We start with a behavioral model of the five-stage pipeline. To illustrate the 
dichotomy between behavioral and synthesizable designs, we then give two Verilog 
descriptions of a multiple-cycle-per-instruction RISC-V processor: one intended 
solely for simulations and one suitable for synthesis.

Using Verilog for Behavioral Specification with Simulation 
for the Five-Stage Pipeline
Figure e4.13.1 shows a Verilog behavioral description of the pipeline that handles 
ALU instructions as well as loads and stores. It does not accommodate branches 
(even incorrectly!), which we postpone including until later in the chapter.

Because Verilog lacks the ability to define registers with named fields such as 
structures in C, we use several independent registers for each pipeline register. We 
name these registers with a prefix using the same convention; hence, IFIDIR is the 
IR portion of the IFID pipeline register.

This version is a behavioral description not intended for synthesis. Instructions 
take the same number of clock cycles as our hardware design, but the control 
is done in a simpler fashion by repeatedly decoding fields of the instruction in 
each pipe stage. Because of this difference, the instruction register (IR) is needed 
throughout the pipeline, and the entire IR is passed from pipe stage to pipe stage. 
As you read the Verilog descriptions in this chapter, remember that the actions 
in the always block all occur in parallel on every clock cycle. Since there are no 
blocking assignments, the order of the events within the always block is arbitrary.

4.13
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module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP = 

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut, 
MEMWBValue;
reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrs1, IFIDrs2, MEMWBrd; // Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs

// These assignments define fields from the pipeline registers
assign IFIDrs1  = IFIDIR[19:15];  // rs1 field
assign IFIDrs2  = IFIDIR[24:20];  // rs2 field
assign IDEXop   = IDEXIR[6:0];    // the opcode
assign EXMEMop  = EXMEMIR[6:0];   // the opcode
assign MEMWBop  = MEMWBIR[6:0];   // the opcode
assign MEMWBrd  = MEMWBIR[11:7];  // rd field
// Inputs to the ALU come directly from the ID/EX pipeline registers
assign Ain = IDEXA;
assign Bin = IDEXB;

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs 

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so 

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the 
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this 

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR [30:25], 

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin;  // add operation

FIGURE e4.13.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring 
branch and data hazards. As in the design earlier in Chapter 4, we use separate instruction and data 
memories, which would be implemented using separate caches as we describe in Chapter 5.
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default: ; // other R-type operations: subtract, SLT, etc.
endcase

EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU 

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) // 

update registers if load/ALU operation and destination not 0 
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring 
branch and data hazards. (Continued)

Implementing Forwarding in Verilog
To extend the Verilog model further, Figure e4.13.2 shows the addition of forwarding 
logic for the case when the source and destination are ALU instructions. Neither 
load stalls nor branches are handled; we will add these shortly. The changes from 
the earlier Verilog description are highlighted.

Someone has proposed moving the write for a result from an ALU instruction 
from the WB to the MEM stage, pointing out that this would reduce the maximum 
length of forwards from an ALU instruction by one cycle. Which of the following 
is accurate reasons not to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circumstance since the 
write for the ALU result must stay in the same pipe stage as the write for a 
load result.

3. Moving the write for ALU instructions would create the possibility of writes 
occurring from two different instructions during the same clock cycle. Either 
an extra write port would be required on the register file or a structural 
hazard would be created.

4. The result of an ALU instruction is not available in time to do the write 
during MEM.

Check  
Yourself

The Behavioral Verilog with Stall Detection
If we ignore branches, stalls for data hazards in the RISC-V pipeline are confined 
to one simple case: loads whose results are currently in the WB clock stage. Thus, 
extending the Verilog to handle a load with a destination that is either an ALU 
instruction or an effective address calculation is reasonably straightforward, and 
Figure e4.13.3 shows the few additions needed.
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module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP = 

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut, 
MEMWBValue;
reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories

IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; // 

Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

assign IFIDrs1  = IFIDIR[19:15];
assign IFIDrs2  = IFIDIR[24:20];
assign IDEXop   = IDEXIR[6:0];
assign IDEXrs1  = IDEXIR[19:15];
assign IDEXrs2  = IDEXIR[24:20];
assign EXMEMop  = EXMEMIR[6:0];
assign EXMEMrd  = EXMEMIR[11:7];
assign MEMWBop  = MEMWBIR[6:0];
assign MEMWBrd  = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) && 

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) && 

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) && 

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) && 

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass

there,
// Otherwise from WB if there is a bypass there, and otherwise comes 

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue : 
IDEXA;
// The B input to the ALU is bypassed from MEM if there is a bypass  

there,
// Otherwise from WB if there is a bypass there, and otherwise comes 

from the IDEX register

FIGURE e4.13.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing 
to ALU operations and address calculations. The code added to Figure e4.13.1 to handle bypassing is 
highlighted. Because these bypasses only require changing where the ALU inputs come from, the only changes 
required are in the combinational logic responsible for selecting the ALU inputs. (continues on next page)
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assign Bin = bypassBfromMEM ? EXMEMALUOut :
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:  

IDEXB;

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs 

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so 

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the 
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this  

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25], 

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin;  // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU 

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) // 

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing 
to ALU operations and address calculations. (Continued)



module RISCVCPU (clock);
// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP = 

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut, 
MEMWBValue;

reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers

wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; // 
Access register fields

wire [6:0] IDEXop, EXMEMop, M EMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

wire stall; // stall signal

assign IFIDrs1  = IFIDIR[19:15];
assign IFIDrs2  = IFIDIR[24:20];
assign IDEXop   = IDEXIR[6:0];
assign IDEXrs1  = IDEXIR[19:15];
assign IDEXrs2  = IDEXIR[24:20];
assign EXMEMop  = EXMEMIR[6:0];
assign EXMEMrd  = EXMEMIR[11:7];
assign MEMWBop  = MEMWBIR[6:0];
assign MEMWBrd  = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) && 

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) && 

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) && 

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) && 

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass 

there,
// Otherwise from WB if there is a bypass there, and otherwise comes 

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue : 
IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass 
there,
// Otherwise from WB if there is a bypass there, and otherwise comes 

from the IDEX register
assign Bin = bypassBfromMEM ? EXMEMALUOut :

(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue: 
IDEXB;

FIGURE e4.13.3 A behavioral definition of the five-stage RISC-V pipeline with stalls for 
loads when the destination is an ALU instruction or effective address calculation. The 
changes from Figure e4.13.2 are highlighted. (continues on next page)



// The signal for detecting a stall based on the use of a result from 
LW
assign stall = (MEMWBop == LD) && ( // source instruction is a load

(((IDEXop == LD) || (IDEXop == SD)) && (IDEXrs1 == 
MEMWBrd)) || // stall for address calc

((IDEXop == ALUop) && ((IDEXrs1 == MEMWBrd) || 
(IDEXrs2 == MEMWBrd)))); // ALU use

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs 

in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so 

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the 
use of <= they happen in parallel!
always @(posedge clock)
begin
if (~stall)
begin // the first three pipeline stages stall if there is a load 

hazard
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two 

registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this 

affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};

else if (IDEXop == SD)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25], 

IDEXIR[11:7]};
else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin;  // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B 

register
end
else EXMEMIR <= NOP; // Freeze first three stages of pipeline; inject 

a nop into the EX output

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU 

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) // 

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

FIGURE e4.13.3 A behavioral definition of the five-stage RISC-V pipeline with stalls 
for loads when the destination is an ALU instruction or effective address calculation. 
(Continued)
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Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for branches. 
We add the code to model branch equal using a “predict not taken” strategy.  
The Verilog code is shown in Figure e4.13.4. It implements the branch hazard by 
detecting a taken branch in ID and using that signal to squash the instruction in IF 
(by setting the IR to 0x00000013, which is an effective NOP in RISC-V); in addition, 
the PC is assigned to the branch target. Note that to prevent an unexpected latch, it 
is important that the PC is clearly assigned on every path through the always block; 
hence, we assign the PC in a single if statement. Lastly, note that although Figure 
e4.13.4 incorporates the basic logic for branches and control hazards, supporting 
branches requires additional bypassing and data hazard detection, which we have 
not included.

Using Verilog for Behavioral Specification with Synthesis
To demonstrate the contrasting types of Verilog, we show two descriptions of a 
different, nonpipelined implementation style of RISC-V that uses multiple clock 
cycles per instruction. (Since some instructors make a synthesizable description 
of the RISC-V pipeline project for a class, we chose not to include it here. It would 
also be long.)

Figure e4.13.5 gives a behavioral specification of a multicycle implementation 
of the RISC-V processor. Because of the use of behavioral operations, it would be 
difficult to synthesize a separate datapath and control unit with any reasonable 
efficiency. This version demonstrates another approach to the control by using a 
Mealy finite-state machine (see discussion in Section A.10 of Appendix A). The 
use of a Mealy machine, which allows the output to depend both on inputs and the 
current state, allows us to decrease the total number of states.

Check  
Yourself

Someone has asked about the possibility of data hazards occurring through 
memory, contrary to through a register. Which of the following statements about 
such hazards is true?

1. Since memory accesses only occur in the MEM stage, all memory operations 
are done in the same order as instruction execution, making such hazards 
impossible in this pipeline.

2. Such hazards are possible in this pipeline; we just have not discussed them yet.
3. No pipeline can ever have a hazard involving memory, since it is the 

programmer’s job to keep the order of memory references accurate.
4. Memory hazards may be possible in some pipelines, but they cannot occur 

in this particular pipeline.
5. Although the pipeline control would be obligated to maintain ordering 

among memory references to avoid hazards, it is impossible to design a 
pipeline where the references could be out of order.



// Instruction opcodes
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, NOP = 

32'h0000_0013, ALUop = 7'b001_0011;
input clock;

reg [63:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut, 
MEMWBValue;

reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers

wire [4:0] IFIDrs1, IFIDrs2, IDEXrs1, IDEXrs2, EXMEMrd, MEMWBrd; // 
Access register fields

wire [6:0] IFIDop, IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [63:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,

bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;

wire stall; // stall signal
wire takebranch;

assign IFIDop   = IFIDIR[6:0];
assign IFIDrs1  = IFIDIR[19:15];
assign IFIDrs2  = IFIDIR[24:20];
assign IDEXop   = IDEXIR[6:0];
assign IDEXrs1  = IDEXIR[19:15];
assign IDEXrs2  = IDEXIR[24:20];
assign EXMEMop  = EXMEMIR[6:0]; 
assign EXMEMrd  = EXMEMIR[11:7];
assign MEMWBop  = MEMWBIR[6:0];
assign MEMWBrd  = MEMWBIR[11:7];

// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs1 == EXMEMrd) && (IDEXrs1 != 0) &&

(EXMEMop == ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) && 

(EXMEMop == ALUop);
// The bypass to input A from the WB stage for an ALU operation
assign bypas sAfromALUinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == ALUop);
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) && 

(MEMWBop == ALUop);
// The bypass to input A from the WB stage for an LD operation
assign bypassAfromLDinWB = (IDEXrs1 == MEMWBrd) && (IDEXrs1 != 0) && 

(MEMWBop == LD);
// The bypass to input B from the WB stage for an LD operation
assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEX rs2 != 0) && 

(MEMWBop == LD);
// The A input to the ALU is bypassed from MEM if there is a bypass 

there,
// Otherwise from WB if there is a bypass there, and otherwise comes 

from the IDEX register
assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue : 
IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass 
there,

// Otherwise from WB if there is a bypass there, and otherwise comes 
from the IDEX register

assign Bin = bypassBfromMEM ? EXMEMALUOut : 
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue: 

module RISCVCPU (clock);

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls for 
loads when the destination is an ALU instruction or effective address calculation. The 
changes from Figure e4.13.2 are highlighted. (continues on next page)



IDEXB;
// The signal for detecting a stall based on the use of a result from 

LW
assign stall = (MEMWBop == LD) && ( // source instruction is a load

(((IDEXop == LD) || (IDEXop == SD)) && (IDEXrs1 == 
MEMWBrd)) || // stall for address calc

((IDEXop == ALUop) && ((IDEXrs1 == MEMWBrd) || 
(IDEXrs2 == MEMWBrd)))); // ALU use

// Signal for a taken branch: instruction is BEQ and registers are 
equal

assign takebranch = (IFIDop == BEQ) && (Regs[IFIDrs1] == 
Regs[IFIDrs2]);

integer i; // used to initialize registers
initial
begin

PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs 

in pipeline registers 
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so 

they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the 
use of <= they happen in parallel!

always @(posedge clock)
begin

if (~stall)
begin // the first three pipeline stages stall if there is a load 

hazard
if (~takebranch)
begin // first instruction in the pipeline is being fetched 

normally
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

end
else
begin // a taken branch is in ID; instruction in IF is wrong; 

insert a NOP and reset the PC
IFIDIR <= NOP;
PC <= PC + {{52{IFIDIR[31]}}, IFIDIR[7], IFIDIR[30:25], 

IFIDIR[11:8], 1'b0};
end

// second instruction in pipeline is fetching registers
IDEXA <= Regs[IFIDrs1]; IDEXB <= Regs[IFIDrs2]; // get two 

registers
IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this 

affects next stage only!

// third instruction is doing addre ss calculation or ALU operation
if (IDEXop == LD)

EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:20]};
else if (IDEXop == SD)

EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25], 
IDEXIR[11:7]};

else if (IDEXop == ALUop)
case (IDEXIR[31:25]) // case for the various R-type instructions

0: EXMEMALUOut <= Ain + Bin;  // add operation

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls 
for loads when the destination is an ALU instruction or effective address calculation. 
(Continued)
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endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B 

register
end
else EXMEMIR <= NOP; // Freeze first three stages of pipeline; inject 

a nop into the EX output

// Mem stage of pipeline
if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU 

result
else if (EXMEMop == LD) MEMWBValue <= DMemory[EXMEMALUOut >> 2];
else if (EXMEMop == SD) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store
MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LD) || (MEMWBop == ALUop)) && (MEM WBrd != 0)) // 

update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;

end
endmodule

default: ; // other R-type operations: subtract, SLT, etc.

FIGURE e4.13.4 A behavioral definition of the five-stage RISC-V pipeline with stalls 
for loads when the destination is an ALU instruction or effective address calculation. 
(Continued)

Since a version of the RISC-V design intended for synthesis is considerably 
more complex, we have relied on a number of Verilog modules that were specified 
in Appendix A, including the following:

■	 The 4-to-1 multiplexor shown in Figure A.4.2, and the 2-to-1 multiplexor 
that can be trivially derived based on the 4-to-1 multiplexor.

■	 The RISC-V ALU shown in Figure A.5.15.

■	 The RISC-V ALU control defined in Figure A.5.16.

■	 The RISC-V register file defined in Figure A.8.11.

Now, let’s look at a Verilog version of the RISC-V processor intended for 
synthesis. Figure e4.13.6 shows the structural version of the RISC-V datapath. 
Figure e4.13.7 uses the datapath module to specify the RISC-V CPU. This version 
also demonstrates another approach to implementing the control unit, as well as 
some optimizations that rely on relationships between various control signals. 
Observe that the state machine specification only provides the sequencing actions.

The setting of the control lines is done with a series of assign statements that 
depend on the state as well as the opcode field of the instruction register. If one 
were to fold the setting of the control into the state specification, this would look 
like a Mealy-style finite-state control unit. Because the setting of the control lines 
is specified using assign statements outside of the always block, most logic 
synthesis systems will generate a small implementation of a finite-state machine 
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module RISCVCPU (clock);
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, ALUop 

= 7'b001_0011;
input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for 
implementation
reg [63:0] PC, Regs[0:31], ALUOut, MDR, A, B;
reg [31:0] Memory [0:1023], IR;
reg [2:0] state; // processor state
wire [6:0] opcode; // use to get opcode easily
wire [63:0] ImmGen; // used to generate immediate

assign opcode = IR[6:0]; // opcode is lower 7 bits
assign ImmGen = (opcode == LD) ? {{53{IR[31]}}, IR[30:20]} :

/* (opcode == SD) */{{53{IR[31]}}, IR[30:25], IR[11:7]};
assign PCOffset = {{52{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0};

// set the PC to 0 and start the control in state 1
initial begin PC = 0; state = 1; end

// The state machine--triggered on a rising clock
always @(posedge clock)
begin
Regs[0] <= 0; // shortcut way to make sure R0 is always 0
case (state) //action depends on the state
1: begin // first step: fetch the instruction, increment PC, go to 

next state
IR <= Memory[PC >> 2];
PC <= PC + 4;
state <= 2; // next state

end
2: begin // second step: Instruction decode, register fetch, also 

compute branch address
A <= Regs[IR[19:15]];
B <= Regs[IR[24:20]];
ALUOut <= PC + PCOffset; // compute PC-relative branch target
state <= 3;

end
3: begin // third step: Load-store execution, ALU execution, Branch 

completion
if ((opcode == LD) || (opcode == SD))
begin
ALUOut <= A + ImmGen; // compute effective address
state <= 4;

end
else if (opcode == ALUop)
begin
case (IR[31:25]) // case for the various R-type instructions
0: ALUOut <= A + B; // add operation
default: ; // other R-type operations: subtract, SLT, etc.

endcase
state <= 4;

end
else if (opcode == BEQ)
begin
if (A == B) begin 
PC <= ALUOut; // branch taken--update PC

end

FIGURE e4.13.5 A behavioral specification of the multicycle RISC-V design. This has the 
same cycle behavior as the multicycle design, but is purely for simulation and specification. It cannot be used 
for synthesis. (continues on next page)
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state <= 1;
end
else ; // other opcodes or exception for undefined instruction 

would go here
end
4: begin
if (opcode == ALUop)
begin // ALU Operation
Regs[IR[11:7]] <= ALUOut; // write the result
state <= 1;

end // R-type finishes
else if (opcode == LD)
begin // load instruction

MDR <= Memory[ALUOut >> 2]; // read the memory
state <= 5; // next state

end
else if (opcode == SD)
begin // store instruction
Memory[ALUOut >> 2] <= B; // write the memory
state <= 1; // return to state 1

end
else ; // other instructions go here

end
5: begin // LD is the only instruction still in execution
Regs[IR[11:7]] <= MDR; // write the MDR to the register
state <= 1;

end // complete an LD instruction
endcase

end
endmodule

FIGURE e4.13.5 A behavioral specification of the multicycle RISC-V design. (Continued)

that determines the setting of the state register and then uses external logic to 
derive the control inputs to the datapath.

In writing this version of the control, we have also taken advantage of a number 
of insights about the relationship between various control signals as well as 
situations where we don’t care about the control signal value; some examples of 
these are given in the following elaboration.

More Illustrations of Instruction Execution on the 
Hardware
To reduce the cost of this book, starting with the third edition, we moved sections 
and figures that were used by a minority of instructors online. This subsection 
recaptures those figures for readers who would like more supplemental material 
to understand pipelining better. These are all single-clock-cycle pipeline diagrams, 
which take many figures to illustrate the execution of a sequence of instructions.

The three examples are respectively for code with no hazards, an example of 
forwarding on the pipelined implementation, and an example of bypassing on the 
pipelined implementation.



module Datapath (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite, 
IRWrite,

PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, 
opcode, clock); // the control inputs + clock
parameter LD = 7'b000_0011, SD = 7'b010_0011;
input [1:0] ALUOp, ALUSrcB; // 2-bit control signals
input MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite, PCWrite, 

PCWriteCond,
ALUSrcA, PCSource, clock; // 1-bit control signals

output [6:0] opcode; // opcode is needed as an output by control
reg [63:0] PC, MDR, ALUOut; // CPU state + some temporaries
reg [31:0] Memory[0:1023], IR; // CPU state + some temporaries
wire [63:0] A, B, SignExtendOffset, PCOffset, ALUResultOut, PCValue, 

JumpAddr, Writedata, ALUAin,
ALUBin, MemOut; // these are signals derived from registers

wire [3:0] ALUCtl; // the ALU control lines
wire Zero; // the Zero out signal from the ALU

initial PC = 0; //start the PC at 0
//Combinational signals used in the datapath
// Read using word address with either ALUOut or PC as the address 

source
assign MemOut = MemRead ? Memory[(IorD ? ALUOut : PC) >> 2] : 0;
assign opcode = IR[6:0]; // opcode shortcut
// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUOut;
// Generate immediate
assign ImmGen = (opcode == LD) ? {{53{IR[31]}}, IR[30:20]} :

/* (opcode == SD) */{{53{IR[31]}}, IR[30:25], IR[11:7]};
// Generate pc offset for branches
assign PCOffset = {{52{IR[31]}}, IR[7], IR[30:25], IR[11:8], 1'b0};
// The A input to the ALU is either the rs register or the PC
assign ALUAin = ALUSrcA ? A : PC; // ALU input is PC or A

// Creates an instance of the ALU control unit (see the module defined 
in Figure B.5.16

// Input ALUOp is control-unit set and used to describe the 
instruction class as in Chapter 4

// Input IR[31:25] is the function code field for an ALU instruction
// Output ALUCtl are the actual ALU control bits as in Chapter 4
ALUControl alucontroller (ALUOp, IR[31:25], ALUCtl); // ALU control 

unit

// Creates a 2-to-1 multiplexor used to select the source of the next 
PC

// Inputs are ALUResultOut (the incremented PC), ALUOut (the branch 
address)

// PCSource is the selector input and PCValue is the multiplexor 
output

Mult2to1 PCdatasrc (ALUResultOut, ALUOut, PCSource, PCValue);

// Creates a 4-to-1 multiplexor used to select the B input of the ALU
// Inputs are register B, constant 4, generated immediate, PC offset 

// ALUSrcB is the select or input
// ALUBin is the multiplexor output
Mult4to1 ALUBinput (B, 64'd4, ImmGen, PCOffset, ALUSrcB, ALUBin);

// Creates a RISC-V ALU

// Inputs are ALUCtl (the ALU control), ALU value inputs (ALUAin, 
ALUBin)

// Outputs are ALUResultOut (the 64-bit output) and Zero (zero  
detection output)

RISCVALU ALU (ALUCtl, ALUAin, ALUBin, ALUResultOut, Zero); // the ALU

FIGURE e4.13.6 A Verilog version of the multicycle RISC-V datapath that is appropriate 
for synthesis. This datapath relies on several units from Appendix A. Initial statements do not synthesize, 
and a version used for synthesis would have to incorporate a reset signal that had this effect. Also note that 
resetting R0 to 0 on every clock is not the best way to ensure that R0 stays at 0; instead, modifying the 
register file module to produce 0 whenever R0 is read and to ignore writes to R0 would be a more efficient 
solution. (continues on next page)
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// Creates a RISC-V register file
// Inputs are the rs1 and rs2 fields of the IR used to specify which 

registers to read,
// Writereg (the write register number), Writedata (the data to be 

written),
// RegWrite (indicates a write), the clock
// Outputs are A and B, the registers read
registerfile regs (IR[19:15], IR[24:20], IR[11:7], Writedata, 

RegWrite, A, B, clock); // Register file

// The clock-triggered actions of the datapath
always @(posedge clock)
begin
if (MemWrite) Memory[ALUOut >> 2] <= B; // Write memory--must be a 

store
ALUOut <= ALUResultOut; // Save the ALU result for use on a later

clock cycle
if (IRWrite) IR <= MemOut; // Write the IR if an instruction fetch
MDR <= MemOut; // Always save the memory read value
// The PC is written both conditionally (controlled by PCWrite) and 

unconditionally

end
endmodule

FIGURE e4.13.6 A Verilog version of the multicycle RISC-V datapath that is appropriate 
for synthesis. (Continued)

No Hazard Illustrations

On page 285, we gave the example code sequence

ld x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
ld x13, 48(x1)
add x14, x5, x6

Figures e4.42 and e4.43 showed the multiple-clock-cycle pipeline diagrams for this 
two-instruction sequence executing across six clock cycles. Figures e4.13.8 through 
e4.13.10 show the corresponding single-clock-cycle pipeline diagrams for these two 
instructions. Note that the order of the instructions differs between these two types of 
diagrams: the newest instruction is at the bottom and to the right of the multiple-clock-
cycle pipeline diagram, and it is on the left in the single-clock-cycle pipeline diagram.

More Examples

To understand how pipeline control works, let’s consider these five instructions 
going through the pipeline:

ld x10, 40(x1)
sub x11, x2, x3
and x12, x4, x5
or x13, x6, x7
add x14, x8, x9
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module RISCVCPU (clock);
parameter LD = 7'b000_0011, SD = 7'b010_0011, BEQ = 7'b110_0011, ALUop 

= 7'b001_0011;
input clock;

reg [2:0] state;
wire [1:0] ALUOp, ALUSrcB;
wire [6:0] opcode;
wire MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,

PCWrite, PCWriteCond, ALUSrcA, PCSource, MemoryOp;

// Create an instance of the RISC-V datapath, the inputs are the 
control signals; opcode is only output
Datapath RISCVDP (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite, 

IRWrite,
PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource, 

opcode, clock);

initial begin state = 1; end // start the state machine in state 1
// These are the definitions of the control signals
assign MemoryOp = (opcode == LD) || (opcode == SD); // a memory 

operation
assign ALUOp = ((state == 1) || (state == 2) || ((state == 3) && 

MemoryOp)) ? 2'b00 : // add
((state == 3) && (opcode == BEQ)) ? 2'b01 : 2'b10; // 

subtract or use function code
assign MemtoReg = ((state == 4) && (opcode == ALUop)) ? 0 : 1; 
assign MemRead = (state == 1) || ((state == 4) && (opcode == LD));
assign MemWrite = (state == 4) && (opcode == SD);
assign IorD = (state == 1) ? 0 : 1;
assign RegWrite = (state == 5) || ((state == 4) && (opcode == ALUop));
assign IRWrite = (state == 1);
assign PCWrite = (state == 1);
assign PCWriteCond = (state == 3) && (opcode == BEQ);
assign ALUSrcA = ((state == 1) || (state == 2)) ? 0 : 1;
assign ALUSrcB = ((state == 1) || ((state == 3) && (opcode == BEQ))) ? 

2'b01 :
(state == 2) ? 2'b11 :
((state == 3) && MemoryOp) ? 2'b10 : 2'b00; // memory 

operation or other
assign PCSource = (state == 1) ? 0 : 1;

// Here is the state machine, which only has to sequence states
always @(posedge clock)
begin // all state updates on a positive clock edge
case (state)
1: state <= 2; // unconditional next state
2: state <= 3; // unconditional next state
3: state <= (opcode == BEQ) ? 1 : 4; // branch go back else next 

state
4: state <= (opcode == LD) ? 5 : 1; // R-type and SD finish
5: state <= 1; // go back

endcase
end

endmodule

FIGURE e4.13.7 The RISC-V CPU using the datapath from Figure e4.13.6.
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FIGURE e4.13.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of 
pipeline representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most 
two stages are identified in each clock cycle; normally, all five stages are occupied. The highlighted portions of the datapath are active in that 
clock cycle. The load is fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make the 
figures easier to understand, the other pipeline stages are empty, but normally there is an instruction in every pipeline stage.
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Figures e4.13.11 through e4.13.15 show these instructions proceeding through 
the nine clock cycles it takes them to complete execution, highlighting what is 
active in a stage and identifying the instruction associated with each stage during a 
clock cycle. If you examine them carefully, you may notice:

■	 In Figure e4.13.13 you can see the sequence of the destination register numbers 
from left to right at the bottom of the pipeline registers. The numbers advance 
to the right during each clock cycle, with the MEM/WB pipeline register 
supplying the number of the register written during the WB stage.

■	 When a stage is inactive, the values of control lines that are deasserted are 
shown as 0 or X (for don’t care).

■	 Sequencing of control is embedded in the pipeline structure itself. First, all 
instructions take the same number of clock cycles, so there is no special 
control for instruction duration. Second, all control information is computed 
during instruction decode and then passed along by the pipeline registers.

Forwarding Illustrations

We can use the single-clock-cycle pipeline diagrams to show how forwarding 
operates, as well as how the control activates the forwarding paths. Consider the 
following code sequence in which the dependences have been highlighted:

sub x2, x1, x3
and x4, x2, x5
or  x4, x4, x2
add x9, x4, x2

Figures e4.13.16 and e4.13.17 show the events in clock cycles 3–6 in the execution 
of these instructions.

Thus, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline register 
for the upper input to the ALU and the MEM/WB pipeline register for the lower 
input to the ALU. The following add instruction reads both register x4, the target of 
the and instruction, and register x2, which the sub instruction has already written. 
Notice that the prior two instructions both write register x4, so the forwarding unit 
must pick the immediately preceding one (MEM stage).

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline register, 
containing the result of the or instruction, for the upper ALU input but uses the 
non-forwarding register value for the lower input to the ALU.

Illustrating Pipelines with Stalls and Forwarding

We can use the single-clock-cycle pipeline diagrams to show how the control for 
stalls works. Figures e4.13.18 through e4.13.20 show the single-cycle diagram for 
clocks 2 through 7 for the following code sequence (dependences highlighted):

ld x2, 40(x1)
and x4, x2, x5
or x4, x4, x2
add x9, x4, x2
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FIGURE e4.13.13 Clock cycles 5 and 6. With add, the final instruction in this example, entering IF in the top datapath, all instructions 
are engaged. By writing the data in MEM/WB into register 10, ld completes; both the data and the register number are in MEM/WB. In the 
same clock cycle, sub sends the difference in EX/MEM to MEM/WB, and the rest of the instructions move forward. In the next clock cycle, 
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the add instruction. The instructions after add are shown as inactive just to emphasize what occurs for the five instructions in the example. 
The phrase “after <i>” means the ith instruction after add.
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FIGURE e4.13.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, 
adding the values corresponding to registers x8 and x9 during the EX stage. The result of the or instruction 
is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the result of the and 
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FIGURE e4.13.19 Clock cycles 4 and 5 of the instruction sequence on page 366.e26 with a load replacing sub. The 
bubble is inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit 
is highlighted in clock cycle 5 because it is forwarding data from ld to the ALU. Note that in clock cycle 4, the forwarding unit forwards the 
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in a clock cycle, and the italicized register numbers in color indicate a hazard.
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FIGURE e4.13.20 Clock cycles 6 and 7 of the instruction sequence on page 366.e26 with a load replacing sub. Note 
that unlike in Figure e4.13.17, the stall allows the ld to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register x4 
for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU. The bold lines 
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Many of the difficulties of pipelining arise because of instruction set 
complications. Here are some examples:

■	 Widely variable instruction lengths and running times can lead to imbalance 
among pipeline stages and severely complicate hazard detection in a design 
pipelined at the instruction set level. This problem was overcome, initially 
in the DEC VAX 8500 in the late 1980s, using the micro-operations and 
micropipelined scheme that the Intel Core i7 employs today. Of course, the 
overhead of translation and maintaining correspondence between the micro-
operations and the actual instructions remains.

■	 Sophisticated-addressing modes can lead to different sorts of problems. 
Addressing modes that update registers complicate hazard detection. Other 
addressing modes that require multiple memory accesses substantially 
complicate pipeline control and make it difficult to keep the pipeline flowing 
smoothly.

■	 Perhaps the best example is the DEC Alpha and the DEC NVAX. In 
comparable technology, the newer instruction set architecture of the Alpha 
allowed an implementation whose performance is more than twice as fast 
as NVAX. In another example, Bhandarkar and Clark [1991] compared the 
MIPS M/2000 and the DEC VAX 8700 by counting clock cycles of the SPEC 
benchmarks; they concluded that although the MIPS M/2000 executes more 
instructions, the VAX on average executes 2.7 times as many clock cycles, so 
the MIPS is faster.

 4.15 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can 
be designed starting with the instruction set architecture and an understanding 
of the basic characteristics of the technology. In Section 4.3, we saw how the 
datapath for an RISC-V processor could be constructed based on the architecture 
and the decision to build a single-cycle implementation. Of course, the underlying 
technology also affects many design decisions by dictating what components can 
be used in the datapath, as well as whether a single-cycle implementation even 
makes sense.

Pipelining improves throughput but not the inherent execution time, or 
instruction latency, of instructions; for some instructions, the latency is similar 
in length to the single-cycle approach. Multiple instruction issue adds additional 
datapath hardware to allow multiple instructions to begin every clock cycle, but at 
an increase in effective latency. Pipelining was presented as reducing the clock cycle 
time of the simple single-cycle datapath. Multiple instruction issue, in comparison, 
clearly focuses on reducing clock cycles per instruction (CPI).

instruction latency The 
inherent execution time 
for an instruction.

Nine-tenths of wisdom 
consists of being wise 
in time.
American proverb
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Pipelining and multiple issue both attempt to exploit instruction-level 
parallelism. The presence of data and control dependences, which can become 
hazards, are the primary limitations on how much parallelism can be exploited. 
Scheduling and speculation via prediction, both in hardware and in software, are 
the primary techniques used to reduce the performance impact of dependences.

We showed that unrolling the DGEMM loop four times exposed more 
instructions that could take advantage of the out-of-order execution engine of the 
Core i7 to more than double performance.

The switch to longer pipelines, multiple instruction issue, and dynamic  
scheduling in the mid-1990s helped sustain the 60% per year processor performance 
increase that started in the early 1980s. As mentioned in Chapter  1, these 
microprocessors preserved the sequential programming model, but they eventually 
ran into the power wall. Thus, the industry was forced to switch to multiprocessors, 
which exploit parallelism at much coarser levels (the subject of Chapter 6). This 
trend has also caused designers to reassess the energy-performance implications 
of some of the inventions since the mid-1990s, resulting in a simplification of 
pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors, 
Amdahl’s law suggests that another part of the system will become the bottleneck. 
That bottleneck is the topic of the next chapter: the memory hierarchy.

 4.16  Historical Perspective and Further 
Reading

This section, which appears online, discusses the history of the first pipelined 
processors, the earliest superscalars, and the development of out-of-order and 
speculative techniques, as well as important developments in the accompanying 
compiler technology.

 4.17 Exercises

4.1 Consider the following instruction:

Instruction: and rd, rs1, rs2

Interpretation: Reg[rd] = Reg[rs1] AND Reg[rs2]

4.1.1 [5] <§4.3> What are the values of control signals generated by the control 
in Figure 4.10 for this instruction?
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 Historical Perspective and Further  
Reading

This section discusses the history of the original pipelined processors, the earliest 
superscalars, and the development of out-of-order and speculative techniques, as 
well as important developments in the accompanying compiler technology.

It is generally agreed that one of the first general-purpose pipelined computers 
was Stretch, the IBM 7030 (Figure e4.16.1). Stretch followed the IBM 704 and had a 
goal of being 100 times faster than the 704. The goals were a “stretch” of the state of 
the art at that time—hence the nickname. The plan was to obtain a factor of 1.6 from 
overlapping fetch, decode, and execute by using a four-stage pipeline. Apparently, 
the rest was to come from much more hardware and faster logic. Stretch was also 
a training ground for both the architects of the IBM 360, Gerrit Blaauw and Fred 
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke.

supercomputer: Any 
machine still on the 
drawing board.
Stan Kelly-Bootle, The 
Devil’s DP Dictionary, 
1981

FIGURE e4.16.1 The Stretch computer, one of the first pipelined computers.

4.16
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Control Data Corporation (CDC) delivered what is considered to be the first 
supercomputer, the CDC 6600, in 1964 (Figure e4.16.2). The core instructions of 
Cray’s subsequent computers have many similarities to those of the original CDC 
6600. The CDC 6600 was unique in many ways. The interaction between pipelining 
and instruction set design was understood, and the instruction set was kept 
simple to promote pipelining. The CDC 6600 also used an advanced packaging 
technology. James Thornton’s book [1970] provides an excellent description of 
the entire computer, from technology to architecture, and includes a foreword 
by Seymour Cray. (Unfortunately, this book is currently out of print.) Jim Smith, 
then working at CDC, developed the original 2-bit branch prediction scheme and 
explored several techniques for enhancing instruction issue for the CDC Cyber 
180/990. Cray, Thornton, and Smith have each won the ACM Eckert-Mauchly 
Award (in 1989, 1994, and 1999, respectively).

The IBM 360/91 introduced many new concepts, including dynamic detection of 
memory hazards, generalized forwarding, and reservation stations (Figure e4.16.3). 
The approach is normally named Tomasulo’s algorithm, after an engineer who 
worked on the project. The team that created the 360/91 was led by Michael Flynn, 
who was given the 1992 ACM Eckert-Mauchly Award, in part for his contributions 
to the IBM 360/91; in 1997, the same award went to Robert Tomasulo for his 
pioneering work on out-of-order processing.

The internal organization of the 360/91 shares many features with the Pentium 
III and Pentium 4, as well as with several other microprocessors. One major 

FIGURE e4.16.2 The CDC 6600, the first supercomputer.
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difference was that there was no branch prediction in the 360/91 and hence no 
speculation. Another major difference was that there was no commit unit, so 
once the instructions finished execution, they updated the registers. Out-of-order 
instruction commit led to imprecise interrupts, which proved to be unpopular and 
led to the commit units in dynamically scheduled pipelined processors since that 
time. Although the 360/91 was not a success, its key ideas were resurrected later 
and exist in some form in the majority of microprocessors of the last decade.

Improving Pipelining Effectiveness and Adding Multiple 
Issue
The RISC processors refined the notion of compiler-scheduled pipelines in the 
early 1980s. The concepts of delayed branches and delayed loads—common in 
microprogramming—were extended into the high-level architecture. In fact, 
the Stanford processor that led to the commercial MIPS architecture was called 
“Microprocessor without Interlocked Pipelined Stages” because it was up to the 
assembler or compiler to avoid data hazards.

In addition to its contribution to the development of the RISC concepts, IBM did 
pioneering work on multiple issue. In the 1960s, a project called ACS was under-
way. It included multiple-instruction issue concepts and the notion of integrated 
compiler and architecture design, but it never reached product stage. The earliest 
proposal for a superscalar processor that dynamically makes issue decisions was 

FIGURE e4.16.3 The IBM 360/91 pushed the state of the art in pipelined execution when it 
was unveiled in 1966.
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by John Cocke; he described the key ideas in several talks in the mid-1980s and, 
with Tilak Agarwala, coined the name superscalar. This original design was a two-
issue machine named Cheetah, which was followed by a more widely discussed 
four-issue machine named America. The IBM Power-1 architecture, used in the 
RS/6000 line, is based on these ideas, and the PowerPC is a variation of the Power-1 
architecture. Cocke won the Turing Award, the highest award in computer science 
and engineering, for his architecture work.

Static multiple issue, as exemplified by the long instruction word (LIW) or 
sometimes very long instruction word (VLIW) approaches, appeared in real designs 
before the superscalar approach. In fact, the earliest multiple-issue machines 
were special-purpose attached processors designed for scientific applications. 
Culler Scientific and Floating Point Systems were two of the most prominent 
manufacturers of such computers. Another inspiration for the use of multiple 
operations per instruction came from those working on microcode compilers. 
Such inspiration led to a research project at Yale led by Josh Fisher, who coined 
the term VLIW. Cydrome and Multiflow were two early companies involved in 
building mini-supercomputers using processors with multiple-issue capability. 
These processors, built with bit-slice and multiple-chip gate array implementations, 
arrived on the market at the same time as the initial RISC microprocessors. Despite 
some promising performance on high-end scientific codes, the much better cost/
performance of the microprocessor-based computers doomed the first generation 
of VLIW computers. Bob Rau and Josh Fisher won the Eckert-Mauchly Award in 
2002 and 2003, respectively, for their contributions to the development of multiple 
processors and software techniques to exploit ILP.

The very beginning of the 1990s saw the first superscalar processors using 
static scheduling and no speculation, including versions of the MIPS and 
PowerPC architectures. The early 1990s also saw important research at a number 
of universities, including Wisconsin, Stanford, Illinois, and Michigan, focused on 
techniques for exploiting additional ILP through multiple issue with and without 
speculation. These research insights were used to build dynamically scheduled, 
speculative processors, including the Motorola 88110, MIPS R10000, DEC Alpha 
21264, PowerPC 603, and the Intel Pentium Pro, Pentium III, and Pentium 4.

In 2001, Intel introduced the IA-64 architecture and its first implementation, 
Itanium. Itanium represented a return to a more compiler-intensive approach that 
they called EPIC. EPIC represented a considerable enhancement over the early 
VLIW architectures, removing many of their drawbacks. It has had modest sales. 
In 2013, the IA-64 architecture is used only in low-volume, high-end servers and is 
outnumbered by x86 processors by more than 100:1.

Compiler Technology for Exploiting ILP
Successful development of processors to exploit ILP has depended on progress in 
compiler technology. The concept of loop unrolling was understood early, and a 
number of companies and researchers—including Floating Point Systems, Cray, 
and the Stanford MIPS project—developed compilers that made use of loop 
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unrolling and pipeline scheduling to improve instruction throughput. A special-
purpose processor called WARP, designed at Carnegie Mellon University, inspired 
the development of software pipelining, an approach that symbolically unrolls 
loops.

To exploit higher levels of ILP, more aggressive compiler technology was needed. 
The VLIW project at Yale developed the concept of trace scheduling that Multi-
flow implemented in their compilers. Trace scheduling relies on aggressive loop 
unrolling and path prediction to compile favored execution traces efficiently. The 
Cydrome designers created early versions of predication and support for software 
pipelining. Hwu at Illinois worked on extended versions of loop unrolling, called 
superblocks, and techniques for compiling with predication. The concepts from 
Multiflow, Cydrome, and the research group at Illinois served as the architectural 
and compiler basis for the IA-64 architecture.
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4.1.2 [5] <§4.3> Which resources (blocks) perform a useful function for this 
instruction?

4.1.3 [10] <§4.3> Which resources (blocks) produce no output for this 
instruction? Which resources produce output that is not used?

4.2 [10] <§4.4> Explain each of the “don’t cares” in Figure 4.18.

4.3 Consider the following instruction mix:

R-type I-type (non-ld) Load Store Branch Jump

24% 28% 25% 10% 11% 2%

4.3.1 [5] <§4.4> What fraction of all instructions use data memory?

4.3.2 [5] <§4.4> What fraction of all instructions use instruction memory?

4.3.3 [5] <§4.4> What fraction of all instructions use the sign extend?

4.3.4 [5] <§4.4> What is the sign extend doing during cycles in which its output 
is not needed?

4.4 When silicon chips are fabricated, defects in materials (e.g., silicon) and 
manufacturing errors can result in defective circuits. A very common defect is for 
one signal wire to get “broken” and always register a logical 0. This is often called a 
“stuck-at-0” fault.

4.4.1 [5] <§4.4> Which instructions fail to operate correctly if the MemToReg 
wire is stuck at 0?

4.4.2 [5] <§4.4> Which instructions fail to operate correctly if the ALUSrc wire 
is stuck at 0?

4.5 In this exercise, we examine in detail how an instruction is executed in a 
single-cycle datapath. Problems in this exercise refer to a clock cycle in which the 
processor fetches the following instruction word: 0x00c6ba23.

4.5.1 [10] <§4.4> What are the values of the ALU control unit’s inputs for this 
instruction?

4.5.2 [5] <§4.4> What is the new PC address after this instruction is executed? 
Highlight the path through which this value is determined.

4.5.3 [10] <§4.4> For each mux, show the values of its inputs and outputs during 
the execution of this instruction. List values that are register outputs at Reg [xn].

4.5.4 [10] <§4.4> What are the input values for the ALU and the two add units?

马德
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4.5.5 [10] <§4.4> What are the values of all inputs for the registers unit?

4.6 Section 4.4 does not discuss I-type instructions like addi or andi.

4.6.1 [5] <§4.4> What additional logic blocks, if any, are needed to add I-type 
instructions to the CPU shown in Figure 4.21? Add any necessary logic blocks to 
Figure 4.21 and explain their purpose.

4.6.2 [10] <§4.4> List the values of the signals generated by the control unit for 
addi. Explain the reasoning for any “don’t care” control signals.

4.7 Problems in this exercise assume that the logic blocks used to implement a 
processor’s datapath have the following latencies:

I-Mem / 
D-Mem

Register 
File Mux ALU Adder

Single 
gate

Register 
Read

Register 
Setup

Sign 
extend Control

250 ps 150 ps 25 ps 200 ps 150 ps 5 ps 30 ps 20 ps 50 ps 50 ps

“Register read” is the time needed after the rising clock edge for the new register 
value to appear on the output. This value applies to the PC only. “Register setup” is 
the amount of time a register’s data input must be stable before the rising edge of 
the clock. This value applies to both the PC and Register File.

4.7.1 [5] <§4.4> What is the latency of an R-type instruction (i.e., how long must 
the clock period be to ensure that this instruction works correctly)?

4.7.2 [10] <§4.4> What is the latency of ld? (Check your answer carefully. Many 
students place extra muxes on the critical path.)

4.7.3 [10] <§4.4> What is the latency of sd? (Check your answer carefully. Many 
students place extra muxes on the critical path.)

4.7.4 [5] <§4.4> What is the latency of beq?

4.7.5 [5] <§4.4> What is the latency of an I-type instruction?

4.7.6 [5] <§4.4> What is the minimum clock period for this CPU?

4.8 [10] <§4.4> Suppose you could build a CPU where the clock cycle time was 
different for each instruction. What would the speedup of this new CPU be over 
the CPU presented in Figure 4.21 given the instruction mix below?

R-type/I-type (non-ld) ld sd beq

52% 25% 11% 12%
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4.9 Consider the addition of a multiplier to the CPU shown in Figure 4.21. This 
addition will add 300 ps to the latency of the ALU, but will reduce the number of 
instructions by 5% (because there will no longer be a need to emulate the multiply 
instruction).

4.9.1 [5] <§4.4> What is the clock cycle time with and without this improvement?

4.9.2 [10] <§4.4> What is the speedup achieved by adding this improvement?

4.9.3 [10] <§4.4> What is the slowest the new ALU can be and still result in 
improved performance?

4.10 When processor designers consider a possible improvement to the processor 
datapath, the decision usually depends on the cost/performance trade-off. In the 
following three problems, assume that we are beginning with the datapath from 
Figure 4.21, the latencies from Exercise 4.7, and the following costs:

I-Mem
Register 

File Mux ALU Adder D-Mem
Single 

Register
Sign 

extend
Single 
gate Control

1000 200 10 100 30 2000 5 100 1 500

Suppose doubling the number of general purpose registers from 32 to 64 would 
reduce the number of ld and sd instruction by 12%, but increase the latency of 
the register file from 150 ps to 160 ps and double the cost from 200 to 400. (Use the 
instruction mix from Exercise 4.8 and ignore the other effects on the ISA discussed 
in Exercise 2.18.)

4.10.1 [5] <§4.4> What is the speedup achieved by adding this improvement?

4.10.2 [10] <§4.4> Compare the change in performance to the change in cost.

4.10.3 [10] <§4.4> Given the cost/performance ratios you just calculated, 
describe a situation where it makes sense to add more registers and describe a 
situation where it doesn’t make sense to add more registers.

4.11 Examine the difficulty of adding a proposed lwi.d rd, rs1, rs2 (“Load 
With Increment”) instruction to RISC-V.

Interpretation: Reg[rd]=Mem[Reg[rs1]+Reg[rs2]]

4.11.1 [5] <§4.4> Which new functional blocks (if any) do we need for this 
instruction?

4.11.2 [5] <§4.4> Which existing functional blocks (if any) require modification?

4.11.3 [5] <§4.4> Which new data paths (if any) do we need for this instruction?

4.11.4 [5] <§4.4> What new signals do we need (if any) from the control unit to 
support this instruction?
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4.12 Examine the difficulty of adding a proposed swap rs1, rs2 instruction to 
RISC-V.

Interpretation: Reg[rs2]=Reg[rs1]; Reg[rs1]=Reg[rs2]

4.12.1 [5] <§4.4> Which new functional blocks (if any) do we need for this 
instruction?

4.12.2 [10] <§4.4> Which existing functional blocks (if any) require 
modification?

4.12.3 [5] <§4.4> What new data paths do we need (if any) to support this 
instruction?

4.12.4 [5] <§4.4> What new signals do we need (if any) from the control unit to 
support this instruction?

4.12.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an implementation of this 
new instruction.

4.13 Examine the difficulty of adding a proposed ss rs1, rs2, imm (Store Sum) 
instruction to RISC-V.

Interpretation: Mem[Reg[rs1]]=Reg[rs2]+immediate

4.13.1 [10] <§4.4> Which new functional blocks (if any) do we need for this 
instruction?

4.13.2 [10] <§4.4> Which existing functional blocks (if any) require modification?

4.13.3 [5] <§4.4> What new data paths do we need (if any) to support this 
instruction?

4.13.4 [5] <§4.4> What new signals do we need (if any) from the control unit to 
support this instruction?

4.13.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an implementation of this 
new instruction.

4.14 [5] <§4.4> For which instructions (if any) is the Imm Gen block on the 
critical path?

4.15 ld is the instruction with the longest latency on the CPU from Section 4.4. 
If we modified ld and sd so that there was no offset (i.e., the address to be loaded 
from/stored to must be calculated and placed in rs1 before calling ld/sd), then 
no instruction would use both the ALU and Data memory. This would allow us 
to reduce the clock cycle time. However, it would also increase the number of 
instructions, because many ld and sd instructions would need to be replaced with 
ld/add or sd/add combinations.
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4.15.1 [5] <§4.4> What would the new clock cycle time be?

4.15.2 [10] <§4.4> Would a program with the instruction mix presented in 
Exercise 4.7 run faster or slower on this new CPU? By how much? (For simplicity, 
assume every ld and sd instruction is replaced with a sequence of two instructions.)

4.15.3 [5] <§4.4> What is the primary factor that influences whether a program 
will run faster or slower on the new CPU?

4.15.4 [5] <§4.4> Do you consider the original CPU (as shown in Figure 4.21) 
a better overall design; or do you consider the new CPU a better overall design? 
Why?

4.16 In this exercise, we examine how pipelining affects the clock cycle time of the 
processor. Problems in this exercise assume that individual stages of the datapath 
have the following latencies:

IF ID EX MEM WB

250 ps 350 ps 150 ps 300 ps 200 ps

Also, assume that instructions executed by the processor are broken down as 
follows:

ALU/Logic Jump/Branch Load Store

45% 20% 20% 15%

4.16.1 [5] <§4.5> What is the clock cycle time in a pipelined and non-pipelined 
processor?

4.16.2 [10] <§4.5> What is the total latency of an ld instruction in a pipelined 
and non-pipelined processor?

4.16.3 [10] <§4.5> If we can split one stage of the pipelined datapath into two 
new stages, each with half the latency of the original stage, which stage would you 
split and what is the new clock cycle time of the processor?

4.16.4 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 
of the data memory?

4.16.5 [10] <§4.5> Assuming there are no stalls or hazards, what is the utilization 
of the write-register port of the “Registers” unit?

4.17 [10] <§4.5> What is the minimum number of cycles needed to completely 
execute n instructions on a CPU with a k stage pipeline? Justify your formula.

4.18 [5] <§4.5> Assume that x11 is initialized to 11 and x12 is initialized to 22. 
Suppose you executed the code below on a version of the pipeline from Section 
4.5 that does not handle data hazards (i.e., the programmer is responsible for 
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addressing data hazards by inserting NOP instructions where necessary). What 
would the final values of registers x13 and x14 be?

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15

4.19 [10] <§4.5> Assume that x11 is initialized to 11 and x12 is initialized to 
22. Suppose you executed the code below on a version of the pipeline from Section 
4.5 that does not handle data hazards (i.e., the programmer is responsible for 
addressing data hazards by inserting NOP instructions where necessary). What 
would the final values of register x15 be? Assume the register file is written at the 
beginning of the cycle and read at the end of a cycle. Therefore, an ID stage will 
return the results of a WB state occurring during the same cycle. See Section 4.7 
and Figure 4.51 for details.

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15
add x15, x11, x11

4.20 [5] <§4.5> Add NOP instructions to the code below so that it will run 
correctly on a pipeline that does not handle data hazards.

addi x11, x12, 5
add x13, x11, x12
addi x14, x11, 15
add x15, x13, x12

4.21 Consider a version of the pipeline from Section 4.5 that does not handle 
data hazards (i.e., the programmer is responsible for addressing data hazards by 
inserting NOP instructions where necessary). Suppose that (after optimization) 
a typical n-instruction program requires an additional 4*n NOP instructions to 
correctly handle data hazards.

4.21.1 [5] <§4.5> Suppose that the cycle time of this pipeline without forwarding 
is 250 ps. Suppose also that adding forwarding hardware will reduce the number 
of NOPs from .4*n to .05*n, but increase the cycle time to 300 ps. What is the 
speedup of this new pipeline compared to the one without forwarding?

4.21.2 [10] <§4.5> Different programs will require different amounts of NOPs. 
How many NOPs (as a percentage of code instructions) can remain in the typical 
program before that program runs slower on the pipeline with forwarding?

4.21.3 [10] <§4.5> Repeat 4.21.2; however, this time let x represent the number 
of NOP instructions relative to n. (In 4.21.2, x was equal to .4.) Your answer will 
be with respect to x.
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4.21.4 [10] <§4.5> Can a program with only .075*n NOPs possibly run faster 
on the pipeline with forwarding? Explain why or why not.

4.21.5 [10] <§4.5> At minimum, how many NOPs (as a percentage of code 
instructions) must a program have before it can possibly run faster on the pipeline 
with forwarding?

4.22 [5] <§4.5> Consider the fragment of RISC-V assembly below:

sd x29, 12(x16)
ld x29, 8(x16)
sub x17, x15, x14
beqz x17, label
add x15, x11, x14
sub x15, x30, x14

Suppose we modify the pipeline so that it has only one memory (that handles both 
instructions and data). In this case, there will be a structural hazard every time 
a program needs to fetch an instruction during the same cycle in which another 
instruction accesses data.

4.22.1 [5] <§4.5> Draw a pipeline diagram to show were the code above will 
stall.

4.22.2 [5] <§4.5> In general, is it possible to reduce the number of stalls/NOPs 
resulting from this structural hazard by reordering code?

4.22.3 [5] <§4.5> Must this structural hazard be handled in hardware? We have 
seen that data hazards can be eliminated by adding NOPs to the code. Can you do 
the same with this structural hazard? If so, explain how. If not, explain why not.

4.22.4 [5] <§4.5> Approximately how many stalls would you expect this 
structural hazard to generate in a typical program? (Use the instruction mix from 
Exercise 4.8.)

4.23 If we change load/store instructions to use a register (without an offset) as 
the address, these instructions no longer need to use the ALU. (See Exercise 4.15.) 
As a result, the MEM and EX stages can be overlapped and the pipeline has only 
four stages.

4.23.1 [10] <§4.5> How will the reduction in pipeline depth affect the cycle 
time?

4.23.2 [5] <§4.5> How might this change improve the performance of the 
pipeline?

4.23.3 [5] <§4.5> How might this change degrade the performance of the 
pipeline?
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4.24 [10] <§4.7> Which of the two pipeline diagrams below better describes the 
operation of the pipeline’s hazard detection unit? Why?

Choice 1:

ld x11, 0(x12): IF ID EX ME WB
add x13, x11, x14:  IF ID EX..ME WB
or x15, x16, x17:   IF ID..EX ME WB

Choice 2:

ld x11, 0(x12):  IF ID EX ME WB
add x13, x11, x14: IF ID..EX ME WB
or x15, x16, x17:  IF..ID EX ME WB

4.25 Consider the following loop.

LOOP: ld x10, 0(x13)
 ld x11, 8(x13)

  add x12, x10, x11
  subi x13, x13, 16

   bnez x12, LOOP

Assume that perfect branch prediction is used (no stalls due to control hazards), 
that there are no delay slots, that the pipeline has full forwarding support, and that 
branches are resolved in the EX (as opposed to the ID) stage.

4.25.1 [10] <§4.7> Show a pipeline execution diagram for the first two iterations 
of this loop.

4.25.2 [10] <§4.7> Mark pipeline stages that do not perform useful work. How 
often while the pipeline is full do we have a cycle in which all five pipeline stages are 
doing useful work? (Begin with the cycle during which the subi is in the IF stage. 
End with the cycle during which the bnez is in the IF stage.)

4.26 This exercise is intended to help you understand the cost/complexity/
performance trade-offs of forwarding in a pipelined processor. Problems in this 
exercise refer to pipelined datapaths from Figure 4.53. These problems assume 
that, of all the instructions executed in a processor, the following fraction of these 
instructions has a particular type of RAW data dependence. The type of RAW data 
dependence is identified by the stage that produces the result (EX or MEM) and 
the next instruction that consumes the result (1st instruction that follows the one 
that produces the result, 2nd instruction that follows, or both). We assume that the 
register write is done in the first half of the clock cycle and that register reads are 
done in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd” dependences 
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are not counted because they cannot result in data hazards. We also assume that 
branches are resolved in the EX stage (as opposed to the ID stage), and that the CPI 
of the processor is 1 if there are no data hazards.

EX to  
1st Only

MEM to 1st  
Only

EX to 2nd  
Only

MEM to 2nd  
Only

EX to 1st and EX  
to 2nd

5% 20% 5% 10% 10%

Assume the following latencies for individual pipeline stages. For the EX stage, 
latencies are given separately for a processor without forwarding and for a processor 
with different kinds of forwarding.

IF ID
EX (no 

FW)
EX (full 

FW)

EX (FW 
from EX/
MEM only)

EX (FW 
from MEM/
WB only) MEM WB

120 ps 100 ps 110 ps 130 ps 120 ps 120 ps 120 ps 100 ps

4.26.1 [5] <§4.7> For each RAW dependency listed above, give a sequence of at 
least three assembly statements that exhibits that dependency.

4.26.2 [5] <§4.7> For each RAW dependency above, how many NOPs would 
need to be inserted to allow your code from 4.26.1 to run correctly on a pipeline 
with no forwarding or hazard detection? Show where the NOPs could be inserted.

4.26.3 [10] <§4.7> Analyzing each instruction independently will over-count 
the number of NOPs needed to run a program on a pipeline with no forwarding or 
hazard detection. Write a sequence of three assembly instructions so that, when 
you consider each instruction in the sequence independently, the sum of the stalls 
is larger than the number of stalls the sequence actually needs to avoid data hazards.

4.26.4 [5] <§4.7> Assuming no other hazards, what is the CPI for the program 
described by the table above when run on a pipeline with no forwarding? What 
percent of cycles are stalls? (For simplicity, assume that all necessary cases are listed 
above and can be treated independently.)

4.26.5 [5] <§4.7> What is the CPI if we use full forwarding (forward all results 
that can be forwarded)? What percent of cycles are stalls?

4.26.6 [10] <§4.7> Let us assume that we cannot afford to have three-input 
multiplexors that are needed for full forwarding. We have to decide if it is better to 
forward only from the EX/MEM pipeline register (next-cycle forwarding) or only 
from the MEM/WB pipeline register (two-cycle forwarding). What is the CPI for 
each option?

4.26.7 [5] <§4.7> For the given hazard probabilities and pipeline stage latencies, 
what is the speedup achieved by each type of forwarding (EX/MEM, MEM/WB, 
for full) as compared to a pipeline that has no forwarding?
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4.26.8 [5] <§4.7> What would be the additional speedup (relative to the fastest 
processor from 4.26.7) be if we added “time-travel” forwarding that eliminates all 
data hazards? Assume that the yet-to-be-invented time-travel circuitry adds 100 ps 
to the latency of the full-forwarding EX stage.

4.26.9 [5] <§4.7> The table of hazard types has separate entries for “EX to 1st” and 
“EX to 1st and EX to 2nd”. Why is there no entry for “MEM to 1st and MEM to 2nd”?

4.27 Problems in this exercise refer to the following sequence of instructions, and 
assume that it is executed on a five-stage pipelined datapath:

add x15, x12, x11
ld x13, 4(x15)
ld x12, 0(x2)
or x13, x15, x13
sd x13, 0(x15)

4.27.1 [5] <§4.7> If there is no forwarding or hazard detection, insert NOPs to 
ensure correct execution.

4.27.2 [10] <§4.7> Now, change and/or rearrange the code to minimize 
the number of NOPs needed. You can assume register x17 can be used to hold 
temporary values in your modified code.

4.27.3 [10] <§4.7> If the processor has forwarding, but we forgot to implement 
the hazard detection unit, what happens when the original code executes?

4.27.4 [20] <§4.7> If there is forwarding, for the first seven cycles during the 
execution of this code, specify which signals are asserted in each cycle by hazard 
detection and forwarding units in Figure 4.59.

4.27.5 [10] <§4.7> If there is no forwarding, what new input and output signals 
do we need for the hazard detection unit in Figure 4.59? Using this instruction 
sequence as an example, explain why each signal is needed.

4.27.6 [20] <§4.7> For the new hazard detection unit from 4.26.5, specify which 
output signals it asserts in each of the first five cycles during the execution of this 
code.

4.28 The importance of having a good branch predictor depends on how often 
conditional branches are executed. Together with branch predictor accuracy, this 
will determine how much time is spent stalling due to mispredicted branches. In 
this exercise, assume that the breakdown of dynamic instructions into various 
instruction categories is as follows:

R-type beqz/bnez jal ld sd

40% 25% 5% 25% 5%
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Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit

45% 55% 85%

4.28.1 [10] <§4.8> Stall cycles due to mispredicted branches increase the CPI. 
What is the extra CPI due to mispredicted branches with the always-taken predictor? 
Assume that branch outcomes are determined in the ID stage and applied in the EX 
stage that there are no data hazards, and that no delay slots are used.

4.28.2 [10] <§4.8> Repeat 4.28.1 for the “always-not-taken” predictor.

4.28.3 [10] <§4.8> Repeat 4.28.1 for the 2-bit predictor.

4.28.4 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions to some ALU instruction? Assume 
that correctly and incorrectly predicted instructions have the same chance of being 
replaced.

4.28.5 [10] <§4.8> With the 2-bit predictor, what speedup would be achieved if 
we could convert half of the branch instructions in a way that replaced each branch 
instruction with two ALU instructions? Assume that correctly and incorrectly 
predicted instructions have the same chance of being replaced.

4.28.6 [10] <§4.8> Some branch instructions are much more predictable than 
others. If we know that 80% of all executed branch instructions are easy-to-predict 
loop-back branches that are always predicted correctly, what is the accuracy of the 
2-bit predictor on the remaining 20% of the branch instructions?

4.29 This exercise examines the accuracy of various branch predictors for the 
following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT.

4.29.1 [5] <§4.8> What is the accuracy of always-taken and always-not-taken 
predictors for this sequence of branch outcomes?

4.29.2 [5] <§4.8> What is the accuracy of the 2-bit predictor for the first four 
branches in this pattern, assuming that the predictor starts off in the bottom left 
state from Figure 4.61 (predict not taken)?

4.29.3 [10] <§4.8> What is the accuracy of the 2-bit predictor if this pattern is 
repeated forever?

4.29.4 [30] <§4.8> Design a predictor that would achieve a perfect accuracy if 
this pattern is repeated forever. You predictor should be a sequential circuit with 
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs 
other than the clock and the control signal that indicates that the instruction is a 
conditional branch.
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4.29.5 [10] <§4.8> What is the accuracy of your predictor from 4.29.4 if it is 
given a repeating pattern that is the exact opposite of this one?

4.29.6 [20] <§4.8> Repeat 4.29.4, but now your predictor should be able to 
eventually (after a warm-up period during which it can make wrong predictions) 
start perfectly predicting both this pattern and its opposite. Your predictor should 
have an input that tells it what the real outcome was. Hint: this input lets your 
predictor determine which of the two repeating patterns it is given.

4.30 This exercise explores how exception handling affects pipeline design. The 
first three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2

beqz x11, LABEL ld x11, 0(x12)

4.30.1 [5] <§4.9> Which exceptions can each of these instructions trigger? For 
each of these exceptions, specify the pipeline stage in which it is detected.

4.30.2 [10] <§4.9> If there is a separate handler address for each exception, show 
how the pipeline organization must be changed to be able to handle this exception. 
You can assume that the addresses of these handlers are known when the processor 
is designed.

4.30.3 [10] <§4.9> If the second instruction is fetched immediately after the 
first instruction, describe what happens in the pipeline when the first instruction 
causes the first exception you listed in Exercise 4.30.1. Show the pipeline execution 
diagram from the time the first instruction is fetched until the time the first 
instruction of the exception handler is completed.

4.30.4 [20] <§4.9> In vectored exception handling, the table of exception handler 
addresses is in data memory at a known (fixed) address. Change the pipeline to 
implement this exception handling mechanism. Repeat Exercise 4.30.3 using this 
modified pipeline and vectored exception handling.

4.30.5 [15] <§4.9> We want to emulate vectored exception handling (described 
in Exercise 4.30.4) on a machine that has only one fixed handler address. Write 
the code that should be at that fixed address. Hint: this code should identify the 
exception, get the right address from the exception vector table, and transfer 
execution to that handler.

4.31 In this exercise we compare the performance of 1-issue and 2-issue 
processors, taking into account program transformations that can be made to 
optimize for 2-issue execution. Problems in this exercise refer to the following loop 
(written in C):

for(i=0;i!=j;i+=2)
  b[i]=a[i]–a[i+1];
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A compiler doing little or no optimization might produce the following RISC-V 
assembly code:

li x12, 0
jal ENT

TOP: slli x5, x12, 3
add x6, x10, x5
ld x7, 0(x6)
ld x29, 8(x6)
sub x30, x7, x29
add x31, x11, x5
sd x30, 0(x31)
addi x12, x12, 2

ENT: bne x12, x13, TOP

The code above uses the following registers:

i j a b
Temporary 

values

x12 x13 x10 x11 x5–x7, x29–x31

Assume the two-issue, statically scheduled processor for this exercise has the 
following properties:

1.  One instruction must be a memory operation; the other must be an 
arithmetic/logic instruction or a branch.

2.  The processor has all possible forwarding paths between stages (including 
paths to the ID stage for branch resolution).

3. The processor has perfect branch prediction.
4.  Two instruction may not issue together in a packet if one depends on the 

other. (See page 324.)
5.  If a stall is necessary, both instructions in the issue packet must stall. (See 

page 324.)

As you complete these exercises, notice how much effort goes into generating 
code that will produce a near-optimal speedup.

4.31.1 [30] <§4.10> Draw a pipeline diagram showing how RISC-V code given 
above executes on the two-issue processor. Assume that the loop exits after two 
iterations.

4.31.2 [10] <§4.10> What is the speedup of going from a one-issue to a two-
issue processor? (Assume the loop runs thousands of iterations.)

4.31.3 [10] <§4.10> Rearrange/rewrite the RISC-V code given above to achieve 
better performance on the one-issue processor. Hint: Use the instruction “beqz 
x13,DONE” to skip the loop entirely if j = 0.
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4.31.4 [20] <§4.10> Rearrange/rewrite the RISC-V code given above to achieve 
better performance on the two-issue processor. (Do not unroll the loop, however.)

4.31.5 [30] <§4.10> Repeat Exercise 4.31.1, but this time use your optimized 
code from Exercise 4.31.4.

4.31.6 [10] <§4.10> What is the speedup of going from a one-issue processor to 
a two-issue processor when running the optimized code from Exercises 4.31.3 and 
4.31.4.

4.31.7 [10] <§4.10> Unroll the RISC-V code from Exercise 4.31.3 so that each 
iteration of the unrolled loop handles two iterations of the original loop. Then, 
rearrange/rewrite your unrolled code to achieve better performance on the one-
issue processor. You may assume that j is a multiple of 4.

4.31.8 [20] <§4.10> Unroll the RISC-V code from Exercise 4.31.4 so that each 
iteration of the unrolled loop handles two iterations of the original loop. Then, 
rearrange/rewrite your unrolled code to achieve better performance on the two-
issue processor. You may assume that j is a multiple of 4. (Hint: Re-organize the 
loop so that some calculations appear both outside the loop and at the end of the 
loop. You may assume that the values in temporary registers are not needed after 
the loop.)

4.31.9 [10] <§4.10> What is the speedup of going from a one-issue processor to 
a two-issue processor when running the unrolled, optimized code from Exercises 
4.31.7 and 4.31.8?

4.31.10 [30] <§4.10> Repeat Exercises 4.31.8 and 4.31.9, but this time assume 
the two-issue processor can run two arithmetic/logic instructions together. (In 
other words, the first instruction in a packet can be any type of instruction, but the 
second must be an arithmetic or logic instruction. Two memory operations cannot 
be scheduled at the same time.)

4.32 This exercise explores energy efficiency and its relationship with performance. 
Problems in this exercise assume the following energy consumption for activity in 
Instruction memory, Registers, and Data memory. You can assume that the other 
components of the datapath consume a negligible amount of energy. (“Register 
Read” and “Register Write” refer to the register file only.)

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write

140pJ 70pJ 60pJ 140pJ 120pJ

Assume that components in the datapath have the following latencies. You can 
assume that the other components of the datapath have negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write

200 ps 150 ps 90 ps 90 ps 250 ps
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4.32.1 [5] <§§4.3, 4.6, 4.14> How much energy is spent to execute an add 
instruction in a single-cycle design and in the five-stage pipelined design?

4.32.2 [10] <§§4.6, 4.14> What is the worst-case RISC-V instruction in terms of 
energy consumption? What is the energy spent to execute it?

4.32.3 [10] <§§4.6, 4.14> If energy reduction is paramount, how would you 
change the pipelined design? What is the percentage reduction in the energy spent 
by an ld instruction after this change?

4.32.4 [10] <§§4.6, 4.14> What other instructions can potentially benefit from 
the change discussed in Exercise 4.32.3?

4.32.5 [10] <§§4.6, 4.14> How do your changes from Exercise 4.32.3 affect the 
performance of a pipelined CPU?

4.32.6 [10] <§§4.6, 4.14> We can eliminate the MemRead control signal and have 
the data memory be read in every cycle, i.e., we can permanently have MemRead=1. 
Explain why the processor still functions correctly after this change. If 25% of 
instructions are loads, what is the effect of this change on clock frequency and 
energy consumption?

4.33 When silicon chips are fabricated, defects in materials (e.g., silicon) and 
manufacturing errors can result in defective circuits. A very common defect is 
for one wire to affect the signal in another. This is called a “cross-talk fault”. A 
special class of cross-talk faults is when a signal is connected to a wire that has a 
constant logical value (e.g., a power supply wire). These faults, where the affected 
signal always has a logical value of either 0 or 1 are called “stuck-at-0” or “stuck-
at-1” faults. The following problems refer to bit 0 of the Write Register input on the 
register file in Figure 4.21.

4.33.1 [10] <§§4.3, 4.4> Let us assume that processor testing is done by (1) 
filling the PC, registers, and data and instruction memories with some values (you 
can choose which values), (2) letting a single instruction execute, then (3) reading 
the PC, memories, and registers. These values are then examined to determine if 
a particular fault is present. Can you design a test (values for PC, memories, and 
registers) that would determine if there is a stuck-at-0 fault on this signal?

4.33.2 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1 for a stuck-at-1 fault. Can you 
use a single test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, 
explain why not.

4.33.3 [10] <§§4.3, 4.4> If we know that the processor has a stuck-at-1 fault on 
this signal, is the processor still usable? To be usable, we must be able to convert any 
program that executes on a normal RISC-V processor into a program that works 
on this processor. You can assume that there is enough free instruction memory 
and data memory to let you make the program longer and store additional data.
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4.33.4 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the fault to test for is 
whether the MemRead control signal becomes 0 if the branch control signal is 0, 
no fault otherwise.

4.33.5 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the fault to test for 
is whether the MemRead control signal becomes 1 if RegRd control signal is 1, 
no fault otherwise. Hint: This problem requires knowledge of operating systems. 
Consider what causes segmentation faults.

§4.1, page 240: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 243: false. Edge-triggered state elements make simultaneous reading and 
writing both possible and unambiguous.
§4.3, page 250: I. a. II. c.
§4.4, page 262: Yes, Branch and ALUOp0 are identical. In addition, you can use 
the flexibility of the don’t care bits to combine other signals together. ALUSrc and 
MemtoReg can be made the same by setting the two don’t care bits of MemtoReg 
to 1 and 0. ALUOp1 and MemtoReg can be made to be inverses of one another by 
setting the don’t care bit of MemtoReg to 1. You don’t need an inverter; simply use 
the other signal and flip the order of the inputs to the MemtoReg multiplexor!
§4.5, page 275: 1. Stall due to a load-use data hazard of the ld result. 2. Avoid 
stalling in the third instruction for the read-after-write data hazard on x11 by 
forwarding the add result. 3. It need not stall, even without forwarding.
§4.6, page 288: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 314: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 321: The first instruction, since it is logically executed before the others.
§4.10, page 334: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware.  
6. Hardware. 7. Both. 8. Hardware. 9. Both.
§4.12, page 344: First two are false and the last two are true.
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 5.1 Introduction

From the earliest days of computing, programmers have wanted unlimited 
amounts of fast memory. The topics in this chapter aid programmers by creating 
that illusion. Before we look at creating the illusion, let’s consider a simple analogy 
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical 
developments in computer hardware. You are sitting at a desk in a library with 
a collection of books that you have pulled from the shelves and are examining. 
You find that several of the important computers that you need to write about are 
described in the books you have, but there is nothing about the EDSAC. Therefore, 
you go back to the shelves and look for an additional book. You find a book on 
early British computers that covers the EDSAC. Once you have a good selection of 
books on the desk in front of you, there is a high probability that many of the topics 
you need can be found in them, and you may spend most of your time just using 
the books on the desk without returning to the shelves. Having several books on 
the desk in front of you saves time compared to having only one book there and 
constantly having to go back to the shelves to return it and take out another.

The same principle allows us to create the illusion of a large memory that we 
can access as fast as a very small memory. Just as you did not need to access all the 
books in the library at once with equal probability, a program does not access all of 
its code or data at once with equal probability. Otherwise, it would be impossible 
to make most memory accesses fast and still have large memory in computers, just 
as it would be impossible for you to fit all the library books on your desk and still 
find what you wanted quickly.

This principle of locality underlies both the way in which you did your work in 
the library and the way that programs operate. The principle of locality states that 
programs access a relatively small portion of their address space at any instant of 
time, just as you accessed a very small portion of the library’s collection. There are 
two different types of locality:

■	 Temporal locality	(locality in time): if an item is referenced, it will tend to be 
referenced again soon. If you recently brought a book to your desk to look at, 
you will probably need to look at it again soon.

■	 Spatial locality	 (locality in space): if an item is referenced, items whose 
addresses are close by will tend to be referenced soon. For example, when you 
brought out the book on early English computers to learn about the EDSAC, 
you also noticed that there was another book shelved next to it about early 
mechanical computers, so you likewise brought back that book and, later 
on, found something useful in that book. Libraries put books on the same 
topic together on the same shelves to increase spatial locality. We’ll see how 
memory hierarchies use spatial locality a little later in this chapter.

temporal locality The 
locality principle stating 
that if a data location is 
referenced then it will 
tend to be referenced 
again soon.

spatial locality The 
locality principle stating 
that if a data location is 
referenced, data locations 
with nearby addresses will 
tend to be referenced soon.
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Just as accesses to books on the desk naturally exhibit locality, locality in programs 
arises from simple and natural program structures. For example, most programs 
contain loops, so instructions and data are likely to be accessed repeatedly, showing 
large temporal locality. Since instructions are normally accessed sequentially, 
programs also show high spatial locality. Accesses to data also exhibit a natural 
spatial locality. For example, sequential accesses to elements of an array or a record 
will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
levels of memory with different speeds and sizes. The faster memories are more 
expensive per bit than the slower memories and thus are smaller.

Figure 5.1 shows the faster memory is close to the processor and the slower, 
less expensive memory is below it. The goal is to present the user with as much 
memory as is available in the cheapest technology, while providing access at the 
speed offered by the fastest memory.

The data are similarly hierarchical: a level closer to the processor is generally a 
subset of any level further away, and all the data are stored at the lowest level. By 
analogy, the books on your desk form a subset of the library you are working in, 
which is in turn a subset of all the libraries on campus. Furthermore, as we move 
away from the processor, the levels take progressively longer to access, just as we 
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data are copied between 
only two adjacent levels at a time, so we can focus our attention on just two levels. 

memory hierarchy  
A structure that uses 
multiple levels of 
memories; as the distance 
from the processor 
increases, the size of the 
memories and the access 
time both increase.

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)
Current

technology

Highest

Lowest

SRAM

DRAM

Magnetic disk

Processor

Memory

Memory

Memory

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as 
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can 
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal 
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see 
Section 5.2.
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The upper level—the one closer to the processor—is smaller and faster than the 
lower level, since the upper level uses technology that is more expensive. Figure 
5.2 shows that the minimum unit of information that can be either present or not 
present in the two-level hierarchy is called a block or a line; in our library analogy, 
a block of information is one book.

If the data requested by the processor appear in some block in the upper level, 
this is called a hit (analogous to your finding the information in one of the books on 
your desk). If the data are not found in the upper level, the request is called a miss. 
The lower level in the hierarchy is then accessed to retrieve the block containing the 
requested data. (Continuing our analogy, you go from your desk to the shelves to 
find the desired book.) The hit rate, or hit ratio, is the fraction of memory accesses 
found in the upper level; it is often used as a measure of the performance of the 
memory hierarchy. The miss rate (1−hit rate) is the fraction of memory accesses 
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time 
to service hits and misses is important. Hit time is the time to access the upper level 
of the memory hierarchy, which includes the time needed to determine whether 
the access is a hit or a miss (that is, the time needed to look through the books  
on the desk). The miss penalty is the time to replace a block in the upper level with 
the corresponding block from the lower level, plus the time to deliver this block  
to the processor (or the time to get another book from the shelves and place it on the  
desk). Because the upper level is smaller and built using faster memory parts,  
the hit time will be much smaller than the time to access the next level in the 
hierarchy, which is the major component of the miss penalty. (The time to examine 
the books on the desk is much smaller than the time to get up and get a new book 
from the shelves.)

block (or line) The 
minimum unit of 
information that can 
be either present or not 
present in a cache.

hit rate The fraction of 
memory accesses found 
in a level of the memory 
hierarchy.

miss rate The fraction 
of memory accesses not 
found in a level of the 
memory hierarchy.

hit time The time 
required to access a level 
of the memory hierarchy, 
including the time needed 
to determine whether the 
access is a hit or a miss.

miss penalty The time 
required to fetch a block 
into a level of the memory 
hierarchy from the lower 
level, including the time 
to access the block, 
transmit it from one  
level to the other, insert 
it in the level that 
experienced the miss,  
and then pass the block  
to the requestor.

Processor

Data are transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called a block or 
a line. Usually we transfer an entire block when we copy something between levels.
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As we will see in this chapter, the concepts used to build memory systems affect 
many other aspects of a computer, including how the operating system manages 
memory and I/O, how compilers generate code, and even how applications use 
the computer. Of course, because all programs spend much of their time accessing 
memory, the memory system is necessarily a major factor in determining 
performance. The reliance on memory hierarchies to achieve performance 
has meant that programmers, who used to be able to think of memory as a flat, 
random access storage device, now need to understand that memory is a hierarchy 
to get good performance. We show how important this understanding is in later 
examples, such as Figure 5.18 on page 400, and Section 5.14, which shows how to 
double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote 
a great deal of attention to these systems and develop sophisticated mechanisms for 
improving the performance of the memory system. In this chapter, we discuss the 
major conceptual ideas, although we use many simplifications and abstractions to keep 
the material manageable in length and complexity.

Which of the following statements are generally true?

1. Memory hierarchies take advantage of temporal locality.
2. On a read, the value returned depends on which blocks are in the cache.
3. Most of the cost of the memory hierarchy is at the highest level.
4. Most of the capacity of the memory hierarchy is at the lowest level.

Programs exhibit both temporal locality, the tendency to reuse recently 
accessed data items, and spatial locality, the tendency to reference data 
items that are close to other recently accessed items. Memory hierarchies 
take advantage of temporal locality by keeping more recently accessed 
data items closer to the processor. Memory hierarchies take advantage of 
spatial locality by moving blocks consisting of multiple contiguous words 
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster 
memory technologies close to the processor. Thus, accesses that hit in the 
highest level of the hierarchy can be processed quickly. Accesses that miss 
go to lower levels of the hierarchy, which are larger but slower. If the hit 
rate is high enough, the memory hierarchy has an effective access time 
close to that of the highest (and fastest) level and a size equal to that of the 
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data 
cannot be present in level i unless they are also present in level i + 1.

The BIG 
Picture

Check  
Yourself
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 5.2 Memory Technologies

There are four primary technologies used today in memory hierarchies. Main 
memory is implemented from DRAM (dynamic random access memory), while 
levels closer to the processor (caches) use SRAM (static random access memory). 
DRAM is less costly per bit than SRAM, although it is substantially slower. 
The price difference arises because DRAM uses significantly less area per bit of 
memory, and DRAMs thus have larger capacity for the same amount of silicon; the 
speed difference arises from several factors described in Section A.9 of Appendix A. 
The third technology is flash memory. This nonvolatile memory is the secondary 
memory in Personal Mobile Devices. The fourth technology, used to implement 
the largest and slowest level in the hierarchy in servers, is magnetic disk. The access 
time and price per bit vary widely among these technologies, as the table below 
shows, using typical values for 2012.

Memory technology Typical access time $ per GiB in 2012

SRAM semiconductor memory 0.5–2.5 ns $500–$1000

DRAM semiconductor memory 50–70 ns $10–$20

Flash semiconductor memory 5,000–50,000 ns $0.75–$1.00

Magnetic disk 5,000,000–20,000,000 ns $0.05–$0.10

We describe each memory technology in the remainder of this section.

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance 
from the processor increases, so does the size. This structure, with the appropriate operating 
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the 
hierarchy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter. 
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a 
local area network as the next levels of the hierarchy.
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SRAM Technology
SRAMs are simply integrated circuits that are memory arrays with (usually) a 
single access port that can provide either a read or a write. SRAMs have a fixed 
access time to any datum, though the read and write access times may differ.

SRAMs don’t need to refresh and so the access time is very close to the cycle 
time. SRAMs typically use six to eight transistors per bit to prevent the information 
from being disturbed when read. SRAM needs only minimal power to retain the 
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either 
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, 
all levels of caches are integrated onto the processor chip, so the market for 
independent SRAM chips has nearly evaporated.

DRAM Technology
In a SRAM, as long as power is applied, the value can be kept indefinitely. In a 
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. 
A single transistor is then used to access this stored charge, either to read the value 
or to overwrite the charge stored there. Because DRAMs use only one transistor per 
bit of storage, they are much denser and cheaper per bit than SRAM. As DRAMs 
store the charge on a capacitor, it cannot be kept indefinitely and must periodically 
be refreshed. That is why this memory structure is called dynamic, in contrast to 
the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge 
can be kept for several milliseconds. If every bit had to be read out of the DRAM 
and then written back individually, we would constantly be refreshing the DRAM, 
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding 
structure, and this allows us to refresh an entire row (which shares a word line) 
with a read cycle followed immediately by a write cycle.

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows 
how the density, cost, and access time of DRAMs have changed over the years.

The row organization that helps with refresh also helps with performance. To 
improve performance, DRAMs buffer rows for repeated access. The buffer acts 
like an SRAM; by changing the address, random bits can be accessed in the buffer 
until the next row access. This capability improves the access time significantly, 
since the access time to bits in the row is much lower. Making the chip wider also 
improves the memory bandwidth of the chip. When the row is in the buffer, it 
can be transferred by successive addresses at whatever the width of the DRAM is 
(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address 
within the buffer.

To improve the interface to processors further, DRAMs added clocks and are 
properly called synchronous DRAMs or SDRAMs. The advantage of SDRAMs 
is that the use of a clock eliminates the time for the memory and processor to 
synchronize. The speed advantage of synchronous DRAMs comes from the ability 
to transfer the bits in the burst without having to specify additional address bits. 
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Instead, the clock transfers the successive bits in a burst. The fastest version is called 
Double Data Rate (DDR) SDRAM. The name means data transfers on both the 
rising and falling edge of the clock, thereby getting twice as much bandwidth as you 
might expect based on the clock rate and the data width. The latest version of this 
technology is called DDR4. A DDR4-3200 DRAM can do 3200 million transfers 
per second, which means it has a 1600-MHz clock.

Sustaining that much bandwidth requires clever organization inside the DRAM. 
Instead of just a faster row buffer, the DRAM can be internally organized to read or 

Column

Rd/Wr

Pre

Act

Row

Bank

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically 
four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a 
bank. A row address is sent with an Act (activate), which causes the row to transfer to a buffer. When the row 
is in the buffer, it can be transferred by successive column addresses at whatever the width of the DRAM is 
(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command, 
as well as block transfers, is synchronized with a clock.

Year introduced Chip size $ per GiB
Total access time to 
a new row/column

Average column
access time to 
existing row  

1980 64 Kibibit $1,500,000 250 ns 150 ns

1983 256 Kibibit $500,000 185 ns 100 ns

1985 1 Mebibit $200,000 135 ns 40 ns

1989 4 Mebibit $50,000 110 ns 40 ns

1992 16 Mebibit $15,000 90 ns 30 ns

1996 64 Mebibit $10,000 60 ns 12 ns

1998 128 Mebibit $4,000 60 ns 10 ns

2000 256 Mebibit $1,000 55 ns 7 ns

2004 512 Mebibit $250 50 ns 5 ns

2007 1 Gibibit $50 45 ns 1.25 ns

2010 2 Gibibit

4 Gibibit

$30 40 ns 1 ns

2012 $1 35 ns 0.8 ns

FIGURE 5.5 DRAM size increased by multiples of four approximately once every 3 years 
until 1996, and thereafter considerably slower. The improvements in access time have been slower 
but continuous, and cost roughly tracks density improvements, although cost is often affected by other issues, 
such as availability and demand. The cost per gibibyte is not adjusted for inflation.
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write from multiple banks, with each having its own row buffer. Sending an address 
to several banks permits them all to read or write simultaneously. For example, 
with four banks, there is just one access time and then accesses rotate between 
the four banks to supply four times the bandwidth. This rotating access scheme is 
called address interleaving.

Although personal mobile devices like the iPad (see Chapter 1) use individual 
DRAMs, memory for servers is commonly sold on small boards called dual inline 
memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are 
normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-
3200 SDRAMs could transfer at 8 × 3200 = 25,600 megabytes per second. Such 
DIMMs are named after their bandwidth: PC25600. Since a DIMM can have so 
many DRAM chips that only a portion of them are used for a particular transfer, we 
need a term to refer to the subset of chips in a DIMM that share common address 
lines. To avoid confusion with the internal DRAM names of row and banks, we use 
the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the 
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of 
long vector operations. They have no temporal locality and they access arrays that are 
larger than the cache of the computer being tested.

Flash Memory
Flash memory is a type of electrically erasable programmable read-only memory 
(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out 
flash memory bits. To cope with such limits, most flash products include a controller 
to spread the writes by remapping blocks that have been written many times to less 
trodden blocks. This technique is called wear leveling. With wear leveling, personal 
mobile devices are very unlikely to exceed the write limits in the flash. Such wear 
leveling lowers the potential performance of flash, but it is needed unless higher- 
level software monitors block wear. Flash controllers that perform wear leveling can 
also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory
As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which 
rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal platters are 
covered with magnetic recording material on both sides, similar to the material found 
on a cassette or videotape. To read and write information on a hard disk, a movable arm 
containing a small electromagnetic coil called a read-write head is located just above 
each surface. The entire drive is permanently sealed to control the environment inside 
the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

Each disk surface is divided into concentric circles, called tracks. There are 
typically tens of thousands of tracks per surface. Each track is in turn divided into 

track One of thousands 
of concentric circles that 
make up the surface of a 
magnetic disk.
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sectors that contain the information; each track may have thousands of sectors. 
Sectors are typically 512 to 4096 bytes in size. The sequence recorded on the 
magnetic media is a sector number, a gap, the information for that sector including 
error correction code (see Section 5.5), a gap, the sector number of the next sector, 
and so on.

The disk heads for each surface are connected together and move in conjunction, 
so that every head is over the same track of every surface. The term cylinder is used 
to refer to all the tracks under the heads at a given point on all surfaces.

sector One of the 
segments that make up a 
track on a magnetic disk; 
a sector is the smallest 
amount of information 
that is read or written on 
a disk.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. The diameter of 
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage 
process. The first step is to position the head over the proper track. This operation is 
called a seek, and the time to move the head to the desired track is called the seek time.

Disk manufacturers report minimum seek time, maximum seek time, and average 
seek time in their manuals. The first two are easy to measure, but the average is open to 
wide interpretation because it depends on the seek distance. The industry calculates 
average seek time as the sum of the time for all possible seeks divided by the number 
of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but, 
depending on the application and scheduling of disk requests, the actual average seek 
time may be only 25% to 33% of the advertised number because of the locality of disk 

seek The process of 
positioning a read/write 
head over the proper 
track on a disk.
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references. This locality arises both because of successive accesses to the same file and 
because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector 
to rotate under the read/write head. This time is called the rotational latency or 
rotational delay. The average latency to the desired information is halfway around 
the disk. Disks rotate at 5400 RPM to 15,000 RPM. The average rotational latency 
at 5400 RPM is

Average rotational latency  rotation
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 rotati
= =
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The last component of a disk access, transfer time, is the time to transfer a block 
of bits. The transfer time is a function of the sector size, the rotation speed, and the 
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores 
sectors as they are passed over; transfer rates from the cache are typically higher, 
and were up to 750 MB/sec (6 Gbit/sec) in 2012.

Alas, where block numbers are located is no longer intuitive. The assumptions of 
the sector-track-cylinder model above are that nearby blocks are on the same track, 
blocks in the same cylinder take less time to access since there is no seek time, 
and some tracks are closer than others. The reason for the change was the raising 
of the level of the disk interfaces. To speed-up sequential transfers, these higher-
level interfaces organize disks more like tapes than like random access devices. 
The logical blocks are ordered in serpentine fashion across a single surface, trying 
to capture all the sectors that are recorded at the same bit density to try to get best 
performance. Hence, sequential blocks may be on different tracks.

In summary, the two primary differences between magnetic disks and 
semiconductor memory technologies are that disks have a slower access time because 
they are mechanical devices—flash is 1000 times as fast and DRAM is 100,000 times 
as fast—yet they are cheaper per bit because they have very high storage capacity at a 
modest cost—disks are 10 to 100 times cheaper. Magnetic disks are nonvolatile like 
flash, but unlike flash there is no write wear-out problem. However, flash is much 
more rugged and hence a better match to the jostling inherent in personal mobile 
devices.

 5.3 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things (books) 
that we needed to examine. Cache was the name chosen to represent the level of the 
memory hierarchy between the processor and main memory in the first commercial 
computer to have this extra level. The memories in the datapath in Chapter 4 are 

rotational latency Also 
called rotational delay. 
The time required for 
the desired sector of a 
disk to rotate under the 
read/write head; usually 
assumed to be half the 
rotation time.

Cache: a safe place 
for hiding or storing 
things.
Webster’s New World 
Dictionary of the 
American Language, 
Third College Edition, 
1988
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simply replaced by caches. Today, although this remains the dominant use of the 
word cache, the term is also used to refer to any storage managed to take advantage of 
locality of access. Caches first appeared in research computers in the early 1960s and 
in production computers later in that same decade; every general-purpose computer 
built now from servers to low-power embedded processors, includes caches.

In this section, we begin by looking at a very simple cache in which the processor 
requests are each one word, and the blocks also consist of a single word. (Readers 
already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows 
such a simple cache, before and after requesting a data item that is not initially in 
the cache. Before the request, the cache contains a collection of recent references 
X1, X2, …, Xn−1, and the processor requests a word Xn that is not in the cache. This 
request results in a miss, and the word Xn is brought from memory into the cache.

In looking at the scenario in Figure 5.7, there are two questions to answer: How 
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The 
answers are related. If each word can go in exactly one place in the cache, then it 
is straightforward to find the word if it is in the cache. The simplest way to assign 
a location in the cache for each word in memory is to assign the cache location 
based on the address of the word in memory. This cache structure is called direct 
mapped, since each memory location is mapped directly to exactly one location in 
the cache. The typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use 
this mapping to find a block:

( )Block address modulo (Number of blocks in the cache) 

If the number of entries in the cache is a power of 2, then modulo can be 
computed simply by using the low-order log2 (cache size in blocks) bits of the 
address. Thus, an 8-block cache uses the three lowest bits (8 = 23) of the block 
address. For example, Figure 5.8 shows how the memory addresses between 1ten 
(00001two) and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a 
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of different 
memory locations, how do we know whether the data in the cache corresponds 
to a requested word? That is, how do we know whether a requested word is in the 
cache or not? We answer this question by adding a set of tags to the cache. The tags 
contain the address information required to identify whether a word in the cache 
corresponds to the requested word. The tag needs just to contain the upper portion 
of the address, corresponding to the bits that are not used as an index into the cache. 
For example, in Figure 5.8 we need only have the upper two of the five address 
bits in the tag, since the lower 3-bit index field of the address selects the block. 
Architects omit the index bits because they are redundant, since by definition, the 
index field of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid 
information. For instance, when a processor starts up, the cache does not have good 
data, and the tag fields will be meaningless. Even after executing many instructions, 

direct-mapped cache  
A cache structure in 
which each memory 
location is mapped to 
exactly one location in the 
cache.

tag A field in a table used 
for a memory hierarchy 
that contains the address 
information required 
to identify whether the 
associated block in the 
hierarchy corresponds to 
a requested word.
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X1

Xn – 2

Xn – 1

X2

X3

a. Before the reference to Xn

X4

X1

Xn – 2

Xn – 1

X2

X3

b. After the reference to Xn

Xn

FIGURE 5.7 The cache just before and just after a reference to a word Xn that is not 
initially in the cache. This reference causes a miss that forces the cache to fetch Xn from memory and 
insert it into the cache.
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FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory 
words between 0 and 31 that map to the same cache locations. Because there are eight words in 
the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order log2(8) =  
3 bits are used as the cache index. Thus, addresses 00001two, 01001two, 10001two, and 11001two all map to entry 
001two of the cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two of  
the cache.
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some of the cache entries may still be empty, as in Figure 5.7. Thus, we need to 
know that the tag should be ignored for such entries. The most common method is 
to add a valid bit to indicate whether an entry contains a valid address. If the bit is 
not set, there cannot be a match for this block.

For the rest of this section, we will focus on explaining how a cache deals with 
reads. In general, handling reads is a little simpler than handling writes, since reads 
do not have to change the contents of the cache. After seeing the basics of how 
reads work and how cache misses can be handled, we’ll examine the cache designs 
for real computers and detail how these caches handle writes.

valid bit A field in 
the tables of a memory 
hierarchy that indicates 
that the associated block 
in the hierarchy contains 
valid data.

Caching is perhaps the most important example of the big idea of 
prediction. It relies on the principle of locality to try to find the 
desired data in the higher levels of the memory hierarchy, and provides 
mechanisms to ensure that when the prediction is wrong it finds and 
uses the proper data from the lower levels of the memory hierarchy. The 
hit rates of the cache prediction on modern computers are often above 
95% (see Figure 5.46).

The BIG 
Picture

Accessing a Cache
Below is a sequence of nine memory references to an empty eight-block cache, 
including the action for each reference. Figure 5.9 shows how the contents of the 
cache change on each miss. Since there are eight blocks in the cache, the low-order 
3 bits of an address give the block number:

Decimal address
of reference

Binary address
of reference

Hit or miss
in cache

Assigned cache block
(where found or placed)

22 10110two miss (5.9b) (10110two mod 8) = 110two

26 11010two miss (5.9c) (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (5.9d) (10000two mod 8) = 000two

3 00011two miss (5.9e) (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (5.9f) (10010two mod 8) = 010two

16 10000two hit (10000two mod 8) = 000two

Since the cache is empty, several of the first references are misses; the caption of 
Figure 5.9 describes the actions for each memory reference. On the eighth reference 
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Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory (10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Data Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag fields 
shown in binary for the sequence of addresses on page 379. The cache is initially empty, with all valid bits (V entry in cache) 
turned off (N). The processor requests the following addresses: 10110two (miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two (miss), 
00011two (miss), 10000two (hit), 10010two (miss), and 10000two (hit). The figures show the cache contents after each miss in the sequence has been 
handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must be replaced, and a reference to 11010two will cause 
a subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in cache block i with 
tag field j for this cache is j×8+ i, or equivalently the concatenation of the tag field j and the index i. For example, in cache f above, index 010two 
has tag 10two and corresponds to address 10010two.
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we have conflicting demands for a block. The word at address 18 (10010two) should 
be brought into cache block 2 (010two). Hence, it must replace the word at address 
26 (11010two), which is already in cache block 2 (010two). This behavior allows a 
cache to take advantage of temporal locality: recently referenced words replace less 
recently referenced words.

This situation is directly analogous to needing a book from the shelves and 
having no more space on your desk—some book already on your desk must be 
returned to the shelves. In a direct-mapped cache, there is only one place to put the 
newly requested item and hence just one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits 
of an address can be used to find the unique cache entry to which the address could 
map. Figure 5.10 shows how a referenced address is divided into

■	 A tag field, which is used to compare with the value of the tag field of the 
cache

■	 A cache index, which is used to select the block

The index of a cache block, together with the tag contents of that block, uniquely 
specifies the memory address of the word contained in the cache block. Because 
the index field is used as an address to reference the cache, and because an n-bit 
field has 2n values, the total number of entries in a direct-mapped cache must be a 
power of 2. Since words are aligned to multiples of four bytes, the least significant 
two bits of every address specify a byte within a word. Hence, if the words are 
aligned in memory, the least significant two bits can be ignored when selecting a 
word in the block. For this chapter, we’ll assume that data are aligned in memory, 
and discuss how to handle unaligned cache accesses in an Elaboration.

The total number of bits needed for a cache is a function of the cache size and 
the address size, because the cache includes both the storage for the data and the 
tags. The size of the block above was one word (4 bytes), but normally it is several. 
For the following situation:

■	 64-bit addresses

■	 A direct-mapped cache

■	 The cache size is 2n blocks, so n bits are used for the index

■	 The block size is 2m words (2m+2 bytes), so m bits are used for the word within 
the block, and two bits are used for the byte part of the address

The size of the tag field is

64 2− + +( ).n m

The total number of bits in a direct-mapped cache is

2n × + + )( .block size tag size size
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Since the block size is 2m words (2m+5 bits), and we need 1 bit for the valid field, the 
number of bits in such a cache is

2 2 32 64 2 1 2 2 32 63n m n mn m n m× × + − − − + = × × + − −( ( ) ) ( ).

Although this is the actual size in bits, the naming convention is to exclude the size 
of the tag and valid field and to count only the size of the data. Thus, the cache in 
Figure 5.10 is called a 4 KiB cache.

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3252

Index

0

1

2

1023

1022

1021

=

Index

52 10

Byte
offset

63 62 13 12 11 2   1 0

FIGURE 5.10 For this cache, the lower portion of the address is used to select a cache 
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KiB. Unless noted 
otherwise, we assume 64-bit addresses in this chapter. The tag from the cache is compared against the upper 
portion of the address to determine whether the entry in the cache corresponds to the requested address. 
Because the cache has 210 (or 1024) words and a block size of one word, 10 bits are used to index the cache, 
leaving 64 − 10 − 2 = 52 bits to be compared against the tag. If the tag and upper 52 bits of the address are 
equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor. 
Otherwise, a miss occurs.
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Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of 
data and four-word blocks, assuming a 64-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of four words (22), 
there are 1024 (210) blocks. Each block has 4 × 32 or 128 bits of data plus a tag, 
which is 64 − 10 − 2 − 2 bits, plus a valid bit. Thus, the complete cache size is

2 4 32 64 10 2 2 1 2 179 17910 10× × + − − − + = × =( ( ) ) Kibibits

or 22.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the 
cache is about 1.4 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 
number does byte address 1200 map?

We saw the formula on page 376. The block is given by

( )Block address  modulo (Number of  blocks in the cache)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address
Bytes per block

Bytes per block










 ×

EXAMPLE

EXAMPLE

ANSWER

ANSWER



 5.3 The Basics of Caches 383

and

Byte address
Bytes per block

Bytes per block Bytes per













× + ( bblock −1)

Thus, with 16 bytes per block, byte address 1200 is block address

1200
16

75











=

which maps to cache block number (75 modulo 64) = 11. In fact, this block 
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows, 
increasing the block size usually decreases the miss rate. The miss rate may go up 
eventually if the block size becomes a significant fraction of the cache size, because 
the number of blocks that can be held in the cache will become small, and there will 
be a great deal of competition for those blocks. As a result, a block will be bumped 
out of the cache before many of its words are accessed. Stated alternatively, spatial 
locality among the words in a block decreases with a very large block; consequently, 
the benefits to the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the 
cost of a miss rises. The miss penalty is determined by the time required to fetch 

4K

16

10%

16K

64K

256K

5%

0%
32 64 128 256

Miss
rate

Block size

FIGURE 5.11 Miss rate versus block size. Note that the miss rate actually goes up if the block size 
is too large relative to the cache size. Each line represents a cache of different size. (This figure is independent 
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were 
included, so these data are based on SPEC92.
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the block from the next lower level of the hierarchy and load it into the cache. The 
time to fetch the block has two parts: the latency to the first word and the transfer 
time for the rest of the block. Clearly, unless we change the memory system, the 
transfer time—and hence the miss penalty—will likely increase as the block size 
expands. Furthermore, the improvement in the miss rate starts to decrease as the 
blocks become larger. The result is that the increase in the miss penalty overwhelms 
the decrease in the miss rate for blocks that are too large, and cache performance 
thus decreases. Of course, if we design the memory to transfer larger blocks more 
efficiently, we can increase the block size and obtain further improvements in cache 
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component 
of the miss penalty for large blocks, we may be able to hide some of the transfer time 
so that the miss penalty is effectively smaller. The easiest method for doing this, called 
early restart, is simply to resume execution as soon as the requested word of the block 
is returned, rather than wait for the entire block. Many processors use this technique 
for instruction access, where it works best. Instruction accesses are largely sequential, 
so if the memory system can deliver a word every clock cycle, the processor may be 
able to restart operation when the requested word is returned, with the memory system 
delivering new instruction words just in time. This technique is usually less effective for 
data caches because it is likely that the words will be requested from the block in a 
less predictable way, and the probability that the processor will need another word from 
a different cache block before the transfer completes is high. If the processor cannot 
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested 
word is transferred from the memory to the cache first. The remainder of the block 
is then transferred, starting with the address after the requested word and wrapping 
around to the beginning of the block. This technique, called requested word first or 
critical word first, can be slightly faster than early restart, but it is limited by the same 
properties that restrain early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with 
cache misses. (We describe a cache controller in detail in Section 5.9.) The control 
unit must detect a miss and process the miss by fetching the requested data from 
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the 
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however, 
require some extra work. The cache miss handling is done in collaboration with 
the processor control unit and with a separate controller that initiates the memory 
access and refills the cache. The processing of a cache miss creates a pipeline stall 
(Chapter 4) in contrast to an exception or interrupt, which would require saving the 
state of all registers. For a cache miss, we can stall the entire processor, essentially 
freezing the contents of the temporary and programmer-visible registers, while we 
wait for memory. More sophisticated out-of-order processors can allow execution 

cache miss A request for 
data from the cache that 
cannot be filled because 
the data are not present in 
the cache.
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of instructions while waiting for a cache miss, but we’ll assume in-order processors 
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same 
approach can be easily extended to handle data misses. If an instruction access 
results in a miss, then the content of the Instruction register is invalid. To get the 
proper instruction into the cache, we must be able to tell the lower level in the 
memory hierarchy to perform a read. Since the program counter is incremented 
in the first clock cycle of execution, the address of the instruction that generates 
an instruction cache miss is equal to the value of the program counter minus 4.  
Once we have the address, we need to instruct the main memory to perform 
a read. We wait for the memory to respond (since the access will take multiple 
clock cycles), and then write the words containing the desired instruction into  
the cache.

We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value to the memory.

2. Instruct main memory to perform a read and wait for the memory to 
complete its access.

3. Write the cache entry, putting the data from memory in the data portion of 
the entry, writing the upper bits of the address (from the ALU) into the tag 
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the 
instruction, this time finding it in the cache.

The control of the cache on a data access is essentially identical: on a miss, we 
simply stall the processor until the memory responds with the data.

Handling Writes
Writes work somewhat differently. Suppose on a store instruction, we wrote the 
data into only the data cache (without changing main memory); then, after the 
write into the cache, memory would have a different value from that in the cache. 
In such a case, the cache and memory are said to be inconsistent. The simplest way 
to keep the main memory and the cache consistent is always to write the data into 
both the memory and the cache. This scheme is called write-through.

The other key aspect of writes is what occurs on a write miss. We first fetch the 
words of the block from memory. After the block is fetched and placed into the 
cache, we can overwrite the word that caused the miss into the cache block. We also 
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide good 
performance. With a write-through scheme, every write causes the data to be 
written to main memory. These writes will take a long time, likely at least 100 
processor clock cycles, and could slow down the processor considerably. For 
example, suppose 10% of the instructions are stores. If the CPI without cache 

write-through  
A scheme in which writes 
always update both the 
cache and the next lower 
level of the memory 
hierarchy, ensuring that 
data are always consistent 
between the two.
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misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of  
1.0 + 100 × 10% = 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the 
data while they are waiting to be written to memory. After writing the data into the 
cache and into the write buffer, the processor can continue execution. When a write 
to main memory completes, the entry in the write buffer is freed. If the write buffer 
is full when the processor reaches a write, the processor must stall until there is an 
empty position in the write buffer. Of course, if the rate at which the memory can 
complete writes is less than the rate at which the processor is generating writes, no 
amount of buffering can help, because writes are being generated faster than the 
memory system can accept them.

The rate at which writes are generated may also be less than the rate at which the 
memory can accept them, and yet stalls may still occur. This can happen when the 
writes occur in bursts. To reduce the occurrence of such stalls, processors usually 
increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back. In a 
write-back scheme, when a write occurs, the new value is written only to the block 
in the cache. The modified block is written to the lower level of the hierarchy when 
it is replaced. Write-back schemes can improve performance, especially when 
processors can generate writes as fast or faster than the writes can be handled by 
main memory; a write-back scheme is, however, more complex to implement than 
write-through.

In the rest of this section, we describe caches from real processors, and we 
examine how they handle both reads and writes. In Section 5.8, we will describe 
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present 
for reads. Here we discuss two of them: the policy on write misses and efficient 
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate 
a block in the cache, called write allocate. The block is fetched from memory and then  
the appropriate portion of the block is overwritten. An alternative strategy is to update the  
portion of the block in memory but not put it in the cache, called no write allocate.  
The motivation is that sometimes programs write entire blocks of data, such as when the  
operating system zeros a page of memory. In such cases, the fetch associated with  
the initial write miss may be unnecessary. Some computers allow the write allocation 
policy to be changed on a per-page basis.

Actually implementing stores efficiently in a cache that uses a write-back strategy is 
more complex than in a write-through cache. A write-through cache can write the data 
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 
cache is write-through, the overwriting of the block in the cache is not catastrophic, since 
memory has the correct value. In a write-back cache, we must first write the block back 
to memory if the data in the cache are modified and we have a cache miss. If we simply 
overwrote the block on a store instruction before we knew whether the store had hit in 
the cache (as we could for a write-through cache), we would destroy the contents of the 
block, which is not backed up in the next lower level of the memory hierarchy.

write buffer A queue 
that holds data while the 
data are waiting to be 
written to memory.

write-back A scheme 
that handles writes by 
updating values only to 
the block in the cache, 
then writing the modified 
block to the lower level 
of the hierarchy when the 
block is replaced.
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In a write-back cache, because we cannot overwrite the block, stores either require 
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 
require a write buffer to hold that data—effectively allowing the store to take only one 
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 
and places the data in the store buffer during the normal cache access cycle. Assuming 
a cache hit, the new data are written from the store buffer into the cache on the next 
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle. 
We read the tag and write the data portion of the selected block. If the tag matches 
the address of the block being written, the processor can continue normally, since the 
correct block has been updated. If the tag does not match, the processor generates a 
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss 
penalty when a miss replaces a modified block. In such a case, the modified block is 
moved to a write-back buffer associated with the cache while the requested block is read 
from memory. The write-back buffer is later written back to memory. Assuming another 
miss does not occur immediately, this technique halves the miss penalty when a dirty 
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor
The Intrinsity FastMATH is an embedded microprocessor that uses the MIPS 
architecture and a simple cache implementation. Near the end of the chapter, we 
will examine the more complex cache designs of ARM and Intel microprocessors, 
but we start with this simple, yet real, example for pedagogical reasons. Figure 
5.12 shows the organization of the Intrinsity FastMATH data cache. Note that the 
address size for this computer is just 32 bits, not 64 as in the rest of the book.

This processor has a 12-stage pipeline. When operating at peak speed, the 
processor can request both an instruction word and a data word on every clock. To 
satisfy the demands of the pipeline without stalling, separate instruction and data 
caches are used. Each cache is 16 KiB, or 4096 words, with 16-word blocks.

Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, we need separate control signals to read and write 
each cache. (Remember that we need to update the instruction cache when a miss 
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from 
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines. 
Since there are 16 words in the desired block, we need to select the right one. 
A block index field is used to control the multiplexor (shown at the bottom 
of the figure), which selects the requested word from the 16 words in the 
indexed block.
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3. If the cache signals miss, we send the address to the main memory. When 
the memory returns with the data, we write it into the cache and then read it 
to fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back, 
leaving it up to the operating system to decide which strategy to use for an 
application. It has a one-entry write buffer.

What cache miss rates are attained with a cache structure like that used by the 
Intrinsity FastMATH? Figure 5.13 shows the miss rates for the instruction and 
data caches. The combined miss rate is the effective miss rate per reference for 
each program after accounting for the differing frequency of instruction and data 
accesses.

Address (showing bit positions)

Data
Hit

Data

Tag

V Tag

32

18

=

Index

18 8 Byte
offset

31 14 13 2 1 06 5

4

Block offset

256
entries

512 bits18 bits

Mux

3232 32

FIGURE 5.12 The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. Note that 
the address size for this computer is just 32 bits. The tag field is 18 bits wide and the index field is 8 bits wide, while a 4-bit field (bits 5–2) is 
used to index the block and select the word from the block using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor, caches use a 
separate large RAM for the data and a smaller RAM for the tags, with the block offset supplying the extra address bits for the large data RAM. 
In this case, the large RAM is 32 bits wide and must have 16 times as many words as blocks in the cache.
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Although miss rate is an important characteristic of cache designs, the ultimate 
measure will be the effect of the memory system on program execution time; we’ll 
see how miss rate and execution time are related shortly.

Elaboration: A combined cache with a total size equal to the sum of the two split 
caches will usually have a better hit rate. This higher rate occurs because the combined 
cache does not rigidly divide the number of entries that may be used by instructions 
from those that may be used by data. Nonetheless, almost all processors today use 
split instruction and data caches to increase cache bandwidth to match what modern 
pipelines expect. (There may also be fewer conflict misses; see Section 5.8.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH 
processor, and for a combined cache whose size is equal to the sum of the two caches:

■	 Total cache size: 32 KiB
■	 Split cache effective miss rate: 3.24%
■	 Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction 

and data access simultaneously, easily overcomes the disadvantage of a slightly 
increased miss rate. This observation cautions us that we cannot use miss rate as the 
sole measure of cache performance, as Section 5.4 shows.

Summary
We began the previous section by examining the simplest of caches: a direct-mapped 
cache with a one-word block. In such a cache, both hits and misses are simple, since 
a word can go in exactly one location and there is a separate tag for every word. To 
keep the cache and memory consistent, a write-through scheme can be used, so 
that every write into the cache also causes memory to be updated. The alternative 
to write-through is a write-back scheme that copies a block back to memory when 
it is replaced; we’ll discuss this scheme further in upcoming sections.

split cache A scheme 
in which a level of the 
memory hierarchy 
is composed of two 
independent caches that 
operate in parallel with 
each other, with one 
handling instructions and 
one handling data.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.13 Approximate instruction and data miss rates for the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks. The combined miss rate is the effective miss rate seen 
for the combination of the 16 KiB instruction cache and 16 KiB data cache. It is obtained by weighting the 
instruction and data individual miss rates by the frequency of instruction and data references.
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To take advantage of spatial locality, a cache must have a block size larger than 
one word. The use of a bigger block decreases the miss rate and improves the 
efficiency of the cache by reducing the amount of tag storage relative to the amount 
of data storage in the cache. Although a larger block size decreases the miss rate, it 
can also increase the miss penalty. If the miss penalty increased linearly with the 
block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to 
transfer cache blocks more efficiently. Common methods for increasing bandwidth 
external to the DRAM are making the memory wider and interleaving. DRAM 
designers have steadily improved the interface between the processor and memory 
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 
block sizes.

The speed of the memory system affects the designer’s decision on the size of  
the cache block. Which of the following cache designer guidelines is generally 
valid?

1. The shorter the memory latency, the smaller the cache block

2. The shorter the memory latency, the larger the cache block

3. The higher the memory bandwidth, the smaller the cache block

4. The higher the memory bandwidth, the larger the cache block

Check Yourself

 5.4 Measuring and Improving Cache 
Performance

In this section, we begin by examining ways to measure and analyze cache 
performance. We then explore two different techniques for improving cache 
performance. One focuses on reducing the miss rate by reducing the probability 
that two distinct memory blocks will contend for the same cache location. The 
second technique reduces the miss penalty by adding an additional level to the 
hierarchy. This technique, called multilevel caching, first appeared in high-end 
computers selling for more than $100,000 in 1990; since then it has become 
common on personal mobile devices selling for a few hundred dollars!
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CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Thus,

CPU time CPU execution clock cycles Memory-stall clock cy+= c( cles
 Clock cycle time

)
×

The memory-stall clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplified model of the 
memory system. In real processors, the stalls generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very detailed 
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming 
from reads plus those coming from writes:

Memory-stall clock cycles Read-stall cycles Write-stall c= + y( ycles)

The read-stall cycles can be defined in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles Reads
Program

Read miss rate Read miss pe= × × nnalty

Writes are more complicated. For a write-through scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continuing 
the write (see the Elaboration on page 386 for more details on dealing with writes), 
and write buffer stalls, which occur when the write buffer is full when a write 
happens. Thus, the cycles stalled for writes equal the sum of these two:

Write-stall cycles Writes
Program

Write miss rate Write mis= × × ss penalty

Write bu�er stalls











+

Because the write buffer stalls depend on the proximity of writes, and not just 
the frequency, it is impossible to give a simple equation to compute such stalls. 
Fortunately, in systems with a reasonable write buffer depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that significantly exceeds 
the average write frequency in programs (e.g., by a factor of 2), the write buffer 
stalls will be small, and we can safely ignore them. If a system did not meet these 
criteria, it would not be well designed; instead, the designer should have used either 
a deeper write buffer or a write-back organization.
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Write-back schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are 
the same (the time to fetch the block from memory). If we assume that the write 
buffer stalls are negligible, we can combine the reads and writes by using a single 
miss rate and the miss penalty:

Memory-stall clock cycles Memory accesses
Program

Miss rate= × ××Miss penalty

We can also factor this as

Memory-stall clock cycles Instructions
Program

Misses
Instru

= ×
cction

Miss penalty×

Let’s consider a simple example to help us understand the impact of cache 
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the 
data cache is 4%. If a processor has a CPI of 2 without any memory stalls, 
and the miss penalty is 100 cycles for all misses, determine how much faster 
a processor would run with a perfect cache that never missed. Assume the 
frequency of all loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruction 
count (I) is

Instruction miss cycles I I= × × = ×2 100 2 00% .

As the frequency of all loads and stores is 36%, we can find the number of 
memory miss cycles for data references:

Data miss cycles II= × × × = ×36 4 100 1 44% % .

EXAMPLE

ANSWER
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The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is 
more than three cycles of memory stall per instruction. Accordingly, the total 
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in 
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

I CPIstall=
× ××
× ×

= =

Clock cycle
I CPI Clock cycle
CPI

CPI

perfect

stall

perfect

5..44
2

The performance with the perfect cache is better by 5 44
2

2 72. .= .

What happens if the processor is made faster, but the memory system is not? The 
amount of time spent on memory stalls will take up an increasing fraction of the 
execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of 
this fact. A few simple examples show how serious this problem can be. Suppose 
we speed-up the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the 
system with the perfect cache would be

4 44
1

4 44. . .=  times as fast

The amount of execution time spent on memory stalls would have risen from
3 44
5 44

63.
.

%=

to 3 44
4 44

77.
.

%=

Similarly, increasing the clock rate without changing the memory system also 
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a factor in 
determining cache performance. Clearly, if the hit time increases, the total time to 
access a word from the memory system will increase, possibly causing an increase in 
the processor cycle time. Although we will see additional examples of what can raise 
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hit time shortly, one example is increasing the cache size. A larger cache could clearly 
have a bigger access time, just as, if your desk in the library was very large (say, 3 square 
meters), it would take longer to locate a book on the desk. An increase in hit time 
likely adds another stage to the pipeline, since it may take multiple cycles for a cache 
hit. Although it is more complex to calculate the performance impact of a deeper 
pipeline, at some point the increase in hit time for a larger cache could dominate the 
improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses affects 
performance, designers sometime use average memory access time (AMAT) as 
a way to examine alternative cache designs. Average memory access time is the 
average time to access memory considering both hits and misses and the frequency 
of different accesses; it is equal to the following:

AMAT Time for a hit Miss rate Miss penalty= + ×

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 
time (including hit detection) of 1 clock cycle. Assume that the read and write 
miss penalties are the same and ignore other write stalls.

The average memory access time per instruction is

AMAT Time for a hit Miss rate Miss penalty

 clo

= + ×
= + ×
=

1 0 05 20
2

.
cck cycles

or 2 ns.

The next subsection discusses alternative cache organizations that decrease  
miss rate but may sometimes increase hit time; additional examples appear in 
Section 5.16.

Reducing Cache Misses by More Flexible Placement  
of Blocks
So far, when we put a block in the cache, we have used a simple placement scheme: 
A block can go in exactly one place in the cache. As mentioned earlier, it is called 
direct mapped because there is a direct mapping from any block address in memory 
to a single location in the upper level of the hierarchy. However, there is actually a 
whole range of schemes for placing blocks. Direct mapped, where a block can be 
placed in exactly one location, is at one extreme.

EXAMPLE

ANSWER
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At the other extreme is a scheme where a block can be placed in any location 
in the cache. Such a scheme is called fully associative, because a block in memory 
may be associated with any entry in the cache. To find a given block in a fully 
associative cache, all the entries in the cache must be searched because a block 
can be placed in any one. To make the search practical, it is done in parallel with 
a comparator associated with each cache entry. These comparators significantly 
increase the hardware cost, effectively making fully associative placement practical 
only for caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative 
is called set associative. In a set-associative cache, there are a fixed number of 
locations where each block can be placed. A set-associative cache with n locations 
for a block is called an n-way set-associative cache. An n-way set-associative cache 
consists of a number of sets, each of which consists of n blocks. Each block in the 
memory maps to a unique set in the cache given by the index field, and a block can 
be placed in any element of that set. Thus, a set-associative placement combines 
direct-mapped placement and fully associative placement: a block is directly 
mapped into a set, and then all the blocks in the set are searched for a match. For 
example, Figure 5.14 shows where block 12 may be put in a cache with eight blocks 
total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is 
given by

( )Block number  modulo (Number of  in the cache)blocks

fully associative 
cache A cache structure 
in which a block can be 
placed in any location in 
the cache.

set-associative cache  
A cache that has a fixed 
number of locations (at 
least two) where each 
block can be placed.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1
2

Set associative

20 1 3Set #

Data

Tag

Search

1
2

Fully associative

Data

Tag

Search

1
2

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight 
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is 
given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block 
12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative 
placement, the memory block for block address 12 can appear in any of the eight cache blocks.
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In a set-associative cache, the set containing a memory block is given by

( )Block number  modulo (Number of  in the cache)sets

Since the block may be placed in any element of the set, all the tags of all the elements 
of the set must be searched. In a fully associative cache, the block can go anywhere, 
and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set 
associativity. Figure 5.15 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is just a one-way set-associative cache: each 
cache entry holds one block and each set has one element. A fully associative cache 
with m entries is simply an m-way set-associative cache; it has one set with m 
blocks, and an entry can reside in any block within that set.

The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate, as the next example shows. The main disadvantage, which we discuss 
in more detail shortly, is a potential increase in the hit time.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

Four-way set associative

TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative

Tag DataBlock

One-way set associative

(direct mapped)

FIGURE 5.15 An eight-block cache configured as direct-mapped, two-way set associative, 
four-way set associative, and fully associative. The total size of the cache in blocks is equal to 
the number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity decreases 
the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-
associative cache is the same as a fully associative cache.
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Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks. 
One cache is fully associative, a second is two-way set associative, and the third 
is direct-mapped. Find the number of misses for each cache organization given 
the following sequence of block addresses: 0, 8, 0, 6, and 8.

The direct-mapped case is easiest. First, let’s determine to which cache block 
each block address maps:

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank entry 
to mean that the block is invalid, colored text to show a new entry added to 
the cache for the associated reference, and plain text to show an old entry in 
the cache:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two 

elements per set. Let’s first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

Because we have a choice of which entry in a set to replace on a miss, we need 
a replacement rule. Set-associative caches usually replace the least recently 
used block within a set; that is, the block that was used furthest in the past 
is replaced. (We will discuss other replacement rules in more detail shortly.) 

EXAMPLE

ANSWER
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Using this replacement rule, the contents of the set-associative cache after each 
reference look like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. The two-way set-associative cache 
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. The fully associative cache has 
the best performance, with only three misses:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because 
three unique block addresses are accessed. Notice that if we had eight blocks in  
the cache, there would be no replacements in the two-way set-associative cache 
(check this for yourself), and it would have the same number of misses as the 
fully associative cache. Similarly, if we had 16 blocks, all three caches would 
have the identical number of misses. Even this trivial example shows that cache 
size and associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? Figure 
5.16 shows the improvement for a 64 KiB data cache with a 16-word block, and 
associativity ranging from direct-mapped to eight-way. Going from one-way 
to two-way associativity decreases the miss rate by about 15%, but there is little 
further improvement in going to higher associativity.
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Locating a Block in the Cache
Now, let’s consider the task of finding a block in a cache that is set associative. 
Just as in a direct-mapped cache, each block in a set-associative cache includes 
an address tag that gives the block address. The tag of every cache block within 
the appropriate set is checked to see if it matches the block address from the 
processor. Figure 5.17 decomposes the address. The index value is used to select 
the set containing the address of interest, and the tags of all the blocks in the set 
must be searched. Because speed is of the essence, all the tags in the selected set are 
searched in parallel. As in a fully associative cache, a sequential search would make 
the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity raises the 
number of blocks per set, which is the number of simultaneous compares needed 
to perform the search in parallel: each increase by a factor of 2 in associativity 
doubles the number of blocks per set and halves the number of sets. Accordingly, 
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and 
expands the size of the tag by 1 bit. In a fully associative cache, there is effectively 
only one set, and all the blocks must be checked in parallel. Thus, there is no index, 
and the entire address, excluding the block offset, is compared against the tag of 
every block. In other words, we search the full cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can 
be in only one block, and we access the cache simply by indexing. Figure 5.18 shows 
that in a four-way set-associative cache, four comparators are needed, together with  
a 4-to-1 multiplexor to choose among the four potential members of the selected set. 
The cache access consists of indexing the appropriate set and then searching the tags 
of the set. The costs of an associative cache are the extra comparators and any delay 
imposed by having to do the compare and select from among the elements of the set.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 
eight-way. These results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Block offsetTag Index

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped 
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. The block offset is the address of the desired data within the block.
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The choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory (CAM) is a circuit that combines 
comparison and storage in a single device. Instead of supplying an address and reading 
a word like a RAM, you send the data and the CAM looks to see if it has a copy and 
returns the index of the matching row. CAMs mean that cache designers can afford 
to implement much higher set associativity than if they needed to build the hardware 
out of SRAMs and comparators. In 2013, the greater size and power of CAM generally 
leads to two-way and four-way set associativity being built from standard SRAMs and 
comparators, with eight-way and above built using CAMs.

Address

Data

Tag

V Tag

=

Index

22 8

31 30 12 11 10 9 8 3 2 1 0

4-to-1 multiplexor

Index
0
1
2

253
254
255

DataV Tag

=

DataV Tag

=

DataV Tag

22

=

32

DataHit

FIGURE 5.18 The implementation of a four-way set-associative cache requires four 
comparators and a 4-to-1 multiplexor. The comparators determine which element of the selected set 
(if any) matches the tag. The output of the comparators is used to select the data from one of the four blocks 
of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output 
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the 
output. The Output enable signal comes from the comparators, causing the element that matches to drive the 
data outputs. This organization eliminates the need for the multiplexor.



 5.4 Measuring and Improving Cache Performance 401

Choosing Which Block to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, all blocks are 
candidates for replacement. In a set-associative cache, we must choose among the 
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme, the block replaced is the one that has 
been unused for the longest time. The set-associative example on page 397 uses 
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a 
set was used relative to the other elements in the set. For a two-way set-associative 
cache, tracking when the two elements were used can be implemented by keeping 
a single bit in each set and setting the bit to indicate an element whenever that 
element is referenced. As associativity increases, implementing LRU gets harder; in 
Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 
cache block. Assuming a cache of 4096 blocks, a four-word block size, and a  
64-bit address, find the total number of sets and the total number of tag bits 
for caches that are direct-mapped, two-way and four-way set associative, and 
fully associative.

Since there are 16 (= 24) bytes per block, a 64-bit address yields 64 − 4 = 60 bits 
to be used for index and tag. The direct-mapped cache has the same number 
of sets as blocks, and hence 12 bits of index, since log2(4096) = 12; hence, the 
total number is (60 − 12) × 4096 = 48 × 4096 = 197 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and 
thus decreases the number of bits used to index the cache by 1 and increases 
the number of bits in the tag by 1. Thus, for a two-way set-associative cache, 
there are 2048 sets, and the total number of tag bits is (60 − 11) × 2 × 2048 = 
98 × 2048 = 401 Kbits. For a four-way set-associative cache, the total number 
of sets is 1024, and the total number is (60 − 10) × 4 × 1024 = 100 × 1024 = 
205 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the 
tag is 60 bits, leading to 60 × 4096 × 1 = 246 K tag bits.

least recently used 
(LRU) A replacement 
scheme in which the 
block replaced is the one 
that has been unused for 
the longest time.

EXAMPLE
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Reducing the Miss Penalty Using Multilevel Caches
All modern computers make use of caches. To close the gap further between the 
fast clock rates of modern processors and the increasingly long time required to 
access DRAMs, most microprocessors support an additional level of caching. This 
second-level cache is normally on the same chip and is accessed whenever a miss 
occurs in the primary cache. If the second-level cache contains the desired data, 
the miss penalty for the first-level cache will be essentially the access time of the 
second-level cache, which will be much less than the access time of main memory. 
If neither the primary nor the secondary cache contains the data, a main memory 
access is required, and a larger miss penalty is incurred.

How significant is the performance improvement from the use of a secondary 
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 
access time of 100 ns, including all the miss handling. Suppose the miss rate 
per instruction at the primary cache is 2%. How much faster will the processor 
be if we add a secondary cache that has a 5-ns access time for either a hit or 
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

The miss penalty to main memory is

100

0 25
400

ns
ns

clock cycle

 clock cycles
.

=

The effective CPI with one level of caching is given by

Total CPI Base CPI Memory-stall cycles per instruction= +

For the processor with one level of caching,

Total CPI Memory-stall cycles per instruction= + = + ×1 0 1 0 2 4.. % 000 9=

With two levels of caching, a miss in the primary (or first-level) cache can be 
satisfied either by the secondary cache or by main memory. The miss penalty 
for an access to the second-level cache is

5

0 25
20

ns
ns

clock cycle

 clock cycles
.

=
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If the miss is satisfied in the secondary cache, then this is the entire miss 
penalty. If the miss needs to go to main memory, then the total miss penalty is 
the sum of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both 
levels of cache and the base CPI:

Thus, the processor with the secondary cache is faster by

9 0
3 4

2 6.
.

.=

Alternatively, we could have computed the stall cycles by summing the stall 
cycles of those references that hit in the secondary cache ((2% − 0.5%) × 20 = 
0.3). Those references that go to main memory, which must include the cost to 
access the secondary cache as well as the main memory access time, are (0.5% ×  
(20 + 400) = 2.1). The sum, 1.0 + 0.3 + 2.1, is again 3.4.

The design considerations for a primary and secondary cache are significantly 
different, because the presence of the other cache changes the best choice versus 
a single-level cache. In particular, a two-level cache structure allows the primary 
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce 
the penalty of long memory access times.

The effect of these changes on the two caches can be seen by comparing each 
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore, 
the primary cache may use a smaller block size, to go with the smaller cache size and 
also to reduce the miss penalty. In comparison, the secondary cache will be much 
larger than in a single-level cache, since the access time of the secondary cache is 
less critical. With a larger total size, the secondary cache may use a larger block size 
than appropriate with a single-level cache. It often uses higher associativity than 
the primary cache given the focus of reducing miss rates.

Total CPI Primary stalls per instruction Secondary stall= + + s1 s per instruction
= + × + × = + + =1 2 20 0 5 400 1 0 4 2 0 3 4% . % . . .

multilevel cache  
A memory hierarchy with 
multiple levels of caches, 
rather than just a cache 
and main memory.

Sorting has been exhaustively analyzed to find better algorithms: Bubble Sort, 
Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by 
item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix 
Sort has an algorithmic advantage over Quicksort in terms of number of operations. 
Figure 5.19(b) shows time per key instead of instructions executed. We see that the 
lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line 

Understanding 
Program 
Performance
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FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item 
sorted, (b) time per item sorted, and (c) cache misses per item sorted. These data are from 
a paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented 
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). The basic 
idea of cache optimizations is to use all the data in a block repeatedly before they are replaced on a miss.
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Software Optimization via Blocking
Given the importance of the memory hierarchy to program performance, not 
surprisingly many software optimizations were invented that can dramatically 
improve performance by reusing data within the cache and hence lower miss rates 
due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory 
system if we store the array in memory so that accesses to the array are sequential 
in memory. Suppose that we are dealing with multiple arrays, however, with some 
arrays accessed by rows and some by columns. Storing the arrays row-by-row 
(called row major order) or column-by-column (column major order) does not 
solve the problem because both rows and columns are used in every loop iteration.

Instead of operating on entire rows or columns of an array, blocked algorithms 
operate on submatrices or blocks. The goal is to maximize accesses to the data 
loaded into the cache before the data are replaced; that is, improve temporal locality 
to reduce cache misses.

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.22 in 
Chapter 3) are

for (int j = 0; j < n; ++j)
 {
 double cij = C[i+j*n]; /* cij = C[i][j] */
 for( int k = 0; k < n; k++ )
 cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
 C[i+j*n] = cij; /* C[i][j] = cij */
 }
}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to 
one row of A repeatedly, and writes what corresponds to one row of N elements of 
C. (The comments make the rows and columns of the matrices easier to identify.) 
Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade 
indicates a recent access, a light shade indicates an older access, and white means 
not yet accessed.

diverges as the data to sort increase. What is going on? Figure 5.19(c) answers by 
looking at the cache misses per item sorted: Quicksort consistently has many fewer 
misses per item to be sorted.

Alas, standard algorithmic analysis often ignores the impact of the memory 
hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all 
the performance out of a stream of instructions, using the memory hierarchy well 
is vital to high performance. As we said in the introduction, understanding the 
behavior of the memory hierarchy is critical to understanding the performance of 
programs on today’s computers.
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The number of capacity misses clearly depends on N and the size of the cache. 
If it can hold all three N-by-N matrices, then all is well, provided there are no cache 
conflicts. We purposely picked the matrix size to be 32 by 32 in DGEMM for 
Chapters 3 and 4 so that this would be the case. Each matrix is 32 × 32 = 1024 
elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which 
comfortably fit in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith 
row of A and the array B may stay in the cache. Less than that and misses may 
occur for both B and C. In the worst case, there would be 2 N3 + N2 memory words 
accessed for N3 operations.

To ensure that the elements being accessed can fit in the cache, the original code 
is changed to compute on a submatrix. Hence, we essentially invoke the version of 
DGEMM from Figure 4.78 in Chapter 4 repeatedly on matrices of size BLOCKSIZE 
by BLOCKSIZE. BLOCKSIZE is called the blocking factor.

Figure 5.21 shows the blocked version of DGEMM. The function do_block is 
DGEMM from Figure 3.22 with three new parameters si, sj, and sk to specify 
the starting position of each submatrix of A, B, and C. The two inner loops of the 
do_block now compute in steps of size BLOCKSIZE rather than the full length of 
B and C. The gcc optimizer removes any function call overhead by “inlining” the 
function; that is, it inserts the code directly to avoid the conventional parameter 
passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking 
only at capacity misses, the total number of memory words accessed is 2 
N3/BLOCKSIZE + N2. This total is an improvement by about a factor of BLOCKSIZE. 
Hence, blocking exploits a combination of spatial and temporal locality, since A 
benefits from spatial locality and B benefits from temporal locality.
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FIGURE 5.20 A snapshot of the three arrays C, A, and B when N = 6 and i = 1. The age 
of accesses to the array elements is indicated by shade: white means not yet touched, light means older 
accesses, and dark means newer accesses. Compared to Figure 5.22, elements of A and B are read repeatedly 
to calculate new elements of C. The variables i, j, and k are shown along the rows or columns used to access 
the arrays.
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Although we have aimed at reducing cache misses, blocking can also be used to 
help register allocation. By taking a small blocking size, such that the block can be 
held in registers, we can minimize the number of loads and stores in the program, 
which again improves performance.

1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)
6   for (int j = sj; j < sj+BLOCKSIZE; ++j)
7     {
8     double cij = C[i+j*n];/* cij = C[i][j] */
9     for( int k = sk; k < sk+BLOCKSIZE; k++ )
10      cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11     C[i+j*n] = cij;/* C[i][j] = cij */
12     }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16   for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17    for ( int si = 0; si < n; si += BLOCKSIZE )
18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);
20 }

FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.22. Assume C is initialized to zero. The do_block 
function is basically DGEMM from Chapter  3 with new parameters to specify the starting positions of the submatrices of 
BLOCKSIZE. The gcc optimizer can remove the function overhead instructions by inlining the do_block function.
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FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE = 3. Note that, 
in contrast to Figure 5.20, fewer elements are accessed.
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Figure 5.23 shows the impact of cache blocking on the performance of the 
unoptimized DGEMM as we increase the matrix size beyond where all three 
matrices fit in the cache. The unoptimized performance is halved for the largest 
matrix. The cache-blocked version is less than 10% slower even at matrices that are 
960 × 960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create many complications. First, there are now 
several different types of misses and corresponding miss rates. In the example on 
pages 402–403, we saw the primary cache miss rate and the global miss rate—the 
fraction of references that missed in all cache levels. There is also a miss rate for  
the secondary cache, which is the ratio of all misses in the secondary cache divided 
by the number of accesses to it. This miss rate is called the local miss rate of the 
secondary cache. Because the primary cache filters accesses, especially those with 
good spatial and temporal locality, the local miss rate of the secondary cache is much 
higher than the global miss rate. For the example on pages 402–403, we can compute 
the local miss rate of the secondary cache as 0.5%/2% = 25%! Luckily, the global miss 
rate dictates how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter  4), performance is more 
complex, since they execute instructions during the miss penalty. Instead of instruction 
miss rates and data miss rates, we use misses per instruction, and this formula:

Memory stall cycles
Instruction

Misses
Instruction

Total mi
−

= × ( sss latency Overlapped miss latency− )

global miss rate The 
fraction of references 
that miss in all levels of a 
multilevel cache.

local miss rate The 
fraction of references to 
one level of a cache that 
miss; used in multilevel 
hierarchies.
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FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.22) versus cache blocked 
DGEMM (Figure 5.21) as the matrix dimension varies from 32 × 32 (where all three 
matrices fit in the cache) to 960 × 960.
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There is no general way to calculate overlapped miss latency, so evaluations of 
memory hierarchies for out-of-order processors inevitably require simulation of the 
processor and the memory hierarchy. Only by seeing the execution of the processor 
during each miss can we see if the processor stalls waiting for data or simply finds other 
work to do. A guideline is that the processor often hides the miss penalty for an L1 
cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy 
varies between different implementations of the same architecture in cache size, 
associativity, block size, and number of caches. To cope with such variability, some 
recent numerical libraries parameterize their algorithms and then search the parameter 
space at runtime to find the best combination for a particular computer. This approach 
is called autotuning.

Which of the following is generally true about a design with multiple levels of 
caches?

1. First-level caches are more concerned about hit time, and second-level 
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level 
caches are more concerned about hit time.

Check Yourself

Summary
In this section, we focused on four topics: cache performance, using associativity to 
reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties, 
and software optimizations to improve effectiveness of caches.

The memory system has a significant effect on program execution time. The 
number of memory-stall cycles depends on both the miss rate and the miss penalty. 
The challenge, as we will see in Section 5.8, is to reduce one of these factors without 
significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes. 
Such schemes can reduce the miss rate of a cache by allowing more flexible 
placement of blocks within the cache. Fully associative schemes allow blocks to be 
placed anywhere, but also require that every block in the cache be searched to satisfy  
a request. The higher costs make large fully associative caches impractical. Set-
associative caches are a practical alternative, since we need only search among the 
elements of a unique set that is chosen by indexing. Set-associative caches have higher 
miss rates but are faster to access. The amount of associativity that yields the best 
performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by 
allowing a larger secondary cache to handle misses to the primary cache. Second-
level caches have become commonplace as designers find that limited silicon and 
the goals of high clock rates prevent primary caches from becoming large. The 
secondary cache, which is often 10 or more times larger than the primary cache, 
handles many accesses that miss in the primary cache. In such cases, the miss 
penalty is that of the access time to the secondary cache (typically <10 processor 
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cycles) versus the access time to memory (typically > 100 processor cycles). As 
with associativity, the design tradeoffs between the size of the secondary cache and 
its access time depend on a number of aspects of the implementation.

Finally, given the importance of the memory hierarchy in performance, we 
looked at how to change algorithms to improve cache behavior, with blocking 
being an important technique when dealing with large arrays.

 5.5 Dependable Memory Hierarchy

Implicit in all the prior discussion is that the memory hierarchy doesn’t forget. Fast 
but undependable is not very attractive. As we learned in Chapter 1, the one great 
idea for dependability is redundancy. In this section we’ll first go over the terms to 
define terms and measures associated with failure, and then show how redundancy 
can make nearly unforgettable memories.

Defining Failure
We start with an assumption that you have a specification of proper service. Users 
can then see a system alternating between two states of delivered service with 
respect to the service specification:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the 
specified service

Transitions from state 1 to state 2 are caused by failures, and transitions from state 
2 to state 1 are called restorations. Failures can be permanent or intermittent. The 
latter is the more difficult case; it is harder to diagnose the problem when a system 
oscillates between the two states. Permanent failures are far easier to diagnose.

This definition leads to two related terms: reliability and availability.
Reliability is a measure of the continuous service accomplishment—or, equivalently, 

of the time to failure—from a reference point. Hence, mean time to failure (MTTF) 
is a reliability measure. A related term is annual failure rate (AFR), which is just the 
percentage of devices that would be expected to fail in a year for a given MTTF. 
When MTTF gets large it can be misleading, while AFR leads to better intuition.

MTTF vs. AFR of Disks

Some disks today are quoted to have a 1,000,000-hour MTTF. As 1,000,000 
hours is 1,000,000/(365 × 24) = 114 years, it would seem like they practically 
never fail. Warehouse-scale computers that run Internet services such as 
Search might have 50,000 servers. Assume each server has two disks. Use AFR 
to calculate how many disks we would expect to fail per year.

EXAMPLE
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One year is 365 × 24 = 8760 hours. A 1,000,000-hour MTTF means an AFR 
of 8760/1,000,000 = 0.876%. With 100,000 disks, we would expect 876 disks to 
fail per year, or on average more than two disk failures per day!

Service interruption is measured as mean time to repair (MTTR). Mean time 
between failures (MTBF) is simply the sum of MTTF + MTTR. Although MTBF 
is widely used, MTTF is often the more appropriate term. Availability is then a 
measure of service accomplishment with respect to the alternation between the two 
states of accomplishment and interruption. Availability is statistically quantified as

Availability MTTF
MTTF MTTR

=
+( )

Note that reliability and availability are actually quantifiable measures, rather than 
just synonyms for dependability. Shrinking MTTR can help availability as much as 
increasing MTTF. For example, tools for fault detection, diagnosis, and repair can 
help reduce the time to repair faults and thereby improve availability.

We want availability to be very high. One shorthand is to quote the number of 
“nines of availability” per year. For instance, a very good Internet service today 
offers 4 or 5 nines of availability. Given 365 days per year, which is 365 × 24 ×  
60 = 526,000 minutes, then the shorthand is decoded as follows:

One nine: 90% => 36.5 days of repair/year
Two nines: 99% => 3.65 days of repair/year
Three nines: 99.9% => 526 minutes of repair/year
Four nines: 99.99% => 52.6 minutes of repair/year
Five nines: 99.999% => 5.26 minutes of repair/year

and so on.
To increase MTTF, you can improve the quality of the components or design 

systems to continue operation in the presence of components that have failed. 
Hence, failure needs to be defined with respect to a context, as failure of a component 
may not lead to a failure of the system. To make this distinction clear, the term fault 
is used to mean failure of a component. Here are three ways to improve MTTF:

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the 
service specification despite faults occurring.

3. Fault forecasting: Predicting the presence and creation of faults, allowing the 
component to be replaced before it fails.

ANSWER
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The Hamming Single Error Correcting, Double Error 
Detecting Code (SEC/DED)
Richard Hamming invented a popular redundancy scheme for memory, for which 
he received the Turing Award in 1968. To invent redundant codes, it is helpful 
to talk about how “close” correct bit patterns can be. What we call the Hamming 
distance is just the minimum number of bits that are different between any two 
correct bit patterns. For example, the distance between 011011 and 001111 is two. 
What happens if the minimum distance between members of a code is two, and we 
get a one-bit error? It will turn a valid pattern in a code to an invalid one. Thus, if 
we can detect whether members of a code are accurate or not, we can detect single 
bit errors, and can say we have a single bit error detection code.

Hamming used a parity code for error detection. In a parity code, the number 
of 1 s in a word is counted; the word has odd parity if the number of 1 s is odd and 
even otherwise. When a word is written into memory, the parity bit is also written  
(1 for odd, 0 for even). That is, the parity of the N+1 bit word should always be even. 
Then, when the word is read out, the parity bit is read and checked. If the parity of the 
memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31ten and show the pattern stored to 
memory. Assume the parity bit is on the right. Suppose the most significant bit 
was inverted in memory, and then you read it back. Did you detect the error? 
What happens if the two most significant bits are inverted?

31ten is 00011111two, which has five 1s. To make parity even, we need to write a 1 
in the parity bit, or 000111111two. If the most significant bit is inverted when we 
read it back, we would see 100111111two which has seven 1s. Since we expect 
even parity and calculated odd parity, we would signal an error. If the two most 
significant bits are inverted, we would see 110111111two which has eight 1s or 
even parity, and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since 
the parity will match the data with two errors. (Actually, a 1-bit parity scheme can 
detect any odd number of errors; however, the probability of having three errors is 
much lower than the probability of having two, so, in practice, a 1-bit parity code is 
limited to detecting a single bit of error.)

Of course, a parity code cannot correct errors, which Hamming wanted to do 
as well as detect them. If we used a code that had a minimum distance of 3, then 
any single bit error would be closer to the correct pattern than to any other valid 
pattern. He came up with an easy to understand mapping of data into a distance 3 
code that we call Hamming Error Correction Code (ECC) in his honor. We use extra 

error detection 
code A code that 
enables the detection of 
an error in data, but not 
the precise location and, 
hence, correction of the 
error.

EXAMPLE

ANSWER
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parity bits to allow the position identification of a single error. Here are the steps to 
calculate Hamming ECC

1. Start numbering bits from 1 on the left, contrary to the traditional 
numbering of the rightmost bit being 0.

2. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8, 
16, …).

3. All other bit positions are used for data bits (positions 3, 5, 6, 7, 9, 10, 11, 12, 
13, 14, 15, …).

4. The position of parity bit determines sequence of data bits that it checks 
(Figure 5.24 shows this coverage graphically) is:

■	 Bit 1 (0001two) checks bits (1,3,5,7,9,11,...), which are bits where rightmost 
bit of address is 1 (0001two, 0011two, 0101two, 0111two, 1001two, 1011two,…).

■	 Bit 2 (0010two) checks bits (2,3,6,7,10,11,14,15,…), which are the bits 
where the second bit to the right in the address is 1.

■	 Bit 4 (0100two) checks bits (4–7, 12–15, 20–23,…), which are the bits 
where the third bit to the right in the address is 1.

■	 Bit 8 (1000two) checks bits (8–15, 24–31, 40–47,...), which are the bits 
where the fourth bit to the right in the address is 1.

Note that each data bit is covered by two or more parity bits.

5. Set parity bits to create even parity for each group.

Bit position

Encoded data bits

Parity
bit

coverage

p1

p1

p2

p4

p8

p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8

X X X X X X

X X X X X X

X X X X X

X X X X X

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 5.24 Parity bits, data bits, and field coverage in a Hamming ECC code for eight 
data bits.

In what seems like a magic trick, you can determine whether bits are incorrect 
by looking at the parity bits. Using the 12 bit code in Figure 5.24, if the value of the 
four parity calculations (p8,p4,p2,p1) was 0000, then there was no error. However, 
if the pattern was, say, 1010, which is 10ten, then Hamming ECC tells us that bit 
10 (d6) is an error. Since the number is binary, we can correct the error just by 
inverting the value of bit 10.
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Assume one byte data value is 10011010two. First show the Hamming ECC code 
for that byte, and then invert bit 10 and show that the ECC code finds and 
corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is__ 1_ 0 0 1_ 1 0 1 0.

Position 1 checks bits 1,3,5,7,9, and 11, which we highlight:__ 1_ 0 0 1_ 1 0 1 
0. To make the group even parity, we should set bit 1 to 0.
Position 2 checks bits 2,3,6,7,10,11, which is 0_ 1_ 0 0 1_ 1 0 1 0 or odd parity, 
so we set position 2 to a 1.
Position 4 checks bits 4,5,6,7,12, which is 0 1 1_ 0 0 1_ 1 0 1, so we set it to a 1.
Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1_ 1 0 1 0, so we set it 
to a 0.
The final code word is 011100101010. Inverting bit 10 changes it to 
011100101110.
Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).
Parity bit 2 is 1 (011100101110 is five 1s, so odd parity; there is an error 
somewhere).
Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).
Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error 
somewhere).
Parity bits 2 and 8 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence, 
we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more 
bit, we can make the minimum Hamming distance in a code be 4. This means we 
can correct single bit errors and detect double bit errors. The idea is to add a parity 
bit that is calculated over the whole word. Let’s use a 4-bit data word as an example, 
which would only need 7 bits for single bit error detection. Hamming parity bits H 
(p1 p2 p3) are computed (even parity as usual) plus the even parity over the entire 
word, p4:

1 2 3 4 5 6 7 8
p1 p2 d1 p3 d2 d3 d4 p4

Then the algorithm to correct one error and detect two is just to calculate parity 
over the ECC groups (H) as before plus one more over the whole group (p4). There 
are four cases:

1. H is even and p4 is even, so no error occurred.

2. H is odd and p4 is odd, so a correctable single error occurred. (p4 should 
calculate odd parity if one error occurred.)

3. H is even and p4 is odd, a single error occurred in p4 bit, not in the rest of the 
word, so correct the p4 bit.

ANSWER

EXAMPLE
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4. H is odd and p4 is even, a double error occurred. (p4 should calculate even 
parity if two errors occurred.)

Single Error Correcting/Double Error Detecting (SEC/DED) is common in 
memory for servers today. Conveniently, 8-byte data blocks can get SEC/DED with 
just one more byte, which is why many DIMMs are 72 bits wide.

Elaboration: To calculate how many bits are needed for SEC, let p be total number 
of parity bits and d number of data bits in p + d bit word. If p error correction bits are to 
point to error bit (p + d cases) plus one case to indicate that no error exists, we need:

2 1 1p bits  and thus ≥ + + ≥ + +p d p p d, log( ).

For example, for 8 bits data means d = 8 and 2p ≥ p + 8 + 1, so p = 4. Similarly, p = 5 
for 16 bits of data, 6 for 32 bits, 7 for 64 bits, and so on.

Elaboration: In very large systems, the possibility of multiple errors as well as 
complete failure of a single wide memory chip becomes significant. IBM introduced 
chipkill to solve this problem, and many big systems use this technology. (Intel calls 
their version SDDC.) Similar in nature to the RAID approach used for disks (see  

 Section 5.11), Chipkill distributes the data and ECC information, so that the complete 
failure of a single memory chip can be handled by supporting the reconstruction of the 
missing data from the remaining memory chips. Assuming a 10,000-processor cluster 
with 4 GiB per processor, IBM calculated the following rates of unrecoverable memory 
errors in 3 years of operation:

■	 Parity only—about 90,000, or one unrecoverable (or undetected) failure every 17 
minutes.

■	 SEC/DED only—about 3500, or about one undetected or unrecoverable failure 
every 7.5 hours.

■	 Chipkill—6, or about one undetected or unrecoverable failure every 2 months.

Hence, Chipkill is a requirement for warehouse-scale computers.

Elaboration: While single or double bit errors are typical for memory systems, networks 
can have bursts of bit errors. One solution is called Cyclic Redundancy Check. For a block 
of k bits, a transmitter generates an n-k bit frame check sequence. It transmits n bits 
exactly divisible by some number. The receiver divides the frame by that number. If there 
is no remainder, it assumes there is no error. If there is, the receiver rejects the message, 
and asks the transmitter to send again. As you might guess from Chapter 3, it is easy to 
calculate division for some binary numbers with a shift register, which made CRC codes 
popular even when hardware was more precious. Going even further, Reed-Solomon codes 
use Galois fields to correct multibit transmission errors, but now data are considered 
coefficients of a polynomial and the code space is values of a polynomial. The Reed-
Solomon calculation is considerably more complicated than binary division!
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 5.6 Virtual Machines

Virtual machines (VM) were first developed in the mid-1960s, and they have 
remained an important part of mainframe computing over the years. Although 
largely ignored in the single-user PC era in the 1980s and 1990s, they have recently 
gained popularity due to

■	 The increasing importance of isolation and security in modern systems

■	 The failures in security and reliability of standard operating systems

■	 The sharing of a single computer among many unrelated users, in particular 
for Cloud computing

■	 The dramatic increases in raw speed of processors over the decades, which 
makes the overhead of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that 
provide a standard software interface, such as the Java VM. In this section, we are 
interested in VMs that provide a complete system-level environment at the binary 
instruction set architecture (ISA) level. Although some VMs run different ISAs in 
the VM from the native hardware, we assume they always match the hardware. Such 
VMs are called (Operating) System Virtual Machines. IBM VM/370, VirtualBox, 
VMware ESX Server, and Xen are examples.

System virtual machines present the illusion that the users have an entire 
computer to themselves, including a copy of the operating system. A single 
computer runs multiple VMs and can support a number of different operating 
systems (OSes). On a conventional platform, a single OS “owns” all the hardware 
resources, but with a VM, multiple OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM) or 
hypervisor; the VMM is the heart of virtual machine technology. The underlying 
hardware platform is called the host, and its resources are shared among the guest 
VMs. The VMM determines how to map virtual resources to physical resources: a 
physical resource may be time-shared, partitioned, or even emulated in software. 
The VMM is much smaller than a traditional OS; the isolation portion of a VMM 
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide 
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete 
software stack, even including old operating systems like DOS. A typical 
deployment might be some VMs running legacy OSes, many running the 
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each 
application running with the compatible version of the operating system 
on separate computers, as this separation can improve dependability. VMs 
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allow these separate software stacks to run independently yet share hardware, 
thereby consolidating the number of servers. Another example is that some 
VMMs support migration of a running VM to a different computer, either 
to balance load or to evacuate from failing hardware.

Amazon Web Services (AWS) uses the virtual machines in its Cloud computing 
offering EC2 for five reasons:

1. It allows AWS to protect users from each other while sharing the same server.

2. It simplifies software distribution within a warehouse-scale computer. A 
customer installs a virtual machine image configured with the appropriate 
software, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage 
when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is 
running, which means AWS can keep using old servers and introduce new, 
more efficient servers. The customer expects performance for instances to 
match their ratings in “EC2 Compute Units,” which AWS defines: to “provide 
the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007 
Intel Xeon processor.” Thanks to Moore’s Law, newer servers clearly offer 
more EC2 Compute Units than older ones, but AWS can keep renting old 
servers as long as they are economical.

5. Virtual machine monitors can control the rate that a VM uses the processor, 
the network, and disk space, which allows AWS to offer many price points 
of instances of different types running on the same underlying servers. For 
example, in 2012 AWS offered 14 instance types, from small standard instances 
at $0.08 per hour to high I/O quadruple extra-large instances at $3.10 per hour.

Hardware/
Software 
Interface

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the 
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads 
are generally also OS-intensive, executing many system calls and privileged 
instructions that can result in high virtualization overhead. On the other hand, if 
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization 
can be completely hidden, since the processor is often idle waiting for I/O.

The overhead is determined by both the number of instructions that must be 
emulated by the VMM and by how much time each takes to emulate. Hence, when 
the guest VMs run the same ISA as the host, as we assume here, the goal of the 
architecture and the VMM is to run almost all instructions directly on the native 
hardware.
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Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a software interface to guest software, it 
must isolate the state of guests from each other, and it must protect itself from guest 
software (including guest OSes). The qualitative requirements are:

■	 Guest software should behave on a VM exactly as if it were running on the 
native hardware, except for performance-related behavior or limitations of 
fixed resources shared by multiple VMs.

■	 Guest software should not be able to change the allocation of real system 
resources directly.

To “virtualize” the processor, the VMM must control just about everything—access 
to privileged state, I/O, exceptions, and interrupts—even though the guest VM and 
OS presently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the 
currently running guest VM, save its state, handle the interrupt, determine which 
guest VM to run next, and then load its state. Guest VMs that rely on a timer interrupt 
are provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest 
VM, which generally runs in user mode; this also ensures that the execution of any 
privileged instruction will be handled by the VMM. The basic system requirements 
to support VMMs are:

■	 At least two processor modes, system and user.

■	 A privileged subset of instructions that is available only in system mode, 
resulting in a trap if executed in user mode; all system resources must be 
controllable just via these instructions.

(Lack of) Instruction Set Architecture Support  
for Virtual Machines
If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 
both the number of instructions that must be executed by a VMM and improve 
their emulation speed. An architecture that allows the VM to execute directly 
on the hardware earns the title virtualizable, and the IBM 370 and the RISC-V 
architectures proudly bear that label.

Alas, since VMs have been considered for PC and server applications only fairly 
recently, most instruction sets were created without virtualization in mind. These 
culprits include x86 and most RISC architectures, including ARMv7 and MIPS.

Because the VMM must ensure that the guest system only interacts with virtual 
resources, a conventional guest OS runs as a user mode program on top of the 
VMM. Then, if a guest OS attempts to access or modify information related to 
hardware resources via a privileged instruction—for example, reading or writing 
a status bit that enables interrupts—it will trap to the VMM. The VMM can then 
affect the appropriate changes to corresponding real resources.
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Hence, if any instruction that tries to read or write such sensitive information 
traps when executed in user mode, the VMM can intercept it and support a virtual 
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must 
take special precautions to locate all problematic instructions and ensure that they 
behave correctly when executed by a guest OS, thereby increasing the complexity 
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint effort of architecture and operating systems, but architects 
had to modify some awkward details of existing instruction set architectures when 
virtual memory became popular.

For example, the x86 instruction POPF loads the flag registers from the top of 
the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you run 
the POPF instruction in user mode, rather than trap it, it simply changes all the 
flags except IE. In system mode, it does change the IE. Since a guest OS runs in user 
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve 
the performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without 
invoking VMM.

AMD and Intel tried to address the first point in 2006 by reducing the cost of 
processor virtualization. It will be interesting to see how many generations of 
architecture and VMM modifications it will take to address all three points, and 
how long before virtual machines of the 21st century for x86 will be as efficient as 
the IBM mainframes and VMMs of the 1970s.

Elaboration: RISC-V traps all privileged instructions when running in user mode, so it 
supports classical virtualization, wherein the guest OS runs in user mode and the VMM 
runs in supervisor mode.

 5.7 Virtual Memory

In earlier sections, we saw how caches provided fast access to recently-used portions 
of a program’s code and data. Similarly, the main memory can act as a “cache” for the 
secondary storage, traditionally implemented with magnetic disks. This technique 

… a system has 
been devised to 
make the core drum 
combination appear 
to the programmer 
as a single level 
store, the requisite 
transfers taking place 
automatically.
Kilburn et al., One-level 
storage system, 1962
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is called virtual memory. Historically, there were two major motivations for virtual 
memory: to allow efficient and safe sharing of memory among several programs, such 
as for the memory needed by multiple virtual machines for Cloud computing, and to 
remove the programming burdens of a small, limited amount of main memory. Five 
decades after its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we must 
be able to protect the virtual machines from each other, ensuring that a program 
can just read and write the portions of main memory that have been assigned to it. 
Main memory need contain only the active portions of the many virtual machines, 
just as a cache contains only the active portion of one program. Thus, the principle 
of locality enables virtual memory as well as caches, and virtual memory allows us 
to share the processor efficiently as well as the main memory.

We cannot know which virtual machines will share the memory with other 
virtual machines when we compile them. In fact, the virtual machines sharing 
the memory change dynamically while they are running. Because of this dynamic 
interaction, we would like to compile each program into its own address space—a 
separate range of memory locations accessible only to this program. Virtual 
memory implements the translation of a program’s address space to physical 
addresses. This translation process enforces protection of a program’s address 
space from other virtual machines.

The second motivation for virtual memory is to allow a single-user program 
to exceed the size of primary memory. Formerly, if a program became too large 
for memory, it was up to the programmer to make it fit. Programmers divided 
programs into pieces and then identified the pieces that were mutually exclusive. 
These overlays were loaded or unloaded under user program control during 
execution, with the programmer ensuring that the program at no time tried to 
access an overlay that was not loaded and that the overlays loaded never exceeded 
the total size of the memory. Overlays were traditionally organized as modules, 
each containing both code and data. Calls between procedures in different modules 
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on 
programmers. Virtual memory, which was invented to relieve programmers of 
this difficulty, automatically manages the two levels of the memory hierarchy 
represented by main memory (sometimes called physical memory to distinguish it 
from virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same, 
their differing historical roots have led to the use of different terminology. A virtual 
memory block is called a page, and a virtual memory miss is called a page fault. 
With virtual memory, the processor produces a virtual address, which is translated 
by a combination of hardware and software to a physical address, which in turn can 
be used to access main memory. Figure 5.25 shows the virtually addressed memory 
with pages mapped to main memory. This process is called address mapping or 
address translation. Today, the two memory hierarchy levels controlled by virtual 
memory are usually DRAMs and flash memory in personal mobile devices and 

virtual memory  
A technique that uses 
main memory as a “cache” 
for secondary storage.

physical address An 
address in main memory.

protection A set 
of mechanisms for 
ensuring that multiple 
processes sharing the 
processor, memory, 
or I/O devices cannot 
interfere, intentionally 
or unintentionally, with 
one another by reading or 
writing each other’s data. 
These mechanisms also 
isolate the operating system 
from a user process.

DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library 
analogy, we can think of a virtual address as the title of a book and a physical 
address as the location of that book in the library, such as might be given by the 
Library of Congress call number.

Virtual memory also simplifies loading the program for execution by providing 
relocation. Relocation maps the virtual addresses used by a program to different 
physical addresses before the addresses are used to access memory. This relocation 
allows us to load the program anywhere in main memory. Furthermore, all virtual 
memory systems in use today relocate the program as a set of fixed-size blocks 
(pages), thereby eliminating the need to find a contiguous block of memory to 
allocate to a program; instead, the operating system needs only to find enough 
pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page 
offset. Figure 5.26 shows the translation of the virtual page number to a physical 
page number. While RISC-V has a 64-bit address, the upper 16 bits are not used, 
so the address to be mapped is 48 bits. This figure assumes the physical memory 
is 1 TiB, or 240 bytes, which needs a 40-bit address. The physical page number 
constitutes the upper portion of the physical address, while the page offset, which 
is not changed, constitutes the lower portion. The number of bits in the page offset 
field determines the page size. The number of pages addressable with the virtual 
address can be different than the number of pages addressable with the physical 
address. Having a larger number of virtual pages than physical pages is the basis for 
the illusion of an essentially unbounded amount of virtual memory.

page fault An event that 
occurs when an accessed 
page is not present in 
main memory.

virtual address  
An address that 
corresponds to a location 
in virtual space and is 
translated by address 
mapping to a physical 
address when memory is 
accessed.

address translation  
Also called address 
mapping. The process by 
which a virtual address 
is mapped to an address 
used to access memory.
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DRAMs and magnetic disks in servers (see Section 5.2). If we return to our library 
analogy, we can think of a virtual address as the title of a book and a physical 
address as the location of that book in the library, such as might be given by the 
Library of Congress call number.

Virtual memory also simplifies loading the program for execution by providing 
relocation. Relocation maps the virtual addresses used by a program to different 
physical addresses before the addresses are used to access memory. This relocation 
allows us to load the program anywhere in main memory. Furthermore, all virtual 
memory systems in use today relocate the program as a set of fixed-size blocks 
(pages), thereby eliminating the need to find a contiguous block of memory to 
allocate to a program; instead, the operating system needs only to find enough 
pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page 
offset. Figure 5.26 shows the translation of the virtual page number to a physical 
page number. While RISC-V has a 64-bit address, the upper 16 bits are not used, 
so the address to be mapped is 48 bits. This figure assumes the physical memory 
is 1 TiB, or 240 bytes, which needs a 40-bit address. The physical page number 
constitutes the upper portion of the physical address, while the page offset, which 
is not changed, constitutes the lower portion. The number of bits in the page offset 
field determines the page size. The number of pages addressable with the virtual 
address can be different than the number of pages addressable with the physical 
address. Having a larger number of virtual pages than physical pages is the basis for 
the illusion of an essentially unbounded amount of virtual memory.

page fault An event that 
occurs when an accessed 
page is not present in 
main memory.

virtual address  
An address that 
corresponds to a location 
in virtual space and is 
translated by address 
mapping to a physical 
address when memory is 
accessed.

address translation  
Also called address 
mapping. The process by 
which a virtual address 
is mapped to an address 
used to access memory.

Virtual addresses Physical addresses
Address translation

Disk addresses

FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one 
set of addresses (called virtual addresses) to another set (called physical addresses). The 
processor generates virtual addresses while the memory is accessed using physical addresses. Both the virtual 
memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical page. 
Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to a physical 
address; in that case, the page resides on disk. Physical pages can be shared by having two virtual addresses 
point to the same physical address. This capability is used to allow two different programs to share data or code.
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Many design choices in virtual memory systems are motivated by the high cost 
of a page fault. A page fault to disk will take millions of clock cycles to process. 
(The table on page 372 shows that main memory latency is about 100,000 times 
quicker than disk.) This enormous miss penalty, dominated by the time to get the 
first word for typical page sizes, leads to several key decisions in designing virtual 
memory systems:

■	 Pages should be large enough to try to amortize the high access time. Sizes 
from 4 KiB to 64 KiB are typical today. New desktop and server systems are 
being developed to support 32 KiB and 64 KiB pages, but new embedded 
systems are going in the other direction, to 1 KiB pages.

■	 Organizations that reduce the page fault rate are attractive. The primary 
technique used here is to allow fully associative placement of pages in 
memory.

■	 Page faults can be handled in software because the overhead will be small 
compared to the disk access time. In addition, software can afford to use clever 
algorithms for choosing how to place pages because even little reductions in 
the miss rate will pay for the cost of such algorithms.

■	 Write-through will not work for virtual memory, since writes take too long. 
Instead, virtual memory systems use write-back.

Virtual page number Page offset

47 46 45 44 43 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

39 38 37 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

FIGURE 5.26 Mapping from a virtual to a physical address. The page size is 212 = 4 KiB. The 
number of physical pages allowed in memory is 228, since the physical page number has 28 bits in it. Thus, 
main memory can have at most 1 TiB, while the virtual address space is 256 TiB. RISC-V allows physical 
memory to be up to 1 PiB; we chose 1 TiB because it is ample for many computers in 2016.
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The next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines 
sharing the same memory, but virtual memory was originally invented so that many 
programs could share a computer as part of a timesharing system. Since many readers 
today have no experience with time-sharing systems, we use virtual machines to motivate 
this section.

Elaboration: RISC-V supports a variety of virtual memory configurations. In addition 
to the 48-bit virtual address scheme, which is a good fit for large servers in 2016, 
the architecture can support 39-bit and 57-bit virtual address spaces. All of these 
configurations use a page size of 4 Kibibytes.

Elaboration: For servers and even PCs, 32-bit address processors are problematic. 
Although we normally think of virtual addresses as much larger than physical addresses, 
the opposite can occur when the processor address size is small relative to the state 
of the memory technology. No single program or virtual machine can benefit, but a 
collection of programs or virtual machines running at the same time can benefit from not 
having to be swapped out of main memory or by running on parallel processors.

Elaboration: The discussion of virtual memory in this book focuses on paging, which 
uses fixed-size blocks. There is also a variable-size block scheme called segmentation. 
In segmentation, an address consists of two parts: a segment number and a segment 
offset. The segment number is mapped to a physical address, and the offset is added 
to find the actual physical address. Because the segment can vary in size, a bounds 
check is also needed to make sure that the offset is within the segment. The major 
use of segmentation is to support more powerful methods of protection and sharing in 
an address space. Most operating system textbooks contain extensive discussions of 
segmentation compared to paging and of the use of segmentation to share the address 
space logically. The major disadvantage of segmentation is that it splits the address 
space into logically separate pieces that must be manipulated as a two-part address: 
the segment number and the offset. Paging, in contrast, makes the boundary between 
page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without 
changing the word size of the computer. Such attempts have been unsuccessful because 
of the awkwardness and performance penalties inherent in a two-part address, of which 
programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that simplify 
protection between the operating system and user programs and increase the efficiency 
of implementing paging. Although these divisions are often called “segments,” this 
mechanism is much simpler than variable block size segmentation and is not visible to 
user programs; we discuss it in more detail shortly.

segmentation A 
variable-size address 
mapping scheme in which 
an address consists of two 
parts: a segment number, 
which is mapped to a 
physical address, and a 
segment offset.
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Placing a Page and Finding It Again
Because of the incredibly high penalty for a page fault, designers reduce page fault 
frequency by optimizing page placement. If we allow a virtual page to be mapped 
to any physical page, the operating system can then choose to replace any page 
it wants when a page fault occurs. For example, the operating system can use a 
sophisticated algorithm and complex data structures that track page usage to try 
to choose a page that will not be needed for a long time. The ability to use a clever 
and flexible replacement scheme reduces the page fault rate and simplifies the use 
of fully associative placement of pages.

As mentioned in Section 5.4, the difficulty in using fully associative placement 
is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 
A full search is impractical. In virtual memory systems, we locate pages by using 
a table that indexes the main memory; this structure is called a page table, and 
it resides in main memory. A page table is indexed by the page number from the 
virtual address to discover the corresponding physical page number. Each program 
has its own page table, which maps the virtual address space of that program to main 
memory. In our library analogy, the page table corresponds to a mapping between 
book titles and library locations. Just as the card catalog may contain entries for 
books in another library on campus rather than the local branch library, we will 
see that the page table may contain entries for pages not present in memory. To 
indicate the location of the page table in memory, the hardware includes a register 
that points to the start of the page table; we call this the page table register. Assume 
for now that the page table is in a fixed and contiguous area of memory.

page table The table 
containing the virtual 
to physical address 
translations in a virtual 
memory system. The 
table, which is stored 
in memory, is typically 
indexed by the virtual page 
number; each entry in the 
table contains the physical 
page number for that 
virtual page if the page is 
currently in memory.

The page table, together with the program counter and the registers, specifies 
the state of a virtual machine. If we want to allow another virtual machine to use 
the processor, we must save this state. Later, after restoring this state, the virtual 
machine can continue execution. We often refer to this state as a process. The 
process is considered active when it is in possession of the processor; otherwise, it 
is considered inactive. The operating system can make a process active by loading 
the process’s state, including the program counter, which will initiate execution at 
the value of the saved program counter.

The process’s address space, and hence all the data it can access in memory, is 
defined by its page table, which resides in memory. Rather than save the entire page 
table, the operating system simply loads the page table register to point to the page 
table of the process it wants to make active. Each process has its own page table, 
since different processes use the same virtual addresses. The operating system is 
responsible for allocating the physical memory and updating the page tables, so 
that the virtual address spaces of distinct processes do not collide. As we will see 
shortly, the use of separate page tables also provides protection of one process from 
another.

Hardware/
Software 
Interface
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Figure 5.27 uses the page table register, the virtual address, and the indicated page 
table to show how the hardware can form a physical address. A valid bit is used 
in each page table entry, just as we did in a cache. If the bit is off, the page is not 
present in main memory and a page fault occurs. If the bit is on, the page is in 
memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no 
tags are required. In cache terminology, the index that is used to access the page 
table consists of the full block address, which in this case is the virtual page number.

Virtual page number Page offset

4 7 4 6  4 5  4 4  4 3 3 2 1 01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

3 9  3 8  3 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

36 12

28

FIGURE 5.27 The page table is indexed with the virtual page number to obtain the 
corresponding portion of the physical address. We assume a 48-bit address. The page table pointer 
gives the starting address of the page table. In this figure, the page size is 212 bytes, or 4 KiB. The virtual 
address space is 248 bytes, or 256 TiB, and the physical address space is 240 bytes, which allows main memory 
of up to 1 TiB. If RISC-V used a single page table as shown in this figure, the number of entries in the page 
table would be 236, or about 64 billion entries. (We’ll see what RISC-V does to reduce the number of entries 
shortly.) The valid bit for each entry indicates whether the mapping is legal. If it is off, then the page is not 
present in memory. Although the page table entry shown here need only be 29 bits wide, it would typically 
be rounded up to a power of 2 bits for ease of indexing. The page table entries in RISC-V are 64 bits. The 
extra bits would be used to store additional information that needs to be kept on a per-page basis, such as 
protection.
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Page Faults
If the valid bit for a virtual page is off, a page fault occurs. The operating system 
must be given control. This transfer is done with the exception mechanism, which 
we saw in Chapter 4 and will discuss again later in this section. Once the operating 
system gets control, it must find the page in the next level of the hierarchy (usually 
flash memory or magnetic disk) and decide where to place the requested page in 
the main memory.

The virtual address alone does not immediately tell us where the page is in 
secondary memory. Returning to our library analogy, we cannot find the location of 
a library book on the shelves just by knowing its title. Instead, we go to the catalog 
and look up the book, obtaining an address for the location on the shelves, such as 
the Library of Congress call number. Likewise, in a virtual memory system, we must 
keep track of the location in secondary memory of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced, 
the operating system usually creates the space on flash memory or disk for all the 
pages of a process when it creates the process. This space is called the swap space. 
At that time, it also creates a data structure to record where each virtual page is 
stored on disk. This data structure may be part of the page table or may be an 
auxiliary data structure indexed in the same way as the page table. Figure 5.28 
shows the organization when a single table holds either the physical page number 
or the secondary memory address.

The operating system also creates a data structure that tracks which processes 
and which virtual addresses use each physical page. When a page fault occurs, if all 
the pages in main memory are in use, the operating system must choose a page to 
replace. Because we want to minimize the number of page faults, most operating 
systems try to choose a page that they hypothesize will not be needed soon. Using 
the past to predict the future, operating systems follow the least recently used 
(LRU) replacement scheme, which we mentioned in Section 5.4. The operating 
system searches for the least recently used page, assuming that a page that has not 
been used in a long time is less likely to be needed than a more recently accessed 
page. The replaced pages are written to swap space in secondary memory. In case 
you are wondering, the operating system is just another process, and these tables 
controlling memory are in memory; the details of this seeming contradiction will 
be explained shortly.

swap space The space on 
the disk reserved for the 
full virtual memory space 
of a process.
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Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid

FIGURE 5.28 The page table maps each page in virtual memory to either a page in main 
memory or a page stored on disk, which is the next level in the hierarchy. The virtual page 
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number 
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the 
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page 
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual 
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently 
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

SPTBR

VA[47:39]

Table desc

Level 0 table
VA[38:30]

Table desc

Level 1 table

VA[29:21]

Table desc

Level 2 table
VA[20:12]

Table desc

Level 3 table

4 KiB
memory
page

FIGURE 5.29 RISC-V uses four levels of tables to translate a 48-bit virtual address into a 40-bit physical address. 
Rather than needing 64 billion page table entries for the single page table in Figure 5.27, this hierarchical approach needs just a tiny fraction. 
Each step of the translation uses 9 bits of the virtual address to find the next level table, until the upper 36 bits of the virtual address are mapped 
to the physical address of the desired 4 KiB page. Each RISC-V page table entry is 8 bytes, so the 512 entries of a table fill a single 4 KiB page. 
The Supervisor Page Table Base Register (SPTBR) gives the starting address of the first page table.
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Virtual Memory for Large Virtual Addresses
The caption in Figure 5.27 points out that with a single level page table for a  
48-bit address with 4 KiB pages, we need 64 billion table entries. As each page 
table entry is 8 bytes for RISC-V, it would require 0.5 TiB just to map the virtual 
addresses to physical addresses! Moreover, there could be hundreds of processes 
running, each with its own page table. That much memory for translation would 
be unaffordable even for the largest systems.

A range of techniques is used to reduce the amount of storage required for the 
page table. The five techniques below aim at reducing the total maximum storage 
required as well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the 
page table for a given process. If the virtual page number becomes larger 
than the contents of the limit register, entries must be added to the page 
table. This technique allows the page table to grow as a process consumes 
more space. Thus, the page table will only be large if the process is using 
many pages of virtual address space. This technique requires that the address 
space expand in just one direction.

2. Allowing growth in only one direction is not sufficient, since most languages 
require two areas whose size is expandable: one area holds the stack, and 
the other area holds the heap. Because of this duality, it is convenient to 
divide the page table and let it grow from the highest address down, as well 
as from the lowest address up. This means that there will be two separate 
page tables and two separate limits. The use of two page tables breaks the 
address space into two segments. The high-order bit of an address usually 
determines which segment and thus which page table to use for that address. 
Since the high-order address bit specifies the segment, each segment can be 

Implementing a completely accurate LRU scheme is too expensive, since it requires 
updating a data structure on every memory reference. Thus, most operating systems 
approximate LRU by keeping track of which pages have and which pages have not 
been recently used. To help the operating system estimate the LRU pages, RISC-V 
computers provide a reference bit, sometimes called a use bit or access bit, which 
is set whenever a page is accessed. The operating system periodically clears the 
reference bits and later records them so it can determine which pages were touched 
during a particular time period. With this usage information, the operating system 
can select a page that is among the least recently referenced (detected by having its 
reference bit off). If this bit is not provided by the hardware, the operating system 
must find another way to estimate which pages have been accessed.

Hardware/
Software 
Interface

reference bit Also called 
use bit or access bit. A 
field that is set whenever 
a page is accessed and 
that is used to implement 
LRU or other replacement 
schemes.
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as large as one-half of the address space. A limit register for each segment 
specifies the current size of the segment, which grows in units of pages.  
Unlike the type of segmentation discussed in the second elaboration on 
page 423, this form of segmentation is invisible to the application program, 
although not to the operating system. The major disadvantage of this scheme 
is that it does not work well when the address space is used in a sparse fashion 
rather than as a contiguous set of virtual addresses.

3. Another approach to reducing the page table size is to apply a hashing 
function to the virtual address so that the page table need be only the 
size of the number of physical pages in main memory. Such a structure is 
called an inverted page table. Of course, the lookup process is slightly more 
complex with an inverted page table, because we can no longer just index the 
page table.

4. To reduce the actual main memory tied up in page tables, most modern 
systems also allow the page tables to be paged. Although this sounds 
tricky, it works by using the same basic ideas of virtual memory and simply 
allowing the page tables to reside in the virtual address space. In addition, 
there are some small but critical problems, such as a never-ending series 
of page faults, which must be avoided. How these problems are overcome 
is both very detailed and typically highly processor-specific. In brief, these 
problems are avoided by placing all the page tables in the address space of 
the operating system and placing at least some of the page tables for the 
operating system in a portion of main memory that is physically addressed 
and is always present and thus never in secondary memory.

5. Multiple levels of page tables can also be used to reduce the total amount 
of page table storage, and this is the solution that RISC-V uses to reduce 
the memory footprint of address translation. Figure 5.29 above shows the 
four levels of address translation to go from a 48-bit virtual address to a 
40-bit physical address of a 4 KiB page. Address translation happens by first 
looking in the level 0 table, using the highest-order bits of the address. If 
the address in this table is valid, the next set of high-order bits is used to 
index the page table indicated by the segment table entry, and so on. Thus, 
the level 0 table maps the virtual address to a 512 GB (239 bytes) region. The 
level 1 table in turn maps the virtual address to a 1 GB (230) region. The next 
level maps this down to a 2 MB (221) region. The final table maps the virtual 
address to the 4 KiB (212) memory page. This scheme allows the address 
space to be used in a sparse fashion (multiple noncontiguous segments can 
be active) without having to allocate the entire page table. Such schemes are 
particularly useful with very large address spaces and in software systems 
that require noncontiguous allocation. The primary disadvantage of this 
multi-level mapping is the more complex process for address translation.
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What about Writes?
The difference between the access time to the cache and main memory is tens to 
hundreds of cycles, and write-through schemes can be used, although we need a 
write buffer to hide the latency of the write from the processor. In a virtual memory 
system, writes to the next level of the hierarchy (disk) can take millions of processor 
clock cycles; therefore, building a write buffer to allow the system to write-through 
to disk would be completely impractical. Instead, virtual memory systems must use 
write-back, performing the individual writes into the page in memory, and copying 
the page back to secondary memory when it is replaced in the main memory.

A write-back scheme has another major advantage in a virtual memory system. 
Because the disk transfer time is small compared with its access time, copying back 
an entire page is much more efficient than writing individual words back to the 
disk. A write-back operation, although faster than transferring separate words, is 
still costly. Thus, we would like to know whether a page needs to be copied back 
when we choose to replace it. To track whether a page has been written since it was 
read into the memory, a dirty bit is added to the page table. The dirty bit is set when 
any word in a page is written. If the operating system chooses to replace the page, 
the dirty bit indicates whether the page needs to be written out before its location 
in memory can be given to another page. Hence, a modified page is often called a 
dirty page.

Hardware/
Software 
Interface

Making Address Translation Fast: the TLB
Since the page tables are stored in main memory, every memory access by a program 
can take at least twice as long: one memory access to obtain the physical address 
and a second access to get the data. The key to improving access performance is to 
rely on locality of reference to the page table. When a translation for a virtual page 
number is used, it will probably be needed again soon, because the references to the 
words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of 
recently used translations. This special address translation cache is traditionally 
referred to as a translation-lookaside buffer (TLB), although it would be more 
accurate to call it a translation cache. The TLB corresponds to that little piece of 
paper we typically use to record the location of a set of books we look up in the card 
catalog; rather than continually searching the entire catalog, we record the location 
of several books and use the scrap of paper as a cache of Library of Congress call 
numbers.

Figure 5.30 shows that each tag entry in the TLB holds a portion of the virtual page 
number, and each data entry of the TLB holds a physical page number. Because we 

translation-lookaside 
buffer (TLB) A cache 
that keeps track of 
recently used address 
mappings to try to avoid 
an access to the page 
table.
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access the TLB instead of the page table on every reference, the TLB will need to include 
other status bits, such as the dirty and the reference bits. Although Figure 5.30 shows a 
single page table, TLBs work fine with multi-level page tables as well. The TLB simply 
loads the physical address and protection tags from the last level page table.

On every reference, we look up the virtual page number in the TLB. If we get a 
hit, the physical page number is used to form the address, and the corresponding 
reference bit is turned on. If the processor is performing a write, the dirty bit is also 
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 
only that the translation is missing. In such cases, the processor can handle the 
TLB miss by loading the translation from the (last-level) page table into the TLB 
and then trying the reference again. If the page is not present in memory, then 
the TLB miss indicates a true page fault. In this case, the processor invokes the 
operating system using an exception. Because the TLB has many fewer entries than 
the number of pages in main memory, TLB misses will be much more frequent 
than true page faults.
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FIGURE 5.30 The TLB acts as a cache of the page table for the entries that map to 
physical pages only. The TLB contains a subset of the virtual-to-physical page mappings that are in the 
page table. The TLB mappings are shown in color. Because the TLB is a cache, it must have a tag field. If there 
is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a 
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page 
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no 
tag field is needed; in other words, unlike a TLB, a page table is not a cache.
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TLB misses can be handled either in hardware or in software. In practice, with 
care there can be little performance difference between the two approaches, because 
the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from the 
page table, we will need to select a TLB entry to replace. Because the reference and 
dirty bits are contained in the TLB entry, we need to copy these bits back to the page 
table entry when we replace an entry. These bits are the only portion of the TLB 
entry that can be changed. Using write-back—that is, copying these entries back at 
miss time rather than when they are written—is very efficient, since we expect the 
TLB miss rate to be small. Some systems use other techniques to approximate the 
reference and dirty bits, eliminating the need to write into the TLB except to load 
a new table entry on a miss.

Some typical values for a TLB might be

■	 TLB size: 16–512 entries

■	 Block size: 1–2 page table entries (typically 4–8 bytes each)

■	 Hit time: 0.5–1 clock cycle

■	 Miss penalty: 10–100 clock cycles

■	 Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 
small, fully associative TLBs because a fully associative mapping has a lower miss 
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is 
not too high. Other systems use large TLBs, often with small associativity. With 
a fully associative mapping, choosing the entry to replace becomes tricky since 
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 
misses are much more frequent than page faults and thus must be handled more 
cheaply, we cannot afford an expensive software algorithm, as we can for page faults. 
As a result, many systems provide some support for randomly choosing an entry 
to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the Intrinsity 
FastMATH. The memory system uses 4 KiB pages and just a 32-bit address space; 
thus, the virtual page number is 20 bits long. The physical address is the same size 
as the virtual address. The TLB contains 16 entries, it is fully associative, and it is 
shared between the instruction and data references. Each entry is 64 bits wide and 
contains a 20-bit tag (which is the virtual page number for that TLB entry), the 
corresponding physical page number (also 20 bits), a valid bit, a dirty bit, and other 
bookkeeping bits. Like most MIPS systems, it uses software to handle TLB misses.

Figure 5.31 shows the TLB and one of the caches, while Figure 5.32 shows the 
steps in processing a read or write request. When a TLB miss occurs, the hardware 
saves the page number of the reference in a special register and generates an 
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FIGURE 5.31 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity 
FastMATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. Note that the address size for this 
computer is just 32 bits. This diagram focuses on a read; Figure 5.32 describes how to handle writes. Note that unlike Figure 5.12, the tag and 
data RAMs are split. By addressing the long but narrow data RAM with the cache index concatenated with the block offset, we select the desired 
word in the block without a 16:1 multiplexor. While the cache is direct mapped, the TLB is fully associative. Implementing a fully associative 
TLB requires that every TLB tag be compared against the virtual page number, since the entry of interest can be anywhere in the TLB. (See 
content addressable memories in the Elaboration on page 400.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from 
the physical page number together with bits from the page offset form the index that is used to access the cache.
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FIGURE 5.32 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the 
cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall 
while the data are brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data are sent to 
the write buffer if we assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory. 
Write-back requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write 
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB 
hit occurs, which means that the data must be present in memory. The relationship between TLB misses and cache misses is examined further 
in the following example and the exercises at the end of this chapter. Note that the address size for this computer is just 32 bits.
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exception. The exception invokes the operating system, which handles the miss in 
software. To find the physical address for the missing page, a TLB miss indexes the 
page table using the page number of the virtual address and the page table register, 
which indicates the starting address of the active process page table. Using a special 
set of system instructions that can update the TLB, the operating system places the 
physical address from the page table into the TLB. A TLB miss takes about 13 clock 
cycles, assuming the code and the page table entry are in the instruction cache and 
data cache, respectively. A true page fault occurs if the page table entry does not 
have a valid physical address. The hardware maintains an index that indicates the 
recommended entry to replace; it is chosen randomly.

There is an extra complication for write requests: namely, the write access bit in 
the TLB must be checked. This bit prevents the program from writing into pages 
for which it has only read access. If the program attempts a write and the write 
access bit is off, an exception is generated. The write access bit forms part of the 
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches
Our virtual memory and cache systems work together as a hierarchy, so that data 
cannot be in the cache unless it is present in main memory. The operating system 
helps maintain this hierarchy by flushing the contents of any page from the cache 
when it decides to migrate that page to secondary memory. At the same time, the 
OS modifies the page tables and TLB, so that an attempt to access any data on the 
migrated page will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and 
sent to the cache where the appropriate data are found, retrieved, and sent back to 
the processor. In the worst case, a reference can miss in all three components of the 
memory hierarchy: the TLB, the page table, and the cache. The following example 
illustrates these interactions in more detail.

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.31, which includes a TLB and a 
cache organized as shown, a memory reference can encounter three different 
types of misses: a TLB miss, a page fault, and a cache miss. Consider all 
the combinations of these three events with one or more occurring (seven 
possibilities). For each possibility, state whether this event can actually occur 
and under what circumstances.

Figure 5.33 shows all combinations and whether each is possible in practice.

EXAMPLE

ANSWER
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Elaboration: Figure 5.33 assumes that all memory addresses are translated to 
physical addresses before the cache is accessed. In this organization, the cache is 
physically indexed and physically tagged (both the cache index and tag are physical, 
rather than virtual, addresses). In such a system, the amount of time to access memory, 
assuming a cache hit, must accommodate both a TLB access and a cache access; of 
course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely 
or partially virtual. This is called a virtually addressed cache, and it uses tags that 
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In 
such caches, the address translation hardware (TLB) is unused during the normal cache 
access, since the cache is accessed with a virtual address that has not been translated 
to a physical address. This takes the TLB out of the critical path, reducing cache latency. 
When a cache miss occurs, however, the processor needs to translate the address to a 
physical address so that it can fetch the cache block from main memory.

When the cache is accessed with a virtual address and pages are shared between 
processes (which may access them with different virtual addresses), there is the 
possibility of aliasing. Aliasing occurs when the same object has two names—in this 
case, two virtual addresses for the same page. This ambiguity creates a problem, because 
a word on such a page may be cached in two different locations, each corresponding 
to distinct virtual addresses. This ambiguity would allow one program to write the data 
without the other program being aware that the data had changed. Completely virtually 
addressed caches either introduce design limitations on the cache and TLB to reduce 
aliases or require the operating system, and possibly the user, to take steps to ensure 
that aliases do not occur.

A common compromise between these two design points is caches that are virtually 
indexed—sometimes using just the page-offset portion of the address, which is really 
a physical address since it is not translated—but use physical tags. These designs, 
which are virtually indexed but physically tagged, attempt to achieve the performance 
advantages of virtually indexed caches with the architecturally simpler advantages of a 
physically addressed cache. For example, there is no alias problem in this case. Figure 
5.31 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can 
use this trick. To pull it off, there must be careful coordination between the minimum 
page size, the cache size, and associativity. RISC-V requires caches to behave as 

though physically tagged and indexed, but it does not mandate this implementation. For 
example, virtually indexed, physically tagged data caches could use additional logic to 
ensure that software cannot tell the difference.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of 
a single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. The protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or into 
the operating system either intentionally or unintentionally. The write access bit in 
the TLB can protect a page from being written. Without this level of protection, 
computer viruses would be even more widespread.

virtually addressed 
cache A cache that is 
accessed with a virtual 
address rather than a 
physical address.

aliasing A situation 
in which two addresses 
access the same object; 
it can occur in virtual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.

supervisor mode Also 
called kernel mode. A 
mode indicating that a 
running process is an 
operating system process.

system call A special 
instruction that transfers 
control from user mode 
to a dedicated location 
in supervisor code space, 
invoking the exception 
mechanism in the process.

TLB
Page 
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.33 The possible combinations of events in the TLB, virtual memory system, 
and cache. Three of these combinations are impossible, and one is possible (TLB hit, page table hit, cache 
miss) but never detected.
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though physically tagged and indexed, but it does not mandate this implementation. For 
example, virtually indexed, physically tagged data caches could use additional logic to 
ensure that software cannot tell the difference.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of 
a single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. The protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or into 
the operating system either intentionally or unintentionally. The write access bit in 
the TLB can protect a page from being written. Without this level of protection, 
computer viruses would be even more widespread.

virtually addressed 
cache A cache that is 
accessed with a virtual 
address rather than a 
physical address.

aliasing A situation 
in which two addresses 
access the same object; 
it can occur in virtual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.

supervisor mode Also 
called kernel mode. A 
mode indicating that a 
running process is an 
operating system process.

system call A special 
instruction that transfers 
control from user mode 
to a dedicated location 
in supervisor code space, 
invoking the exception 
mechanism in the process.

To enable the operating system to implement protection in the virtual memory 
system, the hardware must provide at least the three basic capabilities summarized 
below. Note that the first two are the same requirements as needed for virtual 
machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a 
user process or an operating system process, variously called a supervisor 
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but 
not write. This state includes the user/supervisor mode bit, which dictates 
whether the processor is in user or supervisor mode, the page table pointer, 
and the TLB. To write these elements, the operating system uses special 
instructions that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to 
supervisor mode and vice versa. The first direction is typically accomplished 
by a system call exception, implemented as a special instruction (ecall in 
the RISC-V instruction set) that transfers control to a dedicated location in 
supervisor code space. As with any other exception, the program counter 
from the point of the system call is saved in the supervisor exception program 
counter (SEPC), and the processor is placed in supervisor mode. To return 
to user mode from the exception, use the supervisor exception return (sret) 
instruction, which resets to user mode and jumps to the address in SEPC.

By using these mechanisms and storing the page tables in the operating system’s 
address space, the operating system can change the page tables while preventing a 
user process from changing them, ensuring that a user process can access only the 
storage provided to it by the operating system.

Hardware/
Software 
Interface
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We also want to prevent a process from reading the data of another process. For 
example, we wouldn’t want a student program to read the teacher’s grades while they 
were in the processor’s memory. Once we begin sharing main memory, we must 
provide the ability for a process to protect its data from both reading and writing by 
another process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Thus, if the 
operating system keeps the page tables organized so that the independent virtual 
pages map to disjoint physical pages, one process will not be able to access another’s 
data. Of course, this also requires that a user process be unable to change the page 
table mapping. The operating system can assure safety if it prevents the user process 
from modifying its own page tables. However, the operating system must be able 
to modify the page tables. Placing the page tables in the protected address space of 
the operating system satisfies both requirements.

When processes want to share information in a limited way, the operating system 
must assist them, since accessing the information of another process requires 
changing the page table of the accessing process. The write access bit can be used 
to restrict the sharing to just read sharing, and, like the rest of the page table, this 
bit can be changed only by the operating system. To allow another process, say, P1, 
to read a page owned by process P2, P2 would ask the operating system to create 
a page table entry for a virtual page in P1’s address space that points to the same 
physical page that P2 wants to share. The operating system could use the write 
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits 
that determine the access rights for a page must be included in both the page table 
and the TLB, because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process 
P1 to running process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1 because that would compromise 
protection. If there is no TLB, it suffices to change the page table register to point to P2’s 
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 
process switch rate were high, this could be quite inefficient. For example, P2 might load 
only a few TLB entries before the operating system switched back to P1. Unfortunately, 
P1 would then find that all its TLB entries were gone and would have to pay TLB misses 
to reload them. This problem arises because the virtual addresses used by P1 and P2 
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process 
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID) 
field for this purpose. This small field identifies the currently running process; it is 
kept in a register loaded by the operating system when it switches processes. RISC-V 
also offers ASID to reduce TLB flushes on context switches. The process identifier is 
concatenated to the tag portion of the TLB, so that a TLB hit occurs only if both the page 
number and the process identifier match. This combination eliminates the need to clear 
the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch, the cache will 
contain data from the running process. These problems arise in different ways for 
physically addressed and virtually addressed caches, and a variety of solutions, such as 
process identifiers, are used to ensure that a process gets its own data.

context switch  
A changing of the internal 
state of the processor to 
allow a different process 
to use the processor 
that includes saving the 
state needed to return to 
the currently executing 
process.
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Handling TLB Misses and Page Faults
Although the translation of virtual to physical addresses with a TLB is 
straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and 
page faults is more complex. A TLB miss occurs when no entry in the TLB matches 
a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry.
2. The page is not present in memory, and we need to transfer control to the 

operating system to deal with a page fault.
Handling a TLB miss or a page fault requires using the exception mechanism to 

interrupt the active process, transferring control to the operating system, and later 
resuming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruction 
after the page fault is handled, the program counter of the instruction that caused the 
page fault must be saved. The supervisor exception program counter (SEPC) register is 
used to hold this value.

In addition, a TLB miss or page fault exception must be asserted by the end of the 
same clock cycle that the memory access occurs, so that the next clock cycle will begin 
exception processing rather than continue normal instruction execution. If the page 
fault was not recognized in this clock cycle, a load instruction could overwrite a register, 
and this could be disastrous when we try to restart the instruction. For example, consider 
the instruction lb x10, 0(x10): the computer must be able to prevent the write 
pipeline stage from occurring; otherwise, it could not properly restart the instruction, 
since the contents of x10 would have been destroyed. A similar complication arises on 
stores. We must prevent the write into memory from actually completing when there 
is a page fault; this is usually done by deasserting the write control line to the memory.

exception enable Also 
called interrupt enable. 
A signal or action that 
controls whether the 
process responds to 
an exception or not; 
necessary for preventing 
the occurrence of 
exceptions during 
intervals before the 
processor has safely saved 
the state needed to restart.

Between the time we begin executing the exception handler in the operating 
system and the time that the operating system has saved all the state of the process, 
the operating system is particularly vulnerable. For instance, if another exception 
occurred when we were processing the first exception in the operating system, the 
control unit would overwrite the exception link register, making it impossible to 
return to the instruction that caused the page fault! We can avoid this disaster by 
providing the ability to disable and enable exceptions. When an exception first 
occurs, the processor sets a bit that disables all other exceptions; this could happen 
at the same time the processor sets the supervisor mode bit. The operating system 
will then save just enough state to allow it to recover if another exception occurs—
namely, the supervisor exception rogram counter (SEPC) and the supervisor exception 
cause (SCAUSE) registers, which as we saw in Chapter 4 records the reason for the 
exception. SEPC and SCAUSE in RISC-V are two of the special control registers 
that help with exceptions, TLB misses, and page faults. The operating system can 
then re-enable exceptions. These steps make sure that exceptions will not cause 
the processor to lose any state and thereby be unable to restart execution of the 
interrupting instruction.

Hardware/
Software 
Interface
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Once the operating system knows the virtual address that caused the page fault, 
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location 
of the referenced page in secondary memory.

2. Choose a physical page to replace; if the chosen page is dirty, it must be 
written out to secondary memory before we can bring a new virtual page 
into this physical page.

3. Start a read to bring the referenced page from secondary memory into the 
chosen physical page.

Of course, this last step will take millions of processor clock cycles for disks (so 
will the second if the replaced page is dirty); accordingly, the operating system 
will usually select another process to execute in the processor until the disk access 
completes. Because the operating system has saved the state of the process, it can 
freely give control of the processor to another process.

When the read of the page from secondary memory is complete, the operating 
system can restore the state of the process that originally caused the page fault and 
execute the instruction that returns from the exception. This instruction will reset 
the processor from kernel to user mode, as well as restore the program counter. The 
user process then re-executes the instruction that faulted, accesses the requested 
page successfully, and continues execution.

Page fault exceptions for data accesses are difficult to implement properly in a 
processor because of a combination of three characteristics:

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing 
had occurred.

Making instructions restartable, so that the exception can be handled and the 
instruction later continued, is relatively easy in an architecture like the RISC-V. 
Because each instruction writes only one data item and this write occurs at the end 
of the instruction cycle, we can simply prevent the instruction from completing (by 
not writing) and restart the instruction at the beginning.

Elaboration: For processors with more complex instructions that can touch many 
memory locations and write many data items, making instructions restartable is much 
harder. Processing one instruction may generate a number of page faults in the middle 
of the instruction. For example, x86 processors have block move instructions that touch 
thousands of data words. In such processors, instructions often cannot be restarted from 
the beginning, as we do for RISC-V instructions. Instead, the instruction must be interrupted 
and later continued midstream in its execution. Resuming an instruction in the middle of its 
execution usually requires saving some special state, processing the exception, and restoring 
that special state. Making this work properly requires careful and detailed coordination 
between the exception-handling code in the operating system and the hardware.

restartable 
instruction An 
instruction that can 
resume execution after 
an exception is resolved 
without the exception’s 
affecting the result of the 
instruction.
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Elaboration: Rather than pay an extra level of indirection on every memory access, the 
Virtual Memory Monitor (Section 5.6) maintains a shadow page table that maps directly 
from the guest virtual address space to the physical address space of the hardware. By 
detecting all modifications to the guest’s page table, the VMM can ensure the shadow 
page table entries being used by the hardware for translations correspond to those of 
the guest OS environment, with the exception of the correct physical pages substituted 
for the real pages in the guest tables. Hence, the VMM must trap any attempt by the 
guest OS to change its page table or to access the page table pointer. This is commonly 
done by write protecting the guest page tables and trapping any access to the page table 
pointer by a guest OS. As noted above, the latter happens naturally if accessing the page 
table pointer is a privileged operation.

Elaboration: The final portion of the architecture to virtualize is I/O. This is by far 
the most difficult part of system virtualization because of the increasing number of 
I/O devices attached to the computer and the expanding diversity of I/O device types. 
Another difficulty is the sharing of a real device among multiple VMs, and yet another 
comes from supporting the myriad of device drivers that are required, especially if 
different guest OSes are supported on the same VM system. The VM illusion can be 
maintained by giving each VM generic versions of each type of I/O device driver, and then 
leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine, another 
challenge is virtualization of virtual memory, as each guest OS in every virtual machine 
manages its own set of page tables. To make this work, the VMM separates the notions of 
real and physical memory (which are often treated synonymously), and makes real memory 
a separate, intermediate level between virtual memory and physical memory. (Some use 
the terms virtual memory, physical memory, and machine memory to name the same three 
levels.) The guest OS maps virtual memory to real memory via its page tables, and the 
VMM page tables map the guest’s real memory to physical memory. The virtual memory 
architecture is typically specified via page tables, as in IBM VM/370, the x86, and RISC-V.

Summary
Virtual memory is the name for the level of memory hierarchy that manages 
caching between the main memory and secondary memory. Virtual memory 
allows a single program to expand its address space beyond the limits of main 
memory. More importantly, virtual memory supports sharing of the main memory 
among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging 
because of the high cost of page faults. Several techniques are used to reduce the 
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the 
miss rate.

2. The mapping between virtual addresses and physical addresses, which is 
implemented with a page table, is made fully associative so that a virtual 
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to 
choose which pages to replace.
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Writes to secondary memory are expensive, so virtual memory uses a write-back 
scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid 
writing clean pages.

The virtual memory mechanism provides address translation from a virtual 
address used by the program to the physical address space used for accessing memory. 
This address translation allows protected sharing of the main memory and provides 
several additional benefits, such as simplifying memory allocation. Ensuring that 
processes are protected from each other requires that only the operating system can 
change the address translations, which is implemented by preventing user programs 
from altering the page tables. Controlled sharing of pages between processes can be 
implemented with the help of the operating system and access bits in the page table 
that indicate whether the user program has read or write access to a page.

If a processor had to access a page table resident in memory to translate every 
access, virtual memory would be too expensive, as caches would be pointless! 
Instead, a TLB acts as a cache for translations from the page table. Addresses are 
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and 
policies. The next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large 
one, the performance difference between secondary memory and main memory 
means that if a program routinely accesses more virtual memory than it has physical 
memory, it will run very slowly. Such a program would be continuously swapping 
pages between main memory and secondary memory, called thrashing. Thrashing is 
a disaster if it occurs, but it is rare. If your program thrashes, the easiest solution is to 
run it on a computer with more memory or buy more memory for your computer. A 
more complex choice is to re-examine your algorithm and data structures to see if you 
can change the locality and thereby reduce the number of pages that your program 
uses simultaneously. This set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might  
handle only 32–64 page entries at a time, a program could easily see a high TLB 
miss rate, as the processor may access less than a quarter mebibyte directly: 64 × 4 
KiB = 0.25 MiB. For example, TLB misses are often a challenge for Radix Sort. To 
try to alleviate this problem, most computer architectures now offer support for 
larger page sizes. For instance, in addition to the minimum 4 KiB page, RISC-V 
hardware supports 2 MiB and 1 GiB pages. Hence, if a program uses large page 
sizes, it can access more memory directly without TLB misses.

The practical challenge is getting the operating system to allow programs to 
select these larger page sizes. Once again, the more complex solution to reducing 
TLB misses is to re-examine the algorithm and data structures to reduce the 
working set of pages; given the importance of memory accesses to performance 
and the frequency of TLB misses, some programs with large working sets have 
been redesigned with that goal.

Understanding 
Program 

Performance
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Elaboration: RISC-V supports the larger page sizes via the multi-level page table of 
Figure 5.29. In addition to pointing at the next level page table in levels 1 and 2, it allows 
a superpage translation to map the virtual address to a 1 GiB physical address (if the block 
translation is in level 1) or a 2 MiB physical address (if the block translation is in level 2).

 5.8 A Common Framework for Memory 
Hierarchy

By now, you’ve recognized that the different types of memory hierarchies have a 
great deal in common. Although many of the aspects of memory hierarchies differ 
quantitatively, many of the policies and features that determine how a hierarchy 
functions are similar qualitatively. Figure 5.34 shows how some of the quantitative 
characteristics of memory hierarchies can differ. In the rest of this section, we will 
discuss the common operational alternatives for memory hierarchies, and how 
these determine their behavior. We will examine these policies in a series of four 
questions that apply between any two levels of a memory hierarchy, although for 
simplicity, we will primarily use terminology for caches.

Question 1: Where Can a Block Be Placed?
We have seen that block placement in the upper level of the hierarchy can use a range 
of schemes, from direct mapped to set associative to fully associative. As mentioned 
above, this entire range of schemes can be thought of as variations on a set-associative 
scheme where the number of sets and the number of blocks per set varies:

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative
Number of blocks in the cache

Associativity
Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

Feature
Typical values 
for L1 caches

Typical values 
for L2 caches

Typical values for 
paged memory

Typical values 
for a TLB

Total size in blocks 250–2000 2500–25,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 125–2000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.34 The key quantitative design parameters that characterize the major elements of memory hierarchy in a 
computer. These are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values 
that have shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not 
shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches 
lower the L2 miss penalty to 30 to 40 clock cycles.
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The advantage of increasing the degree of associativity is that it usually decreases 
the miss rate. The improvement in miss rate comes from reducing misses that 
compete for the same location. We will examine these in more detail shortly. First, 
let’s look at how much improvement is gained. Figure 5.35 shows the miss rates 
for several cache sizes as associativity varies from direct mapped to eight-way set 
associative. The largest gains are obtained in going from direct mapped to two-way 
set associative, which yields between a 20% and 30% reduction in the miss rate. 
As cache sizes grow, the relative improvement from associativity increases only 
slightly; since the overall miss rate of a larger cache is lower, the opportunity for 
improving the miss rate decreases and the absolute improvement in the miss rate 
from associativity shrinks significantly. The potential disadvantages of associativity, 
as we mentioned earlier, are increased cost and slower access time.

Question 2: How Is a Block Found?
The choice of how we locate a block depends on the block placement scheme, since 
that dictates the number of possible locations. We can summarize the schemes as 
follows:

Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full
Search all cache entries Size of the cache

Separate lookup table 0

Associativity

M
is

s 
ra

te

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KiB

2 KiB

4 KiB

8 KiB

16 KiB
32 KiB

64 KiB 128 KiB

FIGURE 5.35 The data cache miss rates for each of eight cache sizes improve as the 
associativity increases. While the benefit of going from one-way (direct mapped) to two-way set 
associative is significant, the benefits of further associativity are smaller (e.g., 1–10% improvement going 
from two-way to four-way versus 20–30% improvement going from one-way to two-way). There is even less 
improvement in going from four-way to eight-way set associative, which, in turn, comes very close to the miss 
rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit from associativity 
because the base miss rate of a small cache is larger. Figure 5.16 explains how these data were collected.
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The choice among direct-mapped, set-associative, or fully associative mapping 
in any memory hierarchy will depend on the cost of a miss versus the cost of 
implementing associativity, both in time and in extra hardware. Including the 
L2 cache on the chip enables much higher associativity, because the hit times are 
not as critical and the designer does not have to rely on standard SRAM chips as 
the building blocks. Fully associative caches are prohibitive except for small sizes, 
where the cost of the comparators is not overwhelming and where the absolute 
miss rate improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept 
to index the memory. In addition to the storage needed for the table, using an 
index table requires an extra memory access. The choice of full associativity for 
page placement and the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes 
that are designed to reduce the miss rate.

3. The full map can be easily indexed with no extra hardware and no searching 
required.

Therefore, virtual memory systems almost always use fully associative placement.
Set-associative placement is often used for caches and TLBs, where the access 

combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. The 
advantage in access time occurs because finding the requested block does not depend 
on a comparison. Such design choices depend on many details of the implementation, 
such as whether the cache is on-chip, the technology used for implementing the cache, 
and the critical role of cache access time in determining the processor cycle time.

Question 3: Which Block Should Be Replaced on 
a Cache Miss?
When a miss occurs in an associative cache, we must decide which block to replace. 
In a fully associative cache, all blocks are candidates for replacement. If the cache is 
set associative, we must choose among the blocks in the set. Of course, replacement 
is easy in a direct-mapped cache because there is only one candidate.

There are the two primary strategies for replacement in set-associative or fully 
associative caches:

■	 Random: Candidate blocks are randomly selected, possibly using some 
hardware assistance.

■	 Least recently used (LRU): The block replaced is the one that has been unused 
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small 
degree of associativity (two to four, typically), since tracking the usage information 
is expensive. Even for four-way set associativity, LRU is often approximated—for 
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example, by keeping track of which pair of blocks is LRU (which requires 1 bit), 
and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is 
used. In caches, the replacement algorithm is in hardware, which means that the 
scheme should be easy to implement. Random replacement is simple to build in 
hardware, and for a two-way set-associative cache, random replacement has a miss 
rate about 1.1 times higher than LRU replacement. As the caches become larger, the 
miss rate for both replacement strategies falls, and the absolute difference becomes 
small. In fact, random replacement can sometimes be better than the simple LRU 
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny 
reduction in the miss rate can be important when the cost of a miss is enormous. 
Reference bits or equivalent functionality are often provided to make it easier for 
the operating system to track a set of less recently used pages. Because misses are 
so expensive and relatively infrequent, approximating this information primarily 
in software is acceptable.

Question 4: What Happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have 
already seen the two basic options:

■	 Write-through: The information is written to both the block in the cache and 
the block in the lower level of the memory hierarchy (main memory for a 
cache). The caches in Section 5.3 used this scheme.

■	 Write-back: The information is written just to the block in the cache. The 
modified block is written to the lower level of the hierarchy only when it 
is replaced. Virtual memory systems always use write-back, for the reasons 
discussed in Section 5.7.

Both write-back and write-through have their advantages. The key advantages of 
write-back are the following:

■	 Individual words can be written by the processor at the rate that the cache, 
rather than the memory, can accept them.

■	 Multiple writes within a block require only one write to the lower level in the 
hierarchy.

■	 When blocks are written back, the system can make effective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:

■	 Misses are simpler and cheaper because they never require a block to be 
written back to the lower level.

■	 Write-through is easier to implement than write-back, although to be 
realistic, a write-through cache will still need to use a write buffer.
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In virtual memory systems, only a write-back policy is practical because of the long 
latency of a write to the lower level of the hierarchy. The rate at which writes are 
generated by a processor generally exceeds the rate at which the memory system can 
process them, even allowing for physically and logically wider memories and burst 
modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies
In this subsection, we look at a model that provides insight into the sources of 
misses in a memory hierarchy and how the misses will be affected by changes 
in the hierarchy. We will explain the ideas in terms of caches, although the ideas 
carry over directly to any other level in the hierarchy. In this model, all misses are 
classified into one of three categories (the three Cs):

■	 Compulsory misses: These are cache misses caused by the first access to a 
block that has never been in the cache. These are also called cold-start misses.

■	 Capacity misses: These are cache misses caused when the cache cannot 
contain all the blocks needed during execution of a program. Capacity misses 
occur when blocks are replaced and then later retrieved.

■	 Conflict misses: These are cache misses that occur in set-associative or 
direct-mapped caches when multiple blocks compete for the same set. 
Conflict misses are those misses in a direct-mapped or set-associative cache 
that are eliminated in a fully associative cache of the same size. These cache 
misses are also called collision misses.

three Cs model A cache 
model in which all cache 
misses are classified into 
one of three categories: 
compulsory misses, 
capacity misses, and 
conflict misses.

compulsory miss Also 
called cold-start miss. 
A cache miss caused by 
the first access to a block 
that has never been in the 
cache.

capacity miss A cache 
miss that occurs because 
the cache, even with 
full associativity, cannot 
contain all the blocks 
needed to satisfy the 
request.

conflict miss Also called 
collision miss. A cache 
miss that occurs in a 
set-associative or direct-
mapped cache when 
multiple blocks compete 
for the same set and that 
are eliminated in a fully 
associative cache of the 
same size.

Caches, TLBs, and virtual memory may initially look very different, but 
they rely on the same two principles of locality, and they can be understood 
by their answers to four questions:

Question 1: Where can a block be placed?

Answer: One place (direct mapped), a few places (set associative), or any place 
(fully associative).

Question 2: How is a block found?

Answer: There are four methods: indexing (as in a direct-mapped cache), 
limited search (as in a set-associative cache), full search (as in a fully 
associative cache), and a separate lookup table (as in a page table).

Question 3: What block is replaced on a miss?

Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?

Answer: Each level in the hierarchy can use either write-through or write-back.

The BIG 
Picture
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Figure 5.36 shows how the miss rate divides into the three sources. These sources of 
misses can be directly attacked by changing some aspect of the cache design. Since 
conflict misses arise straight from contention for the same cache block, increasing 
associativity reduces conflict misses. Associativity, however, may slow access time, 
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily bigger for many years. Of course, when we 
make the cache larger, we must also be careful about increasing the access time, 
which could lead to lower overall performance. Thus, first-level caches have been 
growing slowly, if at all.

Because compulsory misses are generated by the first reference to a block, the 
primary way for the cache system to reduce the number of compulsory misses is 
to increase the block size. This will reduce the number of references required to 
touch each block of the program once, because the program will consist of fewer 
cache blocks. As mentioned above, increasing the block size too much can have a 
negative effect on performance because of the increase in the miss penalty.

Cache size (KiB)

Miss rate
per type

0%
8 32

1%

2%

3%

4%

5%

128 512

6%

7%

16 64 2564

Capacity

8%

9%

10%

1024

One-way

Two-way

Four-way

FIGURE 5.36 The miss rate can be broken into three sources of misses. This graph shows the 
total miss rate and its components for a range of cache sizes. These data are for the SPEC CPU2000 integer 
and floating-point benchmarks and are from the same source as the data in Figure 5.35. The compulsory 
miss component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate, 
which depends on cache size. The conflict portion, which depends both on associativity and on cache size, is 
shown for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds 
to the increase in the miss rate that occurs when the associativity is changed from the next higher degree to 
the labeled degree of associativity. For example, the section labeled two-way indicates the additional misses 
arising when the cache has associativity of two rather than four. Thus, the difference in the miss rate incurred 
by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections 
marked four-way, two-way, and one-way. The difference between eight-way and four-way is so small that it 
is difficult to see on this graph.
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The decomposition of misses into the three Cs is a useful qualitative model. In 
real cache designs, many of the design choices interact, and changing one cache 
characteristic will often affect several components of the miss rate. Despite such 
shortcomings, this model is a useful way to gain insight into the performance of 
cache designs.

The challenge in designing memory hierarchies is that every change 
that potentially improves the miss rate can also negatively affect overall 
performance, as Figure 5.37 summarizes. This combination of positive 
and negative effects is what makes the design of a memory hierarchy 
interesting.

The BIG 
Picture

Design change Effect on miss rate
Possible negative  

performance effect

Increases cache size Decreases capacity misses May increase access time

Increases associativity Decreases miss rate due to conflict 
misses

May increase access time

Increases block size Decreases miss rate for a wide range of 
block sizes due to spatial locality

Increases miss penalty. Very large 
block could increase miss rate

FIGURE 5.37 Memory hierarchy design challenges.

Which of the following statements (if any) is generally true?

1. There is no way to reduce compulsory misses.

2. Fully associative caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

Check Yourself

 5.9 Using a Finite-State Machine to Control a 
Simple Cache

We can now build control for a cache, just as we implemented control for the single-
cycle and pipelined datapaths in Chapter 4. This section starts with a definition of a 
simple cache and then a description of finite-state machines (FSMs). It finishes with 
the FSM of a controller for this simple cache.  Section 5.12 goes into more depth, 
showing the cache and controller in a new hardware description language.
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A Simple Cache
We’re going to design a controller for a straightforward cache. Here are the key 
characteristics of the cache:

■	 Direct-mapped cache

■	 Write-back using write allocate

■	 Block size is four words (16 bytes or 128 bits)

■	 Cache size is 16 KiB, so it holds 1024 blocks

■	 32-bit addresses

■	 The cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fields of an address for the cache:

■	 Cache index is 10 bits

■	 Block offset is 4 bits

■	 Tag size is 32− (10+ 4) or 18 bits

The signals between the processor to the cache are

■	 1-bit Read or Write signal

■	 1-bit Valid signal, saying whether there is a cache operation or not

■	 32-bit address

■	 32-bit data from processor to cache

■	 32-bit data from cache to processor

■	 1-bit Ready signal, saying the cache operation is complete

The interface between the memory and the cache has the same fields as between 
the processor and the cache, except that the data fields are now 128 bits wide. The 
extra memory width is generally found in microprocessors today, which deal with 
either 32-bit or 64-bit words in the processor while the DRAM controller is often 
128 bits. Making the cache block match the width of the DRAM simplified the 
design. Here are the signals:

■	 1-bit Read or Write signal

■	 1-bit Valid signal, saying whether there is a memory operation or not

■	 32-bit address

■	 128-bit data from cache to memory

■	 128-bit data from memory to cache

■	 1-bit Ready signal, saying the memory operation is complete
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Note that the interface to memory is not a fixed number of cycles. We assume a 
memory controller that will notify the cache via the Ready signal when the memory 
read or write is finished.

Before describing the cache controller, we need to review finite-state machines, 
which allow us to control an operation that can take multiple clock cycles.

Finite-State Machines
To design the control unit for the single-cycle datapath, we used truth tables that 
specified the setting of the control signals based on the instruction class. For a 
cache, the control is more complex because the operation can be a series of steps. 
The control for a cache must specify both the signals to be set in any step and the 
next step in the sequence.

The most common multistep control method is based on finite-state machines, 
which are usually represented graphically. A finite-state machine consists of a set 
of states and directions on how to change states. The directions are defined by a 
next-state function, which maps the current state and the inputs to a new state. 
When we use a finite-state machine for control, each state also specifies a set of 
outputs that are asserted when the machine is in that state. The implementation 
of a finite-state machine usually assumes that all outputs that are not explicitly 
asserted are deasserted. Similarly, the correct operation of the datapath depends on 
the fact that a signal that is not explicitly asserted is deasserted, rather than acting 
as a don’t care.

Multiplexor controls are slightly different, since they select one of the inputs, 
whether they are 0 or 1. Thus, in the finite-state machine, we always specify the 
setting of all the multiplexor controls that we care about. When we implement 
the finite-state machine with logic, setting a control to 0 may be the default and 
therefore may not require any gates. A simple example of a finite-state machine 
appears in Appendix A, and if you are unfamiliar with the concept of a finite-state 
machine, you may want to examine Appendix A before proceeding.

A finite-state machine can be implemented with a temporary register that holds 
the current state and a block of combinational logic that determines both the 
data-path signals to be asserted and the next state. Figure 5.38 shows how such an 
implementation might look.  Appendix C describes in detail how the finite-state 
machine is implemented using this structure. In Section A.3, the combinational 
control logic for a finite-state machine is implemented both with either a ROM 
(read-only memory) or a PLA (programmable logic array). (Also see Appendix A 
for a description of these logic elements.)

Elaboration: Note that this simple design is called a blocking cache, in that the 
processor must wait until the cache has finished the request.  Section 5.12 describes 
the alternative, which is called a nonblocking cache.

finite-state machine  
A sequential logic 
function consisting of a 
set of inputs and outputs, 
a next-state function that 
maps the current state and 
the inputs to a new state, 
and an output function 
that maps the current 
state and possibly the 
inputs to a set of asserted 
outputs.

next-state function  
A combinational function 
that, given the inputs 
and the current state, 
determines the next state 
of a finite-state machine.
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Elaboration: The style of finite-state machine in this book is called a Moore machine, 
after Edward Moore. Its identifying characteristic is that the output depends only on the 
current state. For a Moore machine, the box labeled combinational control logic can be 
split into two pieces. One piece has the control output and only the state input, while the 
other has just the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The 
Mealy machine allows both the input and the current state to be used to determine the 
output. Moore machines have potential implementation advantages in speed and size 
of the control unit. The speed advantages arise because the control outputs, which are 
needed early in the clock cycle, do not depend on the inputs, but only on the current 
state. In Appendix A, when the implementation of this finite-state machine is taken down 
to logic gates, the size advantage can be clearly seen. The potential disadvantage of a 
Moore machine is that it may require additional states. For example, in situations where 
there is a one-state difference between two sequences of states, the Mealy machine 
may unify the states by making the outputs depend on the inputs.

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath

FIGURE 5.38 Finite-state machine controllers are typically implemented using a block of 
combinational logic and a register to hold the current state. The outputs of the combinational 
logic are the next-state number and the control signals to be asserted for the current state. The inputs to  
the combinational logic are the current state and any inputs used to determine the next state. Notice that  
in the finite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. 
We use color to indicate that these are control lines and logic versus data lines and logic. The Elaboration 
below explains this in more detail.
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FSM for a Simple Cache Controller
Figure 5.39 shows the four states of our simple cache controller:

■	 Idle: This state waits for a valid read or write request from the processor, 
which moves the FSM to the Compare Tag state.

■	 Compare Tag: As the name suggests, this state tests to see if the requested read 
or write is a hit or a miss. The index portion of the address selects the tag to 
be compared. If the data in the cache block referred to by the index portion 
of the address are valid, and the tag portion of the address matches the tag, 
then it is a hit. Either the data are read from the selected word if it is a load or 
written to the selected word if it is a store. The Cache Ready signal is then set. 
If it is a write, the dirty bit is set to 1. Note that a write hit also sets the valid 
bit and the tag field; while it seems unnecessary, it is included because the 
tag is a single memory, so to change the dirty bit we likewise need to change 
the valid and tag fields. If it is a hit and the block is valid, the FSM returns to 
the idle state. A miss first updates the cache tag and then goes either to the 
Write-Back state, if the block at this location has dirty bit value of 1, or to the 
Allocate state if it is 0.
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Old Block
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Old Block
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Valid CPU request

Mark Cache Ready
Idle

Cache Hit
Compare Tag

If Valid && Hit ,
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if Write Set Dirty

Memory Ready

M
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not
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not

Ready

Write Old
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Memory

Write-Back

Read new block
from Memory

Allocate

FIGURE 5.39 Four states of the simple controller.
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■	 Write-Back: This state writes the 128-bit block to memory using the address 
composed from the tag and cache index. We remain in this state waiting for 
the Ready signal from memory. When the memory write is complete, the 
FSM goes to the Allocate state.

■	 Allocate: The new block is fetched from memory. We remain in this state 
waiting for the Ready signal from memory. When the memory read is 
complete, the FSM goes to the Compare Tag state. Although we could 
have gone to a new state to complete the operation instead of reusing the 
Compare Tag state, there is a good deal of overlap, including the update of the 
appropriate word in the block if the access was a write.

This simple model could easily be extended with more states to try to improve 
performance. For example, the Compare Tag state does both the compare and the 
read or write of the cache data in a single clock cycle. Often the compare and cache 
access are done in separate states to try to improve the clock cycle time. Another 
optimization would be to add a write buffer so that we could save the dirty block 
and then read the new block first so that the processor doesn’t have to wait for two 
memory accesses on a dirty miss. The cache would next write the dirty block from 
the write buffer while the processor is operating on the requested data.

 Section 5.12 goes into more detail about the FSM, showing the full controller 
in a hardware description language and a block diagram of this simple cache.

 5.10 Parallelism and Memory Hierarchy: 
Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single chip, 
these processors very likely share a common physical address space. Caching shared 
data introduces a new problem, because the view of memory held by two different 
processors is through their individual caches, which, without any additional 
precautions, could end up seeing two distinct values. Figure 5.40 illustrates the 
problem and shows how two different processors can have two different values 
for the same location. This difficulty is generally referred to as the cache coherence 
problem.

Informally, we could say that a memory system is coherent if any read of a data 
item returns the most recently written value of that data item. This definition, 
although intuitively appealing, is vague and simplistic; the reality is much more 
complex. This simple definition contains two different aspects of memory system 
behavior, both of which are critical to writing correct shared memory programs. 
The first aspect, called coherence, defines what values can be returned by a read. The 
second aspect, called consistency, determines when a written value will be returned 
by a read.
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Let’s look at coherence first. A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no 
writes of X by another processor occurring between the write and the read 
by P, always returns the value written by P. Thus, in Figure 5.40, if CPU A 
were to read X after time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another processor 
to X returns the written value if the read and write are sufficiently separated 
in time and no other writes to X occur between the two accesses. Thus, in 
Figure 5.40, we need a mechanism so that the value 0 in the cache of CPU B 
is replaced by the value 1 after CPU A stores 1 into memory at address X in 
time step 3.

3. Writes to the same location are serialized; that is, two writes to the same 
location by any two processors are seen in the same order by all processors. 
For example, if CPU B stores 2 into memory at address X after time step 3, 
processors can never read the value at location X as 2 and then later read it 
as 1.

The first property simply preserves program order—we certainly expect this 
property to be true in uniprocessors, for instance. The second property defines 
the notion of what it means to have a coherent view of memory: if a processor 
could continuously read an old data value, we would clearly say that memory was 
incoherent.

The need for write serialization is more subtle, but equally important. Suppose 
we did not serialize writes, and processor P1 writes location X followed by P2 
writing location X. Serializing the writes ensures that every processor will see the 
write done by P2 at some point. If we did not serialize the writes, it might be the 

Time
step Event

Cache  contents for 
CPU A

Cache  contents 
for CPU B

Memory 
contents for 
location X

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A stores 1 into X 1 0 1

FIGURE 5.40 The cache coherence problem for a single memory location (X), read and 
written by two processors (A and B). We initially assume that neither cache contains the variable and 
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but 
similar complications. After the value of X has been written by A, A’s cache and the memory both contain the 
new value, but B’s cache does not, and if B reads the value of X, it will receive 0!
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case that some processor could see the write of P2 first and then see the write of P1, 
maintaining the value written by P1 indefinitely. The simplest way to avoid such 
difficulties is to ensure that all writes to the same location are seen in the identical 
order, which we call write serialization.

Basic Schemes for Enforcing Coherence
In a cache coherent multiprocessor, the caches provide both migration and 
replication of shared data items:

■	 Migration: A data item can be moved to a local cache and used there in a 
transparent fashion. Migration reduces both the latency to access a shared 
data item that is allocated remotely and the bandwidth demand on the shared 
memory.

■	 Replication: When shared data are being simultaneously read, the caches 
make a copy of the data item in the local cache. Replication reduces both 
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing 
shared data, so many multiprocessors introduce a hardware protocol to maintain 
coherent caches. The protocols to maintain coherence for multiple processors are 
called cache coherence protocols. Key to implementing a cache coherence protocol 
is tracking the state of any sharing of a data block.

The most popular cache coherence protocol is snooping. Every cache that has a 
copy of the data from a block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. The caches are all accessible via 
some broadcast medium (a bus or network), and all cache controllers monitor or 
snoop on the medium to determine whether or not they have a copy of a block that 
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as 
implemented with a shared bus, but any communication medium that broadcasts 
cache misses to all processors can be used to implement a snooping-based 
coherence scheme. This broadcasting to all caches makes snooping protocols 
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive 
access to a data item before it writes that item. This style of protocol is called a write 
invalidate protocol because it invalidates copies in other caches on a write. Exclusive 
access ensures that no other readable or writable copies of an item exist when the 
write occurs: all other cached copies of the item are invalidated.

Figure 5.41 shows an example of an invalidation protocol for a snooping bus 
with write-back caches in action. To see how this protocol ensures coherence, 
consider a write followed by a read by another processor: since the write requires 
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exclusive access, any copy held by the reading processor must be invalidated (hence 
the protocol name). Thus, when the read occurs, it misses in the cache, and the 
cache is forced to fetch a new copy of the data. For a write, we require that the 
writing processor have exclusive access, preventing any other processor from being 
able to write simultaneously. If two processors do attempt to write the same data at 
the same time, one of them wins the race, causing the other processor’s copy to be 
invalidated. For the other processor to complete its write, it must obtain a new copy 
of the data, which must now contain the updated value. Therefore, this protocol 
also enforces write serialization.

false sharing When two 
unrelated shared variables 
are located in the same 
cache block and the 
full block is exchanged 
between processors even 
though the processors 
are accessing different 
variables.

Processor activity Bus activity
Contents of  

CPU A’s cache
Contents of  

CPU B’s cache

Contents of  
memory  

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0

01XrofnoitadilavnIXot1asetirwAUPC

CPU B reads X Cache miss for X 1 1 1

FIGURE 5.41 An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with write-back caches. We assume that neither cache initially holds X 
and that the value of X in memory is 0. The CPU and memory contents show the value after the processor 
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second 
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both 
the contents of B’s cache and the memory contents of X are updated. This update of memory, which occurs 
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the 
write-back only if the block is replaced. This requires the introduction of an additional state called “owner,” 
which indicates that a block may be shared, but the owning processor is responsible for updating any other 
processors and memory when it changes the block or replaces it.

One insight is that block size plays an important role in cache coherency. For 
example, take the case of snooping on a cache with a block size of eight words, 
with a single word alternatively written and read by two processors. Most protocols 
exchange full blocks between processors, thereby increasing coherency bandwidth 
demands.

Large blocks can also cause what is called false sharing: when two unrelated 
shared variables are located in the same cache block, the whole block is exchanged 
between processors even though the processors are accessing different variables. 
Programmers and compilers should lay out data carefully to avoid false sharing.

Hardware/
Software 
Interface
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Elaboration: Although the three properties on page 455 are sufficient to ensure 
coherence, the question of when a written value is seen is also important. To see why, 
observe that we cannot require that a read of X in Figure 5.40 instantaneously sees 
the value written for X by some other processor. If, for example, a write of X on one 
processor precedes a read of X on another processor very shortly beforehand, it may 
be impossible to ensure that the read returns the value of the data written, since the 
written data may not even have left the processor at that point. The issue of exactly 
when a written value must be seen by a reader is defined by a memory consistency  
model.

We make the following two assumptions. First, a write does not complete (and allow 
the next write to occur) until all processors have seen the effect of that write. Second, 
the processor does not change the order of any write with respect to any other memory 
access. These two conditions mean that if a processor writes location X followed by 
location Y, any processor that sees the new value of Y must also see the new value of X. 
These restrictions allow the processor to reorder reads, but force the processor to finish 
a write in program order.

Elaboration: Since input can change memory behind the caches, and since output 
could need the latest value in a write back cache, there is also a cache coherency 
problem for I/O with the caches of a single processor as well as just between caches 
of multiple processors. The cache coherence problem for multiprocessors and I/O 
(see Chapter 6), although similar in origin, has different characteristics that affect the 
appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to 
be avoided whenever possible—a program running on multiple processors will normally 
have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status 
of shared blocks is distributed, a directory-based cache coherence protocol keeps the 
sharing status of a block of physical memory in just one location, called the directory. 
Directory-based coherence has slightly higher implementation overhead than snooping, 
but it can reduce traffic between caches and thus scale to larger processor counts.

5.11  Parallelism and Memory Hierarchy: 
Redundant Arrays of Inexpensive Disks

This online section describes how using many disks in conjunction can offer much 
higher throughput, which was the original inspiration of Redundant Arrays of 
Inexpensive Disks (RAID). The real popularity of RAID, however, was due more 
to the considerably greater dependability offered by including a modest number 
of redundant disks. The section explains the differences in performance, cost, and 
dependability between the RAID levels.
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  Parallelism and Memory Hierarchy: 
Redundant Arrays of Inexpensive Disks

Amdahl’s law in Chapter 1 reminds us that neglecting I/O in this parallel revolution 
is foolhardy. A simple example demonstrates this.

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of 
which 90 seconds is CPU time, and the rest is I/O time. Suppose the number of 
processors doubles every 2 years, but the processors remain at the same speed, 
and I/O time doesn’t improve. How much faster will our program run at the 
end of 6 years?

We know that

Elapsed time CPU time I/O time
I/O time

I/O time secon

= +
= +
=

100 90
10 dds

The new CPU times and the resulting elapsed times are computed in the 
following table.

5.11

EXAMPLE

ANSWER

The improvement in CPU performance after 6 years is

90
11

8=
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However, the improvement in elapsed time is only

100
21

4 7= .

and the I/O time has increased from 10% to 47% of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or 
the effort spent in parallelizing could be squandered whenever programs do I/O, 
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays. In the 
late 1980s, the high-performance storage of choice was large, expensive disks. The 
argument was that by replacing a few big disks with many small disks, performance 
would improve because there would be more read heads. This shift is a good match 
for multiple processors as well, since many read/write heads mean the storage 
system could support many more independent accesses as well as large transfers 
spread across many disks. That is, you could get both high I/Os per second and high 
data transfer rates. In addition to higher performance, there could be advantages 
in cost, power, and floor space, since smaller disks are generally more efficient per 
gigabyte than larger disks.

The flaw in the argument was that disk arrays could make reliability much 
worse. These smaller, inexpensive drives had lower MTTF ratings than the large 
drives, but more importantly, by replacing a single drive with, say, 50 small drives, 
the failure rate would go up by at least a factor of 50.

The solution was to add redundancy so that the system could cope with disk 
failures without losing information. By having many little disks, the cost of 
extra redundancy to improve dependability is small, relative to the solutions for 
a few large disks. Thus, dependability was more affordable if you constructed a 
redundant array of inexpensive disks. This observation led to its name: redundant 
arrays of inexpensive disks, abbreviated RAID.

In retrospect, although its invention was motivated by performance, 
dependability was the key reason for the widespread popularity of RAID. The 
parallel revolution has resurfaced the original performance side of the argument 
for RAID. The rest of this section surveys the options for dependability and their 
impacts on cost and performance.

How much redundancy do you need? Do you need extra information to find 
the faults? Does it matter how you organize the data and the additional check 
information on these disks? The paper that coined the term gave an evolutionary 
answer to these questions, starting with the simplest but most expensive solution. 
Figure e5.11.1 shows the evolution and example cost in the number of extra check 
disks. To keep track of the evolution, the authors numbered the stages of RAID, 
and they are still used today.

redundant arrays of 
inexpensive disks 
(RAID) An organization 
of disks that uses an array 
of small and inexpensive 
disks so as to increase 
both performance and 
reliability.
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No Redundancy (RAID 0)
Simply spreading data over multiple disks, called striping, automatically forces 
accesses to several disks. Striping across a set of disks makes the collection appear 
to software as a single large disk, which simplifies storage management. It also 
improves performance for large accesses, since many disks can operate at once. 
Video-editing systems, for example, frequently stripe their data and may not worry 
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID 
levels are often left to the operator to set when creating a storage system, and RAID 
0 is often listed as one of the options. Hence, the term RAID 0 has become widely 
used.

striping Allocation of 
logically sequential blocks 
to separate disks to allow 
higher performance than 
a single disk can deliver.

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused 

RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy)
Recently popular

Redundant check disks

FIGURE e5.11.1 RAID for an example of four data disks showing extra check disks per 
RAID level and companies that use each level. Figures e5.11.2 and e5.11.3 explain the difference 
between RAID 3, RAID 4, and RAID 5.
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Mirroring (RAID 1)
This traditional scheme for tolerating disk failure, called mirroring or shadowing, 
uses twice as many disks as does RAID 0. Whenever data are written to one disk, 
that data are also written to a redundant disk, so that there are always two copies 
of the information. If a disk fails, the system just goes to the “mirror” and reads 
its contents to get the desired information. Mirroring is the most expensive RAID 
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)
RAID 2 borrows an error detection and correction scheme most often used for memories 
(see Section 5.5). Since RAID 2 has fallen into disuse, we’ll not describe it here.

Bit-Interleaved Parity (RAID 3)
The cost of higher availability can be reduced to 1/n, where n is the number of 
disks in a protection group. Rather than have a complete copy of the original data 
for each disk, we need only add enough redundant information to restore the lost 
information on a failure. Reads or writes go to all disks in the group, with one extra 
disk to hold the check information in case there is a failure. RAID 3 is popular in 
applications with large data sets, such as multimedia and some scientific codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the 
redundant disk as having the sum of all the data in the other disks. When a disk fails, 
then you subtract all the data in the good disks from the parity disk; the remaining 
information must be the missing information. Parity is simply the sum modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. The 
assumption behind this technique is that taking longer to recover from failure but 
spending less on redundant storage is a good tradeoff.

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they 
access data differently. The parity is stored as blocks and associated with a set of 
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer 
smaller accesses, allowing independent accesses to occur in parallel. That is the 
purpose of the RAID levels 4 to 7. Since error detection information in each sector 
is checked on reads to see if the data are correct, such “small reads” to each disk 
can occur independently as long as the minimum access is one sector. In the RAID 
context, a small access goes to just one disk in a protection group while a large 
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand 
that all other disks be accessed to read the rest of the information needed to 
recalculate the new parity, as in the left in Figure e5.11.2. A “small write” would 

mirroring Writing 
identical data to multiple 
disks to increase data 
availability.

protection group The 
group of data disks 
or blocks that share a 
common check disk or 
block.
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D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

New Data 1. Read 2. Read 3. Read

4. Write 5. Write 

XOR

D0′ D0 D1 D2 D3 P

D0′ D1 D2 D3 P′

+

New Data1. Read 2. Read

3. Write 4. Write

XOR

+ XOR

+

FIGURE e5.11.2 Small write update on RAID 4. This optimization for small writes reduces the 
number of disk accesses as well as the number of disks occupied. This figure assumes we have four blocks 
of data and one block of parity. The naive RAID 4 parity calculation in the left of the figure reads blocks D1, 
D2, and D3 before adding block D0? to calculate the new parity P? (In case you were wondering, the new 
data D0? comes directly from the CPU, so disks are not involved in reading it.) The RAID 4 shortcut on the 
right reads the old value D0 and compares it to the new value D0? to see which bits will change. You next 
read the old parity P and then change the corresponding bits to form P? The logical function exclusive OR 
does exactly what we want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0?, P?) 
involving all the disks for two disk reads (D0, P) and two disk writes (D0?, P?), which involve just two disks. 
Enlarging the size of the parity group increases the savings of the shortcut. RAID 5 uses the same shortcut.

require reading the old data and old parity, adding the new information, and then 
writing the new parity to the parity disk and the new data to the data disk.

The key insight to reduce this overhead is that parity is simply a sum of 
information; by watching which bits change when we write the new information, 
we need only change the corresponding bits on the parity disk. The right of Figure 
e5.11.2 shows the shortcut. We must read the old data from the disk being written, 
compare old data to the new data to see which bits change, read the old parity, 
change the corresponding bits, and then write the new data and new parity. Thus, 
the small write involves four disk accesses to two disks instead of accessing all 
disks. This organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 efficiently supports a mixture of large reads, large writes, and small reads, 
plus it allows small writes. One drawback to the system is that the parity disk must be 
updated on every write, so the parity disk is the bottleneck for back-to-back writes.

To fix the parity-write bottleneck, the parity information can be spread 
throughout all the disks so that there is no single bottleneck for writes. The 
distributed parity organization is RAID 5.

Figure e5.11.3 shows how data are distributed in RAID 4 versus RAID 5. As the 
organization on the right shows, in RAID 5 the parity associated with each row of 
data blocks is no longer restricted to a single disk. This organization allows multiple 
writes to occur simultaneously as long as the parity blocks are not located on the 
same disk. For example, a write to block 8 on the right must also access its parity 
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block P2, thereby occupying the first and third disks. A second write to block 5 on 
the right, implying an update to its parity block P1, accesses the second and fourth 
disks and thus could occur concurrently with the write to block 8. Those same 
writes to the organization on the left result in changes to blocks P1 and P2, both on 
the fifth disk, which is a bottleneck.

P + Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure. When a 
single failure correction is not sufficient, parity can be generalized to have a second 
calculation over the data and another check disk of information. This second check 
block allows recovery from a second failure. Thus, the storage overhead is twice 
that of RAID 5. The small write shortcut of Figure e5.11.2 works as well, except 
now there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in 
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data 
unavailable during repair, the array must be designed to allow the failed disks to be 
replaced without having to turn off the system. RAIDs have enough redundancy 
to allow continuous operation, but hot-swapping disks place demands on the 
physical and electrical design of the array and the disk interfaces. Second, another 
failure could occur during repair, so the repair time affects the chances of losing 
data: the longer the repair time, the greater the chances of another failure that will 

hot-swapping Replacing 
a hardware component 
while the system is 
running.
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FIGURE e5.11.3 Block-interleaved parity (RAID 4) versus distributed block-interleaved 
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in parallel.
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lose data. Rather than having to wait for the operator to bring in a good disk, some 
systems include standby spares so that the data can be reconstructed instantly 
upon discovery of the failure. The operator can then replace the failed disks in a 
more leisurely fashion. Note that a human operator ultimately determines which 
disks to remove. Operators are only human, so they occasionally remove the good 
disk instead of the broken disk, leading to an unrecoverable disk failure.

In addition to designing the RAID system for repair, there are questions about 
how disk technology changes over time. Although disk manufacturers quote very 
high MTTF for their products, those numbers are under nominal conditions. 
If a particular disk array has been subject to temperature cycles due to, say, the 
failure of the air-conditioning system, or to shaking due to a poor rack design, 
construction, or installation, the failure rates can be three to six times higher (see 
the fallacy on page 470). The calculation of RAID reliability assumes independence 
between disk failures, but disk failures could be correlated, because such damage 
due to the environment would likely happen to all the disks in the array. Another 
concern is that since disk bandwidth is growing more slowly than disk capacity, the 
time to repair a disk in a RAID system is increasing, which in turn enhances the 
chances of a second failure. For example, a 3-TB disk could take almost 9 hours 
to read sequentially, assuming no interference. Given that the damaged RAID is 
likely to continue to serve data, reconstruction could be stretched considerably. 
Besides increasing that time, another concern is that reading much more data 
during reconstruction means increasing the chance of an uncorrectable read 
media failure, which would result in data loss. Other arguments for concern about 
simultaneous multiple failures are the increasing number of disks in arrays and the 
use of higher-capacity disks.

Hence, these trends have led to a growing interest in protecting against more 
than one failure, and so RAID 6 is increasingly being offered as an option and being 
used in the field.

standby spares Reserve 
hardware resources that 
can immediately take 
the place of a failed 
component.

Elaboration One issue is how mirroring interacts with striping. Suppose you had, say, 
four disks’ worth of data to store and eight physical disks to use. Would you create four 
pairs of disks—each organized as RAID 1—and then stripe data across the four RAID 
1 pairs? Alternatively, would you create two sets of four disks—each organized as RAID 
0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call 
the former RAID 1 + 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 + 1 or RAID 
01 (“mirrored stripes”).

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Check  
Yourself
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5.12   Advanced Material: Implementing Cache 
Controllers

This online section shows how to implement control for a cache, just as we 
implemented control for the single-cycle and pipelined datapaths in Chapter 4. This 
section starts with a description of finite-state machines and the implementation 
of a cache controller for a simple data cache, including a description of the cache 
controller in a hardware description language. It then goes into details of an example 
cache coherence protocol and the difficulties in implementing such a protocol.

 5.13 Real Stuff: The ARM Cortex-A53 and Intel 
Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors 
described in Chapter 4: the ARM Cortex-A53 and Intel Core i7. This section is 
in part based on Section 2.6 of Computer Architecture: A Quantitative Approach, 
5th edition.

Figure 5.42 summarizes the address sizes and TLBs of the two processors. Note 
that the Cortex-A53 has two 10-entry fully associative micro-TLBs backed by a 
shared 512-entry four-way set associative main TLB with a 48-bit virtual address 
space and a 40-bit physical address space. The Core i7 has three TLBs with a  
48-bit virtual address and a 44-bit physical address. Although the 64-bit registers of 
these processors could hold a larger virtual address, there was no software need for 
such a large space, and 48-bit virtual addresses shrinks both the page table memory 
footprint and the TLB hardware.

Figure 5.43 shows their caches. The Cortex-A53 has between one and four 
processors or cores while the Core i7 is fixed at four. Cortex-A53 has a 16 to 
64 KiB, two-way L1 instruction cache (per core) and the Core i7 has a 32 KiB, 
four-way set associative, L1 instruction cache (per core). Both use 64 byte blocks. 
The Cortex-A53 increases the associativity to four-way for the data cache, other 
variables remain the same. Similarly, the Core i7 keeps everything the same except 
the associativity, which it increases to eight-way. The Core i7 provides a 256 
KiB, eight-way set associative unified L2 cache (per core) with 64 byte blocks. In 
contrast, the Cortex-A53 provides a L2 cache that is shared between one and four 
cores. This cache is 16-way set associative with 64 byte blocks and between 128 KiB 
and 2 MiB in size. As the Core i7 is used for servers, it also offers an L3 cache shared 
by all the cores on the chip. Its size varies depending on the number of cores. With 
four cores, as in this case, the size is 8 MiB.
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Advanced Material: Implementing Cache 
Controllers

The section starts with the SystemVerilog of the cache controller from Section 5.9 
in eight figures. It then goes into details of an example cache coherency protocol 
and the difficulties in implementing such a protocol.

SystemVerilog of a Simple Cache Controller
The hardware description language we are using in this section is SystemVerilog. 
The biggest change from prior versions of Verilog is that it borrows structures 
from C to make the code easier to read. Figures e5.12.1 through e5.12.8 show the 
SystemVerilog description of the cache controller.

package cache_def;
 // data structures for cache tag & data
 
 parameter int TAGMSB = 31; //tag msb
 parameter int TAGLSB = 14; //tag lsb

 //data structure for cache tag
 typedef struct packed {
  bit  valid; //valid bit
  bit  dirty; //dirty bit
  bit [TAGMSB:TAGLSB]tag; //tag bits
 }cache_tag_type;

 //data structure for cache memory request
 typedef struct {
  bit [9:0]index; //10-bit index
  bit  we; //write enable
 }cache_req_type;

 //128-bit cache line data
 typedef bit [127:0]cache_data_type;

FIGURE e5.12.1 Type declarations in SystemVerilog for the cache tags and data. The tag 
field is 18 bits wide and the index field is 10 bits wide, while a 2-bit field (bits 3–2) is used to index the block 
and select the word from the block. The rest of the type declaration is found in the following figure.

5.12
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Figures e5.12.1 and e5.12.2 declare the structures that are used in the definition 
of the cache in the following figures. For example, the cache tag structure (cache_
tag_type) contains a valid bit (valid), a dirty bit (dirty), and an 18-bit tag field 
([TAGMSB:TAGLSB] tag). Figure e5.12.3 shows the block diagram of the cache 
using the names from the Verilog description.

 // data structures for CPU<->Cache controller interface
 
 // CPU request (CPU->cache controller)
 typedef struct {
  bit [31:0]addr; //32-bit request addr
  bit [31:0]data; //32-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib  
  bit valid; //request is valid
 }cpu_req_type;

 // Cache result (cache controller->cpu)
 typedef struct {
  bit [31:0]data; //32-bit data
  bit ready; //result is ready
 }cpu_result_type;
 
 //----------------------------------------------------------------------
 // data structures for cache controller<->memory interface
 
 // memory request (cache controller->memory)
 typedef struct {
  bit [31:0]addr; //request byte addr
  bit [127:0]data; //128-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib  
  bit valid; //request is valid
 }mem_req_type;

 // memory controller response (memory -> cache controller)
 typedef struct {
  cache_data_type data; //128-bit read back data
  bit  ready; //data is ready
 }mem_data_type;

endpackage

FIGURE e5.12.2 Type declarations in SystemVerilog for the CPU-cache and cache-memory interfaces. These are nearly 
identical except that the data are 32 bits wide between the CPU and cache and are 128 bits wide between the cache and memory.
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Figure e5.12.4 defines modules for the cache data (dm_cache_data) and cache 
tag (dm_cache_tag). These memories can be read at any time, but writes only 
occur on the positive clock edge (posedge(clk)) and only if write enable is a 1 
(data_req.we or tag_req.we).

cpu_req.addr 
(showing bit positions)

Data

Hit

Data

Tag

V D Tag

32

18

=

Index
18 10 Byte

offset

31 14 13 3 2 1 04 

2

Block offset

1024
entries

18 bits

128

128

Mux

Mux Mux Mux Mux

Data Read

Data Write

mem_data.data

cpu_req.data

FIGURE e5.12.3 Block diagram of the simple cache using the Verilog names. Not shown are the write enables for the cache tag 
memory and for the cache data memory, or the control signals for multiplexors that supply data for the Data Write variable. Rather than have 
separate write enables on every word of the cache data block, the Verilog reads the old value of the block into Data Write and then updates the 
word in that variable on a write. It then writes the whole 128-bit block.
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Figure e5.12.5 defines the inputs, outputs, and states of the FSM. The inputs are 
the requests from the CPU (cpu_req) and responses from memory (mem_data), 
and the outputs are responses to the CPU (cpu_res) and requests to memory 
(mem_req). The figure also declares the internal variables needed by the FSM. 
For example, the current state and next state registers of the FSM are rstate and 
vstate, respectively.

Figure e5.12.6 lists the default values of the control signals, including the word 
to be read or written from a block, setting the cache write enables to 0, and so 
on. These values are set every clock cycle, so the write enable for a portion of the 
cache—for example, tag_req.we—would be set to 1 for one clock cycle in the 
figures below and then would be reset to 0 according to the Verilog in this figure.

The last two figures show the FSM as a large case statement (case(rstate)), 
with the four states split across the two figures. Figure e5.12.7 starts with the Idle 
state (idle), which simply goes to the Compare Tag state (compare_tag) if the 
CPU makes a valid request. It then describes most of the Compare Tag state. The 
Compare Tag state checks to see if the tags match and the entry is valid. If so, then 
it first sets the Cache Ready signal (v_cpu_res.ready). If the request is a write, it 
sets the tag field, the valid bit, and the dirty bit. The next state is Idle. If it is a miss, 
then the state prepares to change the tag entry and valid and dirty bits. If the block 
to be replaced is clean or invalid, the next state is Allocate.

Figure e5.12.8 continues the Compare Tag state. If the block to be replaced 
is dirty, then the next state is Write-Back. The figure shows the Allocate state 
(allocate) next, which simply reads the new block. It keeps looping until the 
memory is ready; when it is, it goes to the Compare Tag state. This is followed in the 
figure by the Write-Back state (write_back). As the figure shows, the Write-Back 
state merely writes the dirty block to memory, once again looping until memory 
is ready. When memory is ready, indicating the write is complete, we go to the 
Allocate state.

The code at the end sets the current state from the next state or resets the FSM to 
the Idle state on the next clock edge, depending on a reset signal (rst).

The online material includes a Test Case module that will be useful to check the 
code in these figures. This SystemVerilog could be used to create a cache and cache 
controller in an FPGA.
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/*cache: data memory, single port, 1024 blocks*/
module dm_cache_data(input  bit clk, 
  input  cache_req_type  data_req,//data request/command, e.g. RW, valid
  input  cache_data_type data_write, //write port (128-bit line) 
  output cache_data_type data_read); //read port
 timeunit 1ns; timeprecision 1ps;

 cache_data_typedata_mem[0:1023];

 initial begin
  for (int i=0; i<1024; i++) 
        data_mem[i] = ‘0;
 end
 
 assign data_read = data_mem[data_req.index];

 always_ff @(posedge(clk)) begin
  if (data_req.we)
   data_mem[data_req.index] <= data_write;
 end
endmodule

/*cache: tag memory, single port, 1024 blocks*/
module dm_cache_tag(input  bit clk, //write clock
  input  cache_req_type tag_req, //tag request/command, e.g. RW, valid
  input  cache_tag_type tag_write,//write port    
  output cache_tag_type tag_read);//read port
 timeunit 1ns; timeprecision 1ps;

 cache_tag_typetag_mem[0:1023];

 initial begin
     for (int i=0; i<1024; i++) 
     tag_mem[i] = ‘0;
 end

 assign tag_read = tag_mem[tag_req.index];

 always_ff @(posedge(clk)) begin
  if (tag_req.we)
   tag_mem[tag_req.index] <= tag_write;
 end

endmodule

FIGURE e5.12.4 Cache data and tag modules in SystemVerilog. These are nearly identical except that the data are 32 bits wide 
between the CPU and cache and are 128 bits wide between the cache and memory. Both only write on positive clock edges if the write enable 
is set.
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/*cache fi nite state machine*/

module dm_cache_fsm(input  bit clk, input  bit rst,
      input  cpu_req_type     cpu_req,       //CPU request input (CPU->cache)
      input  mem_data_type mem_data,       //memory response (memory->cache)
      output mem_req_type mem_req,         //memory request (cache->memory)
      output cpu_result_type cpu_res         //cache result (cache->CPU)
  );

 timeunit 1ns; 
 timeprecision 1ps;

 /*write clock*/
 typedef enum {idle, compare_tag, allocate, write_back} cache_state_type;
 
 /*FSM state register*/
 cache_state_typevstate, rstate;

 /*interface signals to tag memory*/
 cache_tag_typetag_read;     //tag read result
 cache_tag_typetag_write;     //tag write data
 cache_req_typetag_req;     //tag request
 
 /*interface signals to cache data memory*/
 cache_data_typedata_read;     //cache line read data
 cache_data_typedata_write;     //cache line write data
 cache_req_typedata_req;     //data req
 
 
 /*temporary variable for cache controller result*/
 cpu_result_typev_cpu_res; 
 
 /*temporary variable for memory controller request*/
 mem_req_typev_mem_req;
 
 assign mem_req = v_mem_req;     //connect to output ports
 assign cpu_res = v_cpu_res; 

FIGURE e5.12.5 FSM in SystemVerilog, part I. These modules instantiate the memories according to the type definitions in the 
previous figure.
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always_comb begin
  
  /*-------------------------default values for all signals------------*/
  /*no state change by default*/
  vstate = rstate;    
  v_cpu_res = ‘{0, 0}; tag_write = ‘{0, 0, 0}; 

  /*read tag by default*/
  tag_req.we = ‘0;  
  /*direct map index for tag*/
   tag_req.index = cpu_req.addr[13:4];
  
  /*read current cache line by default*/
  data_req.we = ‘0;
  /*direct map index for cache data*/
  data_req.index = cpu_req.addr[13:4];

  /*modify correct word (32-bit) based on address*/
  data_write = data_read;   
  case(cpu_req.addr[3:2])
  2’b00:data_write[31:0] = cpu_req.data;
  2’b01:data_write[63:32] = cpu_req.data;
  2’b10:data_write[95:64] = cpu_req.data;
  2’b11:data_write[127:96] = cpu_req.data;
  endcase
  
  /*read out correct word(32-bit) from cache (to CPU)*/
  case(cpu_req.addr[3:2])
  2’b00:v_cpu_res.data = data_read[31:0];
  2’b01:v_cpu_res.data = data_read[63:32];
  2’b10:v_cpu_res.data = data_read[95:64];
  2’b11:v_cpu_res.data = data_read[127:96];
  endcase
  
  /*memory request address (sampled from CPU request)*/
  v_mem_req.addr = cpu_req.addr; 
  /*memory request data (used in write)*/
  v_mem_req.data = data_read;  
  v_mem_req.rw = ‘0;

FIGURE e5.12.6 FSM in SystemVerilog, part II. This section describes the default value of all signals. The following figures will set 
these values for one clock cycle, and this Verilog will reset it to these values for the following clock cycle.
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  //------------------------------------Cache FSM-------------------------
  case(rstate)
  /*idle state*/
  idle : begin
    /*If there is a CPU request, then compare cache tag*/
    if (cpu_req.valid)
  vstate = compare_tag;
  end
  /*compare_tag state*/ 
  compare_tag : begin
              /*cache hit (tag match and cache entry is valid)*/
     if (cpu_req.addr[TAGMSB:TAGLSB] == tag_read.tag && tag_read.valid) begin
              v_cpu_res.ready = ‘1;
     
         /*write hit*/
          if (cpu_req.rw) begin  
           /*read/modify cache line*/
           tag_req.we = ‘1; data_req.we = ‘1;

          /*no change in tag*/
          tag_write.tag = tag_read.tag; 
          tag_write.valid = ‘1;
          /*cache line is dirty*/
          tag_write.dirty = ‘1;    
          end 
      
              /*xaction is fi nished*/
              vstate = idle; 
    end 
          /*cache miss*/
          else begin 
       /*generate new tag*/
           tag_req.we = ‘1; 
           tag_write.valid = ‘1;
           /*new tag*/
           tag_write.tag = cpu_req.addr[TAGMSB:TAGLSB];
           /*cache line is dirty if write*/
           tag_write.dirty = cpu_req.rw;
     
           /*generate memory request on miss*/
           v_mem_req.valid = ‘1; 
           /*compulsory miss or miss with clean block*/
            if (tag_read.valid == 1’b0 || tag_read.dirty == 1’b0)
  /*wait till a new block is allocated*/
  vstate = allocate;

FIGURE e5.12.7 FSM in SystemVerilog, part III. Actual FSM states via case statement in this figure and the next. This figure has the 
Idle state and most of the Compare Tag state.
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     else begin
     /*miss with dirty line*/
      /*write back address*/
      v_mem_req.addr = {tag_read.tag, cpu_req.addr[TAGLSB-1:0]};
      v_mem_req.rw = ‘1;  
      /*wait till write is completed*/
      vstate = write_back;
     end
    end 
  end
  /*wait for allocating a new cache line*/
  allocate: begin    
    /*memory controller has responded*/
    if (mem_data.ready) begin
         /*re-compare tag for write miss (need modify correct word)*/
         vstate = compare_tag; 
         data_write = mem_data.data;
         /*update cache line data*/
         data_req.we = ‘1;  
    end 
        end
  /*wait for writing back dirty cache line*/
  write_back : begin   
    /*write back is completed*/
    if (mem_data.ready) begin
         /*issue new memory request (allocating a new line)*/
         v_mem_req.valid = ‘1;   
         v_mem_req.rw = ‘0;    
      
         vstate = allocate; 
    end
   end
  endcase
 end

 always_ff @(posedge(clk)) begin
  if (rst) 
   rstate <= idle; //reset to idle state
  else 
   rstate <= vstate;
 end
 /*connect cache tag/data memory*/
 dm_cache_tag  ctag(.*);
 dm_cache_data cdata(.*);
endmodule

FIGURE e5.12.8 FSM in SystemVerilog, part IV. Actual FSM states via the case statement in the prior figure and this one. This figure 
has the last part of the Compare Tag state, plus Allocate and Write-Back states.
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Basic Coherent Cache Implementation Techniques
The key to implementing an invalidate protocol is the use of the bus, or another 
broadcast medium, to perform invalidates. To invalidate, the processor simply 
acquires bus access and broadcasts the address to be invalidated on the bus. All 
processors continuously snoop on the bus, watching the addresses. The processors 
check whether the address on the bus is in their cache. If so, the corresponding data 
in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must 
acquire bus access to broadcast its invalidation. If two processors try to write 
shared blocks at the same time, their attempts to broadcast an invalidate operation 
will be serialized when they arbitrate for the bus. The first processor to obtain bus 
access will cause any other copies of the block it is writing to be invalidated. If the 
processors were attempting to write the same block, the serialization enforced by 
the bus also serializes their writes. One implication of this scheme is that a write 
to a shared data item cannot actually complete until it obtains bus access. All 
coherence schemes require some method of serializing accesses to the same cache 
block, by serializing access either to the communication medium or another shared 
structure.

In addition to invalidating outstanding copies of a cache block that is being 
written into, we also need to locate a data item when a cache miss occurs. In a 
write-through cache, it is easy to find the recent value of a data item, since all 
written data are unfailingly sent to the memory, from which the most-recent value 
of a data item can always be fetched. In a design with adequate memory bandwidth 
to support the write traffic from the processors, using write-through simplifies the 
implementation of cache coherence.

For a write-back cache, finding the most-recent data value is more difficult, 
since the most recent value of a data item can be in a cache rather than in memory. 
Happily, write-back caches can use the same snooping scheme both for cache misses 
and for writes: each processor snoops all addresses placed on the bus. If a processor 
finds that it has a dirty copy of the requested cache block, it provides that cache 
block in response to the read request and causes the memory access to be aborted. 
The increased complexity comes from having to retrieve the cache block from a 
processor’s cache, which can often take longer than retrieving it from the shared 
memory if the processors are in separate chips. Since write-back caches generate 
lower requirements for memory bandwidth, they can support larger numbers of 
faster processors and have been the approach chosen in most multiprocessors, 
despite the additional complexity of maintaining coherence. Therefore, we will 
examine the implementation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping, 
and the valid bit for each block makes invalidation easy to implement. Read 
misses, whether generated by an invalidation or by some other event, are also 
straightforward, since they simply rely on the snooping capability. For writes, we’d 
like to know whether any other copies of the block are cached, because if there are 
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no other cached copies, the write need not be placed on the bus in a write-back 
cache. Not sending the write reduces both the time taken by the write and the 
required bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit 
associated with each cache block, just as we have a valid bit and a dirty bit. By 
adding a bit indicating whether the block is shared, we can decide whether a write 
must generate an invalidate. When a write to a block in the shared state occurs, the 
cache generates an invalidation on the bus and marks the block as exclusive. No 
further invalidations will be sent by that processor for that block. The processor 
with the sole copy of a cache block is normally called the owner of the cache block.

When an invalidation is sent, the state of the owner’s cache block is changed 
from shared to unshared (or exclusive). If another processor later requests this 
cache block, the state must be made shared again. Since our snooping cache also 
sees any misses, it knows when the exclusive cache block has been requested by 
another processor, and the state should be made shared.

Every bus transaction must check the cache-address tags, which could potentially 
interfere with processor cache accesses. One way to reduce this interference is to 
duplicate the tags. The interference can also be reduced in a multilevel cache by 
directing the snoop requests to the L2 cache, which the processor uses only when 
it has a miss in the L1 cache. For this scheme to work, every entry in the L1 cache 
must be present in the L2 cache, a property called the inclusion property. If the 
snoop gets a hit in the L2 cache, then it must arbitrate for the L1 cache to update the 
state and possibly retrieve the data, which usually requires a stall of the processor. 
Sometimes it may even be useful to duplicate the tags of the secondary cache to 
further decrease contention between the processor and the snooping activity.

An Example Cache Coherency Protocol
A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each node. This controller responds to requests from the 
processor and from the bus (or other broadcast medium), changing the state of 
the selected cache block, as well as using the bus to access data or to invalidate 
it. Logically, you can think of a separate controller being associated with each 
block; that is, snooping operations or cache requests for different blocks can 
proceed independently. In actual implementations, a single controller allows 
multiple operations to distinct blocks to proceed in interleaved fashion (that is, 
one operation may be initiated before another is completed, even though only one 
cache access or one bus access is allowed at a time). Also, remember that although 
we refer to a bus in the following description, any interconnection network that 
supports a broadcast to all the coherence controllers and their associated caches 
can be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, and modified. 
The shared state indicates that the block is potentially shared, while the modified 
state indicates that the block has been updated in the cache; note that the  
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modified state implies that the block is exclusive. Figure e5.12.9 shows the requests 
generated by the processor-cache module in a node (in the first nine rows of the 
table) as well as those coming from the bus (in the last five rows of the table). 
This protocol is for a write-back cache, but it can be easily changed to work for a 
write-through cache by reinterpreting the modified state as an exclusive state and 
updating the cache on writes in the normal fashion for a write-through cache. The 
most common extension of this basic protocol is the addition of an exclusive state, 
which describes a block that is unmodified but held in only one cache; the caption 
of Figure e5.12.9 describes this state and its addition in more detail.

When an invalidate or a write miss is placed on the bus, any processors with 
copies of the cache block invalidate it. For a write-through cache, the data for a 
write miss can always be retrieved from the memory. For a write miss in a writeback 
cache, if the block is exclusive in just one cache, that cache also writes back the 
block; otherwise, the data can be read from memory.

Figure e5.12.10 shows a finite-state transition diagram for a single cache 
block using a write invalidation protocol and a write-back cache. For simplicity, 
the three states of the protocol are duplicated to represent transitions based on 
processor requests (on the left, which corresponds to the top half of the table in 
Figure e5.12.9), contrary to transitions based on bus requests (on the right, which 
corresponds to the last five rows of the table in Figure e5.12.9). Boldface type is 
used to distinguish the bus actions, in contrast to the conditions on which a state 
transition depends. The state in each node represents the state of the selected cache 
block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor 
cache, where they would correspond to the invalid, valid (and clean), and dirty 
states. Most of the state changes indicated by arcs in the left half of Figure e5.12.10 
would be needed in a write-back uniprocessor cache, with the exception being the 
invalidate on a write hit to a shared block. The state changes represented by the arcs 
in the right half of Figure e5.12.10 are needed only for coherence and would not 
appear at all in an uniprocessor cache controller.

As mentioned earlier, there is only one finite-state machine per cache, with 
stimuli coming either from the attached processor or from the bus. Figure e5.12.11 
shows how the state transitions in the right half of Figure e5.12.10 are combined 
with those in the left half of the figure to form a single state diagram for each cache 
block.

To understand why this protocol works, observe that any valid cache block is 
either in the shared state in one or more caches or in the exclusive state in exactly 
one cache. Any transition to the exclusive state (which is required for a processor 
to write to the block) requires an invalidate or write miss to be placed on the bus, 
causing all caches to make the block invalid. In addition, if some other cache had 
the block in the exclusive state, that cache generates a write back, which supplies 
the block containing the desired address. Finally, if a read miss occurs on the bus 
to a block in the exclusive state, the cache with the exclusive copy changes its state 
to shared.
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Request Source

State of 
addressed

cache block
Type of

cache action Function and explanation

Read hit processor shared or 
modifi ed

normal hit Read data in cache.

Read miss processor invalid normal miss Place read miss on bus.

Read miss processor shared replacement Address confl ict miss: place read miss on bus.

Read miss processor modifi ed replacement Address confl ict miss: write-back block, then place read miss 
on bus.

Write hit processor modifi ed normal hit Write data in cache.

Write hit processor shared coherence Place invalidate on bus. These operations are often called 
upgrade or ownership misses, since they do not fetch the data 
but only change the state.

Write miss processor invalid normal miss Place write miss on bus.

Write miss processor shared replacement Address confl ict miss: place write miss on bus.

Write miss processor modifi ed replacement Address confl ict miss: write-back block, then place write miss 
on bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modifi ed coherence Attempt to share data: place cache block on bus and change 
state to shared.

Invalidate bus shared coherence Attempt to write shared block; invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache 
block.

Write miss bus modifi ed coherence Attempt to write block that is exclusive elsewhere: write-back 
the cache block and make its state invalid.

FIGURE e5.12.9 The cache coherence mechanism receives requests from both the processor and the bus and 
responds to these based on the type of request, whether it hits or misses in the cache, and the state of the cache 
block specified in the request. The fourth column describes the type of cache action as normal hit or miss (the same as a uniprocessor 
cache would see), replacement (a uniprocessor cache replacement miss), or coherence (required to maintain cache coherence); a normal 
or replacement action may cause a coherence action depending on the state of the block in other caches. For read misses, write misses, or 
invalidates snooped from the bus, an action is required only if the read or write addresses match a block in the cache and the block is valid. 
Some protocols also introduce a state to designate when a block is exclusively in one cache but has not yet been written. This state can arise if 
a write access is broken into two pieces: getting the block exclusively in one cache and then subsequently updating it; in such a protocol this 
“exclusive unmodified state” is transient, ending as soon as the write is completed. Other protocols use and maintain an exclusive state for an 
unmodified block. In a snooping protocol, this state can be entered when a processor reads a block that is not resident in any other cache. 
Because all subsequent accesses are snooped, it is possible to maintain the accuracy of this state. In particular, if another processor issues a 
read miss, the state is changed from exclusive to shared. The advantage of adding this state is that a subsequent write to a block in the exclusive 
state by the same processor need not acquire bus access or generate an invalidate, since the block is known to be exclusively in this cache; the 
processor merely changes the state to modified. This state is easily added by using the bit that encodes the coherent state as an exclusive state 
and using the dirty bit to indicate that a block is modified. The popular MESI protocol, which is named for the four states it includes (modified, 
exclusive, shared, and invalid), uses this structure. The MOESI protocol introduces another extension: the “owned” state.
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The actions in gray in Figure e5.12.11, which handle read and write misses on the 
bus, are essentially the snooping component of the protocol. One other property 
that is preserved in this protocol, and in most other protocols, is that any memory 
block in the shared state is always up to date in the memory, which simplifies the 
implementation.

Although our simple cache protocol is correct, it omits a number of complications 
that make the implementation much trickier. The most important of these is that 
the protocol assumes that operations are atomic—that is, an operation can be done 
in such a way that no intervening operation can occur. For example, the protocol 
described assumes that write misses can be detected, acquire the bus, and receive 
a response as a single atomic action. In reality, this is not true. Similarly, if we used 
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FIGURE e5.12.10 A write-invalidate, cache-coherence protocol for a write-back cache, showing the states and state 
transitions for each block in the cache. The cache states are shown in circles, with any access permitted by the processor without a 
state transition shown in parentheses under the name of the state. The stimulus causing a state change is shown on the transition arcs in regular 
type, and any bus actions generated as part of the state transition are shown on the transition arc in bold. The stimulus actions apply to a block 
in the cache, not to a specific address in the cache. Hence, a read miss to a block in the shared state is a miss for that cache block but for a 
different address. The left side of the diagram shows state transitions based on actions of the processor associated with this cache; the right side 
shows transitions based on operations on the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when 
the address requested by the processor does not match the address in the cache block. Such a miss is a standard cache replacement miss. An 
attempt to write a block in the shared state generates an invalidate. Whenever a bus transaction occurs, all caches that contain the cache block 
specified in the bus transaction take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on 
a read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined. In practice, there 
are many subtle variations on invalidate protocols, including the introduction of the exclusive unmodified state, as to whether a processor or 
memory provides data on a miss.
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FIGURE e5.12.11 Cache coherence state diagram with the state transitions induced by 
the local processor shown in black and by the bus activities shown in gray. As in Figure 
e5.12.10, the activities on a transition are shown in bold.

a switch, as all recent multiprocessors do, then even read misses would also not be 
atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock, 
meaning that it reaches a state where it cannot continue. On the next page, we will 
discuss how these protocols are implemented without a bus.

Constructing small-scale (two to four processors) multiprocessors has become 
very easy. For example, the Intel Nehalem and AMD Opteron processors are 
designed for use in cache-coherent multiprocessors and have an external interface 
that supports snooping and allows two to four processors to be directly connected. 
They also have larger on-chip caches to reduce bus utilization. In the case of 
the Opteron processors, the support for interconnecting multiple processors is 
integrated onto the processor chip, as are the memory interfaces. In the case of the 
Intel design, a two-processor system can be built with only a few additional external 
chips to interface with the memory system and I/O. Although these designs cannot 
be easily scaled to larger processor counts, they offer an extremely cost-effective 
solution for two to four processors.
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Implementing Snoopy Cache Coherence
As we said earlier, the major complication in actually implementing the snooping 
coherence protocol we have described is that write and upgrade misses are not 
atomic in any recent multiprocessor. The steps of detecting a write or upgrade miss; 
communicating with the other processors and memory; getting the most-recent 
value for a write miss and ensuring that any invalidates are processed; and updating 
the cache cannot be done as if they took a single cycle.

In a simple single-bus system, these steps can be made effectively atomic by 
arbitrating for the bus first (before changing the cache state) and not releasing 
the bus until all actions are complete. How can the processor know when all the 
invalidates are complete? In most bus-based multiprocessors, a single line is used to 
signal when all necessary invalidates have been received and are being processed. 
Following that signal, the processor that generated the miss can release the bus, 
knowing that any required actions will be completed before any activity related 
to the next miss. By holding the bus exclusively during these steps, the processor 
effectively makes the individual steps atomic.

In a system without a bus, we must find some other method of making the steps 
in a miss atomic. In particular, we must ensure that two processors that attempt to 
write the same block at the same time, a situation which is called a race, are strictly 
ordered: one write is processed before the next is begun. It does not matter which 
of two writes in a race wins the race, just that there be only a single winner whose 
coherence actions are completed first. In a snoopy system, ensuring that a race 
has only one winner is accomplished by using broadcast for all misses, as well as 
some basic properties of the interconnection network. These properties, together 
with the ability to restart the miss handling of the loser in a race, are the keys to 
implementing snoopy cache coherence without a bus.

The devil is in the  
details.
Classic proverb.
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A significant challenge facing cache designers is to support processors like the 
Cortex-A53 and the Core i7 that can execute more than one memory instruction 
per clock cycle. A popular technique is to break the cache into banks and allow 
multiple, independent, parallel accesses, provided the accesses are to different 
banks. The technique is similar to interleaved DRAM banks (see Section 5.2).

The Cortex-A53 and the Core i7 have additional optimizations that allow them 
to reduce the miss penalty. The first of these is the return of the requested word 
first on a miss. They also continue to execute instructions that access the data cache 
during a cache miss. Designers who are attempting to hide the cache miss latency 
commonly use this technique, called a nonblocking cache. They implement two 
flavors of nonblocking. Hit under miss allows additional cache hits during a miss, 
while miss under miss allows multiple outstanding cache misses. The aim of the 
first of these two is hiding some miss latency with other work, while the aim of the 
second is overlapping the latency of two different misses.

Overlapping a large fraction of miss times for multiple outstanding misses 
requires a high-bandwidth memory system capable of handling multiple misses 
in parallel. In a personal mobile device, the memory system below it can often 
pipeline, merge, reorder, or prioritize requests appropriately. Large servers and 
multiprocessors typically have memory systems capable of handling several 
outstanding misses in parallel.

nonblocking cache  
A cache that allows 
the processor to make 
references to the cache 
while the cache is 
handling an earlier miss.

Characteristic ARM Cortex-A53 Intel Core i7

Virtual address 48 bits 48 bits

Physical address 40 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB Variable: 4 KiB, 2/4 MiB

TLB organization 1 TLB for instructions and 1 TLB
for data per core

Both micro TLBs are fully associative,
with 10 entries, round robin
replacement
64-entry, four-way set-associative TLBs

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement

L1 I-TLB has 128 entries for small
pages, seven per thread for large pages

L1 D-TLB has 64 entries for small 
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries 

TLB misses handled in hardware

FIGURE 5.42 Address translation and TLB hardware for the ARM Cortex-A53 and Intel 
Core i7 920. Both processors provide support for large pages, which are used for things like the operating 
system or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a 
single object that is always present.



The Cortex-A53 and the Core i7 have prefetch mechanisms for data accesses. 
They look at a pattern of data misses and uses this information to try to predict 
the next address to start fetching the data before the miss occurs. Such techniques 
generally work best when accessing arrays in loops.

The sophisticated memory hierarchies of these chips and the large fraction of 
the dies dedicated to caches and TLBs show the significant design effort expended 
to try to close the gap between processor cycle times and memory latency.

Characteristic ARM Cortex-A53 Intel Core i7

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size Configurable 16 to 64 KiB each 
for instructions/data

32 KiB each for instructions/data per
core

L1 cache associativity Two-way (I), four-way (D) set 
associative

Four-way (I), eight-way (D) set 
associative

L1 replacement Random Approximated LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, variable allocation 
policies (default is Write-allocate)

Write-back, No-write-allocate

L1 hit time (load-use) Two clock cycles Four clock cycles, pipelined

L2 cache organization Unified (instruction and data) Unified (instruction and data) per core

L2 cache size 128 KiB to 2 MiB 256 KiB (0.25 MiB)

L2 cache associativity 16-way set associative 8-way set associative

L2 replacement Approximated LRU Approximated LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time 12 clock cycles 10 clock cycles

L3 cache  
organization –

Unified (instruction and data)

L3 cache size – 8 MiB, shared

L3 cache 
associativity

– 16-way set associative

L3 replacement – Approximated LRU

L3 block size – 64 bytes

L3 write policy – Write-back, Write-allocate

L3 hit time – 35 clock cycles

FIGURE 5.43 Caches in the ARM Cortex-A53 and Intel Core i7 920.
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Performance of the Cortex-A53 and Core i7 Memory 
Hierarchies
The memory hierarchy of the Cortex-A53 was measured using a 32 KiB two-way 
set associative L1 instruction cache, a 32 KiB four-way set associative L1 data 
cache, and a 1 MiB 16-way set associative L2 cache running the integer SPEC2006 
benchmarks.

The Cortex-A53 instruction cache miss rates for these benchmarks are very 
small. Figure 5.44 shows the data cache results for the Cortex-A53, which have 
significant L1 and L2 miss rates. The L1 data cache miss rates go from 0.5% to 
37.3%, with a mean of 6.4% and a median of 2.4%. The (global) L2 cache miss 
rates vary from 0.1% to 9.0%, with a mean of 1.3% and a median of 0.3%. The L1 
miss penalty for a 1 GHz Cortex-A53 is 12 clock cycles, while the L2 miss penalty 
is 124 clock cycles. Using these miss penalties, Figure 5.45 shows the average miss 
penalty per data access. When these low miss rates are multiplied by their high 
miss penalties, you can see that they can represent a significant fraction of the CPI 
for 5 of the 12 SPEC2006 programs.
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FIGURE 5.44 Data cache miss rates for ARM Cortex-A53 when running SPEC2006int. Applications with larger memory 
footprints tend to have higher miss rates in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references, 
including those that hit in L1. (See the Elaboration in Section 5.4.) mcf is known as a cache buster. Note that this figure is for the same systems 
and benchmarks as Figure 4.74 in Chapter 4.



Figure 5.46 shows the miss rates for the caches of the Core i7 using the SPEC2006 
benchmarks. The L1 instruction cache miss rate varies from 0.1% to 1.8%, 
averaging just over 0.4%. This rate is in keeping with other studies of instruction 
cache behavior for the SPECCPU2006 benchmarks, which show low instruction 
cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes 
higher, the importance of the L2 and L3 caches should be obvious. Since the cost 
for a miss to memory is over 100 cycles, and the average data miss rate in L2 is 4%, 
L3 is obviously critical. Assuming about half the instructions is loads or stores, 
without L3 the L2 cache misses could add two cycles per instruction to the CPI! In 
comparison, the average L3 data miss rate of 1% is still significant but four times 
lower than the L2 miss rate and six times less than the L1 miss rate.

Elaboration: Because speculation may sometimes be wrong (see Chapter 4), there 
are references to the L1 data cache that do not correspond to loads or stores that 
eventually complete execution. The data in Figure 5.44 are measured against all data 
requests, including some that are cancelled. The miss rate when measured against only 
completed data accesses is 1.6 times higher (an average of 9.5% versus 5.9% for L1 
Dcache misses).
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FIGURE 5.45 The average memory access penalty in clock cycles per data memory 
reference coming from L1 and L2 is shown for the ARM processor when running 
SPEC2006int. Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is more 
than five times higher, means that the L2 misses can contribute significantly.
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 5.14 Real Stuff: The Rest of the RISC-V 
System and Special Instructions

Figure 5.48 lists the 13 remaining RISC-V instructions in the special purpose and 
systems category.

The fence instructions provide synchronization barriers for instructions 
(fence.i), data (fence), and address translations (sfence.vma). The first, 
fence.i, informs the processor that software has modified instruction memory, 
so that it can guarantee that instruction fetch will reflect the updated instructions. 
The second, fence, affects data memory access ordering for multiprocessing and 
I/O. The third, sfence.vma, informs the processor that software has modified the 
page tables, so that it can guarantee that address translations will reflect the updates.

The six control and status register (CSR) access instructions move data between 
general-purpose registers and CSRs. The csrrwi instruction (CSR read/write 
immediate) copies a CSR to an integer register, then overwrites the CSR with an 
immediate. csrrsi (CSR read/set immediate) copies a CSR to an integer register, 
and overwrites the CSR with the bitwise OR of the CSR and an immediate. csrrci 
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FIGURE 5.46 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running the 
full integer SPECCPU2006 benchmarks.
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(CSR read/clear) is like csrrsi, but clears bits instead of setting them. The csrrw, 
csrrs, and csrrc instructions use a register operand instead of an immediate, 
but otherwise do the same thing.

Two instructions’ only purpose is to generate exceptions: ecall generates an 
environment call exception to invoke the OS, and ebreak generates a breakpoint 
exception to invoke the debugger. The supervisor exception-return instruction 
(sret), naturally enough, allows the program to return from an exception handler.

Finally, the wait-for-interrupt instruction, wfi, informs the processor that it 
may enter an idle state until an interrupt occurs.

 5.15 Going Faster: Cache Blocking and Matrix 
Multiply

Our next step in the continuing saga of improving performance of DGEMM by 
tailoring it to the underlying hardware is to add cache blocking to the subword 
parallelism and instruction level parallelism optimizations of Chapters  3 and 4. 
Figure 5.47 shows the blocked version of DGEMM from Figure 4.78. The changes 
are the same as was made earlier in going from unoptimized DGEMM in Figure 
3.22 to blocked DGEMM in Figure 5.21 above. This time we take the unrolled 
version of DGEMM from Chapter 4 and invoke it many times on the submatrices 
of A, B, and C. Indeed, lines 28–34 and lines 7–8 in Figure 5.47 mirror lines 14–20 
and lines 5–6 in Figure 5.21, except for incrementing the for loop in line 7 by the 
amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because 
the inner loop code is nearly identical to Figure 4.79, as the blocking does not 
affect the computation, just the order that it accesses data in memory. What does 
change is the bookkeeping integer instructions to implement the loops. It expands 
from 14 instructions before the inner loop and eight after the loop for Figure  
4.78 to 40 and 28 instructions respectively for the bookkeeping code generated 
for Figure 5.47. Nevertheless, the extra instructions executed pale in comparison 
to the performance improvement of reducing cache misses. Figure 5.49 compares 
unoptimized to optimized for subword parallelism, instruction level parallelism, 
and caches. Blocking improves performance over unrolled AVX code by factors of 
2 to 2.5 for the larger matrices. When we compare unoptimized code to the code 
with all three optimizations, the performance improvement is factors of 8 to 15, 
with the largest increase for the largest matrix.

Elaboration: As mentioned in the Elaboration in Section 3.9, these results are with 
Turbo mode turned off. As in Chapters 3 and 4, when we turn it on, we improve all the 
results by the temporary increase in the clock rate of 3.3/2.6 = 1.27. Turbo mode works 
particularly well in this case because it is using only a single core of an eight-core chip. 
However, if we want to run fast we should use all cores, which we’ll see in Chapter 6.
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#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, 
               double *A, double *B, double *C)
{
  for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )
    for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {
      __m256d c[4];
      for ( int x = 0; x < UNROLL; x++ ) 
        c[x] = _mm256_load_pd(C+i+x*4+j*n);
     /* c[x] = C[i][j] */
      for( int k = sk; k < sk+BLOCKSIZE; k++ )
      {
        __m256d b = _mm256_broadcast_sd(B+k+j*n);
     /* b = B[k][j] */
        for (int x = 0; x < UNROLL; x++)
          c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
                 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
      }

      for ( int x = 0; x < UNROLL; x++ ) 
        _mm256_store_pd(C+i+x*4+j*n, c[x]);
        /* C[i][j] = c[x] */
    }
}

void dgemm (int n, double* A, double* B, double* C)
{
  for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 
    for ( int si = 0; si < n; si += BLOCKSIZE )
      for ( int sk = 0; sk < n; sk += BLOCKSIZE )
        do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

FIGURE 5.47 Optimized C version of DGEMM from Figure 4.78 using cache blocking. These changes are the same ones found 
in Figure 5.21. The assembly language produced by the compiler for the do_block function is nearly identical to Figure 4.79. Once again, 
there is no overhead to call the do_block because the compiler inlines the function call.
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FENCE.I Instruction Fence
Mem. Ordering FENCE Fence

SFENCE.VMA Address Translation Fence

CSRRWI CSR Read/Write Immediate

CSRRSI CSR Read/Set Immediate

CSR Access
CSRRCI CSR Read/Clear Immediate

CSRRW CSR Read/Write

CSRRS CSR Read/Set

CSRRC CSR Read/Clear

ECALL Environment Call

System
EBREAK Environment Breakpoint

SRET Supervisor Exception Return

WFI Wait for Interrupt

Type Mnemonic Name

FIGURE 5.48 The list of assembly language instructions for the systems and special 
operations in the full RISC-V instruction set.
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FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32 × 32 
to 960 × 960. The fully optimized code for the largest matrix is almost 15 times as fast the unoptimized 
version in Figure 3.22 in Chapter 3.



468 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

 5.16 Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not 
only have there been many fallacies propagated and pitfalls encountered, but some 
have led to major negative outcomes. We start with a pitfall that often traps students 
in exercises and exams.

Pitfall: Ignoring memory system behavior when writing programs or when 
generating code in a compiler.

This could be rewritten as a fallacy: “Programmers can ignore memory hierarchies 
in writing code.” The evaluation of sort in Figure 5.19 and of cache blocking in 
Section 5.14 demonstrate that programmers can easily double performance if 
they factor the behavior of the memory system into the design of their algorithms.

Pitfall: Forgetting to account for byte addressing or the cache block size in 
simulating a cache.

When simulating a cache (by hand or by computer), we need to make sure we 
account for the effect of byte addressing and multiword blocks in determining into 
which cache block a given address maps. For example, if we have a 32-byte direct-
mapped cache with a block size of 4 bytes, the byte address 36 maps into block 1 
of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1. On the 
other hand, if address 36 is a word address, then it maps into block (36 mod 8) = 4. 
Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache with 
256 bytes and a block size of 32 bytes. Into which block does the byte address 300 
fall? If we break the address 300 into fields, we can see the answer:

63 62 61 . . . . . . . . . 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 . . . . . . . . . 0 0 0 1 0 0 1 0 1 1 0 0

Cache block 
number

Block offset

Block address

Byte address 300 is block address

The number of blocks in the cache is

300
32

9










=

256
32

8










=
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Block number 9 falls into cache block number (9 modulo 8) = 1.
This mistake catches many people, including the authors (in earlier drafts) and 

instructors who forget whether they intended the addresses to be in doublewords, 
words, bytes, or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Having less set associativity for a shared cache than the number of cores or 
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can 
easily allocate data structures to addresses that would map to the same set of a 
shared L2 cache. If the cache is at least 2n-way associative, then these accidental 
conflicts are hidden by the hardware from the program. If not, programmers could 
face apparently mysterious performance bugs—actually due to L2 conflict misses—
when migrating from, say, a 16-core design to 32-core design if both use 16-way 
associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an 
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the 
memory-stall time and the processor execution time, and hence evaluate the memory 
hierarchy independently using average memory access time (see page 391).

If the processor continues to execute instructions, and may even sustain more 
cache misses during a cache miss, then the only accurate assessment of the memory 
hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented 
address space.

During the 1970s, many programs grew so large that not all the code and data 
could be addressed with just a 16-bit address. Computers were then revised to 
offer 32-bit addresses, either through an unsegmented 32-bit address space (also 
called a flat address space) or by adding 16 bits of segment to the existing 16-bit 
address. From a marketing point of view, adding segments that were programmer-
visible and that forced the programmer and compiler to decompose programs into 
segments could solve the addressing problem. Unfortunately, there is trouble any 
time a programming language wants an address that is larger than one segment, 
such as indices for large arrays, unrestricted pointers, or reference parameters. 
Moreover, adding segments can turn every address into two words—one for the 
segment number and one for the segment offset—causing problems in the use of 
addresses in registers.

Fallacy: Disk failure rates in the field match their specifications.
Two recent studies evaluated large collections of disks to check the relationship 
between results in the field compared to specifications. One study was of almost 
100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of 
0.6% to 0.8%. They found AFRs of 2% to 4% to be common, often three to five times 
higher than the specified rates [Schroeder and Gibson, 2007]. A second study of 
more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw 
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failure rates of 1.7% for drives in their first year rise to 8.6% for drives in their third 
year, or about five to six times the declared rate [Pinheiro, Weber, and Barroso, 2007].

Fallacy: Operating systems are the best place to schedule disk accesses.
As mentioned in Section 5.2, higher-level disk interfaces offer logical block 
addresses to the host operating system. Given this high-level abstraction, the best 
an OS can do to try to help performance is to sort the logical block addresses into 
increasing order. However, since the disk knows the actual mapping of the logical 
addresses onto the physical geometry of sectors, tracks, and surfaces, it can reduce 
the rotational and seek latencies by rescheduling.

For example, suppose the workload is four reads [Anderson, 2003]:

Operation Starting LBA Length

Read 724 8

Read 100 16

Read 9987 1

Read 26 128

The host might reorder the four reads into logical block order:

Operation Starting LBA Length

Read 26 128

Read 100 16

Read 724 8

Read 9987 1

Depending on the relative location of the data on the disk, reordering could 
make it worse, as Figure 5.50 shows. The disk-scheduled reads complete in three-
quarters of a disk revolution, but the OS-scheduled reads take three revolutions.

Pitfall: Implementing a virtual machine monitor on an instruction set architecture 
that wasn’t designed to be virtualizable.
Many architects in the 1970s and 1980s weren’t careful to make sure that 

all instructions reading or writing information related to hardware resource 
information were privileged. This laissez-faire attitude causes problems for VMMs 
for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The two broad classes are instructions that

■	 Read control registers in user mode that reveals that the guest operating 
system is running in a virtual machine (such as POPF, mentioned earlier)

■	 Check protection as required by the segmented architecture but assume that 
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 
proposed extensions to the architecture via a new mode. Intel’s VT-x provides 
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Host-ordered queue
Drive-ordered queue

724

100

26

9987

FIGURE 5.50 Example showing OS versus disk schedule accesses, labeled host-ordered 
versus drive-ordered. The former takes three revolutions to complete the four reads, while the latter 
completes them in just three-fourths of a revolution. From Anderson [2003].

Problem category Problem x86 instructions

Access sensitive registers without 
trapping when running in user mode 

Store global descriptor table register (SGDT) 
Store local descriptor table register (SLDT) 
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory 
mechanisms in user mode, instructions 
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. The first five instructions in the top group allow a program in user mode to read 
a control register, such as descriptor table registers, without causing a trap. The pop flags instruction modifies 
a control register with sensitive information but fails silently when in user mode. The protection checking of 
the segmented architecture of the x86 is the downfall of the bottom group, as each of these instructions checks 
the privilege level implicitly as part of instruction execution when reading a control register. The checking 
assumes that the OS must be at the highest privilege level, which is not the case for guest VMs. Only the Move 
to segment register tries to modify control state, and protection checking foils it as well.
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a new execution mode for running VMs, an architected definition of the VM 
state, instructions to swap VMs rapidly, and a large set of parameters to select the 
circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new 
instructions for the x86. AMD’s Pacifica makes similar proposals.

An alternative to modifying the hardware is to make small changes to the operating 
system to avoid using the troublesome pieces of the architecture. This technique is 
called paravirtualization, and the open source Xen VMM is a good example. The 
Xen VMM provides a guest OS with a virtual machine abstraction that uses only 
the easy-to-virtualize parts of the physical x86 hardware on which the VMM runs.

 5.17 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors 
is underscored by the fact that the raw material for main memory, DRAMs, is 
essentially the same in the fastest computers as it is in the slowest and cheapest.

It is the principle of locality that gives us a chance to overcome the long latency of 
memory access—and the soundness of this strategy is demonstrated at all levels of 
the memory hierarchy. Although these levels of the hierarchy look quite different 
in quantitative terms, they follow similar strategies in their operation and exploit 
the same properties of locality.

Multilevel caches make it possible to use more cache optimizations more easily for 
two reasons. First, the design parameters of a lower-level cache are different from a first-
level cache. For example, because a lower-level cache will be much larger, it is possible 
to use bigger block sizes. Second, a lower-level cache is not constantly being used by 
the processor, as a first-level cache is. This allows us to consider having the lower-level 
cache do something when it is idle that may be useful in preventing future misses.

Another trend is to seek software help. Efficiently managing the memory 
hierarchy using a variety of program transformations and hardware facilities is a 
major focus of compiler enhancements. Two different ideas are being explored. 
One idea is to reorganize the program to enhance its spatial and temporal locality. 
This approach focuses on loop-oriented programs that use sizable arrays as the 
major data structure; large linear algebra problems are a typical example, such as 
DGEMM. By restructuring the loops that access the arrays, substantially improved 
locality—and, therefore, cache performance—can be obtained.

Another approach is prefetching. In prefetching, a block of data is brought into 
the cache before it is actually referenced. Many microprocessors use hardware 
prefetching to try to predict accesses that may be difficult for software to notice.

A third approach is special cache-aware instructions that optimize memory 
transfer. For example, the microprocessors in Section 6.10 in Chapter  6 use 
an optimization that does not fetch the contents of a block from memory on a 
write miss because the program is going to write the full block. This optimization 
significantly reduces memory traffic for one kernel.

prefetching A technique 
in which data blocks 
needed in the future are 
brought into the cache 
early by using special 
instructions that specify 
the address of the block.
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As we will see in Chapter 6, memory systems are a central design issue for parallel 
processors. The growing significance of the memory hierarchy in determining 
system performance means that this important area will continue to be a focus for 
both designers and researchers for some years to come.

  Historical Perspective and Further 
Reading

This section, which appears online, gives an overview of memory technologies, 
from mercury delay lines to DRAM, the invention of the memory hierarchy, 
protection mechanisms, and virtual machines, and concludes with a brief history 
of operating systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, 
Windows, and Linux.

 5.19 Exercises

Assume memory is byte addressable and words are 64 bits, unless specified 
otherwise.

5.1 In this exercise we look at memory locality properties of matrix computation. 
The following code is written in C, where elements within the same row are stored 
contiguously. Assume each word is a 64-bit integer.

for (I=0; I<8; I++)
 for (J=0; J<8000; J++)
 A[I][J]=B[I][0]+A[J][I];

5.1.1 [5] <§5.1> How many 64-bit integers can be stored in a 16-byte cache 
block?

5.1.2 [5] <§5.1> Which variable references exhibit temporal locality?

5.1.3 [5] <§5.1> Which variable references exhibit spatial locality?

Locality is affected by both the reference order and data layout. The same 
computation can also be written below in Matlab, which differs from C in that it 
stores matrix elements within the same column contiguously in memory.

for I=1:8
 for J=1:8000
  A(I,J)=B(I,0)+A(J,I);
 end
end

5.18
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   Historical Perspective and Further 
Reading

This history section gives an overview of memory technologies, from mercury 
delay lines to DRAM, the invention of the memory hierarchy, and protection 
mechanisms, and concludes with a brief history of operating systems, including 
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

The developments of most of the concepts in this chapter have been driven by 
revolutionary advances in the technology we use for memory. Before we discuss 
how memory hierarchies were evolved, let’s take a brief tour of the development of 
memory technology.

The ENIAC had only a small number of registers (about 20) for its storage and 
implemented these with the same basic vacuum tube technology that it used for 
building logic circuitry. However, the vacuum tube technology was far too expensive 
to be used to build a larger memory capacity. Eckert came up with the idea of 
developing a new technology based on mercury delay lines. In this technology, 
electrical signals were converted into vibrations that were sent down a tube of 
mercury, reaching the other end, where they were read out and recirculated. One 
mercury delay line could store about 0.5 Kbits. Although these bits were accessed 
serially, the mercury delay line was about a hundred times more cost-effective 
than vacuum tube memory. The first known working mercury delay lines were 
developed at Cambridge for the EDSAC. Figure e5.17.1 shows the mercury delay 
lines of the EDSAC, which had 32 tanks and 512 36-bit words.

Despite the tremendous advance offered by the mercury delay lines, they were 
terribly unreliable and still rather expensive. The breakthrough came with the 
invention of core memory by J. Forrester at MIT as part of the Whirlwind project 
in the early 1950s (see Figure e5.17.2). Core memory uses a ferrite core, which can 
be magnetized, and once magnetized, it acts as a store (just as a magnetic recording 
tape stores information). A set of wires running through the center of the core, 
which had a dimension of 0.1–1.0 millimeters, makes it possible to read the value 
stored on any ferrite core. The Whirlwind eventually included a core memory with 
2048 16-bit words, or 32 Kbits. Core memory was a tremendous advance: it was 
cheaper, faster, considerably more reliable, and had higher density. Core memory 
was so much better than the alternatives that it became the dominant memory 
technology only a few years after its invention and remained so for nearly 20 years.

…the one single 
development that put 
computers on their 
feet was the invention 
of a reliable form of 
memory, namely, the 
core memory.… Its 
cost was reasonable, 
it was reliable and, 
because it was reliable, 
it could in due course 
be made large.
Maurice Wilkes, 
Memoirs of a Computer 
Pioneer, 1985

5.18
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FIGURE e5.17.1 The mercury delay lines in the EDSAC. This technology made it possible to 
build the first stored-program computer. The young engineer in this photograph is none other than Maurice 
Wilkes, the lead architect of the EDSAC.
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The technology that replaced core memory was the same one that we now use 
both for logic and for memory: the integrated circuit. While registers were built 
out of transistorized memory in the 1960s, and IBM computers used transistorized 
memory for microcode store and caches in 1970, building main memory out 
of transistors remained prohibitively expensive until the development of the 
integrated circuit. With the integrated circuit, it became possible to build a DRAM 
(dynamic random access memory—see Appendix A for a description). The first 
DRAMs were built at Intel in 1970, and the computers using DRAM memories (as 
a high-speed option to core) came shortly thereafter; they used 1 Kbit DRAMs. In 
fact, computer folklore says that Intel developed the microprocessor partly to help 

FIGURE e5.17.2 A core memory plane from the Whirlwind containing 256 cores arranged 
in a 16 × 16 array. Core memory was invented for the Whirlwind, which was used for air defense 
problems, and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder of Digital and its 
president for 20 years, built the computer that tested these core memories; it was his first computer.)



473.e4 5.18 Historical Perspective and Further Reading

sell more DRAM. Figure e5.17.3 shows an early DRAM board. By the late 1970s, 
core memory had become a historical curiosity. Just as core memory technology 
had allowed a tremendous expansion in memory size, DRAM technology allowed 
a comparable expansion. In the 1990s, many personal computers had as much 
memory as the largest computers using core memory ever had.

Nowadays, DRAMs are typically packaged with multiple chips on a little board 
called a DIMM (dual inline memory module). The SIMM (single inline memory 
module) shown in Figure e5.17.4 contains a total of 1 MB and sold for about $5 in 
1997. As of 2004, DIMMs were available with up to 1024 MB and sold for about 
$100. While DRAMs will remain the dominant memory technology for some 
time to come, innovations in the packaging of DRAMs to provide both higher 
bandwidth and greater density are ongoing.

FIGURE e5.17.3 An early DRAM board. This board uses 18 Kbit chips.
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The Development of Memory Hierarchies
Although the pioneers of computing foresaw the need for a memory hierarchy 
and coined the term, the automatic management of two levels was first proposed 
by Kilburn and his colleagues and demonstrated at the University of Manchester 
with the Atlas computer, which implemented virtual memory. This was the year 
before the IBM 360 was announced. IBM planned to include virtual memory with 
the next generation (System/370), but the OS/360 operating system wasn’t up to 
the challenge in 1970. Virtual memory was announced for the 370 family in 1972, 
and it was for this computer that the term translation-lookaside buffer was coined. 
All but some embedded computers use virtual memory today.

The problems of inadequate address space have plagued designers repeatedly. The 
architects of the PDP-11 identified a small address space as the only architectural 
mistake from which it is difficult to recover. When the PDP-11 was designed, core 
memory densities were increasing at a very slow rate, and the competition from 100 
other minicomputer companies meant that DEC might not have a cost-competitive 
product if every address had to go through the 16-bit datapath twice—hence, the 
decision to add just 4 more address bits than the predecessor of the PDP-11, to 16 
from 12. The architects of the IBM 360 were aware of the importance of address 
size and planned for the architecture to extend to 32 bits of address. Only 24 bits 
were used in the IBM 360, however, because the low-end 360 models would have 
been even slower with the larger addresses. Unfortunately, the expansion effort was 
greatly complicated by programmers who stored extra information in the upper 8 

FIGURE e5.17.4 A 1 MB SIMM, built in 1986, using 1 Mbit chips. This SIMM sold for about $5/
MB in 1997. As of 2006, most main memory is packed in DIMMs similar to this, though using much higher-
density memory chips (1 Gbit).
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“unused” address bits. The wider address lasted until 2000, when IBM expanded 
the architecture to 64 bits in the z-series.

Running out of address space has often been the cause of death for an 
architecture, while other architectures have managed to make the transition to a 
larger address space. For example, the PDP-11, a 16-bit computer, was replaced by 
the 32-bit VAX. The 80386 extended the 80286 architecture from a segmented 24-
bit address space to a flat 32-bit address space in 1985. In the 1990s, several RISC 
instruction sets made the transition from 32-bit addressing to 64-bit addressing 
by providing a compatible extension of their instruction sets. MIPS was the first to 
do so. A decade later, Intel and HP announced the IA-64 in large part to provide a 
64-bit address successor to the 32-bit Intel IA-32 and HP Precision architectures. 
The evolutionary AMD64 won that battle versus the revolutionary IA-64, and all 
but a few thousand of the 64-bit address computers from Intel are based on the x86.

Many of the early ideas in memory hierarchies originated in England. Just a few 
years after the Atlas paper, Wilkes [1965] published the first paper describing the 
concept of a cache, calling it a “slave”:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a slower 
core memory of, say, one million words in such a way that in practical cases the 
effective access time is nearer that of the fast memory than that of the slow memory.

This two-page paper describes a direct-mapped cache. Although this was the first 
publication on caches, the first implementation was probably a direct-mapped 
instruction cache built at the University of Cambridge by Scarrott and described at 
the 1965 IFIP Congress. It was based on tunnel diode memory, the fastest form of 
memory available at the time.

Subsequent to that publication, IBM started a project that led to the first 
commercial computer with a cache, the IBM 360/85. Gibson at IBM recognized 
that memory-accessing behavior would have a significant impact on performance. 
He described how to measure program behavior and cache behavior and showed 
that the miss rate varies between programs. Using a sample of 20 programs (each 
with 3 million references—an incredible number for that time), Gibson analyzed 
the effectiveness of caches using average memory access time as the metric. Conti, 
Gibson, and Pitowsky described the resulting performance of the 360/85 in the first 
paper to use the term cache in 1968. Since this early work, it has become clear that 
caches are one of the most important ideas not only in computer architecture but 
in software systems as well. The idea of caching has found applications in operating 
systems, networking systems, databases, and compilers, to name a few. There are 
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thousands of papers on the topic of caching, and it continues to be a popular area 
of research.

One of the first papers on nonblocking caches was by Kroft in 1981, who may 
have coined the term. He later explained that he was the first to design a computer 
with a cache at Control Data Corporation, and when using old concepts for new 
mechanisms, he hit upon the idea of allowing his two-ported cache to continue to 
service other accesses on a miss.

Multilevel caches were the inevitable resolution to the lack of improvement in 
main memory latency and the higher clock rates of microprocessors. Only those in 
the field for a while are surprised by the size of some second- or third-level caches, as 
they are larger than main memories of past machines. The other surprise is that the 
number of levels is continually increasing, even on a single-chip microprocessor.

Disk Storage
In 1956, IBM developed the first disk storage system with both moving heads 
and multiple disk surfaces in San Jose, helping to seed the birth of the magnetic 
storage industry in the southern end of Silicon Valley. Reynold B. Johnson led the 
development of the IBM 305 RAMAC (Random Access Method of Accounting 
and Control). It could store 5 million characters (5 MB) of data on 50 disks, each 24 
inches in diameter. The RAMAC is shown in Figures e5.17.5 and e5.17.6. Although 
the disk pioneers would be amazed at the size, cost, and capacity of modern disks, 
the basic mechanical design is the same as the RAMAC.

Moving-head disks quickly became the dominant high-speed magnetic storage, 
though their high cost meant that magnetic tape continued to be used extensively 
until the 1970s. The next key milestone for hard disks was the removable hard 
disk drive developed by IBM in 1962; this made it possible to share the expensive 
drive electronics and helped disks overtake tapes as the preferred storage medium. 
Figure e5.17.7 shows a removable disk drive and the multiplatter disk used in the 
drive. IBM also invented the floppy disk drive in 1970, originally to hold microcode 
for the IBM 370 series. Floppy disks became popular with the PC about 10 years 
later.

The sealed Winchester disk, which was developed by IBM in 1973, completely 
dominates disk technology today. Winchester disks benefited from two related 
properties. First, reductions in the cost of the disk electronics made it unnecessary 
to share the electronics and thus made nonremovable disks economical. Since the 
disk was fixed and could be in a sealed enclosure, both the environmental and 
control problems were greatly reduced, allowing significant gains in density. The 
first disk that IBM shipped had two spindles, each with a 30 MB disk; the moniker 
“30-30” for the disk led to the name Winchester. Winchester disks grew rapidly in 
popularity in the 1980s, completely replacing removable disks by the middle of that 
decade.

The historic role of IBM in the disk industry came to an end in 2002, when IBM 
sold its disk storage division to Hitachi. IBM continues to make storage subsystems, 
but it purchases its disk drives from others.
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FIGURE e5.17.5 A magnetic drum made by Digital Development Corporation in the 1960s 
and used on a CDC machine. The electronics supporting the read/write heads can be seen on the outside 
of the drum.

A Very Brief History of Flash Memory
Flash memory was invented by researchers at Toshiba in the 1980s. They invented 
both the NOR-based Flash memory in 1984 and the denser NAND-based Flash 
memory in 1989. The first use was in digital cameras, starting with the CompactFlash 
form factor for NOR Flash memory and the SmartMedia form factor for NAND 
Flash memory. Today, all digital cameras, cell phones, music players, and tablets 
rely on Flash memory, and an increasing fraction of laptops use flash memory 
instead of disk.
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A Brief History of Databases
Although there had been data stores of punch cards and later magnetic tapes, the 
emergence of the magnetic disk led to modern databases.

In 1961, Charles Bachman at General Electric created a pioneering database 
management system called Integrated Data Store (IDS) to take advantage of the 
new magnetic disks. In 1971, Bachman and others published standards on how 
to manage databases using Cobol programs, named the Codasyl approach after 

FIGURE e5.17.6 The RAMAC disk drive from IBM, made in 1956, was the first disk drive 
with a moving head and the first with multiple platters. The IBM storage technology Web site has 
a discussion of IBM’s major contributions to storage technology.

FIGURE e5.17.7 This is a DEC disk drive and the removable pack. These disks became popular 
starting in the mid-1960s and dominated disk technology until Winchester drives in the late 1970s. This drive 
was made in the mid-1970s; each disk pack in this drive could hold 80 MB.
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the standards committee on which they served. Many companies offered Codasyl-
compatible databases, but not IBM. IBM had introduced IMS in 1968, which was 
derived from IBM’s work on the NASA Apollo project. Both Codasyl databases 
and IMS are classified as navigational databases because programs had to navigate 
through the data.

Ted Codd, a researcher at IBM, thought the navigational approach was wrong-
headed. He recalled that people didn’t write programs when dealing with the old 
punch card databases. Instead, they set up data flows through series of punch card 
machines that would perform simple functions like copy or sort. Once the card 
machines were set up, you just pushed all the cards through to get your results. 
In his view, users should only declare the type of data they were looking for and 
leave it up to computers to process it. In 1970, he published a new way to organize 
and access data called the relational model. It was based on set theory; data were 
independent of the implementation and users described what they were looking 
for in a declarative, nonprocedural language.

This paper led to considerable controversy within IBM, because it already had a 
database product. Codd even arranged a public debate between him and Bachman, 
which led to internal criticism at IBM that Codd was undermining IMS. The 
good news was that the debate led researchers at IBM and U.C. Berkeley to try to 
demonstrate the viability of relational databases by building System R and Ingres.

System R in 1974–79 demonstrated its feasibility and, perhaps more importantly, 
created the Structured Query Language (SQL) that is still widely used today. 
However, these results were not sufficient to convince IBM, and some of the 
researchers left IBM to build relational databases for other companies.

Mike Stonebraker and Gene Wong were interested in geographic data systems, 
and in 1973 they decided to pursue relational databases. Rather than build on IBM 
mainframes, the Ingres project was built on DEC minicomputers and Unix. Ingres 
was important because it led to a company that tried to commercialize the ideas, 
because 1000 copies of its source code were openly distributed, and because it 
trained a generation of database developers and researchers. The code and people 
led to many other companies, including Sybase. Larry Ellison started Oracle by 
first reading the papers from the System R and Ingres groups and then by hiring 
people who worked on those projects. Microsoft later purchased a copy of Sybase 
sources that became the foundation of its SQL Server product.

Relational databases matured in the 1980s, with IBM developing its own 
relational databases, including DB2. The 1990s saw both the development of 
object-oriented databases, to address the impedance mismatch between databases 
and programming, and the evolution of parallel databases for analytic processing 
and data mining.

ACM showered awards on this community. The ACM Turing Award went to 
Charles Bachman in 1973 for his contributions via IDS and the Codasyl group. 
Codd won it in 1980 for the relational model. In 1988, the developers of System 
R (Donald Chamberlin, Jim Gray, Raymond Lorie, Gianfranco Putzolu, Patricia 
Selinger, and Irving Traiger) shared the ACM Systems Software Award with the 
developers of Ingres (Gerald Held, Michael Stonebraker, and Eugene Wong). Jim 
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Gray won the Turing Award in 1998 for his contributions to transaction processing 
and databases. Stonebraker won it in 2014 for contributions to the concepts 
and practices underlying modern database systems. Finally, the first two ACM 
SIGMOD Innovations Awards went to Stonebraker and Gray, and the 2002 and 
2003 editions went to Selinger and Chamberlin.

RAID
The small-form-factor hard disks for PCs in the mid-1980s led a group at Berkeley 
to propose redundant arrays of inexpensive disks (RAID). This group had worked 
on the reduced instruction set computer effort and so expected much faster 
processors to become available. Their two questions were: What could be done 
with the small disks that accompanied their PCs? What could be done in the area 
of I/O to keep up with much faster processors? They argued to replace one large 
mainframe drive with 50 small drives, as you could get much greater performance 
with that many independent arms. The many small drives even offered savings in 
power consumption and floor space.

The downside of many disks was much lower MTTF. Hence, on their own they 
reasoned out the advantages of redundant disks and rotating parity to address how 
to get greater performance with many small drives yet have reliability as high as 
that of a single mainframe disk.

The problem they experienced when explaining their ideas was that some 
researchers had heard of disk arrays with some form of redundancy, and they didn’t 
understand the Berkeley proposal. Hence, the first RAID paper [Patterson, Gibson, 
and Katz 1987] is not only a case for arrays of small-form-factor disk drives, but 
also something of a tutorial and classification of existing work on disk arrays. 
Mirroring (RAID 1) had long been used in fault-tolerant computers such as those 
sold by Tandem. Thinking Machines had arrays with 32 data disks and seven check 
disks using ECC for correction (RAID 2) in 1987, and Honeywell Bull had a RAID 
2 product even earlier. Also, disk arrays with a single parity disk had been used in 
scientific computers in the same time frame (RAID 3). Their paper then described 
a single parity disk with support for sector accesses (RAID 4) and rotated parity 
(RAID 5). Chen et al. [1994] survey the original RAID ideas, commercial products, 
and other developments.

Unknown to the Berkeley group, engineers at IBM working on the AS/400 
computer also came up with rotated parity to give greater reliability for a collection of 
large disks. IBM filed a patent on RAID 5 shortly before the Berkeley group submitted 
their paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate 
the IBM RAID 5 patent, which has led to plenty of courtroom action.

EMC had been a supplier of DRAM boards for IBM computers, but around 1988 
new policies from IBM made it nearly impossible for EMC to continue to sell IBM 
memory boards. The Berkeley paper crossed the desks of EMC executives, and so 
they decided to go after the market dominated by IBM disk storage products. As 
the paper advocated, their model was to use many small drives to compete with 
mainframe drives, and EMC announced a RAID product in 1990. It relied on 



473.e12 5.18 Historical Perspective and Further Reading

mirroring (RAID 1) for reliability; RAID 5 products came much later for EMC. 
Over the next year, Micropolis offered a RAID 3 product; Compaq offered a RAID 
4 product; and Data General, IBM, and NCR offered RAID 5 products.

The RAID ideas soon spread to the rest of the workstation and server industry. 
An article explaining RAID in Byte magazine led to RAID products being offered 
on desktop PCs, which was something of a surprise to the Berkeley group. They 
had focused on performance with good availability, but higher availability was 
attractive to the PC market.

Another surprise was the cost of the disk arrays. With redundant power supplies 
and fans, the ability to “hot-swap” a disk drive, the RAID hardware controller itself, 
the redundant disks, and so on, the first disk arrays cost many times the cost of the 
disks. Perhaps as a result, the “inexpensive” in RAID morphed into “independent.” 
Many marketing departments and technical writers today know of RAID only as 
“redundant arrays of independent disks.”

In 2004, more than 80% of the nondesktop drive sales were found in RAIDs. In 
recognition of their role, in 1999 Garth Gibson, Randy Katz, and David Patterson 
received the IEEE Reynold B. Johnson Information Storage Award “for the 
development of Redundant Arrays of Inexpensive Disks (RAID).”

Protection Mechanisms
Architectural support for protection has varied greatly over the past 20 years. In early 
computers, before virtual memory, protection was very simple at best. In the 1960s, 
more sophisticated mechanisms that supported different protection levels (called 
rings) were invented. In the late 1970s and early 1980s, very elaborate mechanisms 
for protection were devised and later built; these mechanisms supported a variety 
of powerful protection schemes that allowed controlled instances of sharing, in 
such a way that a process could share data while controlling exactly what was done 
to the data. The most powerful method, called capabilities, created a data object that 
described the access rights to some portion of memory. These capabilities could 
then be passed to other processes, thus granting access to the object described by the 
capability. Supporting this sophisticated protection mechanism was both complex 
and costly, because creation, copying, and manipulation of capabilities required 
a combination of operating system and hardware support. Recent computers all 
support a simpler protection scheme based on virtual memory, similar to that 
discussed in Section 5.7. Given current concerns about computer security due to 
the costs of worms and viruses, perhaps we will see a renaissance in protection 
research, potentially renewing interest in 20-year-old publications.

As mentioned in the text, system virtual machines were pioneered at IBM as part 
of its investigation into virtual memory. IBM’s first computer with virtual memory 
was the IBM 360/67, introduced in 1967. IBM researchers wrote the program CP-
67, which created the illusion of several independent 360 computers. They then 
wrote an interactive, single-user operating system called CMS that ran on these 
virtual machines. CP-67 led to the product VM/370, and today IBM sells z/VM for 
its mainframe computers.
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A Brief History of Modern Operating Systems
MIT developed the first timesharing system, CTSS (Compatible Time-Sharing 
System), in 1961. John McCarthy is generally given credit for the idea of timesharing, 
but Fernando Corbato was the systems person who realized the concept in the 
form of the CTSS. CTSS allowed three people to share a machine, and its response 
time of minutes or seconds was a dramatic improvement over the batch processing 
system it replaced. Moreover, it demonstrated the value of interactive computing.

Flush with the success of their first system, this group launched into their second 
system, MULTICS (Multiplexed Information and Computing Service). They 
included many innovations, such as strong protection, controlled sharing, and 
dynamic libraries. However, it suffered from the “second system effect.” Fred Brooks, 
Jr. described the second system effect in his classic book about lessons learned from 
developing an operating system for the IBM mainframe, The Mythical Man Month:

When one is designing the successor to a relatively small, elegant, and successful 
system, there is a tendency to become grandiose in one’s success and design an 
elephantine feature-laden monstrosity.

MULTICS took sharing to a logical extreme to discover the issues, including that 
it was too extreme. MIT, General Electric, and later Bell Labs all tried to build an 
economical and useful system. Despite a great deal of time and money, they failed.

UC Berkeley was building its own timesharing system, Cal TSS. (“Cal” is a 
nickname for University of California.) The people leading that project included 
Peter Deutsch, Butler Lampson, Chuck Thacker, and Ken Thompson. They added 
paging virtual memory hardware to an SDS 920 and wrote an operating system 
for it. SDS sold this computer as the SDS-930, and it was the first commercially 
available timesharing system to have operational hardware and software. 
Thompson graduated and joined Bell Labs. The others founded Berkeley Computer 
Corporation (BCC), with the goal of selling time-sharing hardware and software. 
We’ll pick up BCC later in the story, but for now let’s follow Thompson.

At Bell Labs in 1971, Thompson led the development of a simple timesharing 
system that had some of the good ideas of MULTICS but left out many of the 
complex features. To demonstrate the contrast, it was first called UNICS. As they 
were joined by others at Bell Labs who had been burned from the MULTICS 
experience, it was renamed UNIX, with the x coming from Phoenix, the legendary 
bird that rose from the ashes.

Their result was the most elegant operating system ever built. Forced to live in 
the 16-bit address space of the DEC minicomputers, it had an amazing amount 
of functionality per line of code. Major contributions were pipes, a uniform file 
system, a uniform process model, and the shell user interface that allowed users to 
connect programs together using pipes and files.

Dennis Ritchie joined the UNIX team in 1973 from MIT, where he had 
experience in MULTICS, which was written in a high-level language. Like prior 
operating systems, UNIX had been written in assembly language. Ritchie designed 
a language for system implementation called C, and it was used to make UNIX 
portable.
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Between 1971 and 1976, Bell released six editions of the UNIX timesharing 
system. Thompson took a sabbatical at his alma mater and brought UNIX with 
him. Berkeley and many other universities began to use UNIX on the popular 
PDP-11 minicomputer.

When DEC announced the VAX, a 32-bit virtual address successor to the PDP-
11, the question arose as to what operating system should be run. UNIX became 
the first operating system to be migrated to a different computer when it was ported 
to the VAX.

Students at Berkeley had one of the first VAXes, and they were soon adding 
features to UNIX for the VAX, such as paging and a very efficient implementation 
of the TCP/IP protocol. The Berkeley implementation of TCP/IP was notable not 
just because it was fast. It was essentially the only implementation of TCP/IP for 
years, since early implementations in most other operating systems consisted of 
copying the Berkeley code verbatim, with minimal changes to integrate into the 
local system.

The Advanced Research Project Agency (ARPA), which funded computer 
science research, asked a Stanford professor, Forrest Basket, to recommend which 
system the academic community should use: the DEC operating system VMS, 
led by David Cutler, or the Berkeley version of UNIX, led by a graduate student 
named Bill Joy. He recommended the latter, and Berkeley UNIX soon became the 
academic standard bearer.

The Berkeley Software Distribution (BSD) of UNIX, first released in 1978, was 
essentially one of the first open source movements. The sources were shipped with 
the tapes, and systems developers around the world learned their craft by studying 
the UNIX code.

BSD was also the first split of UNIX, because AT&T Bell Labs continued to 
develop UNIX on its own. This eventually led to a forest of UNIXes, as each 
company compiled the UNIX source code for their architecture. Bill Joy graduated 
from Berkeley and helped found Sun Microsystems, so naturally Sun OS was based 
on BSD UNIX. Among the many UNIX flavors were Santa Cruz Operation UNIX, 
HP-UX, and IBM’s AIX. AT&T and Sun attempted to unify UNIX by striking a 
deal whereby AT&T and Sun would combine forces and jointly develop AT&T 
UNIX. This led to an adverse reaction from HP, IBM, and others, because they 
did not want a competitor supplying their code, so they created the Open Source 
Foundation as a competing organization.

In addition to the UNIX variants from companies, public domain versions also 
proliferated. The BSD team at Berkeley rewrote substantial portions of UNIX so 
that they could distribute it without needing a license from AT&T. This eventually 
led to a lawsuit, which Berkeley won. BSD UNIX soon split into FreeBSD, NetBSD, 
and OpenBSD, provided by competing camps of developers. Apple’s current 
operating system, OS X, is based on Free BSD.

Let’s go back to Berkeley Computer Corporation. Alas, this effort was not 
commercially viable. About the same time as BCC was getting in trouble, Xerox hired 
Robert Taylor to build the computer science division of the new Xerox Palo Alto 
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Research Center (PARC) in 1970. He had just returned from a tour of duty at ARPA, 
where he had funded the Berkeley research. He recruited Deutsch, Lampson, and 
Thacker from BCC to form the core of PARC’s team: 11 of the initial 20 employees 
were from BCC, and they decided to build small computers for individuals rather 
than large computers for groups. This first personal computer, called the Alto, was 
built from the same technology as minicomputers, but it had a keyboard, mouse, 
graphical display, and windows. It popularized windows and led to many inventions, 
including client-server computing, the Ethernet, and print servers. It directly inspired 
the Macintosh, which was the successor to the popular Apple II.

IBM had long been interested in selling to the home, so the success of the Apple 
II led IBM to start a competing project. In contrast to its tradition, for this project 
IBM designed everything from components outside of the company. They selected 
the new 16-bit microprocessor from Intel, the 8086. (To lower costs, they started 
with the version with the 8-bit bus, called the 8088.) They visited Microsoft to 
see if this small company would be willing to sell their popular Basic interpreter 
and asked for recommendations for an operating system. Gates volunteered that 
Microsoft could deliver both an interpreter and an operating system, as long as they 
were paid a royalty fee of between $10 and $50 for each copy rather than a flat fee. 
IBM agreed, provided Microsoft could meet their deadlines. Microsoft didn’t have 
an operating system, nor the time and resources to build one, but Gates knew that 
a Seattle company had developed an operating system for the Intel 8086. Microsoft 
purchased QDOS (Quick and Dirty Operating System) for $15,000, made a small 
change and relabeled it MS-DOS. MS-DOS was a simple operating system without 
any modern features—no protection, no processes, and no virtual memory—in 
part because they believed it wasn’t necessary for a personal computer.

Announced in 1980, the IBM PC became a tremendous success for IBM and the 
companies it relied upon. Microsoft sold 500,000 copies of MS-DOS by 1983, and 
the $10 million income allowed Microsoft to start new software projects.

After seeing a version of the Macintosh under development, Microsoft hired 
some people from PARC to lead its reply. The Macintosh was announced in 
1984, and Windows was available on PCs the following year. It was originally 
an application that ran on top of DOS, but was later integrated with DOS and 
renamed Windows 2.0. Microsoft hired Cutler from DEC to lead the development 
of Windows NT, a new operating system. NT was a modern operating system with 
protection, processors, and so on and has much in common with DEC’s VMS. 
Today’s PC operating systems are more sophisticated than any of the timesharing 
systems of 20 years ago, yet they still suffer from the need to maintain compatibility 
with the crippled first PC operating systems such as MS-DOS.

The popularity of the PC led to a desire for a UNIX that ran on it. Many tried 
to develop one, but the most successful was written from scratch in 1991 by Linus 
Torvalds. In addition to making the source code available, like BSD, he allowed 
everyone to make changes and submit them for inclusion in his next release. Linux 
popularized open source development as we know it today, with such software 
getting hundreds of volunteers to test releases and add new features.
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Many people in this story won awards for their roles in the development of 
modern operating systems. McCarthy received an ACM Turing Award in 1971 in 
part for his contributions to timesharing. In 1983, Thompson and Ritchie received 
one for UNIX. The announcement said that “the genius of the UNIX system is its 
framework, which enables programmers to stand on the work of others.” In 1990, 
Corbato received the Turing Award for his contributions to CTSS and MULTICS. 
Two years later, Lampson won it in part for his work on personal computing and 
operating systems.
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5.1.4 [5] <§5.1> Which variable references exhibit temporal locality?

5.1.5 [5] <§5.1> Which variable references exhibit spatial locality?

5.1.6 [15] <§5.1> How many 16-byte cache blocks are needed to store all 64-bit 
matrix elements being referenced using Matlab’s matrix storage? How many using 
C’s matrix storage? (Assume each row contains more than one element.)

5.2 Caches are important to providing a high-performance memory hierarchy 
to processors. Below is a list of 64-bit memory address references, given as word 
addresses.

0x03, 0xb4, 0x2b, 0x02, 0xbf, 0x58, 0xbe, 0x0e, 0xb5, 
0x2c, 0xba, 0xfd

5.2.1 [10] <§5.3> For each of these references, identify the binary word address, 
the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also 
list whether each reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary word address, 
the tag, the index, and the offset given a direct-mapped cache with two-word blocks 
and a total size of eight blocks. Also list if each reference is a hit or a miss, assuming 
the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given 
references. There are three direct-mapped cache designs possible, all with a total of 
eight words of data: 

■ C1 has 1-word blocks,

■ C2 has 2-word blocks, and

■ C3 has 4-word blocks.

5.3 By convention, a cache is named according to the amount of data it contains 
(i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to 
store metadata such as tags and valid bits. For this exercise, you will examine how 
a cache’s configuration affects the total amount of SRAM needed to implement it as 
well as the performance of the cache. For all parts, assume that the caches are byte 
addressable, and that addresses and words are 64 bits.

5.3.1 [10] <§5.3> Calculate the total number of bits required to implement a 32 
KiB cache with two-word blocks.

5.3.2 [10] <§5.3> Calculate the total number of bits required to implement a 
64 KiB cache with 16-word blocks. How much bigger is this cache than the 32 
KiB cache described in Exercise 5.3.1? (Notice that, by changing the block size, we 
doubled the amount of data without doubling the total size of the cache.)

马德



 5.19 Exercises 475

5.3.3 [5] <§5.3> Explain why this 64 KiB cache, despite its larger data size, might 
provide slower performance than the first cache.

5.3.4 [10] <§§5.3, 5.4> Generate a series of read requests that have a lower miss 
rate on a 32 KiB two-way set associative cache than on the cache described in 
Exercise 5.3.1.

5.4 [15] <§5.3> Section 5.3 shows the typical method to index a direct-mapped 
cache, specifically (Block address) modulo (Number of blocks in the cache). Assuming 
a 64-bit address and 1024 blocks in the cache, consider a different indexing function, 
specifically (Block address[63:54] XOR Block address[53:44]). Is it possible to use 
this to index a direct-mapped cache? If so, explain why and discuss any changes that 
might need to be made to the cache. If it is not possible, explain why.

5.5 For a direct-mapped cache design with a 64-bit address, the following bits of 
the address are used to access the cache.

Tag Index Offset

63–10 9–5 4–0

5.5.1 [5] <§5.3> What is the cache block size (in words)?

5.5.2 [5] <§5.3> How many blocks does the cache have?

5.5.3 [5] <§5.3> What is the ratio between total bits required for such a cache 
implementation over the data storage bits?

Beginning from power on, the following byte-addressed cache references are 
recorded.

Address

Hex 00 04 10 84 E8 A0 400 1E 8C C1C B4 884

Dec 0 4 16 132 232 160 1024 30 140 3100 180 2180

5.5.4 [20] <§5.3> For each reference, list (1) its tag, index, and offset, (2) whether 
it is a hit or a miss, and (3) which bytes were replaced (if any).

5.5.5 [5] <§5.3> What is the hit ratio?

5.5.6 [5] <§5.3> List the final state of the cache, with each valid entry represented 
as a record of <index, tag, data>. For example,

<0, 3, Mem[0xC00]-Mem[0xC1F]>

5.6 Recall that we have two write policies and two write allocation policies, and 
their combinations can be implemented either in L1 or L2 cache. Assume the 
following choices for L1 and L2 caches:

L1 L2

Write through, non-write allocate Write back, write allocate

马德
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5.6.1 [5] <§§5.3, 5.8> Buffers are employed between different levels of memory 
hierarchy to reduce access latency. For this given configuration, list the possible 
buffers needed between L1 and L2 caches, as well as L2 cache and memory.

5.6.2 [20] <§§5.3, 5.8> Describe the procedure of handling an L1 write-miss, 
considering the components involved and the possibility of replacing a dirty block.

5.6.3 [20] <§§5.3, 5.8> For a multilevel exclusive cache configuration (a block 
can only reside in one of the L1 and L2 caches), describe the procedures of handling 
an L1 write-miss and an L1 read-miss, considering the components involved and 
the possibility of replacing a dirty block.

5.7 Consider the following program and cache behaviors.

Data Reads per 
1000 Instructions

Data Writes per 
1000 Instructions

Instruction Cache 
Miss Rate

Data Cache 
Miss Rate

Block Size 
(bytes)

250 100 0.30% 2% 64

5.7.1 [10] <§§5.3, 5.8> Suppose a CPU with a write-through, write-allocate 
cache achieves a CPI of 2. What are the read and write bandwidths (measured 
by bytes per cycle) between RAM and the cache? (Assume each miss generates a 
request for one block.)

5.7.2 [10] <§§5.3, 5.8> For a write-back, write-allocate cache, assuming 30% 
of replaced data cache blocks are dirty, what are the read and write bandwidths 
needed for a CPI of 2?

5.8 Media applications that play audio or video files are part of a class of workloads 
called “streaming” workloads (i.e., they bring in large amounts of data but do not 
reuse much of it). Consider a video streaming workload that accesses a 512 KiB 
working set sequentially with the following word address stream:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . . .

5.8.1 [10] <§§5.4, 5.8> Assume a 64 KiB direct-mapped cache with a 32-byte 
block. What is the miss rate for the address stream above? How is this miss rate 
sensitive to the size of the cache or the working set? How would you categorize the 
misses this workload is experiencing, based on the 3C model?

5.8.2 [5] <§§5.1, 5.8> Re-compute the miss rate when the cache block size is 16 
bytes, 64 bytes, and 128 bytes. What kind of locality is this workload exploiting?

5.8.3 [10] <§5.13> “Prefetching” is a technique that leverages predictable address 
patterns to speculatively bring in additional cache blocks when a particular cache 
block is accessed. One example of prefetching is a stream buffer that prefetches 
sequentially adjacent cache blocks into a separate buffer when a particular cache 
block is brought in. If the data are found in the prefetch buffer, it is considered 
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as a hit, moved into the cache, and the next cache block is prefetched. Assume 
a two-entry stream buffer; and, assume that the cache latency is such that a 
cache block can be loaded before the computation on the previous cache block is 
completed. What is the miss rate for the address stream above?

5.9 Cache block size (B) can affect both miss rate and miss latency. Assuming a 
machine with a base CPI of 1, and an average of 1.35 references (both instruction 
and data) per instruction, find the block size that minimizes the total miss latency 
given the following miss rates for various block sizes.

8: 4% 16: 3% 32: 2% 64: 1.5% 128: 1%

5.9.1 [10] <§5.3> What is the optimal block size for a miss latency of 20 × B 
cycles?

5.9.2 [10] <§5.3> What is the optimal block size for a miss latency of 24 + B 
cycles?

5.9.3 [10] <§5.3> For constant miss latency, what is the optimal block size?

5.10 In this exercise, we will look at the different ways capacity affects overall 
performance. In general, cache access time is proportional to capacity. Assume 
that main memory accesses take 70 ns and that 36% of all instructions access data 
memory. The following table shows data for L1 caches attached to each of two 
processors, P1 and P2.

L1 Size L1 Miss Rate L1 Hit Time

P1 2 KiB 8.0% 0.66 ns

P2 4 KiB 6.0% 0.90 ns

5.10.1 [5] <§5.4> Assuming that the L1 hit time determines the cycle times for 
P1 and P2, what are their respective clock rates?

5.10.2 [10] <§5.4> What is the Average Memory Access Time for P1 and P2 (in 
cycles)?

5.10.3 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what is 
the total CPI for P1 and P2? Which processor is faster? (When we say a “base CPI of 
1.0”, we mean that instructions complete in one cycle, unless either the instruction 
access or the data access causes a cache miss.)

For the next three problems, we will consider the addition of an L2 cache to P1 (to 
presumably make up for its limited L1 cache capacity). Use the L1 cache capacities 
and hit times from the previous table when solving these problems. The L2 miss 
rate indicated is its local miss rate.

L2 Size L2 Miss Rate L2 Hit Time

1 MiB 95% 5.62 ns

马德
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5.10.4 [10] <§5.4> What is the AMAT for P1 with the addition of an L2 cache? 
Is the AMAT better or worse with the L2 cache?

5.10.5 [5] <§5.4> Assuming a base CPI of 1.0 without any memory stalls, what 
is the total CPI for P1 with the addition of an L2 cache?

5.10.6 [10] <§5.4> What would the L2 miss rate need to be in order for P1 with 
an L2 cache to be faster than P1 without an L2 cache?

5.10.7 [15] <§5.4> What would the L2 miss rate need to be in order for P1 with 
an L2 cache to be faster than P2 without an L2 cache?

5.11 This exercise examines the effect of different cache designs, specifically 
comparing associative caches to the direct-mapped caches from Section 5.4. For 
these exercises, refer to the sequence of word address shown below.

0x03, 0xb4, 0x2b, 0x02, 0xbe, 0x58, 0xbf, 0x0e, 0x1f, 
0xb5, 0xbf, 0xba, 0x2e, 0xce

5.11.1 [10] <§5.4> Sketch the organization of a three-way set associative cache 
with two-word blocks and a total size of 48 words. Your sketch should have a style 
similar to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.2 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.1. Assume 
a true LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset

■ whether the reference is a hit or a miss, and

■ which tags are in each way of the cache after the reference has been handled.

5.11.3 [5] <§5.4> Sketch the organization of a fully associative cache with one-
word blocks and a total size of eight words. Your sketch should have a style similar 
to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.4 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.3. Assume 
a true LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset,
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■ whether the reference is a hit or a miss, and

■ the contents of the cache after each reference has been handled.

5.11.5 [5] <§5.4> Sketch the organization of a fully associative cache with two-
word blocks and a total size of eight words. Your sketch should have a style similar 
to Figure 5.18, but clearly show the width of the tag and data fields.

5.11.6 [10] <§5.4> Trace the behavior of the cache from Exercise 5.11.5. Assume 
an LRU replacement policy. For each reference, identify

■ the binary word address,

■ the tag,

■ the index,

■ the offset,

■ whether the reference is a hit or a miss, and

■ the contents of the cache after each reference has been handled.

5.11.7 [10] <§5.4> Repeat Exercise 5.11.6 using MRU (most recently used) 
replacement.

5.11.8 [15] <§5.4> Repeat Exercise 5.11.6 using the optimal replacement policy 
(i.e., the one that gives the lowest miss rate).

5.12 Multilevel caching is an important technique to overcome the limited 
amount of space that a first-level cache can provide while still maintaining its 
speed. Consider a processor with the following parameters:
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1.5 2 GHz 100 ns 7% 12 cycles 3.5% 28 cycles 1.5%

**First Level Cache miss rate is per instruction. Assume the total number of L1 cache misses 
(instruction and data combined) is equal to 7% of the number of instructions.

5.12.1 [10] <§5.4> Calculate the CPI for the processor in the table using: 1) only 
a first-level cache, 2) a second-level direct-mapped cache, and 3) a second-level 
eight-way set associative cache. How do these numbers change if main memory access 
time doubles? (Give each change as both an absolute CPI and a percent change.) 
Notice the extent to which an L2 cache can hide the effects of a slow memory.
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5.12.2 [10] <§5.4> It is possible to have an even greater cache hierarchy than 
two levels? Given the processor above with a second-level, direct-mapped cache, a 
designer wants to add a third-level cache that takes 50 cycles to access and will have 
a 13% miss rate. Would this provide better performance? In general, what are the 
advantages and disadvantages of adding a third-level cache?

5.12.3 [20] <§5.4> In older processors, such as the Intel Pentium or Alpha 
21264, the second level of cache was external (located on a different chip) from the 
main processor and the first-level cache. While this allowed for large second-level 
caches, the latency to access the cache was much higher, and the bandwidth was 
typically lower because the second-level cache ran at a lower frequency. Assume a 
512 KiB off-chip second-level cache has a miss rate of 4%. If each additional 512 
KiB of cache lowered miss rates by 0.7%, and the cache had a total access time of 
50 cycles, how big would the cache have to be to match the performance of the 
second-level direct-mapped cache listed above?

5.13 Mean time between failures (MTBF), mean time to replacement (MTTR), 
and mean time to failure (MTTF) are useful metrics for evaluating the reliability 
and availability of a storage resource. Explore these concepts by answering the 
questions about a device with the following metrics:

MTTF MTTR

3 Years 1 Day

5.13.1 [5] <§5.5> Calculate the MTBF for such a device.

5.13.2 [5] <§5.5> Calculate the availability for such a device.

5.13.3 [5] <§5.5> What happens to availability as the MTTR approaches 0? Is 
this a realistic situation?

5.13.4 [5] <§5.5> What happens to availability as the MTTR gets very high, i.e., 
a device is difficult to repair? Does this imply the device has low availability?

5.14 This exercise examines the single error correcting, double error detecting 
(SEC/DED) Hamming code.

5.14.1 [5] <§5.5> What is the minimum number of parity bits required to protect 
a 128-bit word using the SEC/DED code?

5.14.2 [5] <§5.5> Section 5.5 states that modern server memory modules 
(DIMMs) employ SEC/DED ECC to protect each 64 bits with 8 parity bits. 
Compute the cost/performance ratio of this code to the code from Exercise 5.14.1. 
In this case, cost is the relative number of parity bits needed while performance is 
the relative number of errors that can be corrected. Which is better?

5.14.3 [5] <§5.5> Consider a SEC code that protects 8 bit words with 4 parity 
bits. If we read the value 0x375, is there an error? If so, correct the error.
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5.15 For a high-performance system such as a B-tree index for a database, the 
page size is determined mainly by the data size and disk performance. Assume 
that, on average, a B-tree index page is 70% full with fix-sized entries. The utility 
of a page is its B-tree depth, calculated as log2(entries). The following table shows 
that for 16-byte entries, and a 10-year-old disk with a 10 ms latency and 10 MB/s 
transfer rate, the optimal page size is 16 K.

Page Size (KiB)

Page Utility or B-Tree Depth 
(Number of Disk Accesses 

Saved)

Index Page 
Access Cost 

(ms) Utility/Cost

2 6.49 (or log2(2048/16 × 0.7)) 10.2 0.64

4 7.49 10.4 0.72

8 8.49 10.8 0.79

16 9.49 11.6 0.82

32 10.49 13.2 0.79

64 11.49 16.4 0.70

128 12.49 22.8 0.55

256 13.49 35.6 0.38

5.15.1 [10] <§5.7> What is the best page size if entries now become 128 bytes?

5.15.2 [10] <§5.7> Based on Exercise 5.15.1, what is the best page size if pages 
are half full?

5.15.3 [20] <§5.7> Based on Exercise 5.15.2, what is the best page size if using 
a modern disk with a 3 ms latency and 100 MB/s transfer rate? Explain why future 
servers are likely to have larger pages.

Keeping “frequently used” (or “hot”) pages in DRAM can save disk accesses, but 
how do we determine the exact meaning of “frequently used” for a given system? 
Data engineers use the cost ratio between DRAM and disk access to quantify the 
reuse time threshold for hot pages. The cost of a disk access is $Disk/accesses_per_
sec, while the cost to keep a page in DRAM is $DRAM_MiB/page_size. The typical 
DRAM and disk costs and typical database page sizes at several time points are 
listed below:

Year
DRAM Cost  

($/MiB)
Page Size  

(KiB)
Disk Cost  
($/disk)

Disk Access Rate 
(access/sec)

1987 5000 1 15,000 15

1997 15 8 2000 64

2007 0.05 64 80 83

5.15.4 [20] <§5.7> What other factors can be changed to keep using the same 
page size (thus avoiding software rewrite)? Discuss their likeliness with current 
technology and cost trends.

5.16 As described in Section 5.7, virtual memory uses a page table to track the 
mapping of virtual addresses to physical addresses. This exercise shows how this 
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table must be updated as addresses are accessed. The following data constitute a 
stream of virtual byte addresses as seen on a system. Assume 4 KiB pages, a four-
entry fully associative TLB, and true LRU replacement. If pages must be brought in 
from disk, increment the next largest page number.

Decimal 4669 2227 13916 34587 48870 12608 49225
hex 0x123d 0x08b3 0x365c 0x871b 0xbee6 0x3140 0xc049

TLB

Valid Tag
Physical Page 

Number
Time Since Last 

Access

1 0xb 12 4

1 0x7 4 1

1 0x3 6 3

0 0x4 9 7

Page table

Index Valid Physical Page or in Disk

0 1 5

1 0 Disk

2 0 Disk

3 1 6

4 1 9

5 1 11

6 0 Disk

7 1 4

8 0 Disk

9 0 Disk

a 1 3

b 1 12

5.16.1 [10] <§5.7> For each access shown above, list

■ whether the access is a hit or miss in the TLB,

■ whether the access is a hit or miss in the page table,

■ whether the access is a page fault,

■ the updated state of the TLB.

5.16.2 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 16 KiB pages instead 
of 4 KiB pages. What would be some of the advantages of having a larger page size? 
What are some of the disadvantages?

5.16.3 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 4 KiB pages and a 
two-way set associative TLB.
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5.16.4 [15] <§5.7> Repeat Exercise 5.16.1, but this time use 4 KiB pages and a 
direct mapped TLB.

5.16.5 [10] <§§5.4, 5.7> Discuss why a CPU must have a TLB for high 
performance. How would virtual memory accesses be handled if there were no 
TLB?

5.17 There are several parameters that affect the overall size of the page table. 
Listed below are key page table parameters.

Virtual Address Size Page Size Page Table Entry Size

32 bits 8 KiB 4 bytes

5.17.1 [5] <§5.7> Given the parameters shown above, calculate the maximum 
possible page table size for a system running five processes.

5.17.2 [10] <§5.7> Given the parameters shown above, calculate the total page 
table size for a system running five applications that each utilize half of the virtual 
memory available, given a two-level page table approach with up to 256 entries 
at the 1st level. Assume each entry of the main page table is 6 bytes. Calculate the 
minimum and maximum amount of memory required for this page table.

5.17.3 [10] <§5.7> A cache designer wants to increase the size of a 4 KiB virtually 
indexed, physically tagged cache. Given the page size shown above, is it possible to 
make a 16 KiB direct-mapped cache, assuming two 64-bit words per block? How 
would the designer increase the data size of the cache?

5.18 In this exercise, we will examine space/time optimizations for page tables. 
The following list provides parameters of a virtual memory system.

Virtual Address (bits)
Physical DRAM 

Installed Page Size PTE Size (byte)

43 16 GiB 4 KiB 4

5.18.1 [10] <§5.7> For a single-level page table, how many page table entries 
(PTEs) are needed? How much physical memory is needed for storing the page 
table?

5.18.2 [10] <§5.7> Using a multi-level page table can reduce the physical memory 
consumption of page tables by only keeping active PTEs in physical memory. How 
many levels of page tables will be needed if the segment tables (the upper-level 
page tables) are allowed to be of unlimited size? How many memory references are 
needed for address translation if missing in TLB?

5.18.3 [10] <§5.7> Suppose the segments are limited to the 4 KiB page size (so 
that they can be paged). Is 4 bytes large enough for all page table entries (including 
those in the segment tables?

马德
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5.18.4 [10] <§5.7> How many levels of page tables are needed if the segments are 
limited to the 4 KiB page size?

5.18.5 [15] <§5.7> An inverted page table can be used to further optimize space 
and time. How many PTEs are needed to store the page table? Assuming a hash 
table implementation, what are the common case and worst case numbers of 
memory references needed for servicing a TLB miss?

5.19 The following table shows the contents of a four-entry TLB.

Entry-ID Valid VA Page Modified Protection PA Page

1 1 140 1 RW 30

2 0 40 0 RX 34

3 1 200 1 RO 32

4 1 280 0 RW 31

5.19.1 [5] <§5.7> Under what scenarios would entry 3’s valid bit be set to zero?

5.19.2 [5] <§5.7> What happens when an instruction writes to VA page 30? 
When would a software managed TLB be faster than a hardware managed TLB?

5.19.3 [5] <§5.7> What happens when an instruction writes to VA page 200?

5.20 In this exercise, we will examine how replacement policies affect miss rate. 
Assume a two-way set associative cache with four one-word blocks. Consider the 
following word address sequence: 0, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0.

Consider the following address sequence: 0, 2, 4, 8, 10, 12, 14, 16, 0

5.20.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, which accesses 
are hits?

5.20.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement 
policy, which accesses are hits?

5.20.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by flipping a coin. 
For example, “heads” means to evict the first block in a set and “tails” means to 
evict the second block in a set. How many hits does this address sequence exhibit?

5.20.4 [10] <§§5.4, 5.8> Describe an optimal replacement policy for this 
sequence. Which accesses are hits using this policy?

5.20.5 [10] <§§5.4, 5.8> Describe why it is difficult to implement a cache 
replacement policy that is optimal for all address sequences.

5.20.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory 
reference whether or not you want the requested address to be cached. What effect 
could this have on miss rate?

马德
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5.21 One of the biggest impediments to widespread use of virtual machines is the 
performance overhead incurred by running a virtual machine. Listed below are 
various performance parameters and application behavior.

Base CPI

Privileged 
O/S 

accesses 
per 10,000 

instructions

Overhead to 
trap to the 
guest O/S

Overhead to 
trap to VMM

I/O access 
per 10,000 

instructions

I/O access time 
(includes time 

to trap to guest 
O/S)

1.5 120 15 cycles 175 cycles 30 1100 cycles

5.21.1 [10] <§5.6> Calculate the CPI for the system listed above assuming that 
there are no accesses to I/O. What is the CPI if the VMM overhead doubles? If it is 
cut in half? If a virtual machine software company wishes to limit the performance 
degradation to 10%, what is the longest possible penalty to trap to the VMM?

5.21.2 [15] <§5.6> I/O accesses often have a large effect on overall system 
performance. Calculate the CPI of a machine using the performance characteristics 
above, assuming a non-virtualized system. Calculate the CPI again, this time using 
a virtualized system. How do these CPIs change if the system has half the I/O 
accesses?

5.22 [15] <§§5.6, 5.7> Compare and contrast the ideas of virtual memory and 
virtual machines. How do the goals of each compare? What are the pros and cons 
of each? List a few cases where virtual memory is desired, and a few cases where 
virtual machines are desired.

5.23 [10] <§5.6> Section 5.6 discusses virtualization under the assumption that 
the virtualized system is running the same ISA as the underlying hardware. However, 
one possible use of virtualization is to emulate non-native ISAs. An example of this 
is QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC. 
What are some of the difficulties involved in this kind of virtualization? Is it possible 
for an emulated system to run faster than on its native ISA?

5.24 In this exercise, we will explore the control unit for a cache controller for a 
processor with a write buffer. Use the finite state machine found in Figure 5.39 as a 
starting point for designing your own finite state machines. Assume that the cache 
controller is for the simple direct-mapped cache described on page 453 (Figure 
5.39 in Section 5.9), but you will add a write buffer with a capacity of one block.

Recall that the purpose of a write buffer is to serve as temporary storage so that 
the processor doesn’t have to wait for two memory accesses on a dirty miss. Rather 
than writing back the dirty block before reading the new block, it buffers the dirty 
block and immediately begins reading the new block. The dirty block can then be 
written to main memory while the processor is working.
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5.24.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request 
that hits in the cache while a block is being written back to main memory from the 
write buffer?

5.24.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request 
that misses in the cache while a block is being written back to main memory from 
the write buffer?

5.24.3 [30] <§§5.8, 5.9> Design a finite state machine to enable the use of a write 
buffer.

5.25 Cache coherence concerns the views of multiple processors on a given cache 
block. The following data show two processors and their read/write operations on 
two different words of a cache block X (initially X[0] = X[1] = 0).

P1 P2

X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

5.25.1 [15] <§5.10> List the possible values of the given cache block for a correct 
cache coherence protocol implementation. List at least one more possible value of 
the block if the protocol doesn’t ensure cache coherency.

5.25.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on 
each processor/cache to finish the above read/write operations.

5.25.3 [10] <§5.10> What are the best-case and worst-case numbers of cache 
misses needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. The following data 
show two processors and their read/write operations on different cache blocks (A 
and B initially 0).

P1 P2

A = 1; B = 2; A+=2; B++; C = B; D = A;

5.25.4 [15] <§5.10> List the possible values of C and D for all implementations 
that ensure both consistency assumptions on page 455.

5.25.5 [15] <§5.10> List at least one more possible pair of values for C and D if 
such assumptions are not maintained.

5.25.6 [15] <§§5.3, 5.10> For various combinations of write policies and write 
allocation policies, which combinations make the protocol implementation 
simpler?

5.26 Chip multiprocessors (CMPs) have multiple cores and their caches on a 
single chip. CMP on-chip L2 cache design has interesting trade-offs. The following 
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table shows the miss rates and hit latencies for two benchmarks with private vs. 
shared L2 cache designs. Assume the L1 cache has a 3% miss rate and a 1-cycle 
access time.

Private Shared

Benchmark A miss rate 10% 4%

Benchmark B miss rate 2% 1%

Assume the following hit latencies:

Private Cache Shared Cache Memory

5 20 180

5.26.1 [15] <§5.13> Which cache design is better for each of these benchmarks? 
Use data to support your conclusion.

5.26.2 [15] <§5.13> Off-chip bandwidth becomes the bottleneck as the number 
of CMP cores increases. How does this bottleneck affect private and shared cache 
systems differently? Choose the best design if the latency of the first off-chip link 
doubles.

5.26.3 [10] <§5.13> Discuss the pros and cons of shared vs. private L2 caches 
for both single-threaded, multi-threaded, and multiprogrammed workloads, and 
reconsider them if having on-chip L3 caches.

5.26.4 [10] <§5.13> Would a non-blocking L2 cache produce more improvement 
on a CMP with a shared L2 cache or a private L2 cache? Why?

5.26.5 [10] <§5.13> Assume new generations of processors double the number 
of cores every 18 months. To maintain the same level of per-core performance, 
how much more off-chip memory bandwidth is needed for a processor released in 
three years?

5.26.6 [15] <§5.13> Consider the entire memory hierarchy. What kinds of 
optimizations can improve the number of concurrent misses?

5.27 In this exercise we show the definition of a web server log and examine code 
optimizations to improve log processing speed. The data structure for the log is 
defined as follows:

struct entry {
 int srcIP; // remote IP address
 char URL[128]; // request URL (e.g., “GET index.html”)
 long long refTime; // reference time
 int status; // connection status
 char browser[64]; // client browser name
} log [NUM_ENTRIES];
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Assume the following processing function for the log:

topK_sourceIP (int hour);

This function determines the most frequently observed source IPs during the given 
hour.

5.27.1 [5] <§5.15> Which fields in a log entry will be accessed for the given 
log processing function? Assuming 64-byte cache blocks and no prefetching, how 
many cache misses per entry does the given function incur on average?

5.27.2 [5] <§5.15> How can you reorganize the data structure to improve cache 
utilization and access locality?

5.27.3 [10] <§5.15> Give an example of another log processing function that 
would prefer a different data structure layout. If both functions are important, how 
would you rewrite the program to improve the overall performance? Supplement 
the discussion with code snippet and data.

5.28 For the problems below, use data from “Cache Performance for SPEC 
CPU2000 Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-
data/) for the pairs of benchmarks shown in the following table.

a. Mesa/gcc
b. mcf/swim

5.28.1 [10] <§5.15> For 64 KiB data caches with varying set associativities, what 
are the miss rates broken down by miss types (cold, capacity, and conflict misses) 
for each benchmark?

5.28.2 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data 
cache shared by both benchmarks. If the L1 cache has to be directly mapped, select 
the set associativity for the 1 MiB L2 cache.

5.28.3 [20] <§5.15> Give an example in the miss rate table where higher set 
associativity actually increases miss rate. Construct a cache configuration and 
reference stream to demonstrate this.

5.29 To support multiple virtual machines, two levels of memory virtualization 
are needed. Each virtual machine still controls the mapping of virtual address 
(VA) to physical address (PA), while the hypervisor maps the physical address (PA) 
of each virtual machine to the actual machine address (MA). To accelerate such 
mappings, a software approach called “shadow paging” duplicates each virtual 
machine’s page tables in the hypervisor, and intercepts VA to PA mapping changes 
to keep both copies consistent. To remove the complexity of shadow page tables, a 

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/
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hardware approach called nested page table (NPT) explicitly supports two classes of 
page tables (VA⇒PA and PA⇒MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss; 
(3) page fault; (4) context switch;

5.29.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence 
for shadow page table and nested page table, respectively?

5.29.2 [10] <§§5.6, 5.7> Assuming an x86-based four-level page table in both 
guest and nested page table, how many memory references are needed to service a 
TLB miss for native vs. nested page table?

5.29.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, 
and page fault handler latency, which metrics are more important for shadow page 
table? Which are important for nested page table?

Assume the following parameters for a shadow paging system.

TLB Misses per 1000 
Instructions

NPT TLB Miss 
Latency

Page Faults per 1000 
Instructions

Shadowing Page 
Fault Overhead

0.2 200 cycles 0.001 30,000 cycles

5.29.4 [10] <§5.6> For a benchmark with native execution CPI of 1, what are 
the CPI numbers if using shadow page tables vs. NPT (assuming only page table 
virtualization overhead)?

5.29.5 [10] <§5.6> What techniques can be used to reduce page table shadowing 
induced overhead?

5.29.6 [10] <§5.6> What techniques can be used to reduce NPT induced 
overhead?

§5.1, page 369: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2016 the highest cost is usually the DRAM.)
§5.3, page 390: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 409: 1.
§5.8, page 449: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Answers to 
Check Yourself
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 6.1 Introduction

Computer architects have long sought the “The City of Gold” (El Dorado) of 
computer design: to create powerful computers simply by connecting many existing 
smaller ones. This golden vision is the fountainhead of multiprocessors. Ideally, 
customers order as many processors as they can afford and receive a commensurate 
amount of performance. Thus, multiprocessor software must be designed to work 
with a variable number of processors. As mentioned in Chapter  1, energy has 
become the overriding issue for both microprocessors and datacenters. Replacing 
large inefficient processors with many smaller, efficient processors can deliver 
better performance per joule both in the large and in the small, if software 
can efficiently use them. Therefore, improved energy efficiency joins scalable 
performance in the case for multiprocessors.

Since multiprocessor software should scale, some designs support operation  
in the presence of broken hardware; that is, if a single processor fails in a 
multiprocessor with n processors, these systems would continue to provide service 
with n – 1 processors. Hence, multiprocessors can also improve availability (see 
Chapter 5).

High performance can mean greater throughput for independent tasks, called 
task-level parallelism or process-level parallelism. These tasks are independent 
single-threaded applications, and they are an important and popular use of 
multiple processors. This approach contrasts with running a single job on multiple 
processors. We use the term parallel processing program to refer to a single 
program that runs on multiple processors simultaneously.

There have long been scientific problems that have needed much faster 
computers, and this class of problems has been used to justify many novel parallel 
computers over the decades. Some of these problems can be handled simply today, 
using a cluster composed of microprocessors housed in many independent servers 
(see Section 6.7). In addition, clusters can serve equally demanding applications 
outside the sciences, such as search engines, Web servers, email servers, and 
databases.

As described in Chapter 1, multiprocessors have been shoved into the spotlight 
because the energy problem means that future increases in performance will 
primarily come from explicit hardware parallelism rather than much higher  
clock rates or vastly improved CPI. As we said in Chapter  1, they are called  

multiprocessor  
A computer system with at 
least two processors. This 
computer is in contrast to 
a uniprocessor, which has 
one, and is increasingly 
hard to find today.

task-level parallelism 
or process-level 
parallelism Utilizing 
multiple processors by 
running independent 
programs simultaneously.

parallel processing 
program A single 
program that runs on 
multiple processors 
simultaneously.

cluster A set of 
computers connected over 
a local area network that 
function as a single large 
multiprocessor.

Over the Mountains Of 
the Moon, Down the 
Valley of the Shadow, 
Ride, boldly ride the 
shade replied—If you 
seek for El Dorado!
Edgar Allan Poe,  
“El Dorado,”  
stanza 4, 1849
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multicore microprocessors instead of multiprocessor microprocessors, 
presumably to avoid redundancy in naming. Hence, processors are often called 
cores in a multicore chip. The number of cores is expected to increase with  
Moore’s Law. These multicores are almost always Shared Memory Processors 
(SMPs), as they usually share a single physical address space. We’ll see SMPs  
more in Section 6.5.

The state of technology today means that programmers who care about 
performance must become parallel programmers, for sequential code now means 
slow code.

The tall challenge facing the industry is to create hardware and software that 
will make it easy to write correct parallel processing programs that will execute 
efficiently in performance and energy as the number of cores per chip scales.

This abrupt shift in microprocessor design caught many off guard, so there is a 
great deal of confusion about the terminology and what it means. Figure 6.1 tries to 
clarify the terms serial, parallel, sequential, and concurrent. The columns of this figure 
represent the software, which is either inherently sequential or concurrent. The rows 
of the figure represent the hardware, which is either serial or parallel. For example, the 
programmers of compilers think of them as sequential programs: the steps include 
parsing, code generation, optimization, and so on. In contrast, the programmers 
of operating systems normally think of them as concurrent programs: cooperating 
processes handling I/O events due to independent jobs running on a computer.

The point of these two axes of Figure 6.1 is that concurrent software can run on 
serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor, 
or on parallel hardware, such as an OS on the more recent Intel Core i7. The same 
is true for sequential software. For example, the MATLAB programmer writes 
a matrix multiply thinking about it sequentially, but it could run serially on the 
Pentium 4 or in parallel on the Intel Core i7.

You might guess that the only challenge of the parallel revolution is figuring out how 
to make naturally sequential software have high performance on parallel hardware, but 
it is also to make concurrent programs have high performance on multiprocessors 
as the number of processors increases. With this distinction made, in the rest of this 
chapter we will use parallel processing program or parallel software to mean either 
sequential or concurrent software running on parallel hardware. The next section of 
this chapter describes why it is hard to create efficient parallel processing programs.

multicore 
microprocessor  
A microprocessor 
containing multiple 
processors (“cores”) 
in a single integrated 
circuit. Virtually all 
microprocessors today in 
desktops and servers are 
multicore.

shared memory 
multiprocessor 
(SMP) A parallel 
processor with a single 
physical address space.

Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in MatLab
running on an Intel Pentium 4

Windows Vista Operating System
running on an Intel Pentium 4

Parallel
Matrix Multiply written in MATLAB
running on an Intel Core i7

Windows Vista Operating System
running on an Intel Core i7

FIGURE 6.1 Hardware/software categorization and examples of application perspective 
on concurrency versus hardware perspective on parallelism.
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Before proceeding further down the path to parallelism, don’t forget our initial 
incursions from the earlier chapters:

n	 Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

n	 Chapter  3, Section 3.6: Parallelism and Computer Arithmetic: Subword 
Parallelism

n	 Chapter 4, Section 4.10: Parallelism via Instructions

n	 Chapter  5, Section 5.10: Parallelism and Memory Hierarchy: Cache 
Coherence

True or false: To benefit from a multiprocessor, an application must be concurrent.

 6.2 The Difficulty of Creating Parallel 
Processing Programs

The difficulty with parallelism is not the hardware; it is that too few important 
application programs have been rewritten to complete tasks sooner on 
multiprocessors. It is difficult to write software that uses multiple processors to 
complete one task faster, and the problem gets worse as the number of processors 
increases.

Why has this been so? Why have parallel processing programs been so much 
harder to develop than sequential programs?

The first reason is that you must get better performance or better energy 
efficiency from a parallel processing program on a multiprocessor; otherwise, you 
would just use a sequential program on a uniprocessor, as sequential programming 
is simpler. In fact, uniprocessor design techniques, such as superscalar and out-of-
order execution, take advantage of instruction-level parallelism (see Chapter 4), 
normally without the involvement of the programmer. Such innovations reduced 
the demand for rewriting programs for multiprocessors, since programmers could 
do nothing and yet their sequential programs would run faster on new computers.

Why is it difficult to write parallel processing programs that are fast, especially 
as the number of processors increases? In Chapter 1, we used the analogy of eight 
reporters trying to write a single story in hopes of doing the work eight times faster. 
To succeed, the task must be broken into eight equal-sized pieces, because otherwise 
some reporters would be idle while waiting for the ones with larger pieces to finish. 
Another speed-up obstacle could be that the reporters would spend too much time 
communicating with each other instead of writing their pieces of the story. For 
both this analogy and parallel programming, the challenges include scheduling, 
partitioning the work into parallel pieces, balancing the load evenly between the 
workers, time to synchronize, and overhead for communication between the 

Check  
Yourself
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parties. The challenge is stiffer with the more reporters for a newspaper story and 
with the more processors for parallel programming.

Our discussion in Chapter 1 reveals another obstacle, namely Amdahl’s Law. It 
reminds us that even small parts of a program must be parallelized if the program 
is to make good use of many cores.

Speed-up Challenge

Suppose you want to achieve a speed-up of 90 times faster with 100 processors. 
What percentage of the original computation can be sequential?

Amdahl’s Law (Chapter 1) says

EXAMPLE

ANSWER
Execution time a�er improvement =

Execution time a�ected byy improvement
Amount of improvement

Execution time una�ec+ tted

Speed-up = Execution time before

(Execution time before Execu− ttion time a�ected) Execution time a�ected
+

Amount of improovement

We can reformulate Amdahl’s Law in terms of speed-up versus the initial 
execution time:

This formula is usually rewritten assuming that the execution time before is 
1 for some unit of time, and the execution time affected by improvement is 
considered the fraction of the original execution time:

Speed-up
( Fraction time a�ected) Fraction time a�ecte=

+

1

1 �
dd

Amount of improvement

Substituting 90 for speed-up and 100 for the amount of improvement into the 
formula above:

90 1

1
100

=
+( Fraction time a�ected) Fraction time a�ected

�
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Then simplifying the formula and solving for fraction time affected:

90 (1 0.99 Fraction time a�ected) = 1
90 (90 0.99 Fraction t
× − ×
− × × iime a�ected) = 1

90 = 90 0.99 Fraction time a�ected
Fractio

−1 × ×
nn time a�ected = 89/89.1 = 0.999

Thus, to achieve a speed-up of 90 from 100 processors, the sequential 
percentage can only be 0.1%.

However, there are applications with plenty of parallelism, as we shall see next.

Speed-up Challenge: Bigger Problem

Suppose you want to perform two sums: one is a sum of 10 scalar variables, and 
one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. 
For now let’s assume only the matrix sum is parallelizable; we’ll see soon how to 
parallelize scalar sums. What speed-up do you get with 10 versus 40 processors? 
Next, calculate the speed-ups assuming the matrices grow to 20 by 20.

If we assume performance is a function of the time for an addition, t, then 
there are 10 additions that do not benefit from parallel processors and 100 
additions that do. If the time for a single processor is 110 t, the execution time 
for 10 processors is

so the speed-up with 10 processors is 110t/20t = 5.5. The execution time for 
40 processors is

Execution timea�er improvement = + =
100

40
10 12 5t t t.

so the speed-up with 40 processors is 110t/12.5t = 8.8. Thus, for this problem 
size, we get about 55% of the potential speed-up with 10 processors, but only 
22% with 40.

EXAMPLE

ANSWER

Execution timea�er improvement
Execution timea�ected by impro

=
vvement

Amount of improvement
Execution time una�ected+

Execution timea�er improvement = + =
100
10

10 20t t t
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Look what happens when we increase the matrix. The sequential program now 
takes 10t + 400t = 410t. The execution time for 10 processors is

Execution timea�er improvement = + =
400
10

10 50t t t

so the speed-up with 10 processors is 410t/50t = 8.2. The execution time for 
40 processors is

Execution timea�er improvement = + =
400
40

10 20t t t

so the speed-up with 40 processors is 410t/20t = 20.5. Thus, for this larger 
problem size, we get 82% of the potential speed-up with 10 processors and 
51% with 40.

These examples show that getting good speed-up on a multiprocessor while 
keeping the problem size fixed is harder than getting good speed-up by increasing 
the size of the problem. This insight allows us to introduce two terms that describe 
ways to scale up.

Strong scaling means measuring speed-up while keeping the problem size fixed. 
Weak scaling means that the problem size grows proportionally to the increase in the 
number of processors. Let’s assume that the size of the problem, M, is the working 
set in main memory, and we have P processors. Then the memory per processor for 
strong scaling is approximately M/P, and for weak scaling, it is about M.

Note that the memory hierarchy can interfere with the conventional wisdom 
about weak scaling being easier than strong scaling. For example, if the weakly 
scaled dataset no longer fits in the last level cache of a multicore microprocessor, 
the resulting performance could be much worse than by using strong scaling.

Depending on the application, you can argue for either scaling approach. For 
example, the TPC-C debit-credit database benchmark requires that you scale up 
the number of customer accounts in proportion to the higher transactions per 
minute. The argument is that it’s nonsensical to think that a given customer base 
is suddenly going to start using ATMs 100 times a day just because the bank gets a 
faster computer. Instead, if you’re going to demonstrate a system that can perform 
100 times the numbers of transactions per minute, you should run the experiment 
with 100 times as many customers. Bigger problems often need more data, which 
is an argument for weak scaling.

This final example shows the importance of load balancing.

Speed-up Challenge: Balancing Load

To achieve the speed-up of 20.5 on the previous larger problem with 40 
processors, we assumed the load was perfectly balanced. That is, each of the 40 

strong scaling Speed-
up achieved on a 
multiprocessor without 
increasing the size of the 
problem.

weak scaling Speed-
up achieved on a 
multiprocessor while 
increasing the size of the 
problem proportionally 
to the increase in the 
number of processors.

EXAMPLE
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processors had 2.5% of the work to do. Instead, show the impact on speed-up if 
one processor’s load is higher than all the rest. Calculate at twice the load (5%) 
and five times the load (12.5%) for that hardest working processor. How well 
utilized are the rest of the processors?

If one processor has 5% of the parallel load, then it must do 5% × 400 or 20 
additions, and the other 39 will share the remaining 380. Since they are operating 
simultaneously, we can just calculate the execution time as a maximum

Execution timea�er improvement Max=






 +

380
39

20
1

10t t t, == 30t

The speed-up drops from 20.5 to 410t/30t = 14. The remaining 39 processors 
are utilized less than half the time: while waiting 20t for the hardest working 
processor to finish, they only compute for 380t/39 = 9.7t.

If one processor has 12.5% of the load, it must perform 50 additions. The 
formula is:

Execution time a�er improvement = Max 350
39

50
1

t t,





 + 110t t= 60

The speed-up drops even further to 410t/60t = 7. The rest of the processors 
are utilized less than 20% of the time (9t/50t). This example demonstrates the 
importance of balancing load, for just a single processor with twice the load 
of the others cuts speed-up by a third, and five times the load on just one 
processor reduces speed-up by almost a factor of three.

Now that we better understand the goals and challenges of parallel processing, 
we give an overview of the rest of the chapter. Section 6.3 describes a much older 
classification scheme than in Figure 6.1. In addition, it describes two styles of 
instruction set architectures that support running of sequential applications 
on parallel hardware, namely SIMD and vector. Section 6.4 then describes 
multithreading, a term often confused with multiprocessing, in part because it 
relies upon similar concurrency in programs. Section 6.5 describes the first the two 
alternatives of a fundamental parallel hardware characteristic, which is whether 
or not all the processors in the systems rely upon a single physical address space. 
As mentioned above, the two popular versions of these alternatives are called 
shared memory multiprocessors (SMPs) and clusters, and this section covers the 
former. Section 6.6 describes a relatively new style of computer from the graphics 
hardware community, called a graphics-processing unit (GPU) that also assumes 
a single physical address. (  Appendix B describes GPUs in even more detail.) 
Section 6.7 describes clusters, a popular example of a computer with multiple 
physical address spaces. Section 6.8 shows typical topologies used to connect many 
processors together, either server nodes in a cluster or cores in a microprocessor. 

 Section 6.9 describes the hardware and software for communicating between 

ANSWER
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nodes in a cluster using Ethernet. It shows how to optimize its performance using 
custom software and hardware. We next discuss the difficulty of finding parallel 
benchmarks in Section 6.10. This section also includes a simple, yet insightful 
performance model that helps in the design of applications as well as architectures. 
We use this model as well as parallel benchmarks in Section 6.11 to compare a 
multicore computer to a GPU. Section 6.12 divulges the final and largest step in 
our journey of accelerating matrix multiply. For matrices that don’t fit in the cache, 
parallel processing uses 16 cores to improve performance by a factor of 14. We 
close with fallacies and pitfalls and our conclusions for parallelism.

In the next section, we introduce acronyms that you probably have already seen 
to identify different types of parallel computers.

 6.3 SISD, MIMD, SIMD, SPMD, and Vector

One categorization of parallel hardware proposed in the 1960s is still used today. It 
was based on the number of instruction streams and the number of data streams. 
Figure 6.2 shows the categories. Thus, a conventional uniprocessor has a single 
instruction stream and single data stream, and a conventional multiprocessor has 
multiple instruction streams and multiple data streams. These two categories are 
abbreviated SISD and MIMD, respectively.

While it is possible to write separate programs that run on different processors 
on a MIMD computer and yet work together for a grander, coordinated goal, 
programmers normally write a single program that runs on all processors of a 
MIMD computer, relying on conditional statements when different processors 
should execute distinct sections of code. This style is called Single Program 
Multiple Data (SPMD), but it is just the normal way to program a MIMD computer.

The closest we can come to multiple instruction streams and single data stream 
(MISD) processor might be a “stream processor” that would perform a series of 
computations on a single data stream in a pipelined fashion: parse the input from 
the network, decrypt the data, decompress it, search for match, and so on. The 
inverse of MISD is much more popular. SIMD computers operate on vectors of 

True or false: Strong scaling is not bound by Amdahl’s Law.

SISD or Single 
Instruction stream,  
Single Data stream.  
A uniprocessor.

MIMD or Multiple 
Instruction streams, 
Multiple Data streams.  
A multiprocessor.

SPMD Single Program, 
Multiple Data streams. 
The conventional MIMD 
programming model, 
where a single program 
runs across all processors.

Check  
Yourself

Data Streams

Single Multiple

Instruction 

Streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Multiple MISD: No examples today MIMD: Intel Core i7

FIGURE 6.2 Hardware categorization and examples based on number of instruction 
streams and data streams: SISD, SIMD, MISD, and MIMD.

SIMD or Single 
Instruction stream, 
Multiple Data streams. 
The same instruction 
is applied to many data 
streams, as in a vector 
processor.
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data. For example, a single SIMD instruction might add 64 numbers by sending 64 
data streams to 64 ALUs to form 64 sums within a single clock cycle. The subword 
parallel instructions that we saw in Sections 3.6 and 3.7 are another example of 
SIMD; indeed, the middle letter of Intel’s SSE acronym stands for SIMD.

The virtues of SIMD are that all the parallel execution units are synchronized, and 
they all respond to a single instruction that emanates from a single program counter 
(PC). From a programmer’s perspective, this is close to the already familiar SISD. 
Although every unit will be executing the same instruction, each execution unit has 
its own address registers, and so each unit can have different data addresses. Thus, 
in terms of Figure 6.1, a sequential application might be compiled to run on serial 
hardware organized as a SISD or in parallel hardware that was organized as a SIMD.

The original motivation behind SIMD was to amortize the cost of the control 
unit over dozens of execution units. Another advantage is the reduced instruction 
bandwidth and space—SIMD needs only one copy of the code that is being 
simultaneously executed, while message-passing MIMDs may need a copy in every 
processor and shared memory MIMD will need multiple instruction caches.

SIMD works best when dealing with arrays in for loops. Hence, for parallelism 
to work in SIMD, there must be a great deal of identically structured data, which 
is called data-level parallelism. SIMD is at its weakest in case or switch 
statements, where each execution unit must perform a different operation on its 
data, depending on what data it has. Execution units with the wrong data must be 
disabled so that units with proper data may continue. If there are n cases, in these 
situations, SIMD processors essentially run at 1/nth of peak performance.

The so-called array processors that inspired the SIMD category have faded 
into history (see  Section 6.15 online), but two current interpretations of SIMD 
remain active today.

SIMD in x86: Multimedia Extensions
As described in Chapter 3, subword parallelism for narrow integer data was the 
original inspiration of the Multimedia Extension (MMX) instructions of the x86 
in 1996. As Moore’s Law continued, more instructions were added, leading first 
to Streaming SIMD Extensions (SSE) and now Advanced Vector Extensions (AVX). 
AVX supports the simultaneous execution of four 64-bit floating-point numbers. 
The width of the operation and the registers is encoded in the opcode of these 
multimedia instructions. As the data width of the registers and operations grew, 
the number of opcodes for multimedia instructions exploded, and now there are 
hundreds of SSE and AVX instructions (see Chapter 3).

Vector
An older and, as we shall see, more elegant interpretation of SIMD is called a vector 
architecture, which has been closely identified with computers designed by Seymour 
Cray starting in the 1970s. It is also a great match to problems with lots of data-level 
parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like 
the old array processors, the vector architectures pipelined the ALU to get good 
performance at lower cost. The basic philosophy of vector architecture is to collect  

data-level  
parallelism Parallelism 
achieved by performing 
the same operation on 
independent data.
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data elements from memory, put them in order into a large set of registers, operate 
on them sequentially in registers using pipelined execution units, and then write  
the results back to memory. A key feature of vector architectures is therefore a set of  
vector registers. Thus, a vector architecture might have 32 vector registers, each  
with 64 64-bit elements.

Comparing Vector to Conventional Code

Suppose we extend the RISC-V instruction set architecture with vector 
instructions and vector registers. Vector operations use the same names as 
RISC-V operations, but with the suffix “V” appended. For example, fadd.d.v 
adds two double-precision vectors. Let’s also add 32 vector registers, v0—v31, 
each with sixty-four 64-bit elements. The vector instructions take as their input 
either a pair of vector (V) registers (fadd.d.v) or a vector register and a scalar 
register (fadd.d.vs). In the latter case, the value in the scalar register is used 
as the input for all operations—the operation fadd.d.vs will add the contents 
of a scalar register to each element in a vector register. The names fld.v and 
fsd.v denote vector load and vector store, and they load or store an entire 
vector of double-precision data. One operand is the vector register to be loaded 
or stored; the other operand, which is a RISC-V general-purpose register, is the 
starting address of the vector in memory.

Given this short description, show the conventional RISC-V code versus 
the vector RISC-V code for

Y a X Y= × +

where X and Y are vectors of 64 double precision floating-point numbers, 
initially resident in memory, and a is a scalar double precision variable. (This 
example is the so-called DAXPY loop that forms the inner loop of the Linpack 
benchmark; DAXPY stands for double precision a × X plus Y.) Assume that 
the starting addresses of X and Y are in x19 and x20, respectively.

Here is the conventional RISC-V code for DAXPY:

 fld f0, a(x3) // load scalar a
 addi x5, x19, 512 // end of array X

loop: fld f1, 0(x19) // load x[i]
 fmul.d f1, f1, f0 // a * x[i]
 fld f2, 0(x20) // load y[i]
 fadd.d f2, f2, f1 // a * x[i] + y[i]
 fsd f2, 0(x20) // store y[i]
 addi x19, x19, 8 // increment index to x
 addi x20, x20, 8 // increment index to y
 bltu x19, x5, loop // repeat if not done

EXAMPLE

ANSWER
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Here is the hypothetical RISC-V vector code for DAXPY:

fld f0, a(x3) // load scalar a
fld.v v0, 0(x19) // load vector x
fmul.d.vs v0, v0, f0 // vector-scalar multiply
fld.v v1, 0(x20) // load vector y
fadd.d.v v1, v1, v0 // vector-vector add
fsd.v v1, 0(x20) // store vector y

There are some interesting comparisons between the two code segments in 
this example. The most dramatic is that the vector processor greatly reduces the 
dynamic instruction bandwidth, executing only six instructions versus over 500 
for the basline RISC-V architecture. This reduction occurs both because the vector 
operations work on 64 elements at a time and because the overhead instructions 
that constitute nearly half the loop on RISC-V are not present in the vector code. As 
you might expect, this reduction in instructions fetched and executed saves energy.

Another important difference is the frequency of pipeline hazards (Chapter 4). 
In the straightforward RISC-V code, every fadd.d must wait for the fmul.d, every 
fsd must wait for the fadd.d, and every fadd.d and fmul.d must wait on fld. 
On the vector processor, each vector instruction will only stall for the first element 
in each vector, and then subsequent elements will flow smoothly down the pipeline. 
Thus, pipeline stalls are required only once per vector operation, rather than once 
per vector element. In this example, the pipeline stall frequency on RISC-V will be 
about 64 times higher than it is on the vector version of RISC-V. The pipeline stalls 
can be eliminated on RISC-V by unrolling the loop (see Chapter 4). However, the 
large difference in instruction bandwidth cannot be reduced.

Since the vector elements are independent, they can be operated on in parallel, 
much like subword parallelism for the Intel x86 AVX instructions. All modern vector 
computers have vector functional units with multiple parallel pipelines (called vector 
lanes; see Figures 6.2 and 6.3) that can produce two or more results per clock cycle.

Elaboration: The loop in the example above exactly matched the vector length. When 
loops are shorter, vector architectures use a register that reduces the length of vector 
operations. When loops are larger, we add bookkeeping code to iterate full-length vector 
operations and to handle the leftovers. This latter process is called strip mining.

Vector versus Scalar
Vector instructions have several important properties compared to conventional 
instruction set architectures, which are called scalar architectures in this context:

n	 A single vector instruction specifies a great deal of work—it is equivalent 
to executing an entire loop. The instruction fetch and decode bandwidth 
needed is dramatically reduced.

n	 By using a vector instruction, the compiler or programmer indicates that the 
computation of each result in the vector is independent of the computation of 
other results in the same vector, so hardware does not have to check for data 
hazards within a vector instruction.
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n	 Vector architectures and compilers have a reputation for making it much 
easier than when using MIMD multiprocessors to write efficient applications 
when they contain data-level parallelism.

n	 Hardware need only check for data hazards between two vector instructions 
once per vector operand, not once for every element within the vectors. 
Reduced checking can save energy as well as time.

n	 Vector instructions that access memory have a known access pattern. If the 
vector’s elements are all adjacent, then fetching the vector from a set of heavily 
interleaved memory banks works very well. Thus, the cost of the latency to 
main memory is seen only once for the entire vector, rather than once for 
each word of the vector.

n	 Because a complete loop is replaced by a vector instruction whose behavior 
is predetermined, control hazards that would normally arise from the loop 
branch are nonexistent.

n	 The savings in instruction bandwidth and hazard checking plus the efficient 
use of memory bandwidth give vector architectures advantages in power and 
energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of 
scalar operations on the same number of data items, and designers are motivated 
to include vector units if the application domain can often use them.

Vector versus Multimedia Extensions
Like multimedia extensions found in the x86 AVX instructions, a vector instruction 
specifies multiple operations. However, multimedia extensions typically denote a few 
operations while vector specifies dozens of operations. Unlike multimedia extensions, 
the number of elements in a vector operation is not in the opcode but in a separate 
register. This distinction means different versions of the vector architecture can be 
implemented with a different number of elements just by changing the contents of 
that register and hence retain binary compatibility. In contrast, a new large set of 
opcodes is added each time the “vector” length changes in the multimedia extension 
architecture of the x86: MMX, SSE, SSE2, AVX, AVX2, ….

Also, unlike multimedia extensions, the data transfers need not be contiguous. 
Vectors support both strided accesses, where the hardware loads every nth data 
element in memory, and indexed accesses, where hardware finds the addresses of 
the items to be loaded into a vector register. Indexed accesses are also called gather-
scatter, in that indexed loads gather elements from main memory into contiguous 
vector elements, and indexed stores scatter vector elements across main memory.

Like multimedia extensions, vector architectures easily capture the flexibility 
in data widths, so it is easy to make a vector operation work on 32 64-bit data 
elements or 64 32-bit data elements or 128 16-bit data elements or 256 8-bit data 
elements. The parallel semantics of a vector instruction allows an implementation 
to execute these operations using a deeply pipelined functional unit, an array of 
parallel functional units, or a combination of parallel and pipelined functional 
units. Figure 6.3 illustrates how to improve vector performance by using parallel 
pipelines to execute a vector add instruction.
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Vector arithmetic instructions usually only allow element N of one vector register 
to take part in operations with element N from other vector registers. This dramatically 
simplifies the construction of a highly parallel vector unit, which can be structured 
as multiple parallel vector lanes. As with a traffic highway, we can increase the peak 
throughput of a vector unit by adding more lanes. Figure 6.4 shows the structure of a four-
lane vector unit. Thus, going to four lanes from one lane reduces the number of clocks 
per vector instruction by roughly a factor of four. For multiple lanes to be advantageous, 
both the applications and the architecture must support long vectors. Otherwise, they 
will execute so quickly that you’ll run out of instructions, requiring instruction level 
parallel techniques like those in Chapter 4 to supply enough vector instructions.

Generally, vector architectures are a very efficient way to execute data parallel 
processing programs; they are better matches to compiler technology than 
multimedia extensions; and they are easier to evolve over time than the multimedia 
extensions to the x86 architecture.

Given these classic categories, we next see how to exploit parallel streams of 
instructions to improve the performance of a single processor, which we will reuse 
with multiple processors.

vector lane One or 
more vector functional 
units and a portion 
of the vector register 
file. Inspired by lanes 
on highways that 
increase traffic speed, 
multiple lanes execute 
vector operations 
simultaneously.

A[9]

A[8]

A[7]

A[6]

A[5]

A[4]

A[3]

A[2]

A[1]

B[9]

B[8]

B[7]

B[6]

B[5]

B[4]

B[3]

B[2]

B[1]

C[0]

+

C[0] C[1] C[2] C[3]

A[8]

A[4]

B[8]

B[4]

A[9]

A[5]

B[9]

B[5] A[6] B[6] A[7] B[7]

(a) (b)

Element group

+ + + +

FIGURE 6.3 Using multiple functional units to improve the performance of a single vector 
add instruction, C = A + B. The vector processor (a) on the left has a single add pipeline and can complete 
one addition per cycle. The vector processor (b) on the right has four add pipelines or lanes and can complete 
four additions per cycle. The elements within a single vector add instruction are interleaved across the four lanes.

True or false: As exemplified in the x86, multimedia extensions can be thought 
of as a vector architecture with short vectors that support only contiguous vector 
data transfers.

Check  
Yourself
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Elaboration: Given the advantages of vector, why aren’t they more popular outside 
high-performance computing? There were concerns about the larger state for vector 
registers increasing context switch time and the difficulty of handling page faults in 
vector loads and stores, and SIMD instructions achieved some of the benefits of vector 
instructions. In addition, as long as advances in instruction-level parallelism could 
deliver on the performance promise of Moore’s Law, there was little reason to take the 
chance of changing architecture styles.

Elaboration: Another advantage of vector and multimedia extensions is that it is 
relatively easy to extend a scalar instruction set architecture with these instructions to 
improve performance of data parallel operations.

Elaboration: The Haswell-generation x86 processors from Intel support AVX2, which 
has a gather operation but not a scatter operation.

Lane 0 Lane 1 Lane 2 Lane 3

FP add
pipe 0

FP mul
pipe 0

Vector
registers:
elements
0,4,8,...

FP add
pipe 1

FP mul
pipe 1

Vector
registers:
elements
1,5,9,...

FP add
pipe 2

FP mul
pipe 2

Vector
registers:
elements
2,6,10,...

FP add
pipe 3

FP mul
pipe 3

Vector
registers:
elements
3,7,11,...

Vector load store unit

FIGURE 6.4 Structure of a vector unit containing four lanes. The vector-register storage is 
divided across the lanes, with each lane holding every fourth element of each vector register. The figure 
shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector 
arithmetic units contains four execution pipelines, one per lane, which acts in concert to complete a single 
vector instruction. Note how each section of the vector-register file only needs to provide enough read and 
write ports (see Chapter 4) for functional units local to its lane.
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 6.4 Hardware Multithreading

A related concept to MIMD, especially from the programmer’s perspective, is 
hardware multithreading. While MIMD relies on multiple processes or threads 
to try to keep many processors busy, hardware multithreading allows multiple 
threads to share the functional units of a single processor in an overlapping fashion 
to try to utilize the hardware resources efficiently. To permit this sharing, the 
processor must duplicate the independent state of each thread. For example, each 
thread would have a separate copy of the register file and the program counter. 
The memory itself can be shared through the virtual memory mechanisms, which 
already support multi-programming. In addition, the hardware must support the 
ability to change to a different thread relatively quickly. In particular, a thread 
switch should be much more efficient than a process switch, which typically 
requires hundreds to thousands of processor cycles while a thread switch can be 
instantaneous.

There are two main approaches to hardware multithreading. Fine-grained 
multithreading switches between threads on each instruction, resulting in 
interleaved execution of multiple threads. This interleaving is often done in a 
round-robin fashion, skipping any threads that are stalled at that clock cycle. To 
make fine-grained multithreading practical, the processor must be able to switch 
threads on every clock cycle. One advantage of fine-grained multithreading is 
that it can hide the throughput losses that arise from both short and long stalls, 
since instructions from other threads can be executed when one thread stalls. The 
primary disadvantage of fine-grained multithreading is that it slows down the 
execution of the individual threads, since a thread that is ready to execute without 
stalls will be delayed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained 
multithreading. Coarse-grained multithreading switches threads only on expensive 
stalls, such as last-level cache misses. This change relieves the need to have thread 
switching be extremely fast and is much less likely to slow down the execution of an 
individual thread, since instructions from other threads will only be issued when 
a thread encounters a costly stall. Coarse-grained multithreading suffers, however, 
from a major drawback: it is limited in its ability to overcome throughput losses, 
especially from shorter stalls. This limitation arises from the pipeline start-up 
costs of coarse-grained multithreading. Because a processor with coarse-grained 
multithreading issues instructions from a single thread, when a stall occurs, the 
pipeline must be emptied or frozen. The new thread that begins executing after the 
stall must fill the pipeline before instructions are able to complete. Due to this start-
up overhead, coarse-grained multithreading is much more useful for reducing the 
penalty of high-cost stalls, where pipeline refill is negligible compared to the stall 
time.

hardware  
multithreading  
Increasing utilization of a 
processor by switching to 
another thread when one 
thread is stalled.

thread A thread includes 
the program counter, the 
register state, and the 
stack. It is a lightweight 
process; whereas threads 
commonly share a single 
address space, processes 
don’t.

process A process 
includes one or more 
threads, the address space, 
and the operating system 
state. Hence, a process 
switch usually invokes the 
operating system, but not 
a thread switch.

fine-grained 
multithreading  
A version of hardware 
multithreading that 
implies switching between 
threads after every 
instruction.

coarse-grained 
multithreading  
A version of hardware 
multithreading that 
implies switching between 
threads only after 
significant events, such as 
a last-level cache miss.
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Simultaneous multithreading (SMT) is a variation on hardware multithreading 
that uses the resources of a multiple-issue, dynamically scheduled pipelined 
processor to exploit thread-level parallelism at the same time it exploits instruction-
level parallelism (see Chapter  4). The key insight that motivates SMT is that 
multiple-issue processors often have more functional unit parallelism available 
than most single threads can effectively use. Furthermore, with register renaming 
and dynamic scheduling (see Chapter 4), multiple instructions from independent 
threads can be issued without regard to the dependences among them; the resolution 
of the dependences can be handled by the dynamic scheduling capability.

Since SMT relies on the existing dynamic mechanisms, it does not switch 
resources every cycle. Instead, SMT is always executing instructions from multiple 
threads, leaving it up to the hardware to associate instruction slots and renamed 
registers with their proper threads.

Figure 6.5 conceptually illustrates the differences in a processor’s ability to exploit 
superscalar resources for the following processor configurations. The top portion shows 

simultaneous 
multithreading 
(SMT) A version 
of multithreading 
that lowers the cost 
of multithreading by 
utilizing the resources 
needed for multiple issue, 
dynamically scheduled 
microarchitecture.

Issue slots

Thread C Thread DThread A Thread B

Time

Time

SMTCoarse MT Fine MT

Issue slots

FIGURE 6.5 How four threads use the issue slots of a superscalar processor in different 
approaches. The four threads at the top show how each would execute running alone on a standard 
superscalar processor without multithreading support. The three examples at the bottom show how they 
would execute running together in three multithreading options. The horizontal dimension represents the 
instruction issue capability in each clock cycle. The vertical dimension represents a sequence of clock cycles. 
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. The shades of 
gray and color correspond to four different threads in the multithreading processors. The additional pipeline 
start-up effects for coarse multithreading, which are not illustrated in this figure, would lead to further loss 
in throughput for coarse multithreading.
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how four threads would execute independently on a superscalar with no multithreading 
support. The bottom portion shows how the four threads could be combined to execute 
on the processor more efficiently using three multithreading options:

n	 A superscalar with coarse-grained multithreading

n	 A superscalar with fine-grained multithreading

n	 A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue 
slots is limited by a lack of instruction-level parallelism. In addition, a major stall, 
such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially 
hidden by switching to another thread that uses the resources of the processor. 
Although this reduces the number of completely idle clock cycles, the pipeline 
start-up overhead still leads to idle cycles, and limitations to ILP mean all issue 
slots will not be used. In the fine-grained case, the interleaving of threads mostly 
eliminates idle clock cycles. Because only a single thread issues instructions in a 
given clock cycle, however, limitations in instruction-level parallelism still lead to 
idle slots within some clock cycles.
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FIGURE 6.6 The speed-up from using multithreading on one core on an i7 processor 
averages 1.31 for the PARSEC benchmarks (see  Section 6.9) and the energy efficiency 
improvement is 1.07. These data were collected and analyzed by Esmaeilzadeh et al. [2011].
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In the SMT case, thread-level parallelism and instruction-level parallelism are 
both exploited, with multiple threads using the issue slots in a single clock cycle. 
Ideally, the issue slot usage is limited by imbalances in the resource needs and 
resource availability over multiple threads. In practice, other factors can restrict 
how many slots are used. Although Figure 6.5 greatly simplifies the real operation 
of these processors, it does illustrate the potential performance advantages of 
multithreading in general and SMT in particular.

Figure 6.6 plots the performance and energy benefits of multithreading on 
a single processor of the Intel Core i7 960, which has hardware support for two 
threads. The average speed-up is 1.31, which is not bad given the modest extra 
resources for hardware multithreading. The average improvement in energy 
efficiency is 1.07, which is excellent. In general, you’d be happy with a performance 
speed-up being energy neutral.

Now that we have seen how multiple threads can utilize the resources of a single 
processor more effectively, we next show how to use them to exploit multiple 
processors.

1. True or false: Both multithreading and multicore rely on parallelism to get 
more efficiency from a chip.

2. True or false: Simultaneous multithreading (SMT) uses threads to improve 
resource utilization of a dynamically scheduled, out-of-order processor.

 6.5 Multicore and Other Shared Memory 
Multiprocessors

While hardware multithreading improved the efficiency of processors at modest 
cost, the big challenge of the last decade has been to deliver on the performance 
potential of Moore’s Law by efficiently programming the increasing number of 
processors per chip.

Given the difficulty of rewriting old programs to run well on parallel hardware, 
a natural question is: what can computer designers do to simplify the task? One 
answer was to provide a single physical address space that all processors can 
share, so that programs need not concern themselves with where their data are, 
merely that programs may be executed in parallel. In this approach, all variables 
of a program can be made available at any time to any processor. The alternative is 
to have a separate address space per processor that requires that sharing must be 
explicit; we’ll describe this option in the Section 6.7. When the physical address 
space is common then the hardware typically provides cache coherence to give a 
consistent view of the shared memory (see Section 5.8).

As mentioned above, a shared memory multiprocessor (SMP) is one that offers 
the programmer a single physical address space across all processors—which is 

Check  
Yourself
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nearly always the case for multicore chips—although a more accurate term would 
have been shared-address multiprocessor. Processors communicate through shared 
variables in memory, with all processors capable of accessing any memory location 
via loads and stores. Figure 6.7 shows the classic organization of an SMP. Note that 
such systems can still run independent jobs in their own virtual address spaces, 
even if they all share a physical address space.

Single address space multiprocessors come in two styles. In the first style, the 
latency to a word in memory does not depend on which processor asks for it. 
Such machines are called uniform memory access (UMA) multiprocessors. In the 
second style, some memory accesses are much faster than others, depending on 
which processor asks for which word, typically because main memory is divided 
and attached to different microprocessors or to different memory controllers on 
the same chip. Such machines are called nonuniform memory access (NUMA) 
multiprocessors. As you might expect, the programming challenges are harder for 
a NUMA multiprocessor than for a UMA multiprocessor, but NUMA machines 
can scale to larger sizes, and NUMAs can have lower latency to nearby memory.

As processors operating in parallel will normally share data, they also need to 
coordinate when operating on shared data; otherwise, one processor could start 
working on data before another is finished with it. This coordination is called 
synchronization, which we saw in Chapter 2. When sharing is supported with a 
single address space, there must be a separate mechanism for synchronization. One 
approach uses a lock for a shared variable. Only one processor at a time can acquire 
the lock, and other processors interested in shared data must wait until the original 
processor unlocks the variable. Section 2.11 of Chapter 2 describes the instructions 
for locking in the RISC-V instruction set.

uniform memory access 
(UMA) A multiprocessor 
in which latency to any 
word in main memory is 
about the same no matter 
which processor requests 
the access.

nonuniform memory 
access (NUMA) A type 
of single address space 
multiprocessor in which 
some memory accesses 
are much faster than 
others depending on 
which processor asks for 
which word.

synchronization The 
process of coordinating 
the behavior of two or 
more processes, which 
may be running on 
different processors.

lock A synchronization 
device that allows access 
to data to only one 
processor at a time.
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FIGURE 6.7 Classic organization of a shared memory multiprocessor.
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A Simple Parallel Processing Program for a Shared Address Space

Suppose we want to sum 64,000 numbers on a shared memory multiprocessor 
computer with uniform memory access time. Let’s assume we have 64 
processors.

The first step is to ensure a balanced load per processor, so we split the set 
of numbers into subsets of the same size. We do not allocate the subsets to a 
different memory space, since there is a single memory space for this machine; 
we just give different starting addresses to each processor. Pn is the number that 
identifies the processor, between 0 and 63. All processors start the program by 
running a loop that sums their subset of numbers:

sum[Pn] = 0;
for (i = 1000*Pn; i < 1000*(Pn+1); i += 1)
 sum[Pn] += A[i]; /*sum the assigned areas*/

(Note the C code i += 1 is just a shorter way to say i = i + 1.)

The next step is to add these 64 partial sums. This step is called a reduction, 
where we divide to conquer. Half of the processors add pairs of partial sums, 
and then a quarter add pairs of the new partial sums, and so on until we 
have the single, final sum. Figure 6.8 illustrates the hierarchical nature of this 
reduction.

In this example, the two processors must synchronize before the “consumer” 
processor tries to read the result from the memory location written by the 
“producer” processor; otherwise, the consumer may read the old value of 
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(half = 2)

(half = 4)

FIGURE 6.8 The last four levels of a reduction that sums results from each processor, 
from bottom to top. For all processors whose number i is less than half, add the sum produced by 
processor number (i + half) to its sum.

EXAMPLE

ANSWER

reduction A function 
that processes a data 
structure and returns a 
single value.
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the data. We want each processor to have its own version of the loop counter 
variable i, so we must indicate that it is a “private” variable. Here is the code 
(half is private also):

half = 64; /*64 processors in multiprocessor*/
do
  synch(); /*wait for partial sum completion*/
  if (half%2 != 0 && Pn == 0)
    sum[0] += sum[half–1];
    /*Conditional sum needed when half is
    odd; Processor0 gets missing element */
    half = half/2; /*dividing line on who sums */
    if (Pn < half) sum[Pn] += sum[Pn+half];
while (half > 1); /*exit with final sum in Sum[0] */

Given this tour of classic MIMD hardware and software, our next path is a more 
exotic tour of a type of MIMD architecture with a different heritage and thus a very 
different perspective on the parallel programming challenge.

True or false: Shared memory multiprocessors cannot take advantage of task-level 
parallelism.

Elaboration: Some writers repurposed the acronym SMP to mean symmetric 
multiprocessor, to indicate that the latency from processor to memory was about the 
same for all processors. This shift was done to contrast them from large-scale NUMA 
multiprocessors, as both classes used a single address space. As clusters proved much 
more popular than large-scale NUMA multiprocessors, in this book we restore SMP to its 
original meaning, and use it to contrast against those that use multiple address spaces, 
such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have 
separate physical address spaces but share a common virtual address space, leaving 
it up to the operating system to handle communication. This approach has been tried, 
but it has too high an overhead to offer a practical shared memory abstraction to the 
performance-oriented programmer.

OpenMP An API 
for shared memory 
multiprocessing in C,  
C++, or Fortran that runs 
on UNIX and Microsoft 
platforms. It includes 
compiler directives, a 
library, and runtime 
directives.

Hardware/
Software 
Interface

Given the long-term interest in parallel programming, there have been hundreds 
of attempts to build parallel programming systems. A limited but popular example 
is OpenMP. It is just an Application Programmer Interface (API) along with a set of 
compiler directives, environment variables, and runtime library routines that can 
extend standard programming languages. It offers a portable, scalable, and simple 
programming model for shared memory multiprocessors. Its primary goal is to 
parallelize loops and perform reductions.

Most C compilers already have support for OpenMP. The command to use the 
OpenMP API with the UNIX C compiler is just:

cc –fopenmp foo.c

OpenMP extends C using pragmas, which are just commands to the C macro 
preprocessor like #define and #include. To set the number of processors we 
want to use to be 64, as we wanted in the example above, we just use the command

#define P 64 /* define a constant that we’ll use a few times */
#pragma omp parallel num_threads(P)

That is, the runtime libraries should use 64 parallel threads.
To turn the sequential for loop into a parallel for loop that divides the work 

equally between all the threads that we told it to use, we just write (assuming sum 
is initialized to 0)

#pragma omp parallel for
for (Pn = 0; Pn < P; Pn += 1)
  for (i = 0; 1000*Pn; i < 1000*(Pn+1); i += 1)
   sum[Pn] += A[i]; /*sum the assigned areas*/
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Given this tour of classic MIMD hardware and software, our next path is a more 
exotic tour of a type of MIMD architecture with a different heritage and thus a very 
different perspective on the parallel programming challenge.

True or false: Shared memory multiprocessors cannot take advantage of task-level 
parallelism.

Elaboration: Some writers repurposed the acronym SMP to mean symmetric 
multiprocessor, to indicate that the latency from processor to memory was about the 
same for all processors. This shift was done to contrast them from large-scale NUMA 
multiprocessors, as both classes used a single address space. As clusters proved much 
more popular than large-scale NUMA multiprocessors, in this book we restore SMP to its 
original meaning, and use it to contrast against those that use multiple address spaces, 
such as clusters.

Elaboration: An alternative to sharing the physical address space would be to have 
separate physical address spaces but share a common virtual address space, leaving 
it up to the operating system to handle communication. This approach has been tried, 
but it has too high an overhead to offer a practical shared memory abstraction to the 
performance-oriented programmer.

OpenMP An API 
for shared memory 
multiprocessing in C,  
C++, or Fortran that runs 
on UNIX and Microsoft 
platforms. It includes 
compiler directives, a 
library, and runtime 
directives.

To perform the reduction, we can use another command that tells OpenMP 
what the reduction operator is and what variable you need to use to place the result 
of the reduction.

#pragma omp parallel for reduction(+ : FinalSum)
for (i = 0; i < P; i += 1)
   FinalSum += sum[i]; /* Reduce to a single number */

Note that it is now up to the OpenMP library to find efficient code to sum 64 
numbers efficiently using 64 processors.

While OpenMP makes it easy to write simple parallel code, it is not very 
helpful with debugging, so many programmers use more sophisticated parallel 
programming systems than OpenMP, just as many programmers today use more 
productive languages than C.

Check  
Yourself
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 6.6 Introduction to Graphics Processing Units

The original justification for adding SIMD instructions to existing architectures 
was that many microprocessors were connected to graphics displays in PCs and 
workstations, so an increasing fraction of processing time was used for graphics. 
As Moore’s Law increased the number of transistors available to microprocessors, 
it therefore made sense to improve graphics processing.

A major driving force for improving graphics processing was the computer game 
industry, both on PCs and in dedicated game consoles such as the Sony PlayStation. 
The rapidly growing game market encouraged many companies to make increasing 
investments in developing faster graphics hardware, and this positive feedback 
loop led graphics processing to improve at a quicker rate than general-purpose 
processing in mainstream microprocessors.

Given that the graphics and game community had different goals than the 
microprocessor development community, it evolved its own style of processing and 
terminology. As the graphics processors increased in power, they earned the name 
Graphics Processing Units or GPUs to distinguish themselves from CPUs.

For a few hundred dollars, anyone can buy a GPU today with hundreds of 
parallel floating-point units, which makes high-performance computing more 
accessible. The interest in GPU computing blossomed when this potential was 
combined with a programming language that made GPUs easier to program. 
Hence, many programmers of scientific and multimedia applications today are 
pondering whether to use GPUs or CPUs.

(This section concentrates on using GPUs for computing. To see how GPU 
computing combines with the traditional role of graphics acceleration, see  

 Appendix B.)
Here are some of the key characteristics as to how GPUs vary from CPUs:

n	 GPUs are accelerators that supplement a CPU, so they do not need to be able 
to perform all the tasks of a CPU. This role allows them to dedicate all their 
resources to graphics. It’s fine for GPUs to perform some tasks poorly or not 
at all, given that in a system with both a CPU and a GPU, the CPU can do 
them if needed.

n	 The GPU problem sizes are typically hundreds of megabytes to gigabytes, but 
not hundreds of gigabytes to terabytes.

These differences led to different styles of architecture:

n	 Perhaps the biggest difference is that GPUs do not rely on multilevel caches 
to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on 
hardware multithreading (Section 6.4) to hide the latency to memory. That is, 
between the time of a memory request and the time that data arrive, the GPU 
executes hundreds or thousands of threads that are independent of that request.
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n	 The GPU memory is thus oriented toward bandwidth rather than latency. 
There are even special graphics DRAM chips for GPUs that are wider and 
have higher bandwidth than DRAM chips for CPUs. In addition, GPU 
memories have traditionally had smaller main memories than conventional 
microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while 
CPUs have 32 to 256 GiB. Finally, keep in mind that for general-purpose 
computation, you must include the time to transfer the data between CPU 
memory and GPU memory, since the GPU is a coprocessor.

n	 Given the reliance on many threads to deliver good memory bandwidth, 
GPUs can accommodate many parallel processors (MIMD) as well as many 
threads. Hence, each GPU processor is more highly multithreaded than a 
typical CPU, plus they have more processors.

Although GPUs were designed for a narrower set of applications, some 
programmers wondered if they could specify their applications in a form that 
would let them tap the high potential performance of GPUs. After tiring of trying 
to specify their problems using the graphics APIs and languages, they developed 
C-inspired programming languages to allow them to write programs directly for 
the GPUs. An example is NVIDIA’s CUDA (Compute Unified Device Architecture), 
which enables the programmer to write C programs to execute on GPUs, albeit 
with some restrictions.  Appendix B gives examples of CUDA code. (OpenCL 
is a multi-company initiative to develop a portable programming language that 
provides many of the benefits of CUDA.)

NVIDIA decided that the unifying theme of all these forms of parallelism is  
the CUDA Thread. Using this lowest level of parallelism as the programming 
primitive, the compiler and the hardware can gang thousands of CUDA threads 
together to utilize the various styles of parallelism within a GPU: multithreading, 
MIMD, SIMD, and instruction-level parallelism. These threads are blocked 
together and executed in groups of 32 at a time. A multithreaded processor inside 
a GPU executes these blocks of threads, and a GPU consists of 8 to 32 of these 
multithreaded processors.

Hardware/
Software 
Interface

An Introduction to the NVIDIA GPU Architecture
We use NVIDIA systems as our example as they are representative of GPU 
architectures. Specifically, we follow the terminology of the CUDA parallel 
programming language and use the Fermi architecture as the example.

Like vector architectures, GPUs work well only with data-level parallel problems. 
Both styles have gather-scatter data transfers, and GPU processors have even more 
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registers than do vector processors. Unlike most vector architectures, GPUs also 
rely on hardware multithreading within a single multithreaded SIMD processor to 
hide memory latency (see Section 6.4).

A multithreaded SIMD processor is similar to a vector processor, but the former 
has many parallel functional units instead of just a few that are deeply pipelined, 
as does the latter.

As mentioned above, a GPU contains a collection of multithreaded SIMD 
processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors. 
For example, NVIDIA has four implementations of the Fermi architecture at 
different price points with 7, 11, 14, or 15 multithreaded SIMD processors. To 
provide transparent scalability across models of GPUs with differing number of 
multithreaded SIMD processors, the Thread Block Scheduler hardware assigns 
blocks of threads to multithreaded SIMD processors. Figure 6.9 shows a simplified 
block diagram of a multithreaded SIMD processor.

Dropping down one more level of detail, the machine object that the hardware 
creates, manages, schedules, and executes is a thread of SIMD instructions, which 
we will also call a SIMD thread. It is a traditional thread, but it contains exclusively 
SIMD instructions. These SIMD threads have their own program counters, and 
they run on a multithreaded SIMD processor. The SIMD Thread Scheduler includes 
a controller that lets it know which threads of SIMD instructions are ready to 
run, and then it sends them off to a dispatch unit to be run on the multithreaded 
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FIGURE 6.9 Simplified block diagram of the datapath of a multithreaded SIMD Processor. 
It has 16 SIMD lanes. The SIMD Thread Scheduler has many independent SIMD threads that it chooses from 
to run on this processor.
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SIMD processor. It is identical to a hardware thread scheduler in a traditional 
multithreaded processor (see Section 6.4), except that it is scheduling threads of 
SIMD instructions. Thus, GPU hardware has two levels of hardware schedulers:

1. The Thread Block Scheduler that assigns blocks of threads to multithreaded 
SIMD processors, and

2. The SIMD Thread Scheduler within a SIMD processor, which schedules 
when SIMD threads should run.

The SIMD instructions of these threads are 32 wide, so each thread of SIMD 
instructions would compute 32 of the elements of the computation. Since the 
thread consists of SIMD instructions, the SIMD processor must have parallel 
functional units to perform the operation. We call them SIMD Lanes, and they are 
quite similar to the Vector Lanes in Section 6.3.

Elaboration: The number of lanes per SIMD processor varies across GPU generations. 
With Fermi, each 32-wide thread of SIMD instructions is mapped to 16 SIMD lanes, 
so each SIMD instruction in a thread of SIMD instructions takes two clock cycles to 
complete. Each thread of SIMD instructions is executed in lock step. Staying with the 
analogy of a SIMD processor as a vector processor, you could say that it has 16 lanes, 
and the vector length would be 32. This wide but shallow nature is why we use the term 
SIMD processor instead of vector processor, as it is more intuitive.

Since by definition the threads of SIMD instructions are independent, the SIMD 
Thread Scheduler can pick whatever thread of SIMD instructions is ready, and need not 
stick with the next SIMD instruction in the sequence within a single thread. Thus, using 
the terminology of Section 6.4, it uses fine-grained multithreading.

To hold these memory elements, a Fermi SIMD processor has an impressive 32,768 
32-bit registers. Just like a vector processor, these registers are divided logically across 
the vector lanes or, in this case, SIMD lanes. Each SIMD thread is limited to no more than 
64 registers, so you might think of a SIMD thread as having up to 64 vector registers, 
with each vector register having 32 elements and each element being 32 bits wide.

Since Fermi has 16 SIMD lanes, each contains 2048 registers. Each CUDA thread 
gets one element of each of the vector registers. Note that a CUDA thread is just a 
vertical cut of a thread of SIMD instructions, corresponding to one element executed by 
one SIMD lane. Beware that CUDA threads are very different from POSIX threads; you 
can’t make arbitrary system calls or synchronize arbitrarily in a CUDA thread.

NVIDIA GPU Memory Structures
Figure 6.10 shows the memory structures of an NVIDIA GPU. We call the on-
chip memory that is local to each multithreaded SIMD processor Local Memory. 
It is shared by the SIMD lanes within a multithreaded SIMD processor, but this 
memory is not shared between multithreaded SIMD processors. We call the off-
chip DRAM shared by the whole GPU and all thread blocks GPU Memory.

Rather than rely on large caches to contain the entire working sets of an 
application, GPUs traditionally use smaller streaming caches and rely on extensive 
multithreading of threads of SIMD instructions to hide the long latency to DRAM, 
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since their working sets can be hundreds of megabytes. Thus, they will not fit 
in the last-level cache of a multicore microprocessor. Given the use of hardware 
multithreading to hide DRAM latency, the chip area used for caches in system 
processors is spent instead on computing resources and on the large number of 
registers to hold the state of the many threads of SIMD instructions.

Elaboration: While hiding memory latency is the underlying philosophy, note that the 
latest GPUs and vector processors have added caches. For example, the recent Fermi 
architecture has added caches, but they are thought of as either bandwidth filters to 
reduce demands on GPU Memory or as accelerators for the few variables whose latency 
cannot be hidden by multithreading. Local memory for stack frames, function calls, 
and register spilling is a good match to caches, since latency matters when calling a 
function. Caches can also save energy, since on-chip cache accesses take much less 
energy than accesses to multiple, external DRAM chips.

CUDA Thread

Thread block

Per-Block
Local Memory

Grid 0 

. . . 

Grid 1 

. . . 

GPU Memory

Sequence

Inter-Grid Synchronization

Per-CUDA Thread Private Memory

FIGURE 6.10 GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads 
of SIMD instructions within a thread block share Local Memory.
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Putting GPUs into Perspective
At a high level, multicore computers with SIMD instruction extensions do share 
similarities with GPUs. Figure 6.11 summarizes the similarities and differences. 
Both are MIMDs whose processors use multiple SIMD lanes, although GPUs 
have more processors and many more lanes. Both use hardware multithreading 
to improve processor utilization, although GPUs have hardware support for many 
more threads. Both use caches, although GPUs use smaller streaming caches and 
multicore computers use large multilevel caches that try to contain whole working 
sets completely. Both use a 64-bit address space, although the physical main 
memory is much smaller in GPUs. While GPUs support memory protection at the 
page level, they do not yet support demand paging.

SIMD processors are also similar to vector processors. The multiple SIMD 
processors in GPUs act as independent MIMD cores, just as many vector computers 
have multiple vector processors. This view would consider the Fermi GTX 580 as 
a 16-core machine with hardware support for multithreading, where each core has 
16 lanes. The biggest difference is multithreading, which is fundamental to GPUs 
and missing from most vector processors.

GPUs and CPUs do not go back in computer architecture genealogy to a shared 
ancestor; there is no Missing Link that explains both. As a result of this uncommon 
heritage, GPUs have not used the terms common in the computer architecture 
community, which has led to confusion about what GPUs are and how they work. To 
help resolve the confusion, Figure 6.12 (from left to right) lists the more descriptive 
term used in this section, the closest term from mainstream computing, the official 
NVIDIA GPU term in case you are interested, and then a short description of the 
term. This “GPU Rosetta Stone” may help relate this section and ideas to more 
conventional GPU descriptions, such as those found in  Appendix B.

While GPUs are moving toward mainstream computing, they can’t abandon 
their responsibility to continue to excel at graphics. Thus, the design of GPUs may 
make more sense when architects ask, given the hardware invested to do graphics 

Feature Multicore with SIMD GPU

SIMD processors

SIMD lanes/processor

Multithreading hardware support for SIMD threads

Largest cache size

Size of memory address

Size of main memory

Memory protection at level of page

Demand paging

Cache coherent

4 to 8 8 to 16

8 to 16

16 to 32

2 to 4

2 to 4

8 MiB 0.75 MiB

8 GiB to 256 GiB 4 GiB to 6 GiB

64-bit 64-bit

Yes Yes

No

No

Yes

Yes

FIGURE 6.11 Similarities and differences between multicore with Multimedia SIMD 
extensions and recent GPUs.
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well, how can we supplement it to improve the performance of a wider range of 
applications?

Having covered two different styles of MIMD that have a shared address 
space, we next introduce parallel processors where each processor has its own 
private address space, which makes it considerably easier to build much larger 
systems. The Internet services that you use every day depend on these large-scale  
systems.
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A vertical cut of a thread of SIMD instructions
corresponding to one element executed by one
SIMD Lane. Result is stored depending on mask
and predicate register.

A traditional thread, but it contains just SIMD
instructions that are executed on a multithreaded
SIMD Processor. Results stored depending on a
per-element mask.

A single SIMD instruction executed across SIMD
Lanes.
A multithreaded SIMD Processor executes
threads of SIMD instructions, independent of
other SIMD Processors.
Assigns multiple Thread Blocks (bodies of
vectorized loop) to multithreaded SIMD
Processors.

Hardware unit that schedules and issues threads
of SIMD instructions when they are ready to
execute; includes a scoreboard to track SIMD
Thread execution.
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Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
up of one or more Thread Blocks (bodies of
vectorized loop) that can execute in parallel.

Closest old term
outside of GPUs

Official CUDA/
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FIGURE 6.12 Quick guide to GPU terms. We use the first column for hardware terms. Four groups 
cluster these 12 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware, 
and Memory Hardware.
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Elaboration: While the GPU was introduced as having a separate memory from the 
CPU, both AMD and Intel have announced “fused” products that combine GPUs and 
CPUs to share a single memory. The challenge will be to maintain the high bandwidth 
memory in a fused architecture that has been a foundation of GPUs.

 
6.7

 Clusters, Warehouse Scale Computers, 
and Other Message-Passing 
Multiprocessors

The alternative approach to sharing an address space is for the processors to 
each have their own private physical address space. Figure 6.13 shows the classic 
organization of a multiprocessor with multiple private address spaces. This 
alternative multiprocessor must communicate via explicit message passing, 
which traditionally is the name of such style of computers. Provided the system 
has routines to send and receive messages, coordination is built in with message 
passing, since one processor knows when a message is sent, and the receiving 
processor knows when a message arrives. If the sender needs confirmation that the 
message has arrived, the receiving processor can then send an acknowledgment 
message back to the sender.

There have been several attempts to build large-scale computers based on 
high-performance message-passing networks, and they do offer better absolute 

True or false: GPUs rely on graphics DRAM chips to reduce memory latency and 
thereby increase performance on graphics applications.

message passing  
Communicating between 
multiple processors by 
explicitly sending and 
receiving information.

send message routine  
A routine used by a 
processor in machines 
with private memories to 
pass a message to another 
processor.

receive message routine  
A routine used by a 
processor in machines 
with private memories 
to accept a message from 
another processor.

Check  
Yourself

Cache Cache Cache

Memory Memory Memory

Interconnection Network

. . .

. . .

Processor Processor Processor. . .

FIGURE 6.13 Classic organization of a multiprocessor with multiple private address 
spaces, traditionally called a message-passing multiprocessor. Note that unlike the SMP 
in Figure 6.7, the interconnection network is not between the caches and memory but is instead between 
processor-memory nodes.
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communication performance than clusters built using local area networks. Indeed, 
many supercomputers today use custom networks. The problem is that they are 
much more expensive than local area networks like Ethernet. Few applications today 
outside of high-performance computing can justify the higher communication 
performance, given the much higher costs.

Computers that rely on message passing for communication rather than cache 
coherent shared memory are much easier for hardware designers to build (see 
Section 5.8). There is an advantage for programmers as well, in that communication 
is explicit, which means there are fewer performance surprises than with the implicit 
communication in cache-coherent shared memory computers. The downside 
for programmers is that it’s harder to port a sequential program to a message-
passing computer, since every communication must be identified in advance or 
the program doesn’t work. Cache-coherent shared memory allows the hardware to 
figure out what data need to be communicated, which makes porting easier. There 
are differences of opinion as to which is the shortest path to high performance, 
given the pros and cons of implicit communication, but there is no confusion in the 
marketplace today. Multicore microprocessors use shared physical memory and 
nodes of a cluster communicate with each other using message passing.

Hardware/ 
Software  
Interface

Some concurrent applications run well on parallel hardware, independent of 
whether it offers shared addresses or message passing. In particular, task-level 
parallelism and applications with little communication—like Web search, mail 
servers, and file servers—do not require shared addressing to run well. As a result, 
clusters have become the most widespread example today of the message-passing 
parallel computer. Given the separate memories, each node of a cluster runs a 
distinct copy of the operating system. In contrast, the cores inside a microprocessor 
are connected using a high-speed network inside the chip, and a multichip shared-
memory system uses the memory interconnect for communication. The memory 
interconnect has higher bandwidth and lower latency, allowing much better 
communication performance for shared memory multiprocessors.

The weakness of separate memories for user memory from a parallel programming 
perspective turns into a strength in system dependability (see Section 5.5). Since a 
cluster consists of independent computers connected through a local area network, 
it is much easier to replace a computer without bringing down the system in a cluster 
than in a shared memory multiprocessor. Fundamentally, the shared address means 
that it is difficult to isolate a processor and replace it without heroic work by the 
operating system and in the physical design of the server. It is also easy for clusters 
to scale down gracefully when a server fails, thereby improving dependability. Since 
the cluster software is a layer that runs on top of the local operating systems running 
on each computer, it is much easier to disconnect and replace a broken computer.

clusters Collections of 
computers connected 
via I/O over standard 
network switches to 
form a message-passing 
multiprocessor.
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Given that clusters are constructed from whole computers and independent, 
scalable networks, this isolation also makes it easier to expand the system without 
bringing down the application that runs on top of the cluster.

Their lower cost, higher availability, and rapid, incremental expandability make 
clusters attractive to service Internet providers, despite their poorer communication 
performance when compared to large-scale shared-memory multiprocessors. The 
search engines that hundreds of millions of us use every day depend upon this 
technology. Amazon, Facebook, Google, Microsoft, and others all have multiple 
datacenters each with clusters of tens of thousands of servers. Clearly, the use of 
multiple processors in Internet service companies has been hugely successful.

Warehouse-Scale Computers
Internet services, such as those described above, necessitated the construction 
of new buildings to house, power, and cool 100,000 servers. Although they may 
be classified as just large clusters, their architecture and operation are more 
sophisticated. They act as one giant computer and cost on the order of $150M 
for the building, the electrical and cooling infrastructure, the servers, and the 
networking equipment that connects and houses 50,000 to 100,000 servers. We 
consider them a new class of computer, called Warehouse-Scale Computers (WSC).

The most popular framework for batch processing in a WSC is MapReduce [Dean, 
2008] and its open-source twin Hadoop. Inspired by the Lisp functions of the same 
name, Map first applies a programmer-supplied function to each logical input 
record. Map runs on thousands of servers to produce an intermediate result of key-
value pairs. Reduce collects the output of those distributed tasks and collapses them 
using another programmer-defined function. With appropriate software support, 
both are highly parallel yet easy to understand and to use. Within 30 minutes, a 
novice programmer can run a MapReduce task on thousands of servers.

For example, one MapReduce program calculates the number of occurrences of 
every English word in a large collection of documents. Below is a simplified version 
of that program, which shows only the inner loop and assumes just one occurrence 
of all English words found in a document:

Anyone can build a fast 
CPU. The trick is to 
build a fast system.
Seymour Cray, 
considered the father of 
the supercomputer.

Hardware/ 
Software  
Interface

map(String key, String value):
   // key: document name
   // value: document contents
   for each word w in value:
   EmitIntermediate(w, “1”); // Produce list of all words  
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
   int result = 0;
   for each v in values:
   result += ParseInt(v); // get integer from key-value pair
   Emit(AsString(result));
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At this extreme scale, which requires innovation in power distribution, cooling, 
monitoring, and operations, the WSC is a modern descendant of the 1970s 
supercomputers—making Seymour Cray the godfather of today’s WSC architects. 
His extreme computers handled computations that could be done nowhere else, but 
were so expensive that only a few companies could afford them. This time the target 
is providing information technology for the world instead of high-performance 
computing for scientists and engineers. Hence, WSCs surely play a more important 
societal role today than Cray’s supercomputers did in the past.

While they share some common goals with servers, WSCs have three major 
distinctions:

1. Ample, easy parallelism: A concern for a server architect is whether the 
applications in the targeted marketplace have enough parallelism to justify 
the amount of parallel hardware and whether the cost is too high for sufficient 
communication hardware to exploit this parallelism. A WSC architect has 
no such concern. First, batch applications like MapReduce benefit from the 
large number of independent data sets that need independent processing, 
such as billions of Web pages from a Web crawl. Second, interactive Internet 
service applications, also known as Software as a Service (SaaS), can benefit 
from millions of independent users of interactive Internet services. Reads 
and writes are rarely dependent in SaaS, so SaaS rarely needs to synchronize. 
For example, search uses a read-only index and email is normally reading 
and writing independent information. We call this type of easy parallelism 
Request-Level Parallelism, as many independent efforts can proceed in 
parallel naturally with little need for communication or synchronization.

2. Operational Costs Count: Traditionally, server architects design their systems 
for peak performance within a cost budget and worry about energy only to 
make sure they don’t exceed the cooling capacity of their enclosure. They 
usually ignored operational costs of a server, assuming that they pale in 
comparison to purchase costs. WSCs have longer lifetimes—the building 
and electrical and cooling infrastructure are often amortized over 10 or 
more years—so the operational costs add up: energy, power distribution, 
and cooling represent more than 30% of the costs of a WSC over 10 years.

3. Scale and the Opportunities/Problems Associated with Scale: To construct a 
single WSC, you must purchase 100,000 servers along with the supporting 
infrastructure, which means volume discounts. Hence, WSCs are so massive 

internally that you get economy of scale even if there are few WSCs. These 
economies of scale led to cloud computing, as the lower per unit costs of a 
WSC meant that cloud companies could rent servers at a profitable rate and 
still be below what it costs outsiders to do it themselves. The flip side of the 
economic opportunity of scale is the need to cope with the failure frequency 
of scale. Even if a server had a Mean Time To Failure of an amazing 25 years 
(200,000 hours), the WSC architect would need to design for five server 
failures every day. Section 5.15 mentioned annualized disk failure rate (AFR) 
was measured at Google at 2% to 4%. If there were four disks per server and 
their annual failure rate was 2%, the WSC architect should expect to see one 
disk fail every hour. Thus, fault tolerance is even more important for the 
WSC architect than for the server architect.

The economies of scale uncovered by WSC have realized the long dreamed of 
goal of computing as a utility. Cloud computing means anyone anywhere with good 
ideas, a business model, and a credit card can tap thousands of servers to deliver 
their vision almost instantly around the world. Of course, there are important 
obstacles that could limit the growth of cloud computing—such as security, 
privacy, standards, and the rate of growth of Internet bandwidth—but we foresee 
them being addressed so that WSCs and cloud computing can flourish.

To put the growth rate of cloud computing into perspective, in 2012 Amazon 
Web Services announced that it adds enough new server capacity every day to 
support all of Amazon’s global infrastructure as of 2003, when Amazon was a 
$5.2Bn annual revenue enterprise with 6000 employees.

Now that we understand the importance of message-passing multiprocessors, 
especially for cloud computing, we next cover ways to connect the nodes of a WSC 
together. Thanks to Moore’s Law and the increasing number of cores per chip, we 
now need networks inside a chip as well, so these topologies are important in the 
small as well as in the large.

Elaboration: The MapReduce framework shuffles and sorts the key-value pairs at the 
end of the Map phase to produce groups that all share the same key. These groups are 
next passed to the Reduce phase.

Elaboration: Another form of large-scale computing is grid computing, where the 
computers are spread across large areas, and then the programs that run across them 
must communicate via long haul networks. The most popular and unique form of grid 
computing was pioneered by the SETI@home project. As millions of PCs are idle at 
any one time doing nothing useful, they could be harvested and put to good use if 
someone developed software that could run on those computers and then gave each PC 
an independent piece of the problem to work on. The first example was the Search for 
ExtraTerrestrial Intelligence (SETI), which was launched at UC Berkeley in 1999. Over 5 
million computer users in more than 200 countries have signed up for SETI@home, with 
more than 50% outside the US. By the end of 2011, the average performance of the 
SETI@home grid was 3.5 PetaFLOPS.

software as a service 
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is installed and run 
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computers, software is run 
at a remote site and made 
available over the Internet 
typically via a Web 
interface to customers. 
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charged based on use 
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per word in all documents. The MapReduce runtime environment schedules map 
tasks and reduce tasks to the servers of a WSC.
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 6.8 Introduction to Multiprocessor Network 
Topologies

Multicore chips require on-chip networks to connect cores together, and clusters 
require local area networks to connect servers together. This section reviews the 
pros and cons of different interconnection network topologies.

Network costs include the number of switches, the number of links on a switch 
to connect to the network, the width (number of bits) per link, and length of the 
links when the network is mapped into silicon. For example, some cores or servers 
may be adjacent and others may be on the other side of the chip or the other side of 
the datacenter. Network performance is multifaceted as well. It includes the latency 
on an unloaded network to send and receive a message, the throughput in terms of 
the maximum number of messages that can be transmitted in a given time period, 
delays caused by contention for a portion of the network, and variable performance 
depending on the pattern of communication. Another obligation of the network 
may be fault tolerance, since systems may be required to operate in the presence 
of broken components. Finally, in this era of energy-limited systems, the energy 
efficiency of different organizations may trump other concerns.

Networks are normally drawn as graphs, with each edge of the graph representing 
a link of the communication network. In the figures in this section, the processor-
memory node is shown as a black square and the switch is shown as a colored 
circle. We assume here that all links are bidirectional; that is, information can flow 
in either direction. All networks consist of switches whose links go to processor-
memory nodes and to other switches. The first network connects a sequence of 
nodes together:

This topology is called a ring. Since some nodes are not directly connected, some 
messages will have to hop along intermediate nodes until they arrive at the final 
destination.

Unlike a bus—a shared set of wires that allows broadcasting to all connected 
devices—a ring is capable of many simultaneous transfers.

1. True or false: Like SMPs, message-passing computers rely on locks for 
synchronization.

2. True or false: Clusters have separate memories and thus need many copies of 
the operating system.

Check  
Yourself
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Because there are numerous topologies to choose from, performance metrics 
are needed to distinguish these designs. Two are popular. The first is total network 
bandwidth, which is the bandwidth of each link multiplied by the number of links. 
This represents the peak bandwidth. For the ring network above, with P processors, 
the total network bandwidth would be P times the bandwidth of one link; the total 
network bandwidth of a bus is just the bandwidth of that bus.

To balance this best bandwidth case, we include another metric that is closer to 
the worst case: the bisection bandwidth. This metric is calculated by dividing the 
machine into two halves. Then you sum the bandwidth of the links that cross that 
imaginary dividing line. The bisection bandwidth of a ring is two times the link 
bandwidth. It is one times the link bandwidth for the bus. If a single link is as fast 
as the bus, the ring is only twice as fast as a bus in the worst case, but it is P times 
faster in the best case.

Since some network topologies are not symmetric, the question arises  
of where to draw the imaginary line when bisecting the machine. Bisection 
bandwidth is a worst-case metric, so the answer is to choose the division that 
yields the most pessimistic network performance. Stated alternatively, calculate 
all possible bisection bandwidths and pick the smallest. We take this pessimistic 
view because parallel programs are often limited by the weakest link in the 
communication chain.

At the other extreme from a ring is a fully connected network, where every 
processor has a bidirectional link to every other processor. For fully connected 
networks, the total network bandwidth is P × (P−1)/2, and the bisection bandwidth 
is (P/2)2.

The tremendous improvement in performance of fully connected networks is 
offset by the tremendous increase in cost. This consequence inspires engineers 
to invent new topologies that are between the cost of rings and the performance 
of fully connected networks. The evaluation of success depends in large part on 
the nature of the communication in the workload of parallel programs run on the 
computer.

The number of different topologies that have been discussed in publications 
would be difficult to count, but only a few have been used in commercial parallel 
processors. Figure 6.14 illustrates two of the popular topologies.

An alternative to placing a processor at every node in a network is to leave only 
the switch at some of these nodes. The switches are smaller than processor-memory-
switch nodes, and thus may be packed more densely, thereby lessening distance and 
increasing performance. Such networks are frequently called multistage networks 
to reflect the multiple steps that a message may travel. Types of multistage networks 
are as numerous as single-stage networks; Figure 6.15 illustrates two of the popular 
multistage organizations. A fully connected or crossbar network allows any 
node to communicate with any other node in one pass through the network. An 
Omega network uses less hardware than the crossbar network (2n log2 n versus n2 
switches), but contention can occur between messages, depending on the pattern 

network 
bandwidth Informally, 
the peak transfer rate of a 
network; can refer to the 
speed of a single link or 
the collective transfer rate 
of all links in the network.

bisection 
bandwidth The 
bandwidth between  
two equal parts of  
a multiprocessor.  
This measure is for a 
worst-case split of the 
multiprocessor.

fully connected 
network A network 
that connects processor-
memory nodes by 
supplying a dedicated 
communication link 
between every node.

multistage network  
A network that supplies a 
small switch at each node.

crossbar network  
A network that allows 
any node to communicate 
with any other node in 
one pass through the 
network.
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of communication. For example, the Omega network in Figure 6.15 cannot send a 
message from P0 to P6 at the same time that it sends a message from P1 to P4.

Implementing Network Topologies
This simple analysis of all the networks in this section ignores important practical 
considerations in the construction of a network. The distance of each link affects 
the cost of communicating at a high clock rate—generally, the longer the distance, 
the more expensive it is to run at a high clock rate. Shorter distances also make 
it easier to assign more wires to the link, as the power to drive many wires is less 
if the wires are short. Shorter wires are also cheaper than longer wires. Another 
practical limitation is that the three-dimensional drawings must be mapped onto 
chips that are essentially two-dimensional media. The final concern is energy. 
Energy concerns may force multicore chips to rely on simple grid topologies, for 
example. The bottom line is that topologies that appear elegant when sketched on 
the blackboard may be impractical when constructed in silicon or in a datacenter.

Now that we understand the importance of clusters and have seen topologies 
that we can follow to connect them together, we next look at the hardware and 
software of the interface of the network to the processor.

True or false: For a ring with P nodes, the ratio of the total network bandwidth to 
the bisection bandwidth is P/2.

a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 6.14 Network topologies that have appeared in commercial parallel processors. 
The colored circles represent switches and the black squares represent processor-memory nodes. Even 
though a switch has many links, generally only one goes to the processor. The Boolean n-cube topology is 
an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the processor) and 
thus n nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to 
improve performance and reliability.

Check  
Yourself
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  Communicating to the Outside World: 
Cluster Networking

This online section describes the networking hardware and software used to connect 
the nodes of a cluster together. The example is 10 gigabit/second Ethernet connected 
to the computer using Peripheral Component Interconnect Express (PCIe). It shows 
both software and hardware optimizations how to improve network performance, 
including zero copy messaging, user space communication, using polling instead of I/O 
interrupts, and hardware calculation of checksums. While the example is networking, 
the techniques in this section apply to storage controllers and other I/O devices as well.

6.9

a. Crossbar b. Omega network

c. Omega network switch box
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FIGURE 6.15 Popular multistage network topologies for eight nodes. The switches in these 
drawings are simpler than in earlier drawings because the links are unidirectional; data come in at the left and 
exit out the right link. The switch box in c can pass A to C and B to D or B to C and A to D. The crossbar uses 
n2 switches, where n is the number of processors, while the Omega network uses 2n log2n of the large switch 
boxes, each of which is logically composed of four of the smaller switches. In this case, the crossbar uses 64 
switches versus 12 switch boxes, or 48 switches, in the Omega network. The crossbar, however, can support 
any combination of messages between processors, while the Omega network cannot.
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 Communicating to the Outside World: 
Cluster Networking

This online section describes the networking hardware and software used to 
connect the nodes of cluster together. As there are whole books and courses just on 
networking, this section only introduces the main terms and concepts. While our 
example is networking, the techniques we describe apply to storage controllers and 
other I/O devices as well.

Ethernet has dominated local-area networks for decades, so it is not surprising 
that clusters primarily rely on Ethernet as the cluster interconnect. It became 
commercially popular at 10 Megabits per second link speed in the 1980s, but 
today 1 Gigabit per second Ethernet is standard and 10 Gigabit per second is being 
deployed in datacenters. Figure e6.9.1 shows a network interface card (NIC) for 10 
Gigabit Ethernet.

Computers offer high-speed links to plug in fast I/O devices like this NIC. While 
there used to be separate chips to connect the microprocessor to the memory and 
high-speed I/O devices, thanks to Moore’s Law these functions have been absorbed 
into the main chip in recent offerings like Intel’s Sandy Bridge. A popular high-
speed link today is PCIe, which stands for Peripheral Component Interconnect 
Express. It is called a link in that the basic building block, called a serial lane, 
consists of only four wires: two for receiving data and two for transmitting data. 
This small number contrasts with an earlier version of PCI that consisted of 64 

6.9

FIGURE e6.9.1 The NetFPGA 10-Gigabit Ethernet card (see http://netfpga.org/), which 
connects up to four 10-Gigabit/sec Ethernet links. It is an FPGA-based open platform for 
network research and classroom experimentation. The DMA engine and the four “MAC chips” 
in Figure e6.9.2 are just portions of the Xilinx Virtex FPGA in the middle of the board. The four PHY chips 
in Figure e6.9.2 are the four black squares just to the right of the four white rectangles on the left edge of the 
board, which is where the Ethernet cables are plugged in.

http://netfpga.org/
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wires, which was called a parallel bus. PCIe allows anywhere from one to 32 lanes 
to be used to connect to I/O devices, depending on its needs. This NIC uses PCI 
1.1, so each lane transfers at 2 Gigabits/second.

The NIC in Figure e6.9.1 connects to the host computer over an eight-lane 
PCIe link, which offers 16 Gigabits/second in both directions. To communicate, 
a NIC must both send or transmit messages and receive them, often abbreviated 
as TX and RX, respectively. For this NIC, each 10 G link uses separate transmit 
and receive queues, each of which can store two full-length Ethernet packets, used 
between the Ethernet links and the NIC. Figure e6.9.2 is a block diagram of the 
NIC showing the TX and RX queues. The NIC also has two 32-entry queues for 
transmitting and receiving between the host computer and the NIC.

To give a command to the NIC, the processor must be able to address the device 
and to supply one or more command words. In memory-mapped I/O, portions of 
the address space are assigned to I/O devices. During initialization (at boot time), 
PCIe devices can request to be assigned an address region of a specified length. 
All subsequent processor reads and writes to that address region are forwarded 
over PCIe to that device. Reads and writes to those addresses are interpreted as 
commands to the I/O device.

For example, a write operation can be used to send data to the network interface 
where the data will be interpreted as a command. When the processor issues the 
address and data, the memory system ignores the operation because the address 
indicates a portion of the memory space used for I/O. The NIC, however, sees the 
operation and records the data. User programs are prevented from issuing I/O 
operations directly, because the OS does not provide access to the address space 
assigned to the I/O devices, and thus the addresses are protected by the address 
translation. Memory-mapped I/O can also be used to transmit data by writing or 
reading to select addresses. The device uses the address to determine the type of 
command, and the data may be provided by a write or obtained by a read. In any 
event, the address encodes both the device identity and the type of transmission 
between processor and device.

memory-mapped 
I/O An I/O scheme in 
which portions of the 
address space are assigned 
to I/O devices, and reads 
and writes to those 
addresses are interpreted 
as commands to the I/O 
device.
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FIGURE e6.9.2 Block diagram of the NetFPGA Ethernet card in Figure e6.9.1 showing the 
control paths and the data paths. The control path allows the DMA engine to read the status of the 
queues, such as empty vs. on-empty, and the content of the next available queue entry. The DMA engine also 
controls port multiplexing. The data path simply passes through the DMA block to the TX/RX queues or 
to main memory. The “MAC chips” are described below. The PHY chips, which refer to the physical layer, 
connect the “MAC chips” to physical networking medium, such as copper wire or optical fiber.
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While the processor could transfer the data from the user space into the I/O 
space by itself, the overhead for transferring data from or to a high-speed network 
could be intolerable, since it could consume a large fraction of the processor. Thus, 
computer designers long ago invented a mechanism for offloading the processor and 
having the device controller transfer data directly to or from the memory without 
involving the processor. This mechanism is called direct memory access (DMA).

DMA is implemented with a specialized controller that transfers data between 
the network interface and memory independent of the processor, and in this case 
the DMA engine is inside the NIC.

To notify the operating system (and eventually the application that will receive 
the packet) that a transfer is complete, the DMA sends an I/O interrupt.

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two 
important distinctions:

1. An I/O interrupt is asynchronous with respect to the instruction execution. 
That is, the interrupt is not associated with any instruction and does not 
prevent the instruction completion, so it is very different from either page fault 
exceptions or exceptions such as arithmetic overflow. Our control unit needs 
only to check for a pending I/O interrupt at the time it starts a new instruction.

2. In addition to the fact that an I/O interrupt has occurred, we would like to 
convey further information, such as the identity of the device generating 
the interrupt. Furthermore, the interrupts represent devices that may have 
different priorities and whose interrupt requests have different urgencies 
associated with them.

To communicate information to the processor, such as the identity of the device 
raising the interrupt, a system can use either vectored interrupts or an exception 
identification register, called the supervisor exception cause (SCAUSE) register in 
RISC-V (see Section 4.9). When the processor recognizes the interrupt, the device 
can send either the vector address or a status field to place in the Cause register. As 
a result, when the OS gets control, it knows the identity of the device that caused 
the interrupt and can immediately interrogate the device. An interrupt mechanism 
eliminates the need for the processor to keep checking the device and instead 
allows the processor to focus on executing programs.

The Role of the Operating System in Networking
The operating system acts as the interface between the hardware and the program 
that requests I/O. The network responsibilities of the operating system arise from 
three characteristics of networks:

1. Multiple programs using the processor share the network.

2. Networks often use interrupts to communicate information about the 
operations. Because interrupts cause a transfer to kernel or supervisor mode, 
they must be handled by the operating system (OS).

direct memory access 
(DMA) A mechanism 
that provides a device 
controller with the ability 
to transfer data directly 
to or from the memory 
without involving the 
processor.
interrupt-driven 
I/O An I/O scheme that 
employs interrupts to 
indicate to the processor 
that an I/O device needs 
attention.
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3. The low-level control of a network is complex, because it requires managing 
a set of concurrent events and because the requirements for correct device 
control are often very detailed.

These three characteristics of networks specifically and I/O systems in general lead 
to several different functions the OS must provide:

■	 The OS guarantees that a user’s program accesses only the portions of an I/O 
device to which the user has rights. For example, the OS must not allow a 
program to read or write a file on disk if the owner of the file has not granted 
access to this program. In a system with shared I/O devices, protection could 
not be provided if user programs could perform I/O directly.

■	 The OS provides abstractions for accessing devices by supplying routines that 
handle low-level device operations.

■	 The OS handles the interrupts generated by I/O devices, just as it handles the 
exceptions generated by a program.

■	 The OS tries to provide equitable access to the shared I/O resources, as well 
as schedule accesses to enhance system throughput.

The software inside the operating system that interfaces to a specific I/O device 
like this NIC is called a device driver. The driver for this NIC follows five steps 
when transmitting or receiving a message. Figure e6.9.3 shows the relationship of 
these steps as an Ethernet packet is sent from one node of the cluster and received 
by another node in the cluster.

device driver A program 
that controls an I/O device 
that is attached to the 
computer.

Hardware/
Software 
Interface

First, the transmit steps:

1. The driver first prepares a packet buffer in host memory. It copies a packet 
from the user address space into a buffer that it allocates in the operating 
system address space.

2. Next, it “talks” to the NIC. The driver writes an I/O descriptor to the 
appropriate NIC register that gives the address of the buffer and its length.

3. The DMA in the NIC next copies the outgoing Ethernet packet from the host 
buffer over PCIe.

4. When the transmission is complete, the DMA interrupts the processor to 
notify the processor that the packet has been successfully transmitted.

5. Finally, the driver de-allocates the transmit buffer.
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Next, the receive steps:

1. First, the driver prepares a packet buffer in host memory, allocating a new 
buffer in which to place the received packet.

2. Next, it “talks” to the NIC. The driver writes an I/O descriptor to the 
appropriate NIC register that gives the address of the buffer and its length.

3. The DMA in the NIC next copies the incoming Ethernet packet over PCIe 
into the allocated host buffer.

4. When the transmission is complete, the DMA interrupts the processor to 
notify the host of the newly received packet and its size.

5. Finally, the driver copies the received packet into the user address space.

As you can see in Figure e6.9.3, the first three steps are time-critical when 
transmitting a packet (since the last two occur after the packet is sent), and the 
last three steps are time-critical when receiving a packet (since the first two occur 
before a packet arrives). However, these non-critical steps must be completed 
before individual nodes run out of resources, such as memory space. Failure to do 
so negatively affects network performance.
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Step 3

NIC

CPU
RAM

Step 2

Step 1

Step 4

Step 5

Destination

Ethernet

Step 4

Step 5RAM

CPU

NIC
PCIe

PCIe

FIGURE e6.9.3 Relationship of the five steps of the driver when transmitting an Ethernet 
packet from one node and receiving that packet on another node.
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Improving Network Performance
The importance of networking in clusters means it is certainly worthwhile to try to 
improve performance. We show both software and hardware techniques.

Starting with software optimizations, one performance target is reducing the 
number of times the packet is copied, which you may have noticed happening 
repeatedly in the five steps of the driver above. The zero-copy optimization allows 
the DMA engine to get the message directly from the user program data space 
during transmission and be placed where the user wants it when the message is 
received, rather than go through intermediary buffers in the operating system 
along the way.

A second software optimization is to cut out the operating system almost entirely 
by moving the communication into the user address space. By not invoking the 
operating system and not causing a context switch, we can reduce the software 
overhead considerably.

In this more radical scenario, a third step would be to drop interrupts. One 
reason is that modern processors normally go into lower power mode while 
waiting for an interrupt, and it takes time to come out of low power to service the 
interrupt as well for the disruption to the pipeline, which increases latency. The 
alternative to interrupts is for the processor to periodically check status bits to see 
if I/O operation is complete, which is called polling. Hence, we can require the user 
program to poll the NIC continuously to see when the DMA unit has delivered a 
message, and as a side effect the processor does not go into low-power mode.

Looking at hardware optimizations, one potential target for improvement is 
in calculating the values of the fields of the Ethernet packet. The 48-bit Ethernet 
address, called the Media Access Control address or MAC address, is a unique 
number assigned to each Ethernet NIC. To improve performance, the “MAC 
chip”—actually just a portion of the FPGA on this NIC—calculates the value for 
the preamble fields and the CRC field (see Section 5.5). The driver is left with 
placing the MAC destination address, MAC source address, message type, the 
data payload, and padding if needed. (Ethernet requires that the minimum packet, 
including the header and CRC fields but not the preamble, be 64 bytes.) Note that 
even the least expensive Ethernet NICs do CRC calculation in hardware today.

A second hardware optimization, available on the most recent Intel processors 
such as Ivy Bridge, improves the performance of the NIC with respect to the memory 
hierarchy. Direct Data IO (DDIO) allowing up to 10% of the last-level cache is used 
as a fast scratchpad for the DMA engine. Data are copied directly into the last-level 
cache rather than to DRAM by the DMA, and only written to DRAM upon eviction 
from the cache. This optimization helps with latency, but also with bandwidth; some 
memory regions used for control might be written by the NIC repeatedly, and these 
writes no longer need to go to DRAM. Thus, DDIO offers benefits similar to those 
of a write back cache versus a write through cache (Chapter 5).

Let’s look at an object store that follows a client-server architecture and uses most 
of the optimizations above: zero copy messaging, user space communication, polling 
instead of interrupts, and hardware calculation of preamble and CRC. The driver 

polling The process of 
periodically checking the 
status of an I/O device 
to determine the need to 
service the device.
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operates in user address space as a library that the application invokes. It grants this 
application exclusive and direct access to the NIC. All of the I/O register space on the 
NIC is mapped into the application, and all of the driver state is kept in the application. 
The OS kernel doesn’t even see the NIC as such, which avoids the overheads of context 
switching, the standard kernel network software stack, and interrupts.

Figure e6.9.4 shows the time to send an object from one node to another. It 
varies from about 9.5 to 12.5 microseconds, depending on the size of the object. 
Here is the time for each step in microseconds:

0.7 – for the client “driver” (library) to make the request (Driver TX in Figure e6.9.4).

6.4 to 8.7 – for the NIC hardware to transmit the client’s request over the PCIe bus 
to the Ethernet, depending on the size of the object (NIC TX).

0.02 – to send object over the 10 G Ethernet (Time of Flight). The time of flight 
is limited by speed of light to 5 ns per meter. The three-meter cables used in this 
measurement mean the time of flight is 15 ns, which is too small to be clearly visible 
in the figure.
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FIGURE e6.9.4 Time to send an object broken into transmit driver and NIC hardware time 
vs. receive driver and NIC hardware time. NIC transmit time is much larger than the NIC receive 
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trip latency because NIC waits for the reply, but PCIe writes require no response because PCIe is reliable, so 
PCIe writes can be sent back-to-back.



529.e8 6.9 Communicating to the Outside World: Cluster Networking

1.8 to 2.5 – for the NIC hardware to receive the object, depending on its size 
(NIC RX).

0.6 – for the server “driver” to transmit the message with the requested object to 
the app (Driver RX).

Now that we have seen how to measure the performance of network at a low 
level of detail, let’s raise the perspective to see how to benchmark multiprocessors 
of all kinds with much higher-level programs.

Elaboration There are three versions of PCIe. This NIC uses PCIe 1.1, which transfers 
at 2 gigabits per second per lane, so this NIC transfers at up to 16 gigabits per second 
in each direction. PCIe 2.0, which is found on most PC motherboards today, doubles 
the lane bandwidth to 4 gigabits per second. PCIe 3.0 doubles again to 8 gigabits per 
second, and it is starting to be found on some motherboards. We applaud the standard 
committee’s logical rate of bandwidth improvement, which has been about 2version number 
gigabits/second. The limitations of the Virtex 5 FPGA prevented the NIC from using 
faster versions of PCIe.

Elaboration While Ethernet is the foundation of cluster communication, clusters 
commonly use higher-level protocols for reliable communication. Transmission Control 
Protocol and Internet Protocol (TCP/IP), although invented for planet-wide communication, 
is often used inside a warehouse-scale computer, due in part to its dependability. While 
IP makes no delivery guarantees in the protocol, TCP does. The sender keeps the packet 
sent until it gets the acknowledgment message back that it was received correctly from 
the receiver. The receiver knows that the message was not corrupted along the way, by 
double-checking the contents with the TCP CRC field. To ensure that IP delivers to the right 
destination, the IP header includes a checksum to make sure the destination number 
remains unchanged. The success of the Internet is due in large part to the elegance 
and popularity of TCP/IP, which allows independent local-area networks to communicate 
dependably. Given its importance in the Internet and in clusters, many have accelerated 
TCP/IP, using techniques like those listed in this section [Regnier, 2004].

Elaboration Adding DMA is another path to the memory system—one that does not 
go through the address translation mechanism or the cache hierarchy. This difference 
generates some problems both in virtual memory and in caches. These problems are 
usually solved with a combination of hardware techniques and software support. The 
difficulties in having DMA in a virtual memory system arise because pages have both 
a physical and a virtual address. DMA also creates problems for systems with caches, 
because there can be two copies of a data item: one in the cache and one in memory. 
Because the DMA issues memory requests directly to the memory rather than through 
the processor cache, the value of a memory location seen by the DMA unit and the 
processor may differ. Consider a read from a NIC that the DMA unit places directly 
into memory. If some of the locations into which the DMA writes are in the cache, the 
processor will receive the old value when it does a read. Similarly, if the cache is write-
back, the DMA may read a value directly from memory when a newer value is in the 



 6.9 Communicating to the Outside World: Cluster Networking 529.e9

cache, and the value has not been written back. This is called the stale data problem or 
coherence problem (see Chapter 5). Similar solutions for coherence are used with DMA.

Elaboration Virtual Machine support clearly can negatively impact networking 
performance. As a result, microprocessor designers have been adding hardware 
to reduce the performance overhead of virtual machines for networking in particular 
and I/O in general. Intel offers Virtualization Technology for Directed I/O (VT-d) to help 
virtualize I/O. It is an I/O memory management unit that enables guest virtual machines 
to directly use I/O devices, such as Ethernet. It supports DMA remapping, which allows 
the DMA to read or write the data directly in the I/O buffers of the guest virtual machine, 
rather than into the host I/O buffers and then copy them into the guest I/O buffers. It 
also supports interrupt remapping, which lets the virtual machine monitor route interrupt 
requests directly to the proper virtual machine.

Two options for networking are using interrupts or polling, and using DMA or 
using the processor via load and store instructions.

1. If we want the lowest latency for small packets, which combination is likely 
best?

2. If we want the lowest latency for large packets, which combination is likely 
best?

Check 
Yourself
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After covering the performance of network at a low level of detail in this online 
section, the next section shows how to benchmark multiprocessors of all kinds 
with much higher-level programs.

 6.10 Multiprocessor Benchmarks and 
Performance Models

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because 
it is a highly visible way to try to determine which system is better. The results 
affect not only the sales of commercial systems, but also the reputation of the 
designers of those systems. Hence, all participants want to win the competition, 
but they also want to be sure that if someone else wins, they deserve it because 
they have a genuinely better system. This desire leads to rules to ensure that the 
benchmark results are not simply engineering tricks for that benchmark, but are 
instead advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you can’t change the benchmark. 
The source code and data sets are fixed, and there is a single proper answer. Any 
deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common exception 
is to be able to increase the size of the problem so that you can run the benchmark 
on systems with a widely different number of processors. That is, many benchmarks 
allow weak scaling rather than require strong scaling, even though you must take 
care when comparing results for programs running different problem sizes.

Figure 6.16 gives a summary of several parallel benchmarks, also described below:

n	 Linpack is a collection of linear algebra routines, and the routines for 
performing Gaussian elimination constitute what is known as the Linpack 
benchmark. The DGEMM routine in the example on page 209 represents a 
small fraction of the source code of the Linpack benchmark, but it accounts 
for most of the execution time for the benchmark. It allows weak scaling, 
letting the user pick any size problem. Moreover, it allows the user to rewrite 
Linpack in almost any form and in any language, as long as it computes the 
proper result and performs the same number of floating point operations 
for a given problem size. Twice a year, the 500 computers with the fastest 
Linpack performance are published at www.top500.org. The first on this list 
is considered by the press to be the world’s fastest computer.

n	 SPECrate is a throughput metric based on the SPEC CPU benchmarks, 
such as SPEC CPU 2006 (see Chapter 1). Rather than report performance 
of the individual programs, SPECrate runs many copies of the program 
simultaneously. Thus, it measures task-level parallelism, as there is no 
communication between the tasks. You can run as many copies of the 
programs as you want, so this is again a form of weak scaling.

http://www.top500.org
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n	 SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory) 
were efforts by researchers at Stanford University in the 1990s to put together 
a parallel benchmark suite similar in goals to the SPEC CPU benchmark 
suite. It includes both kernels and applications, including many from the 
high-performance computing community. This benchmark requires strong 
scaling, although it comes with two data sets.

Benchmark Scaling? Reprogram? Description

Linpack Weak Yes Dense matrix linear algebra [Dongarra, 1979]

SPECrate Weak No Independent job parallelism [Henning, 2007]

Stanford Parallel 
Applications for 
Shared Memory 
SPLASH 2 [Woo 

et al., 1995]

Strong  
(although  

offers  
two problem 

sizes)

No

Complex 1D FFT
Blocked LU Decomposition
Blocked Sparse Cholesky Factorization
Integer Radix Sort
Barnes-Hut
Adaptive Fast Multipole
Ocean Simulation
Hierarchical Radiosity
Ray Tracer
Volume Renderer
Water Simulation with Spatial Data Structure
Water Simulation without Spatial Data Structure

NAS Parallel 
Benchmarks 
[Bailey et al., 

1991]

Weak
Yes  
(C or  

Fortran only)

EP: embarrassingly parallel
MG: simplified multigrid

CG: unstructured grid for a conjugate gradient method

FT: 3-D partial differential equation solution using FFTs  
IS: large integer sort

PARSEC 
Benchmark Suite 

[Bienia et al., 
2008]

Weak No

Blackscholes—Option pricing with Black-Scholes PDE
Bodytrack—Body tracking of a person
Canneal—Simulated cache-aware annealing to optimize routing
Dedup—Next-generation compression with data deduplication
Facesim—Simulates the motions of a human face
Ferret—Content similarity search server
Fluidanimate—Fluid dynamics for animation with SPH method
Freqmine—Frequent itemset mining
Streamcluster—Online clustering of an input stream
Swaptions—Pricing of a portfolio of swaptions
Vips—Image processing
x264—H.264 video encoding

Berkeley  
Design  

Patterns 
[Asanovic et al., 

2006]

Strong or  
Weak

Yes

Finite-State Machine
Combinational Logic
Graph Traversal
Structured Grid
Dense Matrix
Sparse Matrix
Spectral Methods (FFT)
Dynamic Programming
N-Body
MapReduce
Backtrack/Branch and Bound
Graphical Model Inference
Unstructured Grid

FIGURE 6.16 Examples of parallel benchmarks.
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n	 The NAS (NASA Advanced Supercomputing) parallel benchmarks were 
another attempt from the 1990s to benchmark multiprocessors. Taken from 
computational fluid dynamics, they consist of five kernels. They allow weak 
scaling by defining a few data sets. Like Linpack, these benchmarks can be 
rewritten, but the rules require that the programming language can only be C 
or Fortran.

n	 The recent PARSEC (Princeton Application Repository for Shared Memory 
Computers) benchmark suite consists of multithreaded programs that use 
Pthreads (POSIX threads) and OpenMP (Open MultiProcessing; see Section 
6.5). They focus on emerging computational domains and consist of nine 
applications and three kernels. Eight rely on data parallelism, three rely on 
pipelined parallelism, and one on unstructured parallelism.

n	 On the cloud front, the goal of the Yahoo! Cloud Serving Benchmark (YCSB) 
is to compare performance of cloud data services. It offers a framework that 
makes it easy for a client to benchmark new data services, using Cassandra 
and HBase as representative examples [Cooper, 2010].

The downside of such traditional restrictions to benchmarks is that innovation is 
chiefly limited to the architecture and compiler. Better data structures, algorithms, 
programming languages, and so on often cannot be used, since that would give a 
misleading result. The system could win because of, say, the algorithm, and not 
because of the hardware or the compiler.

While these guidelines are understandable when the foundations of computing 
are relatively stable—as they were in the 1990s and the first half of this decade—
they are undesirable during a programming revolution. For this revolution to 
succeed, we need to encourage innovation at all levels.

Researchers at the University of California at Berkeley have advocated one 
approach. They identified 13 design patterns that they claim will be part of 
applications of the future. Frameworks or kernels implement these design 
patterns. Examples are sparse matrices, structured grids, finite-state machines, 
map reduce, and graph traversal. By keeping the definitions at a high level, they 
hope to encourage innovations at any level of the system. Thus, the system with the 
fastest sparse matrix solver is welcome to use any data structure, algorithm, and 
programming language, in addition to novel architectures and compilers.

Performance Models
A topic related to benchmarks is performance models. As we have seen with the 
increasing architectural diversity in this chapter—multithreading, SIMD, GPUs—
it would be especially helpful if we had a simple model that offered insights into the 
performance of different architectures. It need not be perfect, just insightful.

The 3Cs for cache performance from Chapter  5 is an example performance 
model. It is not a perfect performance model, since it ignores potentially important 

Pthreads A UNIX 
API for creating and 
manipulating threads. It is 
structured as a library.
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factors like block size, block allocation policy, and block replacement policy. 
Moreover, it has quirks. For example, a miss can be ascribed due to capacity in one 
design, and to a conflict miss in another cache of the same size. Yet 3Cs model has 
been popular for 25 years, because it offers insight into the behavior of programs, 
helping both architects and programmers improve their creations based on insights 
from that model.

To find such a model for parallel computers, let’s start with small kernels, 
like those from the 13 Berkeley design patterns in Figure 6.16. While there are 
versions with different data types for these kernels, floating point is popular in 
several implementations. Hence, peak floating-point performance is a limit on the 
speed of such kernels on a given computer. For multicore chips, peak floating-point 
performance is the collective peak performance of all the cores on the chip. If there 
were multiple microprocessors in the system, you would multiply the peak per chip 
by the total number of chips.

The demands on the memory system can be estimated by dividing this peak 
floating-point performance by the average number of floating-point operations per 
byte accessed:

Floating-Point Operations/Sec
Floating-PointOperations/Byte

= BBytes/Sec

The ratio of floating-point operations per byte of memory accessed is called the 
arithmetic intensity. It can be calculated by taking the total number of floating-
point operations for a program divided by the total number of data bytes transferred 
to main memory during program execution. Figure 6.17 shows the arithmetic 
intensity of several of the Berkeley design patterns from Figure 6.16.

arithmetic intensity  
The ratio of floating-
point operations in a 
program to the number 
of data bytes accessed by 
a program from main 
memory.

A r i t h m e t i c   I n t e n s i t y 

O(N) O(log(N)) O(1)

Sparse
Matrix
(SpMV)

Structured
Grids
(Stencils,
PDEs)

Structured
Grids
(Lattice
Methods)

Spectral
Methods
(FFTs)

Dense
Matrix
(BLAS3)

N-body
(Particle
Methods)

FIGURE 6.17 Arithmetic intensity, specified as the number of floating-point operations 
to run the program divided by the number of bytes accessed in main memory [Williams, 
Waterman, and Patterson, 2009]. Some kernels have an arithmetic intensity that scales with problem 
size, such as Dense Matrix, but there are many kernels with arithmetic intensities independent of problem 
size. For kernels in this former case, weak scaling can lead to different results, since it puts much less demand 
on the memory system.
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The Roofline Model
This simple model ties floating-point performance, arithmetic intensity, and memory 
performance together in a two-dimensional graph [Williams, Waterman, and 
Patterson, 2009]. Peak floating-point performance can be found using the hardware 
specifications mentioned above. The working sets of the kernels we consider here 
do not fit in on-chip caches, so peak memory performance may be defined by the 
memory system behind the caches. One way to find the peak memory performance 
is the Stream benchmark. (See the Elaboration on page 373 in Chapter 5.)

Figure 6.18 shows the model, which is done once for a computer, not for each 
kernel. The vertical Y-axis is achievable floating-point performance from 0.5 to 
64.0 GFLOPs/second. The horizontal X-axis is arithmetic intensity, varying from 
1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the 
graph is a log-log scale.

For a given kernel, we can find a point on the X-axis based on its arithmetic 
intensity. If we draw a vertical line through that point, the performance of the kernel 
on that computer must lie somewhere along that line. We can plot a horizontal line 
showing peak floating-point performance of the computer. Obviously, the actual 
floating-point performance can be no higher than the horizontal line, since that is 
a hardware limit.

Arithmetic Intensity: FLOPs/Byte Ratio
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FIGURE 6.18 Roofline Model [Williams, Waterman, and Patterson, 2009]. This example has 
a peak floating-point performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the 
Stream benchmark. (Since Stream is actually four measurements, this line is the average of the four.) The 
dotted vertical line in color on the left represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/
byte. It is limited by memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. The dotted 
vertical line to the right represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited 
only computationally to 16 GFLOPS/s. (These data are based on the AMD Opteron X2 (Revision F) using 
dual cores running at 2 GHz in a dual socket system.)
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How could we plot the peak memory performance, which is measured in bytes/
second? Since the X-axis is FLOPs/byte and the Y-axis FLOPs/second, bytes/second 
is just a diagonal line at a 45-degree angle in this figure. Hence, we can plot a third 
line that gives the maximum floating-point performance that the memory system 
of that computer can support for a given arithmetic intensity. We can express the 
limits as a formula to plot the line in the graph in Figure 6.18:

 Attainable GFLOPs/sec = Min (Peak Memory BW Arithmetic Inte × nnsity, Peak
Floating Point Performance)-

The horizontal and diagonal lines give this simple model its name and indicate its 
value. The “roofline” sets an upper bound on performance of a kernel depending on 
its arithmetic intensity. Given a roofline of a computer, you can apply it repeatedly, 
since it doesn’t vary by kernel.

If we think of arithmetic intensity as a pole that hits the roof, either it hits 
the slanted part of the roof, which means performance is ultimately limited by 
memory bandwidth, or it hits the flat part of the roof, which means performance is 
computationally limited. In Figure 6.18, kernel 1 is an example of the former, and 
kernel 2 is an example of the latter.

Note that the “ridge point,” where the diagonal and horizontal roofs meet, offers 
an interesting insight into the computer. If it is far to the right, then only kernels 
with very high arithmetic intensity can achieve the maximum performance of 
that computer. If it is far to the left, then almost any kernel can potentially hit the 
maximum performance.

Comparing Two Generations of Opterons
The AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron 
X2 with two cores. To simplify board design, they use the same socket. Hence, they 
have the same DRAM channels and thus the same peak memory bandwidth. In 
addition to doubling the number of cores, the Opteron X4 also has twice the peak 
floating-point performance per core: Opteron X4 cores can issue two floating-
point SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. 
As the two systems we’re comparing have similar clock rates—2.2 GHz for Opteron 
X2 versus 2.3 GHz for Opteron X4—the Opteron X4 has about four times the peak 
floating-point performance of the Opteron X2 with the same DRAM bandwidth. 
The Opteron X4 also has a 2MiB L3 cache, which is not found in the Opteron X2.

In Figure 6.19 the roofline models for both systems are compared. As we would 
expect, the ridge point moves to the right, from 1 in the Opteron X2 to 5 in the 
Opteron X4. Hence, to see a performance gain in the next generation, kernels need 
an arithmetic intensity higher than 1, or their working sets must fit in the caches 
of the Opteron X4.

The roofline model gives an upper bound to performance. Suppose your 
program is far below that bound. What optimizations should you perform, and in 
what order?
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To reduce computational bottlenecks, the following two optimizations can help 
almost any kernel:

1. Floating-point operation mix. Peak floating-point performance for a computer 
typically requires an equal number of nearly simultaneous additions and 
multiplications. That balance is necessary either because the computer 
supports a fused multiply-add instruction (see the Elaboration on page 214 
in Chapter  3) or because the floating-point unit has an equal number of 
floating-point adders and floating-point multipliers. The best performance 
also requires that a significant fraction of the instruction mix is floating-
point operations and not integer instructions.

2. Improve instruction-level parallelism and apply SIMD. For modern archi-
tectures, the highest performance comes when fetching, executing, and 
committing three to four instructions per clock cycle (see Section 4.10). The 
goal for this step is to improve the code from the compiler to increase ILP. One 
way is by unrolling loops, as we saw in Section 4.12. For the x86 architectures, 
a single AVX instruction can operate on four double precision operands, so 
they should be used whenever possible (see Sections 3.7 and 3.8).

To reduce memory bottlenecks, the following two optimizations can help:

1. Software prefetching. Usually the highest performance requires keeping many 
memory operations in flight, which is easier to do by performing predicting 
accesses via software prefetch instructions rather than waiting until the data 
are required by the computation.

2. Memory affinity. Microprocessors today include a memory controller on 
the same chip with the microprocessor, which improves performance of the 
memory hierarchy. If the system has multiple chips, this means that some 
addresses go to the DRAM that is local to one chip, and the rest require 
accesses over the chip interconnect to access the DRAM that is local to 
another chip. This split results in non-uniform memory accesses, which we 
described in Section 6.5. Accessing memory through another chip lowers 
performance. This second optimization tries to allocate data and the threads 
tasked to operate on that data to the same memory-processor pair, so that 
the processors rarely have to access the memory of the other chips.

The roofline model can help decide which of these two optimizations to 
perform and the order in which to perform them. We can think of each of these 
optimizations as a “ceiling” below the appropriate roofline, meaning that you 
cannot break through a ceiling without performing the associated optimization.

The computational roofline can be found from the manuals, and the memory 
roofline can be found from running the Stream benchmark. The computational 
ceilings, such as floating-point balance, can also come from the manuals for 
that computer. A memory ceiling, such as memory affinity, requires running 
experiments on each computer to determine the gap between them. The good 
news is that this process only need be done once per computer, for once someone 
characterizes a computer’s ceilings, everyone can use the results to prioritize their 
optimizations for that computer.

Figure 6.20 adds ceilings to the roofline model in Figure 6.18, showing the 
computational ceilings in the top graph and the memory bandwidth ceilings on the 
bottom graph. Although the higher ceilings are not labeled with both optimizations, 
they are implied in this figure; to break through the highest ceiling, you need to 
have already broken through all the ones below.

The width of the gap between the ceiling and the next higher limit is the reward 
for trying that optimization. Thus, Figure 6.20 suggests that optimization 2, which 
improves ILP, has a large benefit for improving computation on that computer, and 
optimization 4, which improves memory affinity, has a large benefit for improving 
memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. The 
arithmetic intensity of a kernel determines the optimization region, which in turn 
suggests which optimizations to try. Note that the computational optimizations 
and the memory bandwidth optimizations overlap for much of the arithmetic 
intensity. Three regions are shaded differently in Figure 6.21 to indicate the 
different optimization strategies. For example, Kernel 2 falls in the blue trapezoid 
on the right, which suggests working only on the computational optimizations. 
Kernel 1 falls in the blue-gray parallelogram in the middle, which suggests trying 
both types of optimizations. Moreover, it suggests starting with optimizations 2 
and 4. Note that the Kernel 1 vertical lines fall below the floating-point imbalance 
optimization, so optimization 1 may be unnecessary. If a kernel fell in the gray 
triangle on the lower left, it would suggest trying just memory optimizations.
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FIGURE 6.19 Roofline models of two generations of Opterons. The Opteron X2 roofline, which 
is the same as in Figure 6.18, is in black, and the Opteron X4 roofline is in color. The bigger ridge point of 
Opteron X4 means that kernels that were computationally bound on the Opteron X2 could be memory-
performance bound on the Opteron X4.
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2. Memory affinity. Microprocessors today include a memory controller on 
the same chip with the microprocessor, which improves performance of the 
memory hierarchy. If the system has multiple chips, this means that some 
addresses go to the DRAM that is local to one chip, and the rest require 
accesses over the chip interconnect to access the DRAM that is local to 
another chip. This split results in non-uniform memory accesses, which we 
described in Section 6.5. Accessing memory through another chip lowers 
performance. This second optimization tries to allocate data and the threads 
tasked to operate on that data to the same memory-processor pair, so that 
the processors rarely have to access the memory of the other chips.

The roofline model can help decide which of these two optimizations to 
perform and the order in which to perform them. We can think of each of these 
optimizations as a “ceiling” below the appropriate roofline, meaning that you 
cannot break through a ceiling without performing the associated optimization.

The computational roofline can be found from the manuals, and the memory 
roofline can be found from running the Stream benchmark. The computational 
ceilings, such as floating-point balance, can also come from the manuals for 
that computer. A memory ceiling, such as memory affinity, requires running 
experiments on each computer to determine the gap between them. The good 
news is that this process only need be done once per computer, for once someone 
characterizes a computer’s ceilings, everyone can use the results to prioritize their 
optimizations for that computer.

Figure 6.20 adds ceilings to the roofline model in Figure 6.18, showing the 
computational ceilings in the top graph and the memory bandwidth ceilings on the 
bottom graph. Although the higher ceilings are not labeled with both optimizations, 
they are implied in this figure; to break through the highest ceiling, you need to 
have already broken through all the ones below.

The width of the gap between the ceiling and the next higher limit is the reward 
for trying that optimization. Thus, Figure 6.20 suggests that optimization 2, which 
improves ILP, has a large benefit for improving computation on that computer, and 
optimization 4, which improves memory affinity, has a large benefit for improving 
memory bandwidth on that computer.

Figure 6.21 combines the ceilings of Figure 6.20 into a single graph. The 
arithmetic intensity of a kernel determines the optimization region, which in turn 
suggests which optimizations to try. Note that the computational optimizations 
and the memory bandwidth optimizations overlap for much of the arithmetic 
intensity. Three regions are shaded differently in Figure 6.21 to indicate the 
different optimization strategies. For example, Kernel 2 falls in the blue trapezoid 
on the right, which suggests working only on the computational optimizations. 
Kernel 1 falls in the blue-gray parallelogram in the middle, which suggests trying 
both types of optimizations. Moreover, it suggests starting with optimizations 2 
and 4. Note that the Kernel 1 vertical lines fall below the floating-point imbalance 
optimization, so optimization 1 may be unnecessary. If a kernel fell in the gray 
triangle on the lower left, it would suggest trying just memory optimizations.
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FIGURE 6.20 Roofline model with ceilings. The top graph shows the computational “ceilings” of 
8 GFLOPs/sec if the floating-point operation mix is imbalanced and 2 GFLOPs/sec if the optimizations to 
increase ILP and SIMD are also missing. The bottom graph shows the memory bandwidth ceilings of 11 GB/
sec without software prefetching and 4.8 GB/sec if memory affinity optimizations are also missing.
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Thus far, we have been assuming that the arithmetic intensity is fixed, but that is 
not really the case. First, there are kernels where the arithmetic intensity increases 
with problem size, such as for Dense Matrix and N-body problems (see Figure 
6.17). Indeed, this can be a reason that programmers have more success with weak 
scaling than with strong scaling. Second, the effectiveness of the memory hierarchy 
affects the number of accesses that go to memory, so optimizations that improve 
cache performance also improve arithmetic intensity. One example is improving 
temporal locality by unrolling loops and then grouping together statements with 
similar addresses. Many computers have special cache instructions that allocate 
data in a cache but do not first fill the data from memory at that address, since it 
will soon be over-written. Both these optimizations reduce memory traffic, thereby 
moving the arithmetic intensity pole to the right by a factor of, say, 1.5. This shift 
right could put the kernel in a different optimization region.

While the examples above show how to help programmers improve performance, 
architects can also use the model to decide where they should optimize hardware to 
improve the performance of the kernels that they think will be important.

The next section uses the roofline model to demonstrate the performance 
difference between a multicore microprocessor and a GPU and to see whether 
these differences reflect performance of real programs.
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FIGURE 6.21 Roofline model with ceilings, overlapping areas shaded, and the two kernels 
from Figure 6.18. Kernels whose arithmetic intensity land in the blue trapezoid on the right should focus 
on computation optimizations, and kernels whose arithmetic intensity land in the gray triangle in the lower 
left should focus on memory bandwidth optimizations. Those that land in the blue-gray parallelogram in 
the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try optimizing 
ILP and SIMD, memory affinity, and software prefetching. Kernel 2 falls in the trapezoid on the right, so try 
optimizing ILP and SIMD and the balance of floating-point operations.
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Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize. 
Clearly, a programmer can optimize in any order, but following this sequence reduces the 
chances of wasting effort on an optimization that has no benefit due to other constraints. 
Like the 3Cs model, as long as the roofline model delivers on insights, a model can 
have assumptions that may prove optimistic. For example, roofline assumes the load is 
balanced between all processors.

Elaboration: An alternative to the Stream benchmark is to use the raw DRAM 
bandwidth as the roofline. While the raw bandwidth definitely is a hard upper bound, 
actual memory performance is often so far from that boundary that it’s not that useful. 
That is, no program can go close to that bound. The downside to using Stream is that 
very careful programming may exceed the Stream results, so the memory roofline may 
not be as hard a limit as the computational roofline. We stick with Stream because few 
programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: Although the roofline model shown is for multicore processors, it clearly 
would work for a uniprocessor as well.

 
6.11

 Real Stuff: Benchmarking and Rooflines 
of the Intel Core i7 960 and the NVIDIA 
Tesla GPU

A group of Intel researchers published a paper [Lee et  al., 2010] comparing a 
quad-core Intel Core i7 960 with multimedia SIMD extensions to the previous 
generation GPU, the NVIDIA Tesla GTX 280. Figure 6.22 lists the characteristics 
of the two systems. Both products were purchased in Fall 2009. The Core i7 is 
in Intel’s 45-nanometer semiconductor technology while the GPU is in TSMC’s 
65-nanometer technology. Although it might have been fairer to have a comparison 
by a neutral party or by both interested parties, the purpose of this section is not to 
determine how much faster one product is than another, but to try to understand 
the relative value of features of these two contrasting architecture styles.

The rooflines of the Core i7 960 and GTX 280 in Figure 6.23 illustrate the 
differences in the computers. Not only does the GTX 280 have much higher 
memory bandwidth and double-precision floating-point performance, but also its 
double-precision ridge point is considerably to the left. The double-precision ridge 
point is 0.6 for the GTX 280 versus 3.1 for the Core i7. As mentioned above, it is 
much easier to hit peak computational performance the further the ridge point of 

True or false: The main drawback with conventional approaches to benchmarks 
for parallel computers is that the rules that ensure fairness also slow software 
innovation.

Check  
Yourself
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the roofline is to the left. For single-precision performance, the ridge point moves 
far to the right for both computers, so it’s considerably harder to hit the roof of 
single-precision performance. Note that the arithmetic intensity of the kernel is 
based on the bytes that go to main memory, not the bytes that go to cache memory. 
Thus, as mentioned above, caching can change the arithmetic intensity of a kernel 
on a particular computer, if most references really go to the cache. Note also that 
this bandwidth is for unit-stride accesses in both architectures. Real gather-scatter 
addresses can be slower on the GTX 280 and on the Core i7, as we shall see.

The researchers selected the benchmark programs by analyzing the 
computational and memory characteristics of four recently proposed benchmark 
suites and then “formulated the set of throughput computing kernels that capture 
these characteristics.” Figure 6.24 shows the performance results, with larger 
numbers meaning faster. The Rooflines help explain the relative performance in 
this case study.

Given that the raw performance specifications of the GTX 280 vary from 2.5× 
slower (clock rate) to 7.5× faster (cores per chip) while the performance varies 
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FIGURE 6.22 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the ratios of the 
Tesla GTX 280 and the Fermi GTX 480 to Core i7. Although the case study is between the Tesla 280 and i7, we include the Fermi 480 to show 
its relationship to the Tesla 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 6.23 because 
these are DRAM pin bandwidths and those in Figure 6.23 are at the processors as measured by a benchmark program. (From Table 2 in Lee 
et al. [2010].)
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from 2.0× slower (Solv) to 15.2× faster (GJK), the Intel researchers decided to find 
the reasons for the differences:

n	 Memory bandwidth. The GPU has 4.4× the memory bandwidth, which helps 
explain why LBM and SAXPY run 5.0 and 5.3× faster; their working sets are 
hundreds of megabytes and hence don’t fit into the Core i7 cache. (So as to 
access memory intensively, they purposely did not use cache blocking as in 
Chapter 5.) Hence, the slope of the rooflines explains their performance. SpMV 
also has a large working set, but it only runs 1.9× faster because the double-
precision floating point of the GTX 280 is only 1.5× as fast as the Core i7.

n	 Compute bandwidth. Five of the remaining kernels are compute bound: 
SGEMM, Conv, FFT, MC, and Bilat. The GTX is faster by 3.9, 2.8, 3.0, 1.8, and 
5.7×, respectively. The first three of these use single-precision floating-point 
arithmetic, and GTX 280 single precision is 3 to 6× faster. MC uses double 
precision, which explains why it’s only 1.8× faster since DP performance  
is only 1.5× faster. Bilat uses transcendental functions, which the GTX 
280 supports directly. The Core i7 spends two-thirds of its time calculating 
transcendental functions for Bilat, so the GTX 280 is 5.7× faster. This 
observation helps point out the value of hardware support for operations that 
occur in your workload: double-precision floating point and perhaps even 
transcendentals.
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FIGURE 6.24 Raw and relative performance measured for the two platforms. In this study, 
SAXPY is just used as a measure of memory bandwidth, so the right unit is GBytes/sec and not GFLOP/sec. 
(Based on Table 3 in [Lee et al., 2010].)
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n	 Cache benefits. Ray casting (RC) is only 1.6× faster on the GTX because 
cache blocking with the Core i7 caches prevents it from becoming memory 
bandwidth bound (see Sections 5.4 and 5.14), as it is on GPUs. Cache blocking 
can help Search, too. If the index trees are small so that they fit in the cache, 
the Core i7 is twice as fast. Larger index trees make them memory bandwidth 
bound. Overall, the GTX 280 runs search 1.8× faster. Cache blocking also 
helps Sort. While most programmers wouldn’t run Sort on a SIMD processor, 
it can be written with a 1-bit Sort primitive called split. However, the split 
algorithm executes many more instructions than a scalar sort does. As a 
result, the Core i7 runs 1.25× as fast as the GTX 280. Note that caches also 
help other kernels on the Core i7, since cache blocking allows SGEMM, FFT, 
and SpMV to become compute bound. This observation re-emphasizes the 
importance of cache blocking optimizations in Chapter 5.

n	 Gather-Scatter. The multimedia SIMD extensions are of little help if the data are 
scattered throughout main memory; optimal performance comes only when 
accesses to data are aligned on 16-byte boundaries. Thus, GJK gets little benefit 
from SIMD on the Core i7. As mentioned above, GPUs offer gather-scatter 
addressing that is found in a vector architecture but omitted from most SIMD 
extensions. The memory controller even batches accesses to the same DRAM 
page together (see Section 5.2). This combination means the GTX 280 runs GJK 
a startling 15.2× as fast as the Core i7, which is larger than any single physical 
parameter in Figure 6.22. This observation reinforces the importance of gather-
scatter to vector and GPU architectures that is missing from SIMD extensions.

n	 Synchronization. The performance of synchronization is limited by atomic 
updates, which are responsible for 28% of the total runtime on the Core i7 
despite its having a hardware fetch-and-increment instruction. Thus, Hist is only 
1.7× faster on the GTX 280. Solv solves a batch of independent constraints in 
a small amount of computation followed by barrier synchronization. The Core 
i7 benefits from the atomic instructions and a memory consistency model that 
ensures the right results even if not all previous accesses to memory hierarchy 
have completed. Without the memory consistency model, the GTX 280 
version launches some batches from the system processor, which leads to the 
GTX 280 running 0.5× as fast as the Core i7. This observation points out how 
synchronization performance can be important for some data parallel problems.

It is striking how often weaknesses in the Tesla GTX 280 that were uncovered by 
kernels selected by Intel researchers were already being addressed in the successor 
architecture to Tesla: Fermi has faster double-precision floating-point performance, 
faster atomic operations, and caches. It was also interesting that the gather-scatter 
support of vector architectures that predate the SIMD instructions by decades was 
so important to the effective usefulness of these SIMD extensions, which some 
had predicted before the comparison. The Intel researchers noted that six of the 14 
kernels would exploit SIMD better with more efficient gather-scatter support on the 
Core i7. This study certainly establishes the importance of cache blocking as well.
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Now that we have seen a wide range of results of benchmarking different 
multiprocessors, let’s return to our DGEMM example to see in detail how much we 
have to change the C code to exploit multiple processors.

 6.12 Going Faster: Multiple Processors and 
Matrix Multiply

This section is the final and largest step in our incremental performance journey of 
adapting DGEMM to the underlying hardware of the Intel Core i7 (Sandy Bridge). 
Each Core i7 has eight cores, and the computer we have been using has two Core 
i7s. Thus, we have 16 cores on which to run DGEMM.

Figure 6.25 shows the OpenMP version of DGEMM that utilizes those cores. 
Note that line 30 is the single line added to Figure 5.48 to make this code run on 
multiple processors: an OpenMP pragma that tells the compiler to use multiple 
threads in the outermost loop. It tells the computer to spread the work of the 
outermost loop across all the threads.

Figure 6.26 plots a classic multiprocessor speed-up graph, showing the 
performance improvement versus a single thread as the number of threads increase. 
This graph makes it easy to see the challenges of strong scaling versus weak scaling. 
When everything fits in the first-level data cache, as is the case for 32 × 32 matrices, 
adding threads actually hurts performance. The 16-threaded version of DGEMM 
is almost half as fast as the single-threaded version in this case. In contrast, the two 
largest matrices get a 14 × speedup from 16 threads, and hence the classic two “up 
and to the right” lines in Figure 6.26.

Figure 6.27 shows the absolute performance increase as we increase the number 
of threads from one to 16. DGEMM now operates at 174 GLOPS for 960 × 960 
matrices. As our unoptimized C version of DGEMM in Figure 3.22 ran this code 
at just 0.8 GFLOPS, the optimizations in Chapters 3 to 6 that tailor the code to the 
underlying hardware result in a speed-up of over 200 times!

Next up is our warnings of the fallacies and pitfalls of multiprocessing. The 
computer architecture graveyard is filled with parallel processing projects that have 
ignored them.

Elaboration: These results are with Turbo mode turned off. We are using a dual chip 
system in this system, so not surprisingly, we can get the full Turbo speed-up (3.3/2.6 = 
1.27) with either one thread (only one core on one of the chips) or two threads (one core 
per chip). As we increase the number of threads and hence the number of active cores, 
the benefit of Turbo mode decreases, as there is less of the power budget to spend on 
the active cores. For four threads the average Turbo speed-up is 1.23, for eight it is 1.13, 
and for 16 it is 1.11.
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Elaboration: Although the Sandy Bridge supports two hardware threads per core, we 
do not get more performance from 32 threads. The reason is that a single AVX hardware 
is shared between the two threads multiplexed onto one core, so assigning two threads 
per core actually hurts performance due to the multiplexing overhead.

#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, 
               double *A, double *B, double *C)
{
  for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )
    for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {
      __m256d c[4];
      for ( int x = 0; x < UNROLL; x++ ) 
        c[x] = _mm256_load_pd(C+i+x*4+j*n);
     /* c[x] = C[i][j] */
      for( int k = sk; k < sk+BLOCKSIZE; k++ )
      {
        __m256d b = _mm256_broadcast_sd(B+k+j*n);
     /* b = B[k][j] */
        for (int x = 0; x < UNROLL; x++)
          c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
                 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
      }

      for ( int x = 0; x < UNROLL; x++ ) 
        _mm256_store_pd(C+i+x*4+j*n, c[x]);
        /* C[i][j] = c[x] */
    }
}

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
  for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 
    for ( int si = 0; si < n; si += BLOCKSIZE )
      for ( int sk = 0; sk < n; sk += BLOCKSIZE )
        do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

FIGURE 6.25 OpenMP version of DGEMM from Figure 5.48. Line 30 is the only OpenMP code, making  
the outermost for loop operate in parallel. This line is the only difference from Figure 5.48.
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 6.13 Fallacies and Pitfalls

The many assaults on parallel processing have uncovered numerous fallacies and 
pitfalls. We cover four here.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.
In 1987, the head of a research organization claimed that a multiprocessor 

machine had broken Amdahl’s Law. To try to understand the basis of the media 
reports, let’s see the quote that gave us Amdahl’s Law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the effort 
expended on achieving high parallel processing rates is wasted unless it is 
accompanied by achievements in sequential processing rates of very nearly the 
same magnitude.
This statement must still be true; the neglected portion of the program must 

limit performance. One interpretation of the law leads to the following lemma: 
portions of every program must be sequential, so there must be an economic upper 
bound to the number of processors—say, 100. By showing linear speed-up with 
1000 processors, this lemma is disproved; hence the claim that Amdahl’s Law was 
broken.

The approach of the researchers was just to use weak scaling: rather than going 
1000 times faster on the same data set, they computed 1000 times more work in 
comparable time. For their algorithm, the sequential portion of the program was 
constant, independent of the size of the input, and the rest was fully parallel—
hence, linear speed-up with 1000 processors.

Amdahl’s Law obviously applies to parallel processors. What this research does 
point out is that one of the main uses of faster computers is to run larger problems. 
Just be sure that users really care about those problems versus being a justification 
to buying an expensive computer by finding a problem that simply keeps lots of 
processors busy.

Fallacy: Peak performance tracks observed performance.
The supercomputer industry once used this metric in marketing, and the 

fallacy is exacerbated with parallel machines. Not only are marketers using the 
nearly unattainable peak performance of a uniprocessor node, but also they are 
then multiplying it by the total number of processors, assuming perfect speed-up! 
Amdahl’s Law suggests how difficult it is to reach either peak; multiplying the two 
together multiplies the sins. The roofline model helps put peak performance in 
perspective.

Pitfall: Not developing the software to take advantage of, or optimize for, a 
multiprocessor architecture.
There is a long history of parallel software lagging behind parallel hardware, 

possibly because the software problems are much harder. We give one example to 
show the subtlety of the issues, but there are many examples we could choose!

For over a decade 
prophets have voiced 
the contention that 
the organization of a 
single computer has 
reached its limits and 
that truly significant 
advances can be made 
only by interconnection 
of a multiplicity of 
computers in such a 
manner as to permit 
cooperative solution. 
…Demonstration is 
made of the continued 
validity of the single 
processor approach …
Gene Amdahl, “Validity 
of the single processor 
approach to achieving 
large scale computing 
capabilities,” Spring Joint 
Computer Conference, 
1967
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One frequently encountered problem occurs when software designed for a 
uniprocessor is adapted to a multiprocessor environment. For example, the Silicon 
Graphics operating system originally protected the page table with a single lock, 
assuming that page allocation is infrequent. In a uniprocessor, this does not 
represent a performance problem. In a multiprocessor, it can become a major 
performance bottleneck for some programs. Consider a program that uses a large 
number of pages that are initialized at start-up, which UNIX does for statically 
allocated pages. Suppose the program is parallelized so that multiple processes 
allocate the pages. Because page allocation requires the use of the page table, which 
is locked whenever it is in use, even an OS kernel that allows multiple threads in the 
OS will be serialized if the processes all try to allocate their pages at once (which is 
exactly what we might expect at initialization time!).

This page table serialization eliminates parallelism in initialization and has a 
significant impact on overall parallel performance. This performance bottleneck 
persists even for task-level parallelism. For example, suppose we split the parallel 
processing program apart into separate jobs and run them, one job per processor, 
so that there is no sharing between the jobs. (This is exactly what one user did, 
since he reasonably believed that the performance problem was due to unintended 
sharing or interference in his application.) Unfortunately, the lock still serializes all 
the jobs—so even the independent job performance is poor.

This pitfall indicates the kind of subtle but significant performance bugs 
that can arise when software runs on multiprocessors. Like many other key 
software components, the OS algorithms and data structures must be rethought 
in a multiprocessor context. Placing locks on smaller portions of the page table 
effectively eliminated the problem.

Fallacy: You can get good vector performance without providing memory 
bandwidth.

As we saw in the Roofline model, memory bandwidth is quite important to all 
architectures. DAXPY requires 1.5 memory references per floating-point operation, 
and this ratio is typical of many scientific codes. Even if the floating-point 
operations took no time, a Cray-1 could not increase the DAXPY performance of 
the vector sequence used, since it was memory limited. The Cray-1 performance on 
Linpack jumped when the compiler used blocking to change the computation so 
that values could be kept in the vector registers. This approach lowered the number 
of memory references per FLOP and improved the performance by nearly a factor 
of two! Thus, the memory bandwidth on the Cray-1 became sufficient for a loop 
that formerly required more bandwidth, which is just what the Roofline model 
would predict.
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 6.14 Concluding Remarks

The dream of building computers by simply aggregating processors has been 
around since the earliest days of computing. Progress in building and using effective 
and efficient parallel processors, however, has been slow. This rate of progress has 
been limited by difficult software problems as well as by a long process of evolving 
the architecture of multiprocessors to enhance usability and improve efficiency. 
We have discussed many of the software challenges in this chapter, including the 
difficulty of writing programs that obtain good speed-up due to Amdahl’s Law. The 
wide variety of different architectural approaches and the limited success and short 
life of many of the parallel architectures of the past have compounded the software 
difficulties. We discuss the history of the development of these multiprocessors 
in online  Section 6.15. To go into even greater depth on topics in this chapter, 
see Chapter 4 of Computer Architecture: A Quantitative Approach, Fifth Edition for 
more on GPUs and comparisons between GPUs and CPUs and Chapter 6 for more 
on WSCs.

As we said in Chapter 1, despite this long and checkered past, the information 
technology industry has now tied its future to parallel computing. Although it is 
easy to make the case that this effort will fail like many in the past, there are reasons 
to be hopeful:

n	 Clearly, software as a service (SaaS) is growing in importance, and 
clusters have proven to be a very successful way to deliver such services. 
By providing redundancy at a higher level, including geographically 
distributed datacenters, such services have delivered 24 × 7 × 365 
availability for customers around the world.

n	 We believe that Warehouse-Scale Computers are changing the goals and 
principles of server design, just as the needs of mobile clients are changing the 
goals and principles of microprocessor design. Both are revolutionizing the 
software industry as well. Performance per dollar and performance per joule 
drive both mobile client hardware and the WSC hardware, and parallelism is 
the key to delivering on those sets of goals.

n	 SIMD and vector operations are a good match to multimedia applications, 
which are playing a larger role in the post-PC era. They share the advantage 
of being easier for the programmer than classic parallel MIMD programming 
and being more energy-efficient than MIMD. To put into perspective the 
importance of SIMD versus MIMD, Figure 6.28 plots the number of cores 
for MIMD versus the number of 32-bit and 64-bit operations per clock 
cycle in SIMD mode for x86 computers over time. For x86 computers, we 
expect to see two additional cores per chip about every 2 years and the SIMD 
width to double about every 4 years. Given these assumptions, over the 
next decade the potential speed-up from SIMD parallelism is twice that of 

We are dedicating all 
of our future product 
development to 
multicore designs. We 
believe this is a key 
inflection point for the 
industry. …This is not 
a race. This is a sea 
change in computing…
Paul Otellini, Intel 
President, Intel 
Developers Forum, 2004
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MIMD parallelism. Given the effectiveness of SIMD for multimedia and its 
increasing importance in the post-PC era, that emphasis may be appropriate. 
Hence, it’s as least as important to understand SIMD parallelism as MIMD 
parallelism, even though the latter has received much more attention.

n	 The use of parallel processing in domains such as scientific and engineering 
computation is popular. This application domain has an almost limitless 
thirst for more computation. It also has many applications that have lots of 
natural concurrency. Once again, clusters dominate this application area. For 
example, using the 2012 Top 500 report, clusters are responsible for more 
than 80% of the 500 fastest Linpack results.

n	 All desktop and server microprocessor manufacturers are building 
multiprocessors to achieve higher performance, so, unlike in the past, there 
is no easy path to higher performance for sequential applications. As we said 
earlier, sequential programs are now slow programs. Hence, programmers 
who need higher performance must parallelize their codes or write new 
parallel processing programs.
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FIGURE 6.28 Potential speed-up via parallelism from MIMD, SIMD, and both MIMD and 
SIMD over time for x86 computers. This figure assumes that two cores per chip for MIMD will be 
added every 2 years and the number of operations for SIMD will double every 4 years.
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n	 In the past, microprocessors and multiprocessors were subject to 
different definitions of success. When scaling uniprocessor performance, 
microprocessor architects were happy if single thread performance went up 
by the square root of the increased silicon area. Thus, they were pleased with 
sublinear performance in terms of resources. Multiprocessor success used 
to be defined as linear speed-up as a function of the number of processors, 
assuming that the cost of purchase or cost of administration of n processors 
was n times as much as one processor. Now that parallelism is happening on-
chip via multicore, we can use the traditional microprocessor metric of being 
successful with sublinear performance improvement.

n	 The success of just-in-time runtime compilation and autotuning makes it 
feasible to think of software adapting itself to take advantage of the increasing 
number of cores per chip, which provides flexibility that is not available when 
limited to static compilers.

n	 Unlike in the past, the open source movement has become a critical portion 
of the software industry. This movement is a meritocracy, where better 
engineering solutions can win the mind share of the developers over legacy 
concerns. It also embraces innovation, inviting change to old software and 
welcoming new languages and software products. Such an open culture could 
be extremely helpful during this time of rapid change.

To motivate readers to embrace this revolution, we demonstrated the potential 
of parallelism concretely for matrix multiply on the Intel Core i7 (Sandy Bridge) in 
the Going Faster sections of Chapters 3 to 6:

n	 Data-level parallelism in Chapter 3 improved performance by a factor of 3.85 
by executing four 64-bit floating-point operations in parallel using the 256-
bit operands of the AVX instructions, demonstrating the value of SIMD.

n	 Instruction-level parallelism in Chapter 4 pushed performance up by another 
factor of 2.3 by unrolling loops four times to give the out-of-order execution 
hardware more instructions to schedule.

n	 Cache optimizations in Chapter  5 improved performance of matrices that 
didn’t fit into the L1 data cache by another factor of 2.0 to 2.5 by using cache 
blocking to reduce cache misses.

n	 Thread-level parallelism in this chapter improved performance of matrices 
that don’t fit into a single L1 data cache by another factor of 4 to 14 by utilizing 
all 16 cores of our multicore chips, demonstrating the value of MIMD. We 
did this by adding a single line using an OpenMP pragma.

Using the ideas in this book and tailoring the software to this computer added 
24 lines of code to DGEMM. For the matrix sizes of 32 × 32, 160 × 160, 480 × 480, 
and 960 × 960, the overall performance speed-up from these ideas realized in those 
two-dozen lines of code is factors of 8, 39, 129, and 212!
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This parallel revolution in the hardware/software interface is perhaps the 
greatest challenge facing the field in the last 60 years. You can also think of it as an 
outstanding opportunity, as our Going Faster sections demonstrate. This revolution 
will provide many new research and business prospects inside and outside the IT 
field, and the companies that dominate the multicore era may not be the same 
ones that dominated the uniprocessor era. After understanding the underlying 
hardware trends and learning to adapt software to them, perhaps you will be one 
of the innovators who will seize the opportunities that are certain to appear in the 
uncertain times ahead. We look forward to benefiting from your inventions!

  Historical Perspective and Further 
Reading

This section online gives the rich and often disastrous history of multiprocessors 
over the last 50 years.
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 6.16 Exercises

6.1 First, write down a list of your daily activities that you typically do on a 
weekday. For instance, you might get out of bed, take a shower, get dressed, eat 
breakfast, dry your hair, brush your teeth. Make sure to break down your list so you 
have a minimum of 10 activities.

6.1.1 [5] <§6.2> Now consider which of these activities is already exploiting 
some form of parallelism (e.g., brushing multiple teeth at the same time, versus one 
at a time, carrying one book at a time to school, versus loading them all into your 
backpack and then carry them “in parallel”). For each of your activities, discuss if 
they are already working in parallel, but if not, why they are not.

6.15
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 Historical Perspective and Further 
Reading

There is a tremendous amount of history in multiprocessors; in this section, we 
divide our discussion by both time period and architecture. We start with the 
SIMD approach and the Illiac IV. We then turn to a short discussion of some other 
early experimental multiprocessors and progress to a discussion of some of the 
great debates in parallel processing. Next we describe the historical roots of the 
present multiprocessors and conclude by discussing recent advances.

SIMD Computers: Attractive Idea, Many Attempts, No 
Lasting Successes

The cost of a general multiprocessor is, however, very high and further design 
options were considered which would decrease the cost without seriously degrading 
the power or efficiency of the system. The options consist of recentralizing one of the 
three major components.… Centralizing the [control unit] gives rise to the basic 
organization of [an] … array processor such as the Illiac IV.

Bouknight et al. [1972]

The SIMD model was one of the earliest models of parallel computing, dating 
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that 
multiprocessor, as in more recent SIMD multiprocessors, is to have a single 
instruction that operates on many data items at once, using many functional units 
(see Figure e6.15.1).

Although successful in pushing several technologies that proved useful in later 
projects, it failed as a computer. Costs escalated from the $8 million estimate in 
1966 to $31 million by 1972, despite construction of only a quarter of the planned 
multiprocessor. Actual performance was at best 15 MFLOPS, versus initial 
predictions of 1000 MFLOPS for the full system [Hord, 1982]. Delivered to NASA 
Ames Research in 1972, the computer required three more years of engineering 
before it was usable.

These events slowed the investigation of SIMD, with Danny Hillis [1989] 
resuscitating this style in the Connection Machine, which had 65,636 1-bit 
processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions. 
There is an SISD host computer to perform operations such as branches and 
address calculations that do not need parallel operation. The SIMD instructions are 
broadcast to all the execution units, each of which has its own set of registers. For 
flexibility, individual execution units can be disabled during an SIMD instruction. 
In addition, massively parallel SIMD multiprocessors rely on interconnection or 
communication networks to exchange data between processing elements.

6.15



553.e2 6.15 Historical Perspective and Further Reading

SIMD works best in dealing with arrays in for loops. Hence, to have the 
opportunity for massive parallelism in SIMD, there must be massive amounts of 
data, or data parallelism. SIMD is at its weakest in case statements, in which each 
execution unit must perform a different operation on its data, depending on what 
data it has. The execution units with the wrong data are disabled so that the proper 
units can continue. Such situations essentially run at 1/nth performance, where n 
is the number of cases.

The basic tradeoff in SIMD multiprocessors is performance of a processor 
versus the number of processors. Recent multiprocessors emphasize a large degree 
of parallelism over performance of the individual processors. The Connection 
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while the 
Illiac IV had 64 64-bit processors.

FIGURE e6.15.1 The Illiac IV control unit followed by its 64 processing elements. It was 
perhaps the most infamous of supercomputers. The project started in 1965 and ran its first real application in 
1976. The 64 processors used a 13-MHz clock, and their combined main memory size was 1 MB: 64 × 16 KB. 
The Illiac IV was the first machine to teach us that software for parallel machines dominates hardware issues. 
Photo courtesy of NASA Ames Research Center.
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After being resurrected in the 1980s, originally by Thinking Machines and then 
by MasPar, the SIMD model has once again been put to bed as a general-purpose 
multiprocessor architecture, for two main reasons. First, it is too inflexible. A 
number of important problems cannot use such a style of multiprocessor, and 
the architecture does not scale down in a competitive fashion; that is, small-
scale SIMD multiprocessors often have worse cost performance than that of the 
alternatives. Second, SIMD cannot take advantage of the tremendous performance 
and cost advantages of microprocessor technology. Instead of leveraging this low-
cost technology, designers of SIMD multiprocessors must build custom processors 
for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose 
alternatives, this style of architecture will continue to have a role in special-
purpose designs. Many special-purpose tasks are highly data parallel and require 
a limited set of functional units. Thus, designers can build in support for certain 
operations, as well as hardwired interconnection paths among functional units. 
Such organizations are often called array processors, and they are useful for tasks 
like image and signal processing.

Multimedia Extensions as SIMD Extensions to 
Instruction Sets
Many recent architectures have laid claim to being the first to offer multimedia 
extensions, in which a set of new instructions takes advantage of a single wide 
ALU that can be partitioned so that it will act as several narrower ALUs operating 
in parallel. It’s unlikely that any appeared before 1957, however, when the Lincoln 
Lab’s TX-2 computer offered instructions that operated on the ALU as either one 
36-bit operation, two 18-bit operations, or four 9-bit operations. Ivan Sutherland, 
considered the Father of Computer Graphics, built his historic Sketchpad system 
on the TX-2. Sketchpad did, in fact, take advantage of these SIMD instructions, 
despite TX-2 appearing before invention of the term SIMD.

Other Early Experiments
It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first 
computer from the Eckert-Mauchly Corporation, for example, had duplicate units 
to improve availability.

Two of the best-documented multiprocessor projects were undertaken in the 
1970s at Carnegie Mellon University. The first of these was C.mmp, which consisted 
of 16 PDP-11s connected by a crossbar switch to 16 memory units. It was among 
the first multiprocessors with more than a few processors, and it had a shared 
memory programming model. Much of the focus of the research in the C.mmp 
project was on software, especially in the OS area. A later multiprocessor, Cm*, was 
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a cluster-based multiprocessor with a distributed memory and a nonuniform access 
time. The absence of caches and a long remote access latency made data placement 
critical. Many of the ideas in these multiprocessors would be reused in the 1980s, 
when the microprocessor made it much cheaper to build multiprocessors.

Great Debates in Parallel Processing
The turning away from the conventional organization came in the middle 1960s, 
when the law of diminishing returns began to take effect in the effort to increase 
the operational speed of a computer.… Electronic circuits are ultimately limited 
in their speed of operation by the speed of light … and many of the circuits were 
already operating in the nanosecond range.

W. Jack Bouknight et al.  
The Illiac IV System [1972]

… sequential computers are approaching a fundamental physical limit on their 
potential computational power. Such a limit is the speed of light …

Angel L. DeCegama  
The Technology of Parallel Processing, Volume I [1989]

… today’s multiprocessors … are nearing an impasse as technologies approach the 
speed of light. Even if the components of a sequential processor could be made to work 
this fast, the best that could be expected is no more than a few million instructions 
per second.

David Mitchell  
The Transputer: The Time Is Now [1989]

The quotes above give the classic arguments for abandoning the current form of 
computing, and Amdahl [1967] gave the classic reply in support of continued focus 
on the IBM 360 architecture. Arguments for the advantages of parallel execution can 
be traced back to the 19th century [Menabrea, 1842]! Despite this, the effectiveness 
of the multiprocessor in reducing the latency of individual important programs is 
still being explored. Aside from these debates about the advantages and limitations 
of parallelism, several hot debates have focused on how to build multiprocessors.

From today’s perspective, it is clear that the speed of light was not the brick wall; the 
brick wall was, instead, the power consumption of CMOS as the clock rates increased.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions 
for 1995. We included these predictions in the first edition of the book, when the 
outcome was completely unclear. We discuss them in this section, together with an 
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a tera FLOPS—one million 
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K to 
32K nodes or a Connection Multiprocessor with several million processing elements. 
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To put this prediction in perspective, each year the Gordon Bell Prize acknowledges 
advances in parallelism, including the fastest real program (highest MFLOPS).  
In 1989, the winner used an eight-processor Cray Y-MP to run at 1680 MFLOPS. 
On the basis of these numbers, multiprocessors and programs would have to have 
improved by a factor of 3.6 each year for the fastest program to achieve 1 TFLOPS 
in 1995. In 1999, the first Gordon Bell prize winner crossed the 1 TFLOPS bar. 
Using a 5832-processor IBM RS/6000 SST system designed specially for Livermore 
Laboratories, they achieved 1.18 TFLOPS on a shock wave simulation. This ratio 
represents a year-to-year improvement of 1.93, which is still quite impressive.

What has been recognized since the 1990s is that although we may have the 
technology to build a TFLOPS multiprocessor, it is not clear that the machine is 
cost-effective, except perhaps for a few very specialized and critically important 
applications related to national security. We estimated in 1990 that achieving 1 
TFLOPS would require a machine with about 5000 processors and would cost about 
$100 million. The 5832-processor IBM system at Livermore cost $110 million. 
As might be expected, improvements in the performance of individual micro-
processors both in cost and performance directly affect the cost and performance 
of large-scale multiprocessors, but a 5000-processor system will cost more than 
5000 times the price of a desktop system using the same processor. Since that time, 
much faster multiprocessors have been built, but the major improvements have 
increasingly come from the processors in the past 5 years, rather than fundamental 
breakthroughs in parallel architecture.

The second Bell prediction concerned the number of data streams in super- 
computers shipped in 1995. Danny Hillis believed that although supercomputers 
with a small number of data streams might be the best sellers, the biggest 
multiprocessors would be multiprocessors with many data streams, and these 
would perform the bulk of the computations. Bell bet Hillis that in the last quarter of 
calendar year 1995, more sustained MFLOPS would be shipped in multiprocessors 
using few data streams (<100) rather than many data streams (>1000). This bet 
concerned only supercomputers, defined as multiprocessors costing more than $1 
million and used for scientific applications. Sustained MFLOPS was defined for 
this bet as the number of floating-point operations per month, so availability of 
multiprocessors affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In 
1995, a survey of the current publicly known supercomputers showed only six 
multiprocessors in existence in the world with more than 1000 data streams, so 
Bell’s prediction was a clear winner. In fact, in 1995, much smaller microprocessor-
based multiprocessors (<20 processors) were becoming dominant.

In 1995, a survey of the 500 highest-performance multiprocessors in use 
(based on Linpack ratings), called the Top 500, showed that the largest number  
of multiprocessors were bus-based shared memory multiprocessors! By 2005, 
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various clusters or multicomputers played a large role. For example, in the top 25 
systems, 11 were custom clusters, such as the IBM Blue Gene system or the Cray 
XT3, 10 were clusters of shared memory multiprocessors (both using distributed 
and centralized memory), and the remaining four were clusters built using PCs 
with an off-the-shelf interconnect.

More Recent Advances and Developments
With the primary exception of the parallel vector multiprocessors and more 
recently of the IBM Blue Gene design, all other modern MIMD computers have 
been built from off-the-shelf microprocessors using a bus and logically central 
memory or an interconnection network and a distributed memory. A number of 
experimental multiprocessors built in the 1980s further refined and enhanced the 
concepts that form the basis for many of today’s multiprocessors.

The Development of Bus-Based Coherent Multiprocessors

Although very large mainframes were built with multiple processors in the 1960s 
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell 
[1985] suggests the key was that the smaller size of the microprocessor allowed 
the memory bus to replace the interconnection network hardware and that 
portable operating systems meant that multiprocessor projects no longer required 
the invention of a new operating system. In this paper, Bell defined the terms 
multiprocessor and multicomputer and set the stage for two different approaches 
to building larger-scale multiprocessors. The first bus-based multiprocessor with 
snooping caches was the Synapse N + 1 in 1984.

The early 1990s saw the beginning of an expansion of such systems with the 
use of very wide, high-speed buses (the SGI Challenge system used a 256-bit, 
packet-oriented bus supporting up to eight processor boards and 32 processors) 
and later the use of multiple buses and crossbar interconnects, for example, in the 
Sun SPARCCenter and Enterprise systems. In 2001, the Sun Enterprise servers 
represented the primary example of large-scale (>16 processors), symmetric 
multiprocessors in active use.

Toward Large-Scale Multiprocessors

In the effort to build large-scale multiprocessors, two different directions 
were explored: message-passing multicomputers and scalable shared memory 
multiprocessors. Although there had been many attempts to build mesh and 
hypercube-connected multiprocessors, one of the first multiprocessors to 
successfully bring together all the pieces was the Cosmic Cube built at Caltech [Seitz, 
1985]. It introduced important advances in routing and interconnect technology 
and substantially reduced the cost of the interconnect, which helped make the 
multicomputer viable. The Intel iPSC 860, a hypercube-connected collection of i860s, 
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was based on these ideas. More recent multiprocessors, such as the Intel Paragon, have 
used networks with lower dimensionality and higher individual links. The Paragon 
also employed a separate i860 as a communications controller in each node, although 
a number of users have found it better to use both i860 processors for computation 
as well as communication. The Thinking Multiprocessors CM-5 made use of off-the-
shelf microprocessors. It provided user-level access to the communication channel, 
significantly improving communication latency. In 1995, these two multiprocessors 
represented the state of the art in message-passing multicomputers.

Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit 
all their work on one computer, or who needed a backup machine in case of 
failure of the primary machine [Pfister, 1998]. Tandem introduced a 16-node 
cluster in 1975. Digital followed with VAX clusters, introduced in 1984. They 
were originally independent computers that shared I/O devices, requiring a 
distributed operating system to coordinate activity. Soon they had communication 
links between computers, in part so that the computers could be geographically 
distributed to increase availability in case of a disaster at a single site. Users log on 
to the cluster and are unaware of which machine they are using. DEC (now HP) 
sold more than 25,000 clusters by 1993. Other early companies were Tandem (now 
HP) and IBM (still IBM). Today, virtually every company has cluster products. 
Most of these products are aimed at availability, with performance scaling as a 
secondary benefit.

Scientific computing on clusters emerged as a competitor to MPPs. In 1993, the 
Beowulf project started with the goal of fulfilling NASA’s desire for a 1-GFLOPS 
computer for less than $50,000. In 1994, a 16-node cluster built from off-the-shelf 
PCs using 80486s achieved that goal. This emphasis led to a variety of software 
interfaces to make it easier to submit, coordinate, and debug large programs or a 
large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to 
increase bandwidth, and several research projects worked on that problem. (One 
commercial result of the low-latency research was the VI interface standard, which 
has been embraced by Infiniband, discussed below.) Low latency then proved useful 
in other applications. For example, in 1997 a cluster of 100 UltraSPARC desktop 
computers at U.C. Berkeley, connected by 160 MB/sec per link Myrinet switches, 
was used to set world records in database sort (sorting 8.6 GB of data originally on 
disk in 1 minute) and in cracking an encrypted message (taking just 3.5 hours to 
decipher a 40-bit DES key).

This research project, called Network of Workstations, also developed the 
Inktomi search engine, which led to a start-up company with the same name. 
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Google followed the example of Inktomi to build search engines from clusters 
of desktop computers rather than large-scale SMPs, which was the strategy of 
the leading search engine, Alta Vista, that Google took over. In 2013, virtually all 
Internet services rely on clusters to serve their millions of customers.

Clusters are also very popular with scientists. One reason is their low cost, which 
enables individual scientists or small groups to own a cluster dedicated to their 
programs. Such clusters can get results faster than waiting in the long job queues of 
the shared MPPs at supercomputer centers, which can stretch to weeks.

For those interested in learning more, Pfister [1998] has written an entertaining 
book on clusters.

Recent Trends in Large-Scale Multiprocessors

In the mid-to-late 1990s, it became clear that the hoped-for growth in the market 
for ultralarge-scale parallel computing was unlikely to occur. Without this market 
growth, it became increasingly obvious that the high-end parallel computing 
market was too small to support the costs of highly customized hardware and 
software designed for a small market. Perhaps the most important trend to come 
out of this observation was that clustering would be used to reach the highest levels 
of performance. There are now three general classes of large-scale multiprocessors:

1. Clusters that integrate standard desktop motherboards using interconnection 
technology, such as Myrinet or Infiniban

2. Multicomputers built from standard microprocessors configured into 
processing elements and connected with a custom interconnect, such as the 
IBM Blue Gene

3. Clusters of small-scale shared memory computers, possibly with vector 
support, including the Earth Simulator

The IBM Blue Gene is the most interesting of these designs, since its rationale 
parallels the underlying causes of the recent trend toward multicore in uniprocessor 
architectures. Blue Gene started as a research project within IBM aimed at the 
protein sequencing and folding problem. The Blue Gene designers observed that 
power was becoming an increasing concern in large-scale multiprocessors and that 
the performance/watt of processors from the embedded space was much better 
than those in the high-end uniprocessor space. If parallelism was the route to high 
performance, why not start with the most efficient building block and simply have 
more of them?

Thus, Blue Gene is constructed using a custom chip that includes an embedded 
PowerPC microprocessor offering half the performance of a high-end PowerPC, 
but at a much smaller fraction of the area and the power. This allows more system 
functions, including the global interconnect, to be integrated onto the same die. 
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The result is a highly replicable and efficient building block, allowing Blue Gene to 
reach much larger processor counts more efficiently. Instead of using stand-alone 
microprocessors or standard desktop boards as building blocks, Blue Gene uses 
processor cores. No doubt such an approach provides much greater efficiency. 
Whether the market can support the cost of a customized design and special 
software remains an open question.

In 2006, a Blue Gene processor at Lawrence Livermore with 32K processors held a 
factor of 2.6 lead in Linpack performance over the third-place system, which consisted 
of 20 SGI Altix 512-processor systems interconnected with Infiniband as a cluster.

Blue Gene’s predecessor was an experimental machine, QCDOD, which 
pioneered the concept of a machine using a lower-power embedded microprocessor 
and tightly integrated interconnect to drive down the cost and power consumption 
of a node.

Looking Further
There is an almost unbounded amount of information on multiprocessors and 
multicomputers: conferences, journal papers, and even books seem to appear faster 
than any single person can absorb the ideas. No doubt many of these papers will 
go unnoticed—not unlike the past. Most of the major architecture conferences 
contain papers on multiprocessors. An annual conference, Supercomputing XY 
(where X and Y are the last two digits of the year), brings together users, architects, 
software developers, and vendors and publishes the proceedings in book, CD-
ROM, and online (see www.scXY.org) form. Two major journals, Journal of Parallel 
and Distributed Computing and the IEEE Transactions on Parallel and Distributed 
Systems, contain papers on all aspects of parallel processing. Several books focusing 
on parallel processing are included in the following references, with Culler et al. 
[1998] being the most recent, large-scale effort. For years, Eugene Miya of NASA 
Ames has collected an online bibliography of parallel processing papers. The 
bibliography, which now contains more than 35,000 entries, is available online at: 
www.ira.uka.de/bibliography/Parallel/Eugene/index.html.

Asanovic et al. [2006] surveyed the wide-ranging challenges for the industry in 
this multicore challenge. That report may be helpful in understanding the depth of 
the various challenges.

In addition to documenting the discovery of concepts now used in practice, 
these references also provide descriptions of many ideas that have been explored 
and found wanting, as well as ideas whose time has just not yet come. Given the 
move toward multicore and multiprocessors as the future of high-performance 
computer architecture, we expect that many new approaches will be explored in 
the years ahead. A few of them will manage to solve the hardware and software 
problems that have been the key to using multiprocessing for the past 40 years!

http://www.scXY.org
http://www.ira.uka.de/bibliography/Parallel/Eugene/index.html
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6.1.2 [5] <§6.2> Next, consider which of the activities could be carried out 
concurrently (e.g., eating breakfast and listening to the news). For each of your 
activities, describe which other activity could be paired with this activity.

6.1.3 [5] <§6.2> For Exercise 6.1.2, what could we change about current systems 
(e.g., showers, clothes, TVs, cars) so that we could perform more tasks in parallel?

6.1.4 [5] <§6.2> Estimate how much shorter time it would take to carry out these 
activities if you tried to carry out as many tasks in parallel as possible.

6.2 You are trying to bake three blueberry pound cakes. Cake ingredients are as 
follows:

1 cup butter, softened
1 cup sugar
4 large eggs
1 teaspoon vanilla extract
1/2 teaspoon salt
1/4 teaspoon nutmeg
1 1/2 cups flour
1 cup blueberries

The recipe for a single cake is as follows:

Step 1: Preheat oven to 325°F (160°C). Grease and flour your cake pan.

Step 2: In large bowl, beat together with a mixer butter and sugar at medium 
speed until light and fluffy. Add eggs, vanilla, salt and nutmeg. Beat until 
thoroughly blended. Reduce mixer speed to low and add flour, 1/2 cup at a time, 
beating just until blended.

Step 3: Gently fold in blueberries. Spread evenly in prepared baking pan. Bake 
for 60 minutes.

6.2.1 [5] <§6.2> Your job is to cook three cakes as efficiently as possible. 
Assuming that you only have one oven large enough to hold one cake, one large 
bowl, one cake pan, and one mixer, come up with a schedule to make three cakes as 
quickly as possible. Identify the bottlenecks in completing this task.

6.2.2 [5] <§6.2> Assume now that you have three bowls, three cake pans and  
three mixers. How much faster is the process now that you have additional resources?

6.2.3 [5] <§6.2> Assume now that you have two friends that will help you cook, 
and that you have a large oven that can accommodate all three cakes. How will this 
change the schedule you arrived at in Exercise 6.2.1 above?

6.2.4 [5] <§6.2> Compare the cake-making task to computing three iterations 
of a loop on a parallel computer. Identify data-level parallelism and task-level 
parallelism in the cake-making loop.
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6.3 Many computer applications involve searching through a set of data and 
sorting the data. A number of efficient searching and sorting algorithms have been 
devised in order to reduce the runtime of these tedious tasks. In this problem we 
will consider how best to parallelize these tasks.

6.3.1 [10] <§6.2> Consider the following binary search algorithm (a classic 
divide and conquer algorithm) that searches for a value X in a sorted N-element 
array A and returns the index of matched entry:

BinarySearch(A[0..N−1], X) {
  low = 0
  high = N −1
  while (low <= high) {
    mid = (low + high) / 2
    if (A[mid] >X)
      high = mid −1
    else if (A[mid] <X)
      low = mid + 1
    else
      return mid // found
  }
  return −1 // not found
}

Assume that you have Y cores on a multi-core processor to run BinarySearch. 
Assuming that Y is much smaller than N, express the speed-up factor you might 
expect to obtain for values of Y and N. Plot these on a graph.

6.3.2 [5] <§6.2> Next, assume that Y is equal to N. How would this affect your 
conclusions in your previous answer? If you were tasked with obtaining the best 
speed-up factor possible (i.e., strong scaling), explain how you might change this 
code to obtain it.

6.4 Consider the following piece of C code:

for (j=2;j<=1000;j++)
  D[j] = D[j−1]+D[j−2];

The RISC-V code corresponding to the above fragment is:

 li x5, 8000
 add x12, x10, x5
 addi x11, x10, 16
LOOP: fld f0, -16(x11)
 fld f1, -8(x11)

 fadd.d f2, f0, f1
 fsd f2, 0(x11)
 addi x11, x11, 8
 ble x11, x12, LOOP
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The latency of an instruction is the number of cycles that must come between that 
instruction and an instruction using the result. Assume floating point instructions 
have the following associated latencies (in cycles):

fadd.d fld fsd

4 6 1

6.4.1 [10] <§6.2> How many cycles does it take to execute this code?

6.4.2 [10] <§6.2> Re-order the code to reduce stalls. Now, how many cycles does 
it take to execute this code? (Hint: You can remove additional stalls by changing the 
offset on the fsd instruction.)

6.4.3 [10] <§6.2> When an instruction in a later iteration of a loop depends 
upon a data value produced in an earlier iteration of the same loop, we say that 
there is a loop-carried dependence between iterations of the loop. Identify the loop-
carried dependences in the above code. Identify the dependent program variable 
and assembly-level registers. You can ignore the loop induction variable j.

6.4.4 [15] <§6.2> Rewrite the code by using registers to carry the data between 
iterations of the loop (as opposed to storing and re-loading the data from main 
memory). Show where this code stalls and calculate the number of cycles required 
to execute. Note that for this problem you will need to use the assembler pseudo-
instruction “fmv.d rd, rs1”, which writes the value of floating-point register 
rs1 into floating-point register rd. Assume that fmv.d executes in a single cycle.

6.4.5 [10] <§6.2> Loop unrolling was described in Chapter  4. Unroll and 
optimize the loop above so that each unrolled loop handles three iterations of 
the original loop. Show where this code stalls and calculate the number of cycles 
required to execute.

6.4.6 [10] <§6.2> The unrolling from Exercise 6.4.5. works nicely because we 
happen to want a multiple of three iterations. What happens if the number of 
iterations is not known at compile time? How can we efficiently handle a number 
of iterations that isn’t a multiple of the number of iterations per unrolled loop?

6.4.7 [15] <§6.2> Consider running this code on a two-node distributed 
memory message passing system. Assume that we are going to use message passing 
as described in Section 6.7, where we introduce a new operation send (x, y) that 
sends to node x the value y, and an operation receive( ) that waits for the value 
being sent to it. Assume that send operations take one cycle to issue (i.e., later 
instructions on the same node can proceed on the next cycle), but take several 
cycles to be received on the receiving node. Receive instructions stall execution on 
the node where they are executed until they receive a message. Can you use such a 
system to speed up the code for this exercise? If so, what is the maximum latency 
for receiving information that can be tolerated? If not, why not?
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6.5 Consider the following recursive mergesort algorithm (another classic divide 
and conquer algorithm). Mergesort was first described by John Von Neumann in 
1945. The basic idea is to divide an unsorted list x of m elements into two sublists 
of about half the size of the original list. Repeat this operation on each sublist, and 
continue until we have lists of size 1 in length. Then starting with sublists of length 
1, “merge” the two sublists into a single sorted list.

Mergesort(m)
  var list left, right, result
  if length(m) ≤ 1
    return m
  else
    var middle = length(m) / 2
    for each x in m up to middle
      add x to left
    for each x in m after middle
      add x to right
    left = Mergesort(left)
    right = Mergesort(right)
    result = Merge(left, right)
    return result

The merge step is carried out by the following code:

Merge(left,right)
  var list result
  while length(left) >0 and length(right) > 0
    if first(left) ≤ first(right)
      append first(left) to result
      left = rest(left)
    else
      append first(right) to result
      right = rest(right)
  if length(left) >0
    append rest(left) to result
  if length(right) >0
    append rest(right) to result
  return result

6.5.1 [10] <§6.2> Assume that you have Y cores on a multicore processor to run 
Mergesort. Assuming that Y is much smaller than length (m), express the speed-up 
factor you might expect to obtain for values of Y and length (m). Plot these on a graph.

6.5.2 [10] <§6.2> Next, assume that Y is equal to length (m). How would this 
affect your conclusions in your previous answer? If you were tasked with obtaining 
the best speed-up factor possible (i.e., strong scaling), explain how you might 
change this code to obtain it.
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6.6 Matrix multiplication plays an important role in a number of applications. 
Two matrices can only be multiplied if the number of columns of the first matrix is 
equal to the number of rows in the second.

Let’s assume we have an m × n matrix A and we want to multiply it by an n × p 
matrix B. We can express their product as an m × p matrix denoted by AB (or A·B). 
If we assign C = AB, and ci,j denotes the entry in C at position (i, j), then for each 

element i and j with 1≤ i ≤ m and 1≤ j ≤ p c a bi j i k k, j
k

n

, ,
=1
∑ . Now we want to 

see if we can parallelize the computation of C. Assume that matrices are laid out in 
memory sequentially as follows: a1,1, a2,1, a3,1, a4,1, …, etc.

6.6.1 [10] <§6.5> Assume that we are going to compute C on both a single-core 
shared-memory machine and a four-core shared-memory machine. Compute 
the speed-up we would expect to obtain on the four-core machine, ignoring any 
memory issues.

6.6.2 [10] <§6.5> Repeat Exercise 6.6.1, assuming that updates to C incur a cache 
miss due to false sharing when consecutive elements are in a row (i.e., index i) are 
updated.

6.6.3 [10] <§6.5> How would you fix the false sharing issue that can occur?

6.7 Consider the following portions of two different programs running at the 
same time on four processors in a symmetric multicore processor (SMP). Assume 
that before this code is run, both x and y are 0.

Core 1: x = 2;

Core 2: y = 2;

Core 3: w = x + y + 1;

Core 4: z = x + y;

6.7.1 [10] <§6.5> What are all the possible resulting values of w,x,y, and z? 
For each possible outcome, explain how we might arrive at those values. You will 
need to examine all possible interleavings of instructions.

6.7.2 [5] <§6.5> How could you make the execution more deterministic so that 
only one set of values is possible?

6.8 The dining philosopher’s problem is a classic problem of synchronization and 
concurrency. The general problem is stated as philosophers sitting at a round table 
doing one of two things: eating or thinking. When they are eating, they are not 
thinking, and when they are thinking, they are not eating. There is a bowl of pasta 
in the center. A fork is placed in between each philosopher. The result is that each 
philosopher has one fork to her left and one fork to her right. Given the nature of 
eating pasta, the philosopher needs two forks to eat, and can only use the forks on 
her immediate left and right. The philosophers do not speak to one another.
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6.8.1 [10] <§6.7> Describe the scenario where none of philosophers ever eats 
(i.e., starvation). What is the sequence of events that happen that lead up to this 
problem?

6.8.2 [10] <§6.7> Describe how we can solve this problem by introducing the 
concept of a priority. Can we guarantee that we will treat all the philosophers fairly? 
Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers. 
Nobody can pick up a fork until the waiter says they can. The waiter has global 
knowledge of all forks. Further, if we impose the policy that philosophers will 
always request to pick up their left fork before requesting to pick up their right 
fork, then we can guarantee to avoid deadlock.

6.8.3 [10] <§6.7> We can implement requests to the waiter as either a queue of 
requests or as a periodic retry of a request. With a queue, requests are handled in 
the order they are received. The problem with using the queue is that we may not 
always be able to service the philosopher whose request is at the head of the queue 
(due to the unavailability of resources). Describe a scenario with five philosophers 
where a queue is provided, but service is not granted even though there are forks 
available for another philosopher (whose request is deeper in the queue) to eat.

6.8.4 [10] <§6.7> If we implement requests to the waiter by periodically repeating 
our request until the resources become available, will this solve the problem 
described in Exercise 6.8.3? Explain.

6.9 Consider the following three CPU organizations:

CPU SS: A two-core superscalar microprocessor that provides out-of-order issue 
capabilities on two function units (FUs). Only a single thread can run on each core 
at a time.

CPU MT: A fine-grained multithreaded processor that allows instructions from 
two threads to be run concurrently (i.e., there are two functional units), though 
only instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from two threads to be run 
concurrently (i.e., there are two functional units), and instructions from either or 
both threads can be issued to run on any cycle.

Assume we have two threads X and Y to run on these CPUs that include the 
following operations:

Thread X Thread Y

A1 – takes three cycles to execute B1 – take two cycles to execute

A2 – no dependences B2 – conflicts for a functional unit with B1

A3 – conflicts for a functional unit with A1 B3 – depends on the result of B2

A4 – depends on the result of A3 B4 – no dependences and takes two cycles to execute
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Assume all instructions take a single cycle to execute unless noted otherwise or 
they encounter a hazard.

6.9.1 [10] <§6.4> Assume that you have one SS CPU. How many cycles will it 
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.2 [10] <§6.4> Now assume you have two SS CPUs. How many cycles will it 
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.3 [10] <§6.4> Assume that you have one MT CPU. How many cycles will it 
take to execute these two threads? How many issue slots are wasted due to hazards?

6.9.4 [10] <§6.4> Assume you have one SMT CPU. How many cycles will it take 
to execute the two threads? How many issue slots are wasted due to hazards?

6.10 Virtualization software is being aggressively deployed to reduce the costs of 
managing today’s high-performance servers. Companies like VMWare, Microsoft, 
and IBM have all developed a range of virtualization products. The general concept, 
described in Chapter 5, is that a hypervisor layer can be introduced between the 
hardware and the operating system to allow multiple operating systems to share 
the same physical hardware. The hypervisor layer is then responsible for allocating 
CPU and memory resources, as well as handling services typically handled by the 
operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted 
operating system and application software. This will require us to rethink how 
multi-core and multiprocessor systems will be designed in the future to support 
the sharing of CPUs and memories by a number of operating systems concurrently.

6.10.1 [30] <§6.4> Select two hypervisors on the market today, and compare 
and contrast how they virtualize and manage the underlying hardware (CPUs and 
memory).

6.10.2 [15] <§6.4> Discuss what changes may be necessary in future multi-core 
CPU platforms in order to better match the resource demands placed on these 
systems. For instance, can multithreading play an effective role in alleviating the 
competition for computing resources?

6.11 We would like to execute the loop below as efficiently as possible. We have 
two different machines, a MIMD machine and a SIMD machine.

for (i=0; i<2000; i++)
 for (j=0; j<3000; j++)

    X_array[i][j] = Y_array[j][i] + 200;

6.11.1 [10] <§6.3> For a four CPU MIMD machine, show the sequence of 
RISC-V instructions that you would execute on each CPU. What is the speed-up 
for this MIMD machine?
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6.11.2 [20] <§6.3> For an eight-wide SIMD machine (i.e., eight parallel SIMD 
functional units), write an assembly program in using your own SIMD extensions 
to RISC-V to execute the loop. Compare the number of instructions executed on 
the SIMD machine to the MIMD machine.

6.12 A systolic array is an example of an MISD machine. A systolic array is a 
pipeline network or “wavefront” of data processing elements. Each of these elements 
does not need a program counter since execution is triggered by the arrival of data. 
Clocked systolic arrays compute in “lock-step” with each processor undertaking 
alternate compute and communication phases.

6.12.1 [10] <§6.3> Consider proposed implementations of a systolic array 
(you can find these on the Internet or in technical publications). Then attempt to 
program the loop provided in Exercise 6.11 using this MISD model. Discuss any 
difficulties you encounter.

6.12.2 [10] <§6.3> Discuss the similarities and differences between an MISD 
and SIMD machines. Answer this question in terms of data-level parallelism.

6.13 Assume we want to execute the DAXPY loop shown on page 501 in RISC-V 
vector assembly on the NVIDIA 8800 GTX GPU described in this chapter. In 
this problem, we will assume that all math operations are performed on single-
precision floating-point numbers (we will rename the loop SAXPY). Assume that 
instructions take the following number of cycles to execute.

Loads Stores Add.S Mult.S

5 2 3 4

6.13.1 [20] <§6.6> Describe how you will constructs warps for the SAXPY loop 
to exploit the eight cores provided in a single multiprocessor.

6.14 Download the CUDA Toolkit and SDK from https://developer.nvidia.com/
cuda-toolkit. Make sure to use the “emurelease” (Emulation Mode) version of the 
code. (You will not need actual NVIDIA hardware for this assignment.) Build the 
example programs provided in the SDK, and confirm that they run on the emulator.

6.14.1 [90] <§6.6> Using the “template” SDK sample as a starting point, write a 
CUDA program to perform the following vector operations:

1) a − b (vector-vector subtraction)

2) a · b (vector dot product)

The dot product of two vectors a = [a1, a2, …, an] and b = [b1, b2, …, bn] is defined as:

a b a b a b a b a b
i

n

i i n n⋅ = = + + +
=
∑

1
1 1 2 2 �

Submit code for each program that demonstrates each operation and verifies the 
correctness of the results.

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
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6.14.2 [90] <§6.6> If you have GPU hardware available, complete a performance 
analysis on your program, examining the computation time for the GPU and a CPU 
version of your program for a range of vector sizes. Explain any results you see.

6.15 AMD has recently announced integrating a graphics processing unit with 
their x86 cores into a single package (though with different clocks for each of the 
cores). This is an example of a heterogeneous multiprocessor system. One of the 
key design points is to allow for fast data communication between the CPU and the 
GPU. Before AMD’s Fusion architecture, communications were needed between 
discrete CPU and GPU chips. Presently, the plan is to use multiple (at least 16) PCI 
express channels to facilitate intercommunication.

6.15.1 [25] <§6.6> Compare the bandwidth and latency associated with these 
two interconnect technologies.

6.16 Refer to Figure 6.14b, which shows an n-cube interconnect topology 
of order 3 that interconnects eight nodes. One attractive feature of an n-cube 
interconnection network topology is its ability to sustain broken links and still 
provide connectivity.

6.16.1 [10] <§6.8> Develop an equation that computes how many links in the 
n-cube (where n is the order of the cube) can fail and we can still guarantee an 
unbroken link will exist to connect any node in the n-cube.

6.16.2 [10] <§6.8> Compare the resiliency to failure of n-cube to a fully 
connected interconnection network. Plot a comparison of reliability as a function 
of the added number of links for the two topologies.

6.17 Benchmarking is a field of study that involves identifying representative 
workloads to run on specific computing platforms in order to be able to objectively 
compare performance of one system to another. In this exercise we will compare 
two classes of benchmarks: the Whetstone CPU benchmark and the PARSEC 
Benchmark suite. Select one program from PARSEC. All programs should be freely 
available on the Internet. Consider running multiple copies of Whetstone versus 
running the PARSEC Benchmark on any of the systems described in Section 6.11.

6.17.1 [60] <§6.10> What is inherently different between these two classes of 
workload when run on these multi-core systems?

6.17.2 [60] <§6.10> In terms of the Roofline Model, how dependent will the 
results you obtain when running these benchmarks be on the amount of sharing 
and synchronization present in the workload used?

6.18 When performing computations on sparse matrices, latency in the memory 
hierarchy becomes much more of a factor. Sparse matrices lack the spatial locality 
in the datastream typically found in matrix operations. As a result, new matrix 
representations have been proposed.
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One of the earliest sparse matrix representations is the Yale Sparse Matrix Format. 
It stores an initial sparse m × n matrix, M in row form using three one-dimensional 
arrays. Let R be the number of nonzero entries in M. We construct an array A 
of length R that contains all nonzero entries of M (in left-to-right top-to-bottom 
order). We also construct a second array IA of length m+1 (i.e., one entry per row, 
plus one). IA(i) contains the index in A of the first nonzero element of row i. Row i 
of the original matrix extends from A(IA(i)) to A(IA(i+1)−1). The third array, JA, 
contains the column index of each element of A, so it also is of length R.

6.18.1 [15] <§6.10> Consider the sparse matrix X below and write C code that 
would store this code in Yale Sparse Matrix Format.

Row 1 [1, 2, 0, 0, 0, 0]
Row 2 [0, 0, 1, 1, 0, 0]
Row 3 [0, 0, 0, 0, 9, 0]
Row 4 [2, 0, 0, 0, 0, 2]
Row 5 [0, 0, 3, 3, 0, 7]
Row 6 [1, 3, 0, 0, 0, 1]

6.18.2 [10] <§6.10> In terms of storage space, assuming that each element in 
matrix X is single-precision floating point, compute the amount of storage used to 
store the matrix above in Yale Sparse Matrix Format.

6.18.3 [15] <§6.10> Perform matrix multiplication of matrix X by matrix Y 
shown below.

[2, 4, 1, 99, 7, 2]

Put this computation in a loop, and time its execution. Make sure to increase 
the number of times this loop is executed to get good resolution in your timing 
measurement. Compare the runtime of using a naïve representation of the matrix, 
and the Yale Sparse Matrix Format.

6.18.4 [15] <§6.10> Can you find a more efficient sparse matrix representation 
(in terms of space and computational overhead)?

6.19 In future systems, we expect to see heterogeneous computing platforms 
constructed out of heterogeneous CPUs. We have begun to see some appear in the 
embedded processing market in systems that contain both floating-point DSPs and 
microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate-speed multi-core CPU (with a floating-point unit) that can 
execute multiple instructions per cycle.

CPU B—A fast single-core integer CPU (i.e., no floating-point unit) that can 
execute a single instruction per cycle.

CPU C—A slow vector CPU (with floating-point capability) that can execute 
multiple copies of the same instruction per cycle.



564 Chapter 6 Parallel Processors from Client to Cloud

Assume that our processors run at the following frequencies:

CPU A CPU B CPU C

1 GHz 3 GHz 250 MHz

CPU A can execute two instructions per cycle, CPU B can execute one  
instruction per cycle, and CPU C can execute eight instructions (through the  
same instruction) per cycle. Assume all operations can complete execution in a 
single cycle of latency without any hazards.
All three CPUs have the ability to perform integer arithmetic, though CPU B 
cannot perform floating point arithmetic. CPU A and B have an instruction set 
similar to a RISC-V processor. CPU C can only perform floating point add and 
subtract operations, as well as memory loads and stores. Assume all CPUs have 
access to shared memory and that synchronization has zero cost.
The task at hand is to compare two matrices X and Y that each contain 1024 × 1024 
floating-point elements. The output should be a count of the number of indices 
where the value in X was larger or equal to the value in Y.

6.19.1 [10] <§6.11> Describe how you would partition the problem on the three 
different CPUs to obtain the best performance.

6.19.2 [10] <§6.11> What kind of instruction would you add to the vector CPU 
C to obtain better performance?

6.20 This question looks at the amount of queuing that is occurring in the system 
given a maximum transaction processing rate, and the latency observed on average 
for a transaction. The latency includes both the service time (which is computed by 
the maximum rate) and the queue time.
Assume a quad-core computer system can process database queries at a steady 
state maximum rate of rate requests per second. Also assume that each transaction 
takes, on average, lat ms to process. For each of the pairs in the table, answer the 
following questions:

Average Transaction Latency Maximum transaction processing rate

1 ms 5000/sec

2 ms 5000/sec

1 ms 10,000/sec

2 ms 10,000/sec

For each of the pairs in the table, answer the following questions:

6.20.1 [10] <§6.11> On average, how many requests are being processed at any 
given instant?

6.20.2 [10] <§6.11> If we move to an eight-core system, ideally, what will happen  
to the system throughput (i.e., how many queries/second will the computer process)?

6.20.3 [10] <§6.11> Discuss why we rarely obtain this kind of speed-up by 
simply increasing the number of cores.
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§6.1, page 494: False. Task-level parallelism can help sequential applications and 
sequential applications can be made to run on parallel hardware, although it is 
more challenging.
§6.2, page 499: False. Weak scaling can compensate for a serial portion of the 
program that would otherwise limit scalability, but not so for strong scaling.
§6.3, page 504: True, but they are missing useful vector features like gather-scatter 
and vector length registers that improve the efficiency of vector architectures. 
(As an elaboration in this section mentions, the AVX2 SIMD extensions offers 
indexed loads via a gather operation but not scatter for indexed stores. The Haswell 
generation x86 microprocessor is the first to support AVX2.)
§6.4, page 509: 1. True. 2. True.
§6.5, page 513: False. Since the shared address is a physical address, multiple 
tasks each in their own virtual address spaces can run well on a shared memory 
multiprocessor.
§6.6, page 521: False. Graphics DRAM chips are prized for their higher bandwidth.
§6.7, page 526: 1. False. Sending and receiving a message is an implicit 
synchronization, as well as a way to share data. 2. True.
§6.8, page 528: True.
§6.10, page 540: True. We likely need innovation at all levels of the hardware and 
software stack for parallel computing to succeed.

Answers to  
Check Yourself
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 A.1 Introduction

This appendix provides a brief discussion of the basics of logic design. It does not 
replace a course in logic design, nor will it enable you to design significant working 
logic systems. If you have little or no exposure to logic design, however, this 
appendix will provide sufficient background to understand all the material in this 
book. In addition, if you are looking to understand some of the motivation behind 
how computers are implemented, this material will serve as a useful introduction. 
If your curiosity is aroused but not sated by this appendix, the references at the end 
provide several additional sources of information.

Section A.2 introduces the basic building blocks of logic, namely, gates. Section 
A.3 uses these building blocks to construct simple combinational logic systems, 
which contain no memory. If you have had some exposure to logic or digital 
systems, you will probably be familiar with the material in these first two sections. 
Section A.5 shows how to use the concepts of Sections A.2 and A.3 to design an 
ALU for the RISC-V processor. Section A.6 shows how to make a fast adder, and 
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may be safely skipped if you are not interested in this topic. Section A.7 is a short 
introduction to the topic of clocking, which is necessary to discuss how memory 
elements work. Section A.8 introduces memory elements, and Section A.9 extends 
it to focus on random access memories; it describes both the characteristics that 
are important to understanding how they are used, as discussed in Chapter 4, and 
the background that motivates many of the aspects of memory hierarchy design 
discussed in Chapter 5. Section A.10 describes the design and use of finite-state 
machines, which are sequential logic blocks. If you intend to read  Appendix C, 
you should thoroughly understand the material in Sections A.2 through A.10. If 
you intend to read only the material on control in Chapter 4, you can skim the 
appendices; however, you should have some familiarity with all the material except 
Section A.11. Section A.11 is intended for those who want a deeper understanding 
of clocking methodologies and timing. It explains the basics of how edge-triggered 
clocking works, introduces another clocking scheme, and briefly describes the 
problem of synchronizing asynchronous inputs.

Throughout this appendix, where it is appropriate, we also include segments 
to demonstrate how logic can be represented in Verilog, which we introduce in 
Section A.4. A more extensive and complete Verilog tutorial is available online on 
the Companion Web site for this book.

 A.2 Gates, Truth Tables, and Logic Equations

The electronics inside a modern computer are digital. Digital electronics operate 
with only two voltage levels of interest: a high voltage and a low voltage. All other 
voltage values are temporary and occur while transitioning between the values. 
(As we discuss later in this section, a possible pitfall in digital design is sampling 
a signal when it not clearly either high or low.) The fact that computers are digital 
is also a key reason they use binary numbers, since a binary system matches the 
underlying abstraction inherent in the electronics. In various logic families, the 
values and relationships between the two voltage values differ. Thus, rather than 
refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are 
asserted; or signals that are (logically) false, or 0, or are deasserted. The values 0 
and 1 are called complements or inverses of one another.

Logic blocks are categorized as one of two types, depending on whether they 
contain memory. Blocks without memory are called combinational; the output of 
a combinational block depends only on the current input. In blocks with memory, 
the outputs can depend on both the inputs and the value stored in memory, which 
is called the state of the logic block. In this section and the next, we will focus 

asserted signal A signal 
that is (logically) true, 
or 1.

deasserted signal  
A signal that is (logically) 
false, or 0.
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only on combinational logic. After introducing different memory elements in 
Section A.8, we will describe how sequential logic, which is logic including state,  
is designed.

Truth Tables
Because a combinational logic block contains no memory, it can be completely 
specified by defining the values of the outputs for each possible set of input values. 
Such a description is normally given as a truth table. For a logic block with n 
inputs, there are 2n entries in the truth table, since there are that many possible 
combinations of input values. Each entry specifies the value of all the outputs for 
that particular input combination.

Truth Tables

Consider a logic function with three inputs, A, B, and C, and three outputs, D, 
E, and F. The function is defined as follows: D is true if at least one input is true, 
E is true if exactly two inputs are true, and F is true only if all three inputs are 
true. Show the truth table for this function.

The truth table will contain 23 = 8 entries. Here it is:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Truth tables can completely describe any combinational logic function; however, 
they grow in size quickly and may not be easy to understand. Sometimes we want 
to construct a logic function that will be 0 for many input combinations, and we 
use a shorthand of specifying only the truth table entries for the nonzero outputs. 
This approach is used in Chapter 4 and  Appendix C.

combinational logic  
A logic system whose 
blocks do not contain 
memory and hence 
compute the same output 
given the same input.

sequential logic  
A group of logic elements 
that contain memory 
and hence whose value 
depends on the inputs 
as well as the current 
contents of the memory.

ANSWER

EXAMPLE
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Boolean Algebra
Another approach is to express the logic function with logic equations. This 
is done with the use of Boolean algebra (named after Boole, a 19th-century 
mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in 
typical formulations, there are three operators:

■	 The OR operator is written as +, as in A + B. The result of an OR operator is 
1 if either of the variables is 1. The OR operation is also called a logical sum, 
since its result is 1 if either operand is 1.

■	 The AND operator is written as · , as in A · B. The result of an AND operator 
is 1 only if both inputs are 1. The AND operator is also called logical product, 
since its result is 1 only if both operands are 1.

■	 The unary operator NOT is written as A. The result of a NOT operator is 1 only if 
the input is 0. Applying the operator NOT to a logical value results in an inversion 
or negation of the value (i.e., if the input is 0 the output is 1, and vice versa).

There are several laws of Boolean algebra that are helpful in manipulating logic 
equations.

■	 Identity law: A + 0 = A and A · 1 = A

■	 Zero and One laws: A + 1 = 1 and A · 0 = 0

■	 Inverse laws: A A 1 and A A⋅ � 0

■	 Commutative laws: A + B = B + A and A · B = B · A

■	 Associative laws: A + (B + C) = (A + B) + C and A · (B · C) = (A · B) · C

■	 Distributive laws: A · (B + C) = (A · B) + (A · C) and  
A + (B · C) = (A + B) · (A + C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that 
are discussed in more depth in the exercises.

Any set of logic functions can be written as a series of equations with an output 
on the left-hand side of each equation and a formula consisting of variables and the 
three operators above on the right-hand side.
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Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the 
previous example.

Here’s the equation for D:

D A B C

F is equally simple:

F A B C� ⋅ ⋅

E is a little tricky. Think of it in two parts: what must be true for E to be true 
(two of the three inputs must be true), and what cannot be true (all three 
cannot be true). Thus we can write E as

E A B A C B C A B C(( ) ( ) ( )) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅

We can also derive E by realizing that E is true only if exactly two of the inputs 
are true. Then we can write E as an OR of the three possible terms that have 
two true inputs and one false input:

E A B C A C B B C A( ) ( ) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Proving that these two expressions are equivalent is explored in the exercises.

In Verilog, we describe combinational logic whenever possible using the assign 
statement, which is described beginning on page A-23. We can write a definition for 
E using the Verilog exclusive-OR operator as assign E = (A & (B ^ C)) | (B & C 
& ~A), which is yet another way to describe this function. D and F have even simpler 
representations, which are just like the corresponding C code: assign D = A | B | C and 
assign F = A & B & C.

ANSWER

EXAMPLE
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Gates
Logic blocks are built from gates that implement basic logic functions. For example, 
an AND gate implements the AND function, and an OR gate implements the OR 
function. Since both AND and OR are commutative and associative, an AND or an 
OR gate can have multiple inputs, with the output equal to the AND or OR of all 
the inputs. The logical function NOT is implemented with an inverter that always 
has a single input. The standard representation of these three logic building blocks 
is shown in Figure A.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles” 
to the inputs or outputs of a gate to cause the logic value on that input line or 
output line to be inverted. For example, Figure A.2.2 shows the logic diagram for 
the function A B� , using explicit inverters on the left and bubbled inputs and 
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and 
inversion; several of the exercises give you the opportunity to try implementing 
some common logic functions with gates. In the next section, we’ll see how an 
implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that 
gate is inverting. The two common inverting gates are called NOR and NAND and 
correspond to inverted OR and AND gates, respectively. NOR and NAND gates are 
called universal, since any logic function can be built using this one gate type. The 
exercises explore this concept further.

gate A device that 
implements basic logic 
functions, such as AND 
or OR.

NOR gate An inverted 
OR gate.

NAND gate An inverted 
AND gate.

Are the following two logical expressions equivalent? If not, find a setting of the 
variables to show they are not:

■	 ( ) ( ) ( )A B C A C B B C A⋅ ⋅ ⋅ ⋅ ⋅ ⋅� �

■	 B A C C A⋅ ⋅ ⋅( )�

Check  
Yourself

FIGURE A.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from 
left to right. The signals to the left of each symbol are the inputs, while the output appears on the right. The 
AND and OR gates both have two inputs. Inverters have a single input.

A
B

A
B

FIGURE A.2.2 Logic gate implementation of A B+  using explicit inverts on the left and 
bubbled inputs and outputs on the right. This logic function can be simplified to A B�  or in Verilog, 
A & ~ B.
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 A.3 Combinational Logic

In this section, we look at a couple of larger logic building blocks that we use 
heavily, and we discuss the design of structured logic that can be automatically 
implemented from a logic equation or truth table by a translation program. Last, 
we discuss the notion of an array of logic blocks.

Decoders
One logic block that we will use in building larger components is a decoder. The 
most common type of decoder has an n-bit input and 2n outputs, where only one 
output is asserted for each input combination. This decoder translates the n-bit 
input into a signal that corresponds to the binary value of the n-bit input. The 
outputs are thus usually numbered, say, Out0, Out1, …, Out2n −1. If the value of 
the input is i, then Outi will be true and all other outputs will be false. Figure A.3.1 
shows a 3-bit decoder and the truth table. This decoder is called a 3-to-8 decoder 
since there are three inputs and eight (23) outputs. There is also a logic element 
called an encoder that performs the inverse function of a decoder, taking 2n inputs 
and producing an n-bit output.

decoder A logic block 
that has an n-bit input and 
2n outputs, where only 
one output is asserted for 
each input combination.

stuptuOstupnI

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

a. A 3-bit decoder

FIGURE A.3.1 A 3-bit decoder has three inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the 
output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the decoder says that the 
input signal is 3 bits wide.



A-10 Appendix A The Basics of Logic Design

Multiplexors
One basic logic function that we use quite often in Chapter 4 is the multiplexor. 
A multiplexor might more properly be called a selector, since its output is one of 
the inputs that is selected by a control. Consider the two-input multiplexor. The 
left side of Figure A.3.2 shows this multiplexor has three inputs: two data values 
and a selector (or control) value. The selector value determines which of the 
inputs becomes the output. We can represent the logic function computed by a 
two-input multiplexor, shown in gate form on the right side of Figure A.3.2, as 
C A S B S( ) ( )⋅ ⋅ .

Multiplexors can be created with an arbitrary number of data inputs. When 
there are only two inputs, the selector is a single signal that selects one of the inputs 
if it is true (1) and the other if it is false (0). If there are n data inputs, there will 
need to be log2 n  selector inputs. In this case, the multiplexor basically consists of 
three parts:

1. A decoder that generates n signals, each indicating a different input value

2. An array of n AND gates, each combining one of the inputs with a signal 
from the decoder

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we often label the data inputs 
numerically (i.e., 0, 1, 2, 3, …, n −1) and interpret the data selector inputs as a 
binary number. Sometimes, we make use of a multiplexor with undecoded selector 
signals.

Multiplexors are easily represented combinationally in Verilog by using if 
expressions. For larger multiplexors, case statements are more convenient, but care 
must be taken to synthesize combinational logic.

selector value Also 
called control value. The 
control signal that is used 
to select one of the input 
values of a multiplexor 
as the output of the 
multiplexor.
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FIGURE A.3.2 A two-input multiplexor on the left and its implementation with gates on 
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input 
(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when 
they are wider than two inputs. We show how to do this beginning on page A-23.
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Two-Level Logic and PLAs
As pointed out in the previous section, any logic function can be implemented with 
only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic 
function can be written in a canonical form, where every input is either a true or 
complemented variable and there are only two levels of gates—one being AND and 
the other OR—with a possible inversion on the final output. Such a representation 
is called a two-level representation, and there are two forms, called sum of products 
and product of sums. A sum-of-products representation is a logical sum (OR) of 
products (terms using the AND operator); a product of sums is just the opposite. 
In our earlier example, we had two equations for the output E:

E A B A C B C A B C(( ) ( ) ( )) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅

and

E A B C A C B B C A( ) ( ) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅

This second equation is in a sum-of-products form: it has two levels of logic and 
the only inversions are on individual variables. The first equation has three levels 
of logic.

Elaboration: We can also write E as a product of sums:

E A B C A C B B C A( ) ( ) ( )⋅ ⋅

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the 
exercises.

In this text, we use the sum-of-products form. It is easy to see that any logic 
function can be represented as a sum of products by constructing such a 
representation from the truth table for the function. Each truth table entry for 
which the function is true corresponds to a product term. The product term 
consists of a logical product of all the inputs or the complements of the inputs, 
depending on whether the entry in the truth table has a 0 or 1 corresponding to 
this variable. The logic function is the logical sum of the product terms where the 
function is true. This is more easily seen with an example.

sum of products A form 
of logical representation 
that employs a logical sum 
(OR) of products (terms 
joined using the AND 
operator).
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Sum of Products

Show the sum-of-products representation for the following truth table for D.

Inputs Outputs

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

There are four product terms, since the function is true (1) for four different 
input combinations. These are:

A B C
A B C
A B C
A B C

⋅ ⋅
⋅ ⋅
⋅ ⋅
⋅ ⋅

Thus, we can write the function for D as the sum of these terms:

D A B C A B C A B C A B C( ) ( ) ( ) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Note that only those truth table entries for which the function is true generate 
terms in the equation.

We can use this relationship between a truth table and a two-level representation 
to generate a gate-level implementation of any set of logic functions. A set of logic 
functions corresponds to a truth table with multiple output columns, as we saw in 
the example on page A-5. Each output column represents a different logic function, 
which may be directly constructed from the truth table.

The sum-of-products representation corresponds to a common structured-logic 
implementation called a programmable logic array (PLA). A PLA has a set of 
inputs and corresponding input complements (which can be implemented with a 
set of inverters), and two stages of logic. The first stage is an array of AND gates that 
form a set of product terms (sometimes called minterms); each product term can 
consist of any of the inputs or their complements. The second stage is an array of 
OR gates, each of which forms a logical sum of any number of the product terms. 
Figure A.3.3 shows the basic form of a PLA.

ANSWER

programmable logic 
array (PLA)  
A structured-logic 
element composed 
of a set of inputs and 
corresponding input 
complements and two 
stages of logic: the first 
generates product terms 
of the inputs and input 
complements, and the 
second generates sum 
terms of the product 
terms. Hence, PLAs 
implement logic functions 
as a sum of products.

minterms Also called 
product terms. A set 
of logic inputs joined 
by conjunction (AND 
operations); the product 
terms form the first logic 
stage of the programmable 
logic array (PLA).

EXAMPLE
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A PLA can directly implement the truth table of a set of logic functions with 
multiple inputs and outputs. Since each entry where the output is true requires 
a product term, there will be a corresponding row in the PLA. Each output 
corresponds to a potential row of OR gates in the second stage. The number of OR 
gates corresponds to the number of truth table entries for which the output is true. 
The total size of a PLA, such as that shown in Figure A.3.3, is equal to the sum of 
the size of the AND gate array (called the AND plane) and the size of the OR gate 
array (called the OR plane). Looking at Figure A.3.3, we can see that the size of 
the AND gate array is equal to the number of inputs times the number of different 
product terms, and the size of the OR gate array is the number of outputs times the 
number of product terms.

A PLA has two characteristics that help make it an efficient way to implement a 
set of logic functions. First, only the truth table entries that produce a true value for 
at least one output have any logic gates associated with them. Second, each different 
product term will have only one entry in the PLA, even if the product term is used 
in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defined in the example on page A-5. Show 
a PLA implementation of this example for D, E, and F.

AND gates

OR gates

Product terms

Outputs

Inputs

FIGURE A.3.3 The basic form of a PLA consists of an array of AND gates followed by an 
array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or 
inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms.

EXAMPLE
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Here is the truth table we constructed earlier:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Since there are seven unique product terms with at least one true value in the 
output section, there will be seven columns in the AND plane. The number of 
rows in the AND plane is three (since there are three inputs), and there are also 
three rows in the OR plane (since there are three outputs). Figure A.3.4 shows 
the resulting PLA, with the product terms corresponding to the truth table 
entries from top to bottom.

Rather than drawing all the gates, as we do in Figure A.3.4, designers often show 
just the position of AND gates and OR gates. Dots are used on the intersection of a 
product term signal line and an input line or an output line when a corresponding 
AND gate or OR gate is required. Figure A.3.5 shows how the PLA of Figure A.3.4 
would look when drawn in this way. The contents of a PLA are fixed when the PLA 
is created, although there are also forms of PLA-like structures, called PLAs, that 
can be programmed electronically when a designer is ready to use them.

ROMs
Another form of structured logic that can be used to implement a set of logic 
functions is a read-only memory (ROM). A ROM is called a memory because it 
has a set of locations that can be read; however, the contents of these locations are 
fixed, usually at the time the ROM is manufactured. There are also programmable 
ROMs (PROMs) that can be programmed electronically, when a designer knows 
their contents. There are also erasable PROMs; these devices require a slow erasure 
process using ultraviolet light, and thus are used as read-only memories, except 
during the design and debugging process.

A ROM has a set of input address lines and a set of outputs. The number of 
addressable entries in the ROM determines the number of address lines: if the 

read-only memory 
(ROM) A memory 
whose contents are 
designated at creation 
time, after which the 
contents can only be read. 
ROM is used as structured 
logic to implement a 
set of logic functions by 
using the terms in the 
logic functions as address 
inputs and the outputs as 
bits in each word of the 
memory.

programmable ROM 
(PROM) A form of 
read-only memory that 
can be programmed 
when a designer knows its 
contents.

ANSWER
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ROM contains 2m addressable entries, called the height, then there are m input 
lines. The number of bits in each addressable entry is equal to the number of output 
bits and is sometimes called the width of the ROM. The total number of bits in the 
ROM is equal to the height times the width. The height and width are sometimes 
collectively referred to as the shape of the ROM.

A
B
C

E

F

Outputs
D

Inputs

FIGURE A.3.4 The PLA for implementing the logic function described in the example.

A ROM can encode a collection of logic functions directly from the truth table. 
For example, if there are n functions with m inputs, we need a ROM with m address 
lines (and 2m entries), with each entry being n bits wide. The entries in the input 
portion of the truth table represent the addresses of the entries in the ROM, while 
the contents of the output portion of the truth table constitute the contents of the 
ROM. If the truth table is organized so that the sequence of entries in the input 
portion constitutes a sequence of binary numbers (as have all the truth tables 
we have shown so far), then the output portion gives the ROM contents in order 
as well. In the example starting on page A-13, there were three inputs and three 
outputs. This leads to a ROM with 23 = 8 entries, each 3 bits wide. The contents of 
those entries in increasing order by address are directly given by the output portion 
of the truth table that appears on page A-14.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full 
output word for every possible input combination. A PLA is only partially decoded. 
This means that a ROM will always contain more entries. For the earlier truth table 
on page A-14, the ROM contains entries for all eight possible inputs, whereas the 
PLA contains only the seven active product terms. As the number of inputs grows, 
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the number of entries in the ROM grows exponentially. In contrast, for most real 
logic functions, the number of product terms grows much more slowly (see the 
examples in  Appendix C). This difference makes PLAs generally more efficient 
for implementing combinational logic functions. ROMs have the advantage of 
being able to implement any logic function with the matching number of inputs 
and outputs. This advantage makes it easier to change the ROM contents if the logic 
function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also 
translate small blocks of combinational logic into a collection of gates that can 
be placed and wired automatically. Although some small collections of gates are 
usually not area-efficient, for small logic functions they have less overhead than the 
rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a common 
choice is a field programming device; we describe these devices in Section A.12.

A

B

C

Inputs

AND plane

OR plane

D

E

F

Outputs

FIGURE A.3.5 A PLA drawn using dots to indicate the components of the product terms 
and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the 
width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the 
input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding 
product term appears in the corresponding output.
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Don’t Cares
Often in implementing some combinational logic, there are situations where we do 
not care what the value of some output is, either because another output is true or 
because a subset of the input combinations determines the values of the outputs. 
Such situations are referred to as don’t cares. Don’t cares are important because they 
make it easier to optimize the implementation of a logic function.

There are two types of don’t cares: output don’t cares and input don’t cares, both 
of which can be represented in a truth table. Output don’t cares arise when we don’t 
care about the value of an output for some input combination. They appear as Xs in 
the output portion of a truth table. When an output is a don’t care for some input 
combination, the designer or logic optimization program is free to make the output 
true or false for that input combination. Input don’t cares arise when an output 
depends on only some of the inputs, and they are also shown as Xs, though in the 
input portion of the truth table.

Don’t Cares

Consider a logic function with inputs A, B, and C defined as follows:

■	 If A or C is true, then output D is true, whatever the value of B.

■	 If A or B is true, then output E is true, whatever the value of C.

■	 Output F is true if exactly one of the inputs is true, although we don’t care 
about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don’t cares. 
How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

EXAMPLE

ANSWER
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This requires seven product terms without optimization. The truth table 
written with output don’t cares looks like this:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 X

1 0 0 1 1 X

1 0 1 1 1 X

1 1 0 1 1 X

1 1 1 1 1 X

If we also use the input don’t cares, this truth table can be further simplified 
to yield the following:

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

X 1 1 1 1 X

1 X X 1 1 X

This simplified truth table requires a PLA with four minterms, or it can be 
implemented in discrete gates with one two-input AND gate and three OR gates 
(two with three inputs and one with two inputs). This compares to the original 
truth table that had seven minterms and would have required four AND gates.

Logic minimization is critical to achieving efficient implementations. One tool 
useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps 
represent the truth table graphically, so that product terms that may be combined 
are easily seen. Nevertheless, hand optimization of significant logic functions 
using Karnaugh maps is impractical, both because of the size of the maps and their 
complexity. Fortunately, the process of logic minimization is highly mechanical and 
can be performed by design tools. In the process of minimization, the tools take 
advantage of the don’t cares, so specifying them is important. The textbook references 
at the end of this appendix provide further discussion on logic minimization, 
Karnaugh maps, and the theory behind such minimization algorithms.

Arrays of Logic Elements
Many of the combinational operations to be performed on data have to be done 
to an entire word (64 bits) of data. Thus we often want to build an array of logic 
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elements, which we can represent simply by showing that a given operation will 
happen to an entire collection of inputs. Inside a machine, much of the time we 
want to select between a pair of buses. A bus is a collection of data lines that is 
treated together as a single logical signal. (The term bus is also used to indicate a 
shared collection of lines with multiple sources and uses.)

For example, in the RISC-V instruction set, the result of an instruction that is 
written into a register can come from one of two sources. A multiplexor is used to 
choose which of the two buses (each 64 bits wide) will be written into the Result 
register. The 1-bit multiplexor, which we showed earlier, will need to be replicated 
64 times.

We indicate that a signal is a bus rather than a single 1-bit line by showing it with 
a thicker line in a figure. Most buses are 64 bits wide; those that are not are explicitly 
labeled with their width. When we show a logic unit whose inputs and outputs are 
buses, this means that the unit must be replicated a sufficient number of times to 
accommodate the width of the input. Figure A.3.6 shows how we draw a multiplexor 
that selects between a pair of 64-bit buses and how this expands in terms of 1-bit-
wide multiplexors. Sometimes we need to construct an array of logic elements 
where the inputs for some elements in the array are outputs from earlier elements. 
For example, this is how a multibit-wide ALU is constructed. In such cases, we must 
explicitly show how to create wider arrays, since the individual elements of the array 
are no longer independent, as they are in the case of a 64-bit-wide multiplexor.

bus In logic design, a 
collection of data lines 
that is treated together 
as a single logical signal; 
also, a shared collection 
of lines with multiple 
sources and uses.
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a. A 64-bit wide 2-to-1 multiplexor b. The 64-bit wide multiplexor is actually 
an array of 64 1-bit multiplexors

FIGURE A.3.6 A multiplexor is arrayed 64 times to perform a selection between two  
64-bit inputs. Note that there is still only one data selection signal used for all 64 1-bit multiplexors.
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 A.4 Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done 
using a hardware description language. Such a language serves two purposes. 
First, it provides an abstract description of the hardware to simulate and debug the 
design. Second, with the use of logic synthesis and hardware compilation tools, this 
description can be compiled into the hardware implementation.

In this section, we introduce the hardware description language Verilog and 
show how it can be used for combinational design. In the rest of the appendix, 
we expand the use of Verilog to include design of sequential logic. In the optional 
sections of Chapter  4 that appear online, we use Verilog to describe processor 
implementations. In the optional section from Chapter 5 that appears online, we 
use system Verilog to describe cache controller implementations. System Verilog 
adds structures and some other useful features to Verilog.

Verilog is one of the two primary hardware description languages; the other 
is VHDL. Verilog is somewhat more heavily used in industry and is based on C, 
as opposed to VHDL, which is based on Ada. The reader generally familiar with 
C will find the basics of Verilog, which we use in this appendix, easy to follow. 

hardware description 
language  
A programming language 
for describing hardware, 
used for generating 
simulations of a hardware 
design and also as input 
to synthesis tools that can 
generate actual hardware.

Readers already familiar with VHDL should find the concepts simple, provided 
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural definition of a digital 
system. A behavioral specification describes how a digital system functionally 
operates. A structural specification describes the detailed organization of a digital 
system, usually using a hierarchical description. A structural specification can be 
used to describe a hardware system in terms of a hierarchy of basic elements such 
as gates and switches. Thus, we could use Verilog to describe the exact contents of 
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog 
or VHDL to structurally describe only the datapath, relying on logic synthesis to 
generate the control from a behavioral description. In addition, most CAD systems 
provide extensive libraries of standardized parts, such as ALUs, multiplexors, 
register files, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that 
the specification be written with an eye toward the eventual synthesis and the 
desired outcome. For our simple designs, this primarily means making clear what 
we expect to be implemented in combinational logic and what we expect to require 
in sequential logic. In most of the examples we use in this section and the remainder 
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
There are two primary datatypes in Verilog:

1. A wire specifies a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not 
necessarily correspond to an actual register in an implementation, although 
it often will.

A register or wire, named X, that is 64 bits wide is declared as an array: reg 
[63:0] X or wire [63:0] X, which also sets the index of 0 to designate the 
least significant bit of the register. Because we often want to access a subfield of a 
register or wire, we can refer to a contiguous set of bits of a register or wire with the 
notation [starting bit: ending bit], where both indices must be constant 
values.

An array of registers is used for a structure like a register file or memory. Thus, 
the declaration

reg [63:0] registerfile[0:31]

specifies a variable registerfile that is equivalent to a RISC-V registerfile, where 
register 0 is the first. When accessing an array, we can refer to a single element, as 
in C, using the notation registerfile[regnum].

Verilog One of the two 
most common hardware 
description languages.

VHDL One of the two 
most common hardware 
description languages.

behavioral 
specification Describes 
how a digital system 
operates functionally.

structural 
specification Describes 
how a digital system is 
organized in terms of a 
hierarchical connection of 
elements.

hardware synthesis 
tools Computer-aided 
design software that 
can generate a gate-
level design based on 
behavioral descriptions of 
a digital system.

wire In Verilog, specifies 
a combinational signal.

reg In Verilog, a register.

Parity is a function in which the output depends on the number of 1s in the input. 
For an even parity function, the output is 1 if the input has an even number of ones. 
Suppose a ROM is used to implement an even parity function with a 4-bit input. 
Which of A, B, C, or D represents the contents of the ROM?

Address A B C D

0 0 1 0 1

1 0 1 1 0

2 0 1 0 1

3 0 1 1 0

4 0 1 0 1

5 0 1 1 0

6 0 1 0 1

7 0 1 1 0

8 1 0 0 1

9 1 0 1 0

10 1 0 0 1

11 1 0 1 0

12 1 0 0 1

13 1 0 1 0

14 1 0 0 1

15 1 0 1 0

Check  
Yourself
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Readers already familiar with VHDL should find the concepts simple, provided 
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural definition of a digital 
system. A behavioral specification describes how a digital system functionally 
operates. A structural specification describes the detailed organization of a digital 
system, usually using a hierarchical description. A structural specification can be 
used to describe a hardware system in terms of a hierarchy of basic elements such 
as gates and switches. Thus, we could use Verilog to describe the exact contents of 
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog 
or VHDL to structurally describe only the datapath, relying on logic synthesis to 
generate the control from a behavioral description. In addition, most CAD systems 
provide extensive libraries of standardized parts, such as ALUs, multiplexors, 
register files, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that 
the specification be written with an eye toward the eventual synthesis and the 
desired outcome. For our simple designs, this primarily means making clear what 
we expect to be implemented in combinational logic and what we expect to require 
in sequential logic. In most of the examples we use in this section and the remainder 
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
There are two primary datatypes in Verilog:

1. A wire specifies a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not 
necessarily correspond to an actual register in an implementation, although 
it often will.

A register or wire, named X, that is 64 bits wide is declared as an array: reg 
[63:0] X or wire [63:0] X, which also sets the index of 0 to designate the 
least significant bit of the register. Because we often want to access a subfield of a 
register or wire, we can refer to a contiguous set of bits of a register or wire with the 
notation [starting bit: ending bit], where both indices must be constant 
values.

An array of registers is used for a structure like a register file or memory. Thus, 
the declaration

reg [63:0] registerfile[0:31]

specifies a variable registerfile that is equivalent to a RISC-V registerfile, where 
register 0 is the first. When accessing an array, we can refer to a single element, as 
in C, using the notation registerfile[regnum].

Verilog One of the two 
most common hardware 
description languages.

VHDL One of the two 
most common hardware 
description languages.

behavioral 
specification Describes 
how a digital system 
operates functionally.

structural 
specification Describes 
how a digital system is 
organized in terms of a 
hierarchical connection of 
elements.

hardware synthesis 
tools Computer-aided 
design software that 
can generate a gate-
level design based on 
behavioral descriptions of 
a digital system.

wire In Verilog, specifies 
a combinational signal.

reg In Verilog, a register.
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The possible values for a register or wire in Verilog are

■	 0 or 1, representing logical false or true

■	 X, representing unknown, the initial value given to all registers and to any 
wire not connected to something

■	 Z, representing the high-impedance state for tristate gates, which we will not 
discuss in this appendix

Constant values can be specified as decimal numbers as well as binary, octal, or 
hexadecimal. We often want to say exactly how large a constant field is in bits. This 
is done by prefixing the value with a decimal number specifying its size in bits. For 
example:

■	 4’b0100 specifies a 4-bit binary constant with the value 4, as does 4’d4.

■	 −8’h4 specifies an 8-bit constant with the value −4 (in two’s complement 
representation)

Values can also be concatenated by placing them within { } separated by commas. 
The notation {x{bitfield}} replicates bitfield x times. For example:

■	 {32{2’b01}} creates a 64-bit value with the pattern 0101 … 01.

■	 {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A 
and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C, including 
the arithmetic operators (+, −, *. /), the logical operators (&, |, ~), the comparison 
operators (= =, ! =, >, < , < =, > =), the shift operators (<<, >>), and C’s 
conditional operator (?, which is used in the form condition ? expr1 :expr2 
and returns expr1 if the condition is true and expr2 if it is false). Verilog adds 
a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying 
the logical operator to all the bits of an operand. For example, &A returns the value 
obtained by ANDing all the bits of A together, and ̂ A returns the reduction obtained 
by using exclusive OR on all the bits of A.

Which of the following define exactly the same value?

1. 8’bimoooo

2. 8’hF0

3. 8’d240

4. {{4{1’b1}},{4{1’b0}}}

5. {4’b1,4’b0)

Check  
Yourself
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Structure of a Verilog Program
A Verilog program is structured as a set of modules, which may represent anything 
from a collection of logic gates to a complete system. Modules are similar to classes 
in C++, although not nearly as powerful. A module specifies its input and output 
ports, which describe the incoming and outgoing connections of a module. A 
module may also declare additional variables. The body of a module consists of:

■	 initial constructs, which can initialize reg variables

■	 Continuous assignments, which define only combinational logic

■	 always constructs, which can define either sequential or combinational 
logic

■	 Instances of other modules, which are used to implement the module being 
defined

Representing Complex Combinational Logic in Verilog
A continuous assignment, which is indicated with the keyword assign, acts like 
a combinational logic function: the output is continuously assigned the value, and 
a change in the input values is reflected immediately in the output value. Wires 
may only be assigned values with continuous assignments. Using continuous 
assignments, we can define a module that implements a half-adder, as Figure A.4.1 
shows.

Assign statements are one sure way to write Verilog that generates combinational 
logic. For more complex structures, however, assign statements may be awkward or 
tedious to use. It is also possible to use the always block of a module to describe 
a combinational logic element, although care must be taken. Using an always 
block allows the inclusion of Verilog control constructs, such as if-then-else, case 
statements, for statements, and repeat statements, to be used. These statements are 
similar to those in C with small changes.

An always block specifies an optional list of signals on which the block is 
sensitive (in a list starting with @). The always block is re-evaluated if any of the 

FIGURE A.4.1 A Verilog module that defines a half-adder using continuous assignments.
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listed signals changes value; if the list is omitted, the always block is constantly re-
evaluated. When an always block is specifying combinational logic, the sensitivity 
list should include all the input signals. If there are multiple Verilog statements to 
be executed in an always block, they are surrounded by the keywords begin and 
end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin
  Verilog statements including assignments and other
control statements end

Reg variables may only be assigned inside an always block, using a procedural 
assignment statement (as distinguished from continuous assignment we saw 
earlier). There are, however, two different types of procedural assignments. The 
assignment operator = executes as it does in C; the right-hand side is evaluated, 
and the left-hand side is assigned the value. Furthermore, it executes like the 
normal C assignment statement: that is, it is completed before the next statement 
is executed. Hence, the assignment operator = has the name blocking assignment. 
This blocking can be useful in the generation of sequential logic, and we will return 
to it shortly. The other form of assignment (nonblocking) is indicated by <=. In 
nonblocking assignment, all right-hand sides of the assignments in an always 
group are evaluated and the assignments are done simultaneously. As a first 
example of combinational logic implemented using an always block, Figure A.4.2 
shows the implementation of a 4-to-1 multiplexor, which uses a case construct to 
make it easy to write. The case construct looks like a C switch statement. Figure 
A.4.3 shows a definition of a RISC-V ALU, which also uses a case statement.

Since only reg variables may be assigned inside always blocks, when we want to 
describe combinational logic using an always block, care must be taken to ensure 
that the reg does not synthesize into a register. A variety of pitfalls are described in 
the elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic, 
but other Verilog structures, even when in always blocks, can yield unexpected results 
during logic synthesis. The most common problem is creating sequential logic by 
implying the existence of a latch or register, which results in an implementation that is 
both slower and more costly than perhaps intended. To ensure that the logic that you 
intend to be combinational is synthesized that way, make sure you do the following:

1. Place all combinational logic in a continuous assignment or an always block.

2. Make sure that all the signals used as inputs appear in the sensitivity list of an 
always block.

3. Ensure that every path through an always block assigns a value to the exact 
same set of bits.

The last of these is the easiest to overlook; read through the example in Figure 
A.5.15 to convince yourself that this property is adhered to.

sensitivity list The list of 
signals that specifies when 
an always block should 
be re-evaluated.

blocking assignment In 
Verilog, an assignment 
that completes before 
the execution of the next 
statement.

nonblocking 
assignment An 
assignment that continues 
after evaluating the right-
hand side, assigning the 
left-hand side the value 
only after all right-hand 
sides are evaluated.



 A.4 Using a Hardware Description Language A-25

FIGURE A.4.2 A Verilog definition of a 4-to-1 multiplexor with 64-bit inputs, using a case 
statement. The case statement acts like a C switch statement, except that in Verilog only the code 
associated with the selected case is executed (as if each case state had a break at the end) and there is no  
fall-through to the next statement.

FIGURE A.4.3 A Verilog behavioral definition of a RISC-V ALU. This could be synthesized using a module library containing basic 
arithmetic and logical operations.
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 A.5 Constructing a Basic Arithmetic  
Logic Unit

The arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical operations 
like AND and OR. This section constructs an ALU from four hardware building 
blocks (AND and OR gates, inverters, and multiplexors) and illustrates how 
combinational logic works. In the next section, we will see how addition can be 
sped up through more clever designs.

Because the RISC-V registers are 64 bits wide, we need a 64-bit-wide ALU. 
Let’s assume that we will connect 64 1-bit ALUs to create the desired ALU. We’ll 
therefore start by constructing a 1-bit ALU.

A 1-Bit ALU
The logical operations are easiest, because they map directly onto the hardware 
components in Figure A.2.1.

The 1-bit logical unit for AND and OR looks like Figure A.5.1. The multiplexor 
on the right then selects a AND b or a OR b, depending on whether the value 
of Operation is 0 or 1. The line that controls the multiplexor is shown in color 
to distinguish it from the lines containing data. Notice that we have renamed the 
control and output lines of the multiplexor to give them names that reflect the 
function of the ALU.

The next function to include is addition. An adder must have two inputs for the 
operands and a single-bit output for the sum. There must be a second output to 
pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder 
must be included as an input, we need a third input. This input is called CarryIn. 
Figure A.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what 
addition is supposed to do, we can specify the outputs of this “black box” based on 
its inputs, as Figure A.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations, 
and these equations can in turn be implemented with logic gates. Let’s do CarryOut. 
Figure A.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut b CarryIn a CarryIn a b a b CarryIn( ) ( ) ( ) ( )⋅ ⋅ ⋅ ⋅ ⋅

Assuming all values are initially zero, what are the values of A and B after executing 
this Verilog code inside an always block?

C = 1;
A <= C;
B = C;

Check  
Yourself

ALU n. [Arthritic 
Logic Unit or (rare) 
Arithmetic Logic Unit] 
A random-number 
generator supplied 
as standard with all 
computer systems.
Stan Kelly-Bootle, The 
Devil’s DP Dictionary, 
1981
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Operation

1

0

Result

a

b

FIGURE A.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE A.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it 
has three inputs and two outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

stuptuOstupnI

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE A.5.3 Input and output specification for a 1-bit adder.
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If a · b · CarryIn is true, then all of the other three terms must also be true, so we 
can leave out this last term corresponding to the fourth line of the table. We can 
thus simplify the equation to

CarryOut b CarryIn a CarryIn a b( ) ( ) ( )⋅ ⋅ ⋅

Figure A.5.5 shows that the hardware within the adder black box for CarryOut 
consists of three AND gates and one OR gate. The three AND gates correspond 
exactly to the three parenthesized terms of the formula above for CarryOut, and 
the OR gate sums the three terms.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE A.5.4 Values of the inputs when CarryOut is a 1.

a

b

CarryIn

CarryOut

FIGURE A.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic 
for the Sum output given in the equation on this page.

The Sum bit is set when exactly one input is 1 or when all three inputs are 1. The 
Sum results in a complex Boolean equation (recall that a means NOT a):

Sum a b CarryIn a b CarryIn a b CarryIn a b CarryIn( ) ( ) ( ) (⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ))

The drawing of the logic for the Sum bit in the adder black box is left as an exercise 
for the reader.
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Figure A.5.6 shows a 1-bit ALU derived by combining the adder with the earlier 
components. Sometimes designers also want the ALU to perform a few more 
simple operations, such as generating 0. The easiest way to add an operation is to 
expand the multiplexor controlled by the Operation line and, for this example, to 
connect 0 directly to the new input of that expanded multiplexor.

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

FIGURE A.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure A.5.5).

A 64-Bit ALU
Now that we have completed the 1-bit ALU, the full 64-bit ALU is created by 
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure A.5.7 
shows a 64-bit ALU. Just as a single stone can cause ripples to radiate to the shores 
of a quiet lake, a single carry out of the least significant bit (Result0) can ripple all 
the way through the adder, causing a carry out of the most significant bit (Result63). 
Hence, the adder created by directly linking the carries of 1-bit adders is called a 
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on 
page A-38.

Subtraction is the same as adding the negative version of an operand, and this 
is how adders perform subtraction. Recall that the shortcut for negating a two’s 
complement number is to invert each bit (sometimes called the one’s complement) 
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses 
between b and b, as Figure A.5.8 shows.

Suppose we connect 64 of these 1-bit ALUs, as we did in Figure A.5.7. The added 
multiplexor gives the option of b or its inverted value, depending on Binvert, but 



a0

Operation

CarryIn
ALU0

CarryOutb0

CarryIn

a1 CarryIn
ALU1

CarryOutb1

Result0

Result1

a2 CarryIn
ALU2

CarryOutb2

a63 CarryIn
ALU63

b63

Result2

Result63

...
...

...

FIGURE A.5.7 A 64-bit ALU constructed from 64 1-bit ALUs. CarryOut of the less significant bit 
is connected to the CarryIn of the more significant bit. This organization is called ripple carry.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

FIGURE A.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By 
selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.
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this is only one step in negating a two’s complement number. Notice that the least 
significant bit still has a CarryIn signal, even though it’s unnecessary for addition. 
What happens if we set this CarryIn to 1 instead of 0? The adder will then calculate 
a + b + 1. By selecting the inverted version of b, we get exactly what we want:

a b a b a b a b1 1( ) ( )

The simplicity of the hardware design of a two’s complement adder helps explain 
why two’s complement representation has become the universal standard for 
integer computer arithmetic.

We also wish to add a NOR function. Instead of adding a separate gate for NOR, 
we can reuse much of the hardware already in the ALU, like we did for subtract. The 
insight comes from the following truth about NOR:

( )a b a b⋅

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called 
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure 
A.5.9 shows that change.

Tailoring the 64-Bit ALU to RISC-V
These four operations—add, subtract, AND, OR—are found in the ALU of almost 
every computer, and the operations of most RISC-V instructions can be performed 
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set less than instruction (slt). 
Recall that the operation produces 1 if rs1 < rs2, and 0 otherwise. Consequently, 
slt will set all but the least significant bit to 0, with the least significant bit set 
according to the comparison. For the ALU to perform slt, we first need to expand 
the three-input multiplexor in Figure A.5.9 to add an input for the slt result. We 
call that new input Less and use it only for slt.

The top drawing of Figure A.5.10 shows the new 1-bit ALU with the expanded 
multiplexor. From the description of slt above, we must connect 0 to the Less 
input for the upper 63 bits of the ALU, since those bits are always set to 0. What 
remains to consider is how to compare and set the least significant bit for set less 
than instructions.

What happens if we subtract b from a? If the difference is negative, then a < b since

 ( ) ( )( ) ( )a b a b b b a b< ⇒ + < ⇒ <0 0

We want the least significant bit of a set less than operation to be a 1 if a < b; 
that is, a 1 if a − b is negative and a 0 if it’s positive. This desired result corresponds 
exactly to the sign bit values: 1 means negative and 0 means positive. Following 
this line of argument, we need only connect the sign bit from the adder output to 
the least significant bit to get set less than. (Alas, this argument only holds if the 
subtraction does not overflow; we will explore a complete implementation in the 
exercises.)
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Unfortunately, the Result output from the most significant ALU bit in the top of 
Figure A.5.10 for the slt operation is not the output of the adder; the ALU output 
for the slt operation is obviously the input value Less.

Thus, we need a new 1-bit ALU for the most significant bit that has an extra 
output bit: the adder output. The bottom drawing of Figure A.5.10 shows the 
design, with this new adder output line called Set. As long as we need a special 
ALU for the most significant bit, we added the overflow detection logic since it is 
also associated with that bit. Figure A.5.11 shows the 64-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and 
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We 
can therefore simplify control of the ALU by combining the CarryIn and Binvert to 
a single control line called Bnegate.

To further tailor the ALU to the RISC-V instruction set, we must support 
conditional branch instructions such as Branch if Equal (beq), which branches if 
two registers are equal. The easiest way to test equality with the ALU is to subtract 
b from a and then test to see if the result is 0, since

( )a b a b0 ⇒

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

FIGURE A.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a
 
and b. By 

selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b.
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Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2�

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

FIGURE A.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b, and 
(bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that is 
connected to perform the set on less than operation (see Figure A.5.11); the bottom has a direct output from 
the adder for the less than comparison called Set. (See Exercise A.24 at the end of this appendix to see how 
to calculate overflow with fewer inputs.)
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Thus, if we add hardware to test if the result is 0, we can test for equality. The 
simplest way is to OR all the outputs together and then send that signal through 
an inverter:

Zero Result Result Result Result Result63 62 )( � 2 1 0

Figure A.5.12 shows the revised 64-bit ALU. We can think of the combination of 
the 1-bit Ainvert line, the 1-bit Bnegate line, and the 2-bit Operation lines as 4-bit 
control lines for the ALU, telling it to perform add, subtract, AND, OR, NOR, or 

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a63 CarryIn
ALU63
Less

b63

Result2

Result63

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

FIGURE A.5.11 A 64-bit ALU constructed from the 63 copies of the 1-bit ALU in the top of 
Figure A.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 0 
except for the least significant bit, which is connected to the Set output of the most significant bit. If the ALU 
performs a − b and we select the input 3 in the multiplexor in Figure A.5.10, then Result = 0 … 001 if a < b, 
and Result = 0 … 000 otherwise.
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...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a63 CarryIn
ALU63
Less

b63

Result2

Result63

...
...

...

Bnegate

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn
...

...
Zero

FIGURE A.5.12 The final 64-bit ALU. This adds a Zero detector to Figure A.5.11.

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
0111 set less than
1100 NOR

FIGURE A.5.13 The values of the three ALU control lines, Ainvert, Bnegate, and Operation, 
and the corresponding ALU operations.

set less than. Figure A.5.13 shows the ALU control lines and the corresponding 
ALU operation.

Finally, now that we have seen what is inside a 64-bit ALU, we will use the 
universal symbol for a complete ALU, as shown in Figure A.5.14.
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ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

FIGURE A.5.14 The symbol commonly used to represent an ALU, as shown in Figure 
A.5.12. This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

FIGURE A.5.15 A Verilog behavioral definition of a RISC-V ALU.

Defining the RISC-V ALU in Verilog
Figure A.5.15 shows how a combinational RISC-V ALU might be specified in 
Verilog; such a specification would probably be compiled using a standard parts 
library that provided an adder, which could be instantiated. For completeness, we 
show the ALU control for RISC-V in Figure A.5.16, which is used in Chapter 4, 
where we build a Verilog version of the RISC-V datapath.
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The next question is, “How quickly can this ALU add two 64-bit operands?” 
We can determine the a and b inputs, but the CarryIn input depends on the 
operation in the adjacent 1-bit adder. If we trace all the way through the chain of 
dependencies, we connect the most significant bit to the least significant bit, so 
the most significant bit of the sum must wait for the sequential evaluation of all 64 
1-bit adders. This sequential chain reaction is too slow to be used in time-critical 
hardware. The next section explores how to speed-up addition. This topic is not 
crucial to understanding the rest of the appendix and may be skipped.

FIGURE A.5.16 The RISC-V ALU control: a simple piece of combinational control logic.

Suppose you wanted to add the operation NOT (a AND b), called NAND. How 
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since 
( )a b a b⋅  and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add 
new logic to calculate NAND.

Check  
Yourself

 A.6 Faster Addition: Carry Lookahead

The key to speeding up addition is determining the carry in to the high-order bits 
sooner. There are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log2 of the number of bits in the adder. These 
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anticipatory signals are faster because they go through fewer gates in sequence, but 
it takes many more gates to anticipate the proper carry.

A key to understanding fast-carry schemes is to remember that, unlike software, 
hardware executes in parallel whenever inputs change.

Fast Carry Using “Infinite” Hardware
As we mentioned earlier, any equation can be represented in two levels of logic. 
Since the only external inputs are the two operands and the CarryIn to the least 
significant bit of the adder, in theory we could calculate the CarryIn values to all 
the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1, 
so the formula is

CarryIn b CarryIn a CarryIn a b2 1 1 1 1 1 1( ) ( ) ( )⋅ ⋅ ⋅

Similarly, CarryIn1 is defined as

CarryIn b CarryIn a CarryIn a b1 0 0 0 0 0 0( ) ( ) ( )⋅ ⋅ ⋅

Using the shorter and more traditional abbreviation of ci for CarryIni, we can 
rewrite the formulas as

c b c a c a b
c b c a c a b
2 1 1 1 1 1 1
1 0 0 0 0 0 0

( ) ( ) ( )
( ) ( ) ( )
⋅ ⋅ ⋅
⋅ ⋅ ⋅

Substituting the definition of c1 for the first equation results in this formula:

c a a b a a c a b c
b a b b a c

2 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0

( ) ( ) ( )
( ) ( )
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ (( ) ( )b b c a b1 0 0 1 1⋅ ⋅ ⋅

You can imagine how the equation expands as we get to higher bits in the adder; 
it grows rapidly with the number of bits. This complexity is reflected in the cost of 
the hardware for fast carry, making this simple scheme prohibitively expensive for 
wide adders.

Fast Carry Using the First Level of Abstraction: Propagate 
and Generate
Most fast-carry schemes limit the complexity of the equations to simplify the 
hardware, while still making substantial speed improvements over ripple carry. 
One such scheme is a carry-lookahead adder. In Chapter  1, we said computer 
systems cope with complexity by using levels of abstraction. A carry-lookahead 
adder relies on levels of abstraction in its implementation.
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Let’s factor our original equation as a first step:

c b c a c a b
a b a b c

i i i i i i i
i i i i i

1 ( ) ( ) ( )
( ) ( )
⋅ ⋅ ⋅
⋅ ⋅

If we were to rewrite the equation for c2 using this formula, we would see some 
repeated patterns:

c a b a b a b a b c2 1 1 1 1 0 0 0 0 0( ) ( ) (( ) ( ) )⋅ ⋅ ⋅ ⋅ ⋅

Note the repeated appearance of (ai · bi) and (ai + bi) in the formula above. These 
two important factors are traditionally called generate (gi) and propagate (pi):

g a b
p a b

i i i
i i i

⋅

Using them to define ci + 1, we get

c g p ci i i i1 ⋅

To see where the signals get their names, suppose gi is 1. Then

c g p c p ci i i i i i1 1 1⋅ ⋅

That is, the adder generates a CarryOut (ci + 1) independent of the value of  
CarryIn (ci). Now suppose that gi is 0 and pi is 1. Then

c g p c c ci i i i i i1 0 1⋅ ⋅

That is, the adder propagates CarryIn to a CarryOut. Putting the two together, 
CarryIni + 1 is a 1 if either gi is 1 or both pi is 1 and CarryIni is 1.

As an analogy, imagine a row of dominoes set on edge. The end domino can be 
tipped over by pushing one far away, provided there are no gaps between the two. 
Similarly, a carry out can be made true by a generate far away, provided all the 
propagates between them are true.

Relying on the definitions of propagate and generate as our first level of 
abstraction, we can express the CarryIn signals more economically. Let’s show it 
for 4 bits:

c g p c
c g p g p p c
c g p g p p

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

( )
( ) ( )
( ) (

⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅ gg p p p c

c g p g p p g p p p g
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ( )

( ) ( ) ( )
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(( )p p p p c3 2 1 0 0⋅ ⋅ ⋅ ⋅
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These equations just represent common sense: CarryIni is a 1 if some earlier adder 
generates a carry and all intermediary adders propagate a carry. Figure A.6.1 uses 
plumbing to try to explain carry lookahead.

Even this simplified form leads to large equations and, hence, considerable logic 
even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction
First, we consider this 4-bit adder with its carry-lookahead logic as a single building 
block. If we connect them in ripple carry fashion to form a 16-bit adder, the add 
will be faster than the original with a little more hardware.

To go faster, we’ll need carry lookahead at a higher level. To perform carry 
lookahead for 4-bit adders, we need to propagate and generate signals at this higher 
level. Here they are for the four 4-bit adder blocks:

P p p p p
P p p p p
P p p p p
P p p p

0 3 2 1 0
1 7 6 5 4
2 11 10 9 8
3 15 14 13

�

�

�

�

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ p12

That is, the “super” propagate signal for the 4-bit abstraction (Pi) is true only if each 
of the bits in the group will propagate a carry.

For the “super” generate signal (Gi), we care only if there is a carry out of the 
most significant bit of the 4-bit group. This obviously occurs if generate is true 
for that most significant bit; it also occurs if an earlier generate is true and all the 
intermediate propagates, including that of the most significant bit, are also true:

G g p g p p g p p p g
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g p p p g
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) ( )
( ) ( ) ( pp g

G g p g p p g p p p g
9 8

3 15 15 14 15 14 13 15 14 13 12
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
)

( ) ( ) ( )

Figure A.6.2 updates our plumbing analogy to show P0 and G0.
Then the equations at this higher level of abstraction for the carry in for each 

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure A.6.3) are very similar to 
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page A-40:

C G P c
C G P G P P c
C G P G P P

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1
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( ) (
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( ) ( ) ( )
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⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

PP P P P c3 2 1 0 0⋅ ⋅ ⋅ ⋅ )
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c4

p3

p2

p1

p0

g3

g2

g1

g0

c0

c2

p1

p0

g1

g0

c0

c1

p0

g0

c0

FIGURE A.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using 
water pipes and valves. The wrenches are turned to open and close valves. Water is shown in color. The 
output of the pipe (ci + 1) will be full if either the nearest generate value (gi) is turned on or if the i propagate 
value (pi) is on and there is water further upstream, either from an earlier generate or a propagate with water 
behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all 
propagates.
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Figure A.6.3 shows 4-bit adders connected with such a carry-lookahead unit. 
The exercises explore the speed differences between these carry schemes, different 
notations for multibit propagate and generate signals, and the design of a 64-bit 
adder.

G0

p3

p2

p1

g3

g2

g1

g0

P0
p3

p2

p1

p0

FIGURE A.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0. 
P0 is open only if all four propagates (pi) are open, while water flows in G0 only if at least one generate (gi) is 
open and all the propagates downstream from that generate are open.
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a4 CarryIn

ALU1
  P1
  G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
  P0
  G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1
gi + 1

C1

Result4–7

a8 CarryIn

ALU2
  P2
  G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2
gi + 2

C2

Result8–11

a12 CarryIn

ALU3
  P3
  G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3
gi + 3

C3

Result12–15

ci + 4
C4

CarryOut

FIGURE A.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the 
carries come from the carry-lookahead unit, not from the 4-bit ALUs.
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Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a:    0001 1010 0011 0011two

b:    1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi (ai·bi) and 
propagate pi (ai + bi):

a:    0001 1010 0011 0011
b:    1110 0101 1110 1011
gi:   0000 0000 0010 0011
pi:   1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super” 
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P
P
P
P

3 1 1 1 1 1
2 1 1 1 1 1
1 1 1 1 1 1
0 1 0 1 1 0

� �

� �

� �

� �

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

The “super” generates are more complex, so use the following equations:
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Finally, CarryOut15 is

C G P G P P G P P P G
P P P P c

4 3 3 2 3 2 1 3 2 1 0
3 2 1 0 0

0

( ) ( ) ( )
( )
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

(( ) ( ) ( ) ( )1 0 1 1 1 1 1 1 0 1 1 1 0 0
0 0 1 0 0 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Hence, there is a carry out when adding these two 16-bit numbers.

EXAMPLE

ANSWER
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The reason carry lookahead can make carries faster is that all logic begins 
evaluating the moment the clock cycle begins, and the result will not change once 
the output of each gate stops changing. By taking the shortcut of going through 
fewer gates to send the carry in signal, the output of the gates will stop changing 
sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the 
relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate 
takes the same time for a signal to pass through it. Time is estimated by simply 
counting the number of gates along the path through a piece of logic. Compare 
the number of gate delays for paths of two 16-bit adders, one using ripple carry 
and one using two-level carry lookahead.

Figure A.5.5 on page A-28 shows that the carry out signal takes two gate 
delays per bit. Then the number of gate delays between a carry in to the least 
significant bit and the carry out of the most significant is 32 × 2 = 64.

For carry lookahead, the carry out of the most significant bit is just C4, 
defined in the example. It takes two levels of logic to specify C4 in terms of 
Pi and Gi (the OR of several AND terms). Pi is specified in one level of logic 
(AND) using pi, and Gi is specified in two levels using pi and gi, so the worst 
case for this next level of abstraction is two levels of logic. pi and gi are each 
one level of logic, defined in terms of ai and bi. If we assume one gate delay for 
each level of logic in these equations, the worst case is 2 + 2 + 1 = 5 gate delays.

Hence, for the path from carry in to carry out, the 16-bit addition by a 
carry-lookahead adder is six times faster, using this very simple estimate of 
hardware speed.

Summary
Carry lookahead offers a faster path than waiting for the carries to ripple through 
all 32 1-bit adders. This faster path is paved by two signals, generate and propagate. 

EXAMPLE

ANSWER
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The former creates a carry regardless of the carry input, and the latter passes a carry 
along. Carry lookahead also gives another example of how abstraction is important 
in computer design to cope with complexity.

Using the simple estimate of hardware speed above with gate delays, what is the 
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate 
delays and 64-bit adds are seven gate delays.

2. They are about the same speed, since 64-bit adds need more levels of logic in 
the 16-bit adder.

3. Eight-bit adds are faster than 64 bits, even with carry lookahead.

Check  
Yourself

Elaboration: We have now accounted for all but one of the arithmetic and logical 
operations for the core RISC-V instruction set: the ALU in Figure A.5.14 omits support of 
shift instructions. It would be possible to widen the ALU multiplexor to include a left shift 
by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a 
barrel shifter, which can shift from 1 to 63 bits in no more time than it takes to add two 
64-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page A-28 can 
be expressed more simply by using a more powerful gate than AND and OR. An exclusive 
OR gate is true if the two operands disagree; that is,

x y and y≠ ⇒ == ⇒1 0x

In some technologies, exclusive OR is more efficient than two levels of AND and OR 
gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum a b CarryIn� ⊕ ⊕

Also, we have drawn the ALU the traditional way, using gates. Computers are designed 
today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters 
take advantage of these switches and have many fewer multiplexors than shown in our 
designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of generate 
and propagate symbols breaks down when you have more than two levels. An alternate 
notation that scales is g

i..j
 and p

i..j
 for the generate and propagate signals for bits i to j. 

Thus, g1..1 is generated for bit 1, g4..1 is for bits 4 to 1, and g16..1 is for bits 16 to 1.
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 A.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss 
briefly the topic of clocks. This short section introduces the topic and is similar 
to the discussion found in Section 4.2. More details on clocking and timing 
methodologies are presented in Section A.11.

Clocks are needed in sequential logic to decide when an element that contains 
state should be updated. A clock is simply a free-running signal with a fixed cycle 
time; the clock frequency is simply the inverse of the cycle time. As shown in Figure 
A.7.1, the clock cycle time or clock period is divided into two portions: when the 
clock is high and when the clock is low. In this text, we use only edge-triggered 
clocking. This means that all state changes occur on a clock edge. We use an  
edge-triggered methodology because it is simpler to explain. Depending on the 
technology, it may or may not be the best choice for a clocking methodology.

edge-triggered 
clocking A clocking 
scheme in which all state 
changes occur on a clock 
edge.

clocking 
methodology The 
approach used to 
determine when data are 
valid and stable relative to 
the clock.

Clock period Rising edge

Falling edge

FIGURE A.7.1 A clock signal oscillates between high and low values. The clock period is the 
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and 
causes state to be changed.

In an edge-triggered methodology, either the rising edge or the falling edge of 
the clock is active and causes state changes to occur. As we will see in the next 
section, the state elements in an edge-triggered design are implemented so that the 
contents of the state elements only change on the active clock edge. The choice of 
which edge is active is influenced by the implementation technology and does not 
affect the concepts involved in designing the logic.

The clock edge acts as a sampling signal, causing the value of the data input to a 
state element to be sampled and stored in the state element. Using an edge trigger 
means that the sampling process is essentially instantaneous, eliminating problems 
that could occur if signals were sampled at slightly different times.

The major constraint in a clocked system, also called a synchronous system, is 
that the signals that are written into state elements must be valid when the active 

state element  
A memory element.

synchronous system A 
memory system that 
employs clocks and where 
data signals are read only 
when the clock indicates 
that the signal values are 
stable.
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clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value 
will not change again until the inputs change. Since combinational circuits cannot 
have feedback, if the inputs to a combinational logic unit are not changed, the 
outputs will eventually become valid.

Figure A.7.2 shows the relationship among the state elements and the 
combinational logic blocks in a synchronous, sequential logic design. The state 
elements, whose outputs change only after the clock edge, provide valid inputs 
to the combinational logic block. To ensure that the values written into the state 
elements on the active clock edge are valid, the clock must have a long enough 
period so that all the signals in the combinational logic block stabilize, and then the 
clock edge samples those values for storage in the state elements. This constraint 
sets a lower bound on the length of the clock period, which must be long enough 
for all state element inputs to be valid.

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock 
signal, since we are assuming that all state elements are updated on the same clock 
edge. Some state elements will be written on every clock edge, while others will be 
written only under certain conditions (such as a register being updated). In such 
cases, we will have an explicit write signal for that state element. The write signal 
must still be gated with the clock so that the update occurs only on the clock edge if 
the write signal is active. We will see how this is done and used in the next section.

One other advantage of an edge-triggered methodology is that it is possible 
to have a state element that is used as both an input and output to the same 
combinational logic block, as shown in Figure A.7.3. In practice, care must be 
taken to prevent races in such situations and to ensure that the clock period is long 
enough; this topic is discussed further in Section A.11.

Now that we have discussed how clocking is used to update state elements, we 
can discuss how to construct the state elements.

State
element

1

State
element

2
Combinational logic

Clock cycle

FIGURE A.7.2 The inputs to a combinational logic block come from a state element, and 
the outputs are written into a state element. The clock edge determines when the contents of the 
state elements are updated.
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Elaboration Occasionally, designers find it useful to have a small number of state 
elements that change on the opposite clock edge from the majority of the state elements. 
Doing so requires extreme care, because such an approach has effects on both the 
inputs and the outputs of the state element. Why then would designers ever do this? 
Consider the case where the amount of combinational logic before and after a state 
element is small enough so that each could operate in one-half clock cycle, rather than 
the more usual full clock cycle. Then the state element can be written on the clock edge 
corresponding to a half clock cycle, since the inputs and outputs will both be usable 
after one-half clock cycle. One common place where this technique is used is in register 
files, where simply reading or writing the register file can often be done in half the normal 
clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead.

 A.8 Memory Elements: Flip-Flops, Latches, 
and Registers

In this section and the next, we discuss the basic principles behind memory 
elements, starting with flip-flops and latches, moving on to register files, and 
finishing with memories. All memory elements store state: the output from any 
memory element depends both on the inputs and on the value that has been stored 
inside the memory element. Thus all logic blocks containing a memory element 
contain state and are sequential.

register file A state 
element that consists 
of a set of registers that 
can be read and written 
by supplying a register 
number to be accessed.

State
element

Combinational logic

FIGURE A.7.3 An edge-triggered methodology allows a state element to be read and 
written in the same clock cycle without creating a race that could lead to undetermined 
data values. Of course, the clock cycle must still be long enough so that the input values are stable when 
the active clock edge occurs.

R

S

Q

Q

FIGURE A.8.1 A pair of cross-coupled NOR gates can store an internal value. The value 
stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or 
Q is asserted, Q will be deasserted and vice versa.
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The simplest type of memory elements are unclocked; that is, they do not have 
any clock input. Although we only use clocked memory elements in this text, an 
unclocked latch is the simplest memory element, so let’s look at this circuit first. 
Figure A.8.1 shows an S-R latch (set-reset latch), built from a pair of NOR gates 
(OR gates with inverted outputs). The outputs Q and Q represent the value of the 
stored state and its complement. When neither S nor R are asserted, the cross-
coupled NOR gates act as inverters and store the previous values of Q and Q.

For example, if the output, Q, is true, then the bottom inverter produces a false 
output (which is Q), which becomes the input to the top inverter, which produces 
a true output, which is Q, and so on. If S is asserted, then the output Q will be 
asserted and Q will be deasserted, while if R is asserted, then the output Q will be 
asserted and Q will be deasserted. When S and R are both deasserted, the last values 
of Q and Q will continue to be stored in the cross-coupled structure. Asserting S 
and R simultaneously can lead to incorrect operation: depending on how S and R 
are deasserted, the latch may oscillate or become metastable (this is described in 
more detail in Section A.11).

This cross-coupled structure is the basis for more complex memory elements 
that allow us to store data signals. These elements contain additional gates used to 
store signal values and to cause the state to be updated only in conjunction with a 
clock. The next section shows how these elements are built.

Flip-Flops and Latches
Flip-flops and latches are the simplest memory elements. In both flip-flops and 
latches, the output is equal to the value of the stored state inside the element. 
Furthermore, unlike the S-R latch described above, all the latches and flip-flops we 
will use from this point on are clocked, which means that they have a clock input 
and the change of state is triggered by that clock. The difference between a flip-flop 
and a latch is the point at which the clock causes the state to actually change. In a 
clocked latch, the state is changed whenever the appropriate inputs change and the 
clock is asserted, whereas in a flip-flop, the state is changed only on a clock edge. 
Since throughout this text we use an edge-triggered timing methodology where 
state is only updated on clock edges, we need only use flip-flops. Flip-flops are often 
built from latches, so we start by describing the operation of a simple clocked latch 
and then discuss the operation of a flip-flop constructed from that latch.

For computer applications, the function of both flip-flops and latches is to 
store a signal. A D latch or D flip-flop stores the value of its data input signal in 
the internal memory. Although there are many other types of latch and flip-flop, 
the D type is the only basic building block that we will need. A D latch has two 
inputs and two outputs. The inputs are the data value to be stored (called D) and  
a clock signal (called C) that indicates when the latch should read the value on  
the D input and store it. The outputs are simply the value of the internal state (Q) 

flip-flop A memory 
element for which the 
output is equal to the 
value of the stored state 
inside the element and for 
which the internal state is 
changed only on a clock 
edge.

latch A memory element 
in which the output is 
equal to the value of the 
stored state inside the 
element and the state is 
changed whenever the 
appropriate inputs change 
and the clock is asserted.

D flip-flop A flip-flop 
with one data input 
that stores the value of 
that input signal in the 
internal memory when 
the clock edge occurs.
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and its complement (Q). When the clock input C is asserted, the latch is said to be 
open, and the value of the output (Q) becomes the value of the input D. When the 
clock input C is deasserted, the latch is said to be closed, and the value of the output 
(Q) is whatever value was stored the last time the latch was open.

Figure A.8.2 shows how a D latch can be implemented with two additional gates 
added to the cross-coupled NOR gates. Since when the latch is open the value of Q 
changes as D changes, this structure is sometimes called a transparent latch. Figure 
A.8.3 shows how this D latch works, assuming that the output Q is initially false 
and that D changes first.

As mentioned earlier, we use flip-flops as the basic building block, rather than 
latches. Flip-flops are not transparent: their outputs change only on the clock edge. 
A flip-flop can be built so that it triggers on either the rising (positive) or falling 
(negative) clock edge; for our designs we can use either type. Figure A.8.4 shows 
how a falling-edge D flip-flop is constructed from a pair of D latches. In a D flip-
flop, the output is stored when the clock edge occurs. Figure A.8.5 shows how this 
flip-flop operates.

C

D

Q

Q

FIGURE A.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other 
input is 0. Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is 
asserted, in which case the value of input D replaces the value of Q and is stored. The value of input D must 
be stable when the clock signal C changes from asserted to deasserted.

D

C

Q

FIGURE A.8.3 Operation of a D latch, assuming the output is initially deasserted. When 
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.
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Here is a Verilog description of a module for a rising-edge D flip-flop, assuming 
that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);
  input clock, D;
  output reg Q;
  output Qbar;
  assign Qbar= ~ Q;
  always @(posedge clock)
    Q=D;
endmodule

Because the D input is sampled on the clock edge, it must be valid for a period 
of time immediately before and immediately after the clock edge. The minimum 
time that the input must be valid before the clock edge is called the setup time; the 

D

C

D
latch

D

C

Q
D

latch

D

C

Q Q

Q Q

FIGURE A.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open and 
follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is closed, but 
the second latch, called the slave, is open and gets its input from the output of the master latch.

D

C

Q

FIGURE A.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output is 
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores 
the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure A.8.3. In a 
clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when 
C transitions.

setup time The 
minimum time that the 
input to a memory device 
must be valid before the 
clock edge.
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minimum time during which it must be valid after the clock edge is called the hold 
time. Thus the inputs to any flip-flop (or anything built using flip-flops) must be valid 
during a window that begins at time tsetup before the clock edge and ends at thold after 
the clock edge, as shown in Figure A.8.6. Section A.11 talks about clocking and timing 
constraints, including the propagation delay through a flip-flop, in more detail.

We can use an array of D flip-flops to build a register that can hold a multibit datum, 
such as a byte or word. We used registers throughout our datapaths in Chapter 4.

Register Files
One structure that is central to our datapath is a register file. A register file consists 
of a set of registers that can be read and written by supplying a register number to be 
accessed. A register file can be implemented with a decoder for each read or write 
port and an array of registers built from D flip-flops. Because reading a register 
does not change any state, we need only supply a register number as an input, and 
the only output will be the data contained in that register. For writing a register we 
will need three inputs: a register number, the data to write, and a clock that controls 
the writing into the register. In Chapter 4, we used a register file that has two read 
ports and one write port. This register file is drawn as shown in Figure A.8.7. The 
read ports can be implemented with a pair of multiplexors, each of which is as wide 
as the number of bits in each register of the register file. Figure A.8.8 shows the 
implementation of two register read ports for a 64-bit-wide register file.

Implementing the write port is slightly more complex, since we can only change 
the contents of the designated register. We can do this by using a decoder to generate 
a signal that can be used to determine which register to write. Figure A.8.9 shows 
how to implement the write port for a register file. It is important to remember that 
the flip-flop changes state only on the clock edge. In Chapter 4, we hooked up write 
signals for the register file explicitly and assumed the clock shown in Figure A.8.9 
is attached implicitly.

What happens if the same register is read and written during a clock cycle? 
Because the write of the register file occurs on the clock edge, the register will be 

hold time The minimum 
time during which the 
input must be valid after 
the clock edge.

D

C

Setup time Hold time

FIGURE A.8.6 Setup and hold time requirements for a D flip-flop with a falling-edge trigger. 
The input must be stable for a period of time before the clock edge, as well as after the clock edge. The 
minimum time the signal must be stable before the clock edge is called the setup time, while the minimum 
time the signal must be stable after the clock edge is called the hold time. Failure to meet these minimum 
requirements can result in a situation where the output of the flip-flop may not be predictable, as described 
in Section A.11. Hold times are usually either 0 or very small and thus not a cause of worry.
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FIGURE A.8.7 A register file with two read ports and one write port has five inputs and 
two outputs. The control input Write is shown in color.
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FIGURE A.8.8 The implementation of two read ports for a register file with n registers 
can be done with a pair of n-to-1 multiplexors, each 64 bits wide. The register read number 
signal is used as the multiplexor selector signal. Figure A.8.9 shows how the write port is implemented.
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valid during the time it is read, as we saw earlier in Figure A.7.2. The value returned 
will be the value written in an earlier clock cycle. If we want a read to return the 
value currently being written, additional logic in the register file or outside of it is 
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a 
clock, how to describe when a value is written into a register, and how to specify 
sequential control. Let us start by specifying a clock. A clock is not a predefined 
object in Verilog; instead, we generate a clock by using the Verilog notation #n 
before a statement; this causes a delay of n simulation time steps before the execu-
tion of the statement. In most Verilog simulators, it is also possible to generate 
a clock as an external input, allowing the user to specify at simulation time the 
number of clock cycles during which to run a simulation.

The code in Figure A.8.10 implements a simple clock that is high or low for one 
simulation unit and then switches state. We use the delay capability and blocking 
assignment to implement the clock.

Write

0
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n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

FIGURE A.8.9 The write port for a register file is implemented with a decoder that is used 
with the write signal to generate the C input to the registers. All three inputs (the register 
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct 
data are written into the register file.
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Next, we must be able to specify the operation of an edge-triggered register. In 
Verilog, this is done by using the sensitivity list on an always block and specifying 
as a trigger either the positive or negative edge of a binary variable with the 
notation posedge or negedge, respectively. Hence, the following Verilog code 
causes register A to be written with the value b at the positive edge clock:

reg clock;
always #1 clock = ~clock;

FIGURE A.8.10 A specification of a clock.

FIGURE A.8.11 A RISC-V register file written in behavioral Verilog. This register file writes on 
the rising clock edge.

Throughout this chapter and the Verilog sections of Chapter 4, we will assume 
a positive edge-triggered design. Figure A.8.11 shows a Verilog specification of 
a RISC-V register file that assumes two reads and one write, with only the write 
being clocked.
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 A.9 Memory Elements: SRAMs and DRAMs

Registers and register files provide the basic building blocks for small memories, 
but larger amounts of memory are built using either SRAMs (static random 
access memories) or DRAMs (dynamic random access memories). We first discuss 
SRAMs, which are somewhat simpler, and then turn to DRAMs.

SRAMs
SRAMs are simply integrated circuits that are memory arrays with (usually) a single 
access port that can provide either a read or a write. SRAMs have a fixed access 
time to any datum, though the read and write access characteristics often differ. 
An SRAM chip has a specific configuration in terms of the number of addressable 
locations, as well as the width of each addressable location. For example, a 4M × 8 
SRAM provides 4M entries, each of which is 8 bits wide. Thus it will have 22 address 
lines (since 4M = 222), an 8-bit data output line, and an 8-bit single data input line. 
As with ROMs, the number of addressable locations is often called the height, with 
the number of bits per unit called the width. For a variety of technical reasons, the 
newest and fastest SRAMs are typically available in narrow configurations: × 1 and 
× 4. Figure A.9.1 shows the input and output signals for a 2M × 16 SRAM.

static random access 
memory (SRAM)  
A memory where data 
are stored statically 
(as in flip-flops) rather 
than dynamically (as 
in DRAM). SRAMs are 
faster than DRAMs, 
but less dense and more 
expensive per bit.

In the Verilog for the register file in Figure A.8.11, the output ports corresponding to 
the registers being read are assigned using a continuous assignment, but the register 
being written is assigned in an always block. Which of the following is the reason?

a. There is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

Check  
Yourself

SRAM
2M � 16

Dout[15–0]

Address
21

Din[15–0]
16

Chip select

Output enable

Write enable

16

FIGURE A.9.1 A 32K × 8 SRAM showing the 21 address lines (32K = 215) and 16 data 
inputs, the three control lines, and the 16 data outputs.
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To initiate a read or write access, the Chip select signal must be made active. For 
reads, we must also activate the Output enable signal that controls whether or not 
the datum selected by the address is actually driven on the pins. The Output enable 
is useful for connecting multiple memories to a single-output bus and using Output 
enable to determine which memory drives the bus. The SRAM read access time is 
usually specified as the delay from the time that Output enable is true and the 
address lines are valid until the time that the data are on the output lines. Typical 
read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS 
parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical 
largest parts, which in 2004 had more than 32 million bits of data. The demand for 
low-power SRAMs for consumer products and digital appliances has grown greatly 
in the past 5 years; these SRAMs have much lower stand-by and access power, 
but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to 
the synchronous DRAMs, which we discuss in the next section—have also been 
developed.

For writes, we must supply the data to be written and the address, as well as 
signals to cause the write to occur. When both the Write enable and Chip select 
are true, the data on the data input lines are written into the cell specified by the 
address. There are setup-time and hold-time requirements for the address and data 
lines, just as there were for D flip-flops and latches. In addition, the Write enable 
signal is not a clock edge but a pulse with a minimum width requirement. The time 
to complete a write is specified by the combination of the setup times, the hold 
times, and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register file because, 
unlike a register file where a 32-to-1 multiplexor might be practical, the 64K-to-
1 multiplexor that would be needed for a 64K × 1 SRAM is totally impractical. 
Rather than use a giant multiplexor, large memories are implemented with a shared 
output line, called a bit line, which multiple memory cells in the memory array can 
assert. To allow multiple sources to drive a single line, a three-state buffer (or tristate 
buffer) is used. A three-state buffer has two inputs—a data signal and an Output 
enable—and a single output, which is in one of three states: asserted, deasserted, 
or high impedance. The output of a tristate buffer is equal to the data input signal, 
either asserted or deasserted, if the Output enable is asserted, and is otherwise in a 
high-impedance state that allows another three-state buffer whose Output enable is 
asserted to determine the value of a shared output.

Figure A.9.2 shows a set of three-state buffers wired to form a multiplexor with 
a decoded input. It is critical that the Output enable at most one of the three-state 
buffers be asserted; otherwise, the three-state buffers may try to set the output line 
differently. By using three-state buffers in the individual cells of the SRAM, each 
cell that corresponds to a particular output can share the same output line. The use 
of a set of distributed three-state buffers is a more efficient implementation than a 
large centralized multiplexor. The three-state buffers are incorporated into the flip-
flops that form the basic cells of the SRAM. Figure A.9.3 shows how a small 4 × 2 
SRAM might be built, using D latches with an input called Enable that controls the 
three-state output.
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The design in Figure A.9.3 eliminates the need for an enormous multiplexor; 
however, it still requires a very large decoder and a correspondingly large number 
of word lines. For example, in a 4M × 8 SRAM, we would need a 22-to-4M decoder 
and 4M word lines (which are the lines used to enable the individual flip-flops)! 
To circumvent this problem, large memories are organized as rectangular arrays 
and use a two-step decoding process. Figure A.9.4 shows how a 4M × 8 SRAM 
might be organized internally using a two-step decode. As we will see, the two-level 
decoding process is quite important in understanding how DRAMs operate.

Recently we have seen the development of both synchronous SRAMs (SSRAMs) 
and synchronous DRAMs (SDRAMs). The key capability provided by synchronous 
RAMs is the ability to transfer a burst of data from a series of sequential addresses 
within an array or row. The burst is defined by a starting address, supplied in the 
usual fashion, and a burst length. The speed advantage of synchronous RAMs 
comes from the ability to transfer the bits in the burst without having to specify 
additional address bits. Instead, a clock is used to transfer the successive bits in the 
burst. The elimination of the need to specify the address for the transfers within 
the burst significantly improves the rate for transferring the block of data. Because 
of this capability, synchronous SRAMs and DRAMs are rapidly becoming the 
RAMs of choice for building memory systems in computers. We discuss the use of 
synchronous DRAMs in a memory system in more detail in the next section and 
in Chapter 5.
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FIGURE A.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four 
Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance 
output that allows a three-state buffer whose Output enable is asserted to drive the shared output line.
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FIGURE A.9.3 The basic structure of a 4 × 2 SRAM consists of a decoder that selects which pair of cells to activate. 
The activated cells use a three-state output connected to the vertical bit lines that supply the requested data. The address that selects the cell is 
sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted, 
but they could easily be added with a few AND gates.
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FIGURE A.9.4 Typical organization of a 4M × 8 SRAM as an array of 4K × 1024 arrays. The first decoder generates the 
addresses for eight 4K × 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit-wide array. This is a much easier 
design than a single-level decode that would need either an enormous decoder or a gigantic multiplexor. In practice, a modern SRAM of this 
size would probably use an even larger number of blocks, each somewhat smaller.
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DRAMs
In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates, 
and as long as power is applied, the value can be kept indefinitely. In a dynamic 
RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single 
transistor is then used to access this stored charge, either to read the value or to 
overwrite the charge stored there. Because DRAMs use only a single transistor per 
bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs 
require four to six transistors per bit. Because DRAMs store the charge on a 
capacitor, it cannot be kept indefinitely and must periodically be refreshed. That is 
why this memory structure is called dynamic, as opposed to the static storage in a 
SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge can 
be kept for several milliseconds, which might correspond to close to a million clock 
cycles. Today, single-chip memory controllers often handle the refresh function 
independently of the processor. If every bit had to be read out of the DRAM and 
then written back individually, with large DRAMs containing multiple megabytes, 
we would constantly be refreshing the DRAM, leaving no time for accessing it. 
Fortunately, DRAMs also use a two-level decoding structure, and this allows us 
to refresh an entire row (which shares a word line) with a read cycle followed 
immediately by a write cycle. Typically, refresh operations consume 1% to 2% of 
the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles 
available for reading and writing data.

Elaboration: How does a DRAM read and write the signal stored in a cell? The 
transistor inside the cell is a switch, called a pass transistor, that allows the value stored 
on the capacitor to be accessed for either reading or writing. Figure A.9.5 shows how 
the single-transistor cell looks. The pass transistor acts like a switch: when the signal 
on the word line is asserted, the switch is closed, connecting the capacitor to the bit 
line. If the operation is a write, then the value to be written is placed on the bit line. If 
the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will 
be discharged. Reading is slightly more complex, since the DRAM must detect a very 
small charge stored in the capacitor. Before activating the word line for a read, the bit 
line is charged to the voltage that is halfway between the low and high voltage. Then, by 
activating the word line, the charge on the capacitor is read out onto the bit line. This 
causes the bit line to move slightly toward the high or low direction, and this change is 
detected with a sense amplifier, which can detect small changes in voltage.
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FIGURE A.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell 
contents and a transistor used to access the cell.
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FIGURE A.9.6 A 4M × 1 DRAM is built with a 2048 × 2048 array. The row access uses 11 bits to 
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 
latches. The RAS and CAS signals control whether the address lines are sent to the row decoder or column 
multiplexor.
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DRAMs use a two-level decoder consisting of a row access followed by a column 
access, as shown in Figure A.9.6. The row access chooses one of a number of rows 
and activates the corresponding word line. The contents of all the columns in the 
active row are then stored in a set of latches. The column access then selects the 
data from the column latches. To save pins and reduce the package cost, the same 
address lines are used for both the row and column address; a pair of signals called 
RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the 
DRAM that either a row or column address is being supplied. Refresh is performed 
by simply reading the columns into the column latches and then writing the same 
values back. Thus, an entire row is refreshed in one cycle. The two-level addressing 
scheme, combined with the internal circuitry, makes DRAM access times much 
longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access 
times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the 
first customer samples of 1 GB DRAMs became available in the first quarter of 
2004. The much lower cost per bit makes DRAM the choice for main memory, 
while the faster access time makes SRAM the choice for caches.

You might observe that a 64M × 4 DRAM actually accesses 8K bits on every 
row access and then throws away all but four of those during a column access. 
DRAM designers have used the internal structure of the DRAM as a way to provide 
higher bandwidth out of a DRAM. This is done by allowing the column address to 
change without changing the row address, resulting in an access to other bits in the 
column latches. To make this process faster and more precise, the address inputs 
were clocked, leading to the dominant form of DRAM in use today: synchronous 
DRAM or SDRAM.

Since about 1999, SDRAMs have been the memory chip of choice for most 
cache-based main memory systems. SDRAMs provide fast access to a series of bits 
within a row by sequentially transferring all the bits in a burst under the control 
of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called 
double data rate because they transfer data on both the rising and falling edge of 
an externally supplied clock, were the most heavily used form of SDRAMs. As we 
discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth 
available out of main memory to match the needs of the processor and caches.

Error Correction
Because of the potential for data corruption in large memories, most computer 
systems use some sort of error-checking code to detect possible corruption of data. 
One simple code that is heavily used is a parity code. In a parity code the number 
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 
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even otherwise. When a word is written into memory, the parity bit is also written 
(1 for odd, 0 for even). Then, when the word is read out, the parity bit is read and 
checked. If the parity of the memory word and the stored parity bit do not match, 
an error has occurred.

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there 
are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the 
parity will match the data with two errors. (Actually, a 1-bit parity scheme can 
detect any odd number of errors; however, the probability of having three errors is 
much lower than the probability of having two, so, in practice, a 1-bit parity code is 
limited to detecting a single bit of error.) Of course, a parity code cannot tell which 
bit in a data item is in error.

A 1-bit parity scheme is an error detection code; there are also error correction 
codes (ECC) that will detect and allow correction of an error. For large main 
memories, many systems use a code that allows the detection of up to 2 bits of error 
and the correction of a single bit of error. These codes work by using more bits to 
encode the data; for example, the typical codes used for main memories require 7 
or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look 
at the data plus the parity bit, no 1-bit change is sufficient to generate another legal 
combination of the data plus parity. For example, if we change a bit in the data, the parity 
will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data 
bit and the parity bit), the parity will match the data and the error cannot be detected. 
Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which 
has the property that any legal combination of the bits in the error correction code and 
the data has at least 3 bits differing from any other combination. Suppose we have such 
a code and we have one error in the data. In that case, the code plus data will be one bit 
away from a legal combination, and we can correct the data to that legal combination. 
If we have two errors, we can recognize that there is an error, but we cannot correct 
the errors. Let’s look at an example. Here are the data words and a distance-3 error 
correction code for a 4-bit data item.

Data Word Code bits Data Code bits

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111

error detection code A 
code that enables the 
detection of an error in 
data, but not the precise 
location and, hence, 
correction of the error.
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To see how this works, let’s choose a data word, say 0110, whose error correction 
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100, 
and 0111. Now look at the data item with the same code (011), which is the entry with 
the value 0001. If the error correction decoder received one of the four possible data 
words with an error, it would have to choose between correcting to 0110 or 0001. While 
these four words with error have only 1 bit changed from the correct pattern of 0110, 
they each have 2 bits that are different from the alternate correction of 0001. Hence, 
the error correction mechanism can easily choose to correct to 0110, since a single 
error is a much higher probability. To see that two errors can be detected, simply notice 
that all the combinations with 2 bits changed have a different code. The one reuse of 
the same code is with 3 bits different, but if we correct a 2-bit error, we will correct to 
the wrong value, since the decoder will assume that only a single error has occurred. If 
we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we 
need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth, 
an error correction code treats the combination of code and data as a single word in 
a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the 
same fashion as errors in the data bits.

While the above example requires n −1 bits for n bits of data, the number of bits 
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a 
128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming, 
who described a method for creating such codes.

 A.10 Finite-State Machines

As we saw earlier, digital logic systems can be classified as combinational or 
sequential. Sequential systems contain state stored in memory elements internal to 
the system. Their behavior depends both on the set of inputs supplied and on the 
contents of the internal memory, or state of the system. Thus, a sequential system 
cannot be described with a truth table. Instead, a sequential system is described as 
a finite-state machine (or often just state machine). A finite-state machine has a set 
of states and two functions, called the next-state function and the output function. 
The set of states corresponds to all the possible values of the internal storage. 
Thus, if there are n bits of storage, there are 2n states. The next-state function is a 
combinational function that, given the inputs and the current state, determines the 
next state of the system. The output function produces a set of outputs from the 
current state and the inputs. Figure A.10.1 shows this diagrammatically.

The state machines we discuss here and in Chapter 4 are synchronous. This means 
that the state changes together with the clock cycle, and a new state is computed 
once every clock. Thus, the state elements are updated only on the clock edge. We 
use this methodology in this section and throughout Chapter 4, and we do not 
usually show the clock explicitly. We use state machines throughout Chapter 4 to 
control the execution of the processor and the actions of the datapath.

next-state function A 
combinational function 
that, given the inputs 
and the current state, 
determines the next state 
of a finite-state machine.

finite-state machine  
A sequential logic 
function consisting of a 
set of inputs and outputs, 
a next-state function that 
maps the current state and 
the inputs to a new state, 
and an output function 
that maps the current 
state and possibly the 
inputs to a set of asserted 
outputs.
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To illustrate how a finite-state machine operates and is designed, let’s look at a 
simple and classic example: controlling a traffic light. (Chapters 4 and 5 contain more 
detailed examples of using finite-state machines to control processor execution.) 
When a finite-state machine is used as a controller, the output function is often 
restricted to depend on just the current state. Such a finite-state machine is called 
a Moore machine. This is the type of finite-state machine we use throughout this 
book. If the output function can depend on both the current state and the current 
input, the machine is called a Mealy machine. These two machines are equivalent 
in their capabilities, and one can be turned into the other mechanically. The basic 
advantage of a Moore machine is that it can be faster, while a Mealy machine may 
be smaller, since it may need fewer states than a Moore machine. In Chapter 5, we 
discuss the differences in more detail and show a Verilog version of finite-state 
control using a Mealy machine.

Our example concerns the control of a traffic light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green 
and red lights; adding the yellow light is left for an exercise. We want the lights to 
cycle no faster than 30 seconds in each direction, so we will use a 0.033-Hz clock 
so that the machine cycles between states at no faster than once every 30 seconds. 
There are two output signals:

■	 NSlite: When this signal is asserted, the light on the north-south road is 
green; when this signal is deasserted, the light on the north-south road is red.

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

FIGURE A.10.1 A state machine consists of internal storage that contains the state and 
two combinational functions: the next-state function and the output function. Often, the 
output function is restricted to take only the current state as its input; this does not change the capability of 
a sequential machine, but does affect its internals.
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■	 EWlite: When this signal is asserted, the light on the east-west road is green; 
when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

■	 NScar: Indicates that a car is over the detector placed in the roadbed in front 
of the light on the north-south road (going north or south).

■	 EWcar: Indicates that a car is over the detector placed in the roadbed in front 
of the light on the east-west road (going east or west).

The traffic light should change from one direction to the other only if a car is 
waiting to go in the other direction; otherwise, the light should continue to show 
green in the same direction as the last car that crossed the intersection.

To implement this simple traffic light we need two states:

■	 NSgreen: The traffic light is green in the north-south direction.

■	 EWgreen: The traffic light is green in the east-west direction.

We also need to create the next-state function, which can be specified with a table:

Inputs

NScar EWcar Next state

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Notice that we didn’t specify in the algorithm what happens when a car 
approaches from both directions. In this case, the next-state function given above 
changes the state to ensure that a steady stream of cars from one direction cannot 
lock out a car in the other direction.

The finite-state machine is completed by specifying the output function.
Before we examine how to implement this finite-state machine, let’s look at 

a graphical representation, which is often used for finite-state machines. In this 
representation, nodes are used to indicate states. Inside the node we place a list of 
the outputs that are active for that state. Directed arcs are used to show the next-state 
function, with labels on the arcs specifying the input condition as logic functions. 
Figure A.10.2 shows the graphical representation for this finite-state machine.

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1
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NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWcar NScar

FIGURE A.10.2 The graphical representation of the two-state traffic light controller. We 
simplified the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen 
in the next-state table is ( ) ( )NScar EWcar NScar EWcar⋅ ⋅� , which is equivalent to EWcar.

A finite-state machine can be implemented with a register to hold the current 
state and a block of combinational logic that computes the next-state function and 
the output function. Figure A.10.3 shows how a finite-state machine with 4 bits of 
state, and thus up to 16 states, might look. To implement the finite-state machine 
in this way, we must first assign state numbers to the states. This process is called 
state assignment. For example, we could assign NSgreen to state 0 and EWgreen to 
state 1. The state register would contain a single bit. The next-state function would 
be given as

NextState CurrentState EWcar CurrentState NScar( ) ( )⋅⋅

where CurrentState is the contents of the state register (0 or 1) and NextState is the 
output of the next-state function that will be written into the state register at the 
end of the clock cycle. The output function is also simple:

NSlite CurrentState
EWlite CurrentState

�

�

The combinational logic block is often implemented using structured logic, 
such as a PLA. A PLA can be constructed automatically from the next-state and 
output function tables. In fact, there are computer-aided design (CAD) programs 
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Combinational logic

Outputs

State register

Inputs

Next state

FIGURE A.10.3 A finite-state machine is implemented with a state register that holds 
the current state and a combinational logic block to compute the next state and output 
functions. The latter two functions are often split apart and implemented with two separate blocks of logic, 
which may require fewer gates.

that take either a graphical or textual representation of a finite-state machine and 
produce an optimized implementation automatically. In Chapters 4 and 5, finite-
state machines were used to control processor execution.  Appendix C discusses 
the detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure A.10.4 shows a 
Verilog version designed for synthesis. Note that for this simple control function, 
a Mealy machine is not useful, but this style of specification is used in Chapter 5 to 
implement a control function that is a Mealy machine and has fewer states than the 
Moore machine controller.



 A.11 Timing Methodologies A-71

 A.11 Timing Methodologies

Throughout this appendix and in the rest of the text, we use an edge-triggered 
timing methodology. This timing methodology has an advantage in that it is 
simpler to explain and understand than a level-triggered methodology. In this 
section, we explain this timing methodology in a little more detail and also 
introduce level-sensitive clocking. We conclude this section by briefly discussing 

FIGURE A.10.4 A Verilog version of the traffic light controller.

What is the smallest number of states in a Moore machine for which a Mealy 
machine could have fewer states?

a. Two, since there could be a one-state Mealy machine that might do the same 
thing.

b. Three, since there could be a simple Moore machine that went to one of two 
different states and always returned to the original state after that. For such a 
simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine 
over a Moore machine.

Check  
Yourself
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the issue of asynchronous signals and synchronizers, an important problem for 
digital designers.

The purpose of this section is to introduce the major concepts in clocking 
methodology. The section makes some important simplifying assumptions; if you 
are interested in understanding timing methodology in more detail, consult one of 
the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain 
and has fewer rules required for correctness. In particular, if we assume that all 
clocks arrive at the same time, we are guaranteed that a system with edge-triggered 
registers between blocks of combinational logic can operate correctly without races 
if we simply make the clock long enough. A race occurs when the contents of a 
state element depend on the relative speed of different logic elements. In an edge-
triggered design, the clock cycle must be long enough to accommodate the path 
from one flip-flop through the combinational logic to another flip-flop where it 
must satisfy the setup-time requirement. Figure A.11.1 shows this requirement for 
a system using rising edge-triggered flip-flops. In such a system the clock period 
(or cycle time) must be at least as large as

t t tprop combinational setup� �

for the worst-case values of these three delays, which are defined as follows:

■	 tprop is the time for a signal to propagate through a flip-flop; it is also sometimes 
called clock-to-Q.

■	 tcombinational is the longest delay for any combinational logic (which by definition 
is surrounded by two flip-flops).

■	 tsetup is the time before the rising clock edge that the input to a flip-flop must 
be valid.

Flip-flop

D

C

Q
Combinational

logic block Flip-flop

D

C

Q

tprop tcombinational tsetup

FIGURE A.11.1 In an edge-triggered design, the clock must be long enough to allow 
signals to be valid for the required setup time before the next clock edge. The time for a 
flip-flop input to propagate to the flip-flip outputs is tprop; the signal then takes tcombinational to travel through the 
combinational logic and must be valid tsetup before the next clock edge.



 A.11 Timing Methodologies A-73

We make one simplifying assumption: the hold-time requirements are satisfied, 
which is almost never an issue with modern logic.

One additional complication that must be considered in edge-triggered designs 
is clock skew. Clock skew is the difference in absolute time between when two state 
elements see a clock edge. Clock skew arises because the clock signal will often 
use two different paths, with slightly different delays, to reach two different state 
elements. If the clock skew is large enough, it may be possible for a state element to 
change and cause the input to another flip-flop to change before the clock edge is 
seen by the second flip-flop.

Figure A.11.2 illustrates this problem, ignoring setup time and flip-flop 
propagation delay. To avoid incorrect operation, the clock period is increased to 
allow for the maximum clock skew. Thus, the clock period must be longer than

t t t tprop combinational setup skew� � �

With this constraint on the clock period, the two clocks can also arrive in the 
opposite order, with the second clock arriving tskew earlier, and the circuit will work 

clock skew The 
difference in absolute time 
between the times when 
two state elements see a 
clock edge.

Flip-flop

D

C

Q
Combinational
logic block with
delay time of ∆

Flip-flop

D

C

Q

Clock arrives
at time t

Clock arrives
after t + ∆

FIGURE A.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the difference 
in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the input to the second flip-
flop before the clock arrives at the second flip-flop.

correctly. Designers reduce clock-skew problems by carefully routing the clock 
signal to minimize the difference in arrival times. In addition, smart designers also 
provide some margin by making the clock a little longer than the minimum; this 
allows for variation in components as well as in the power supply. Since clock skew 
can also affect the hold-time requirements, minimizing the size of the clock skew 
is important.

Edge-triggered designs have two drawbacks: they require extra logic and they 
may sometimes be slower. Just looking at the D flip-flop versus the level-sensitive 
latch that we used to construct the flip-flop shows that edge-triggered design 
requires more logic. An alternative is to use level-sensitive clocking. Because state 
changes in a level-sensitive methodology are not instantaneous, a level-sensitive 
scheme is slightly more complex and requires additional care to make it operate 
correctly.

level-sensitive 
clocking A timing 
methodology in which 
state changes occur 
at either high or low 
clock levels but are not 
instantaneous as such 
changes are in edge-
triggered designs.
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Level-Sensitive Timing
In level-sensitive timing, the state changes occur at either high or low levels, but 
they are not instantaneous as they are in an edge-triggered methodology. Because of 
the noninstantaneous change in state, races can easily occur. To ensure that a level-
sensitive design will also work correctly if the clock is slow enough, designers use two-
phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping 
clock signals. Since the two clocks, typically called ϕ1 and ϕ2, are nonoverlapping, at 
most one of the clock signals is high at any given time, as Figure A.11.3 shows. We 
can use these two clocks to build a system that contains level-sensitive latches but is 
free from any race conditions, just as the edge-triggered designs were.

Nonoverlapping
periods

Φ1

Φ2

FIGURE A.11.3 A two-phase clocking scheme showing the cycle of each clock and the 
nonoverlapping periods.

Latch

D

C

Q
Combinational

logic blockΦ1

Latch

D

C

Q
Combinational

logic blockΦ2

Latch

D

C
Φ1

FIGURE A.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock 
phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational inputs has a stable input 
during ϕ2, and its output is latched by ϕ2. The second (rightmost) combinational block operates in just the opposite fashion, with stable inputs 
during ϕ1. Thus, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. The 
size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

One simple way to design such a system is to alternate the use of latches that are 
open on ϕ1 with latches that are open on ϕ2. Because both clocks are not asserted 
at the same time, a race cannot occur. If the input to a combinational block is a ϕ1 
clock, then its output is latched by a ϕ2 clock, which is open only during ϕ2 when 
the input latch is closed and hence has a valid output. Figure A.11.4 shows how 
a system with two-phase timing and alternating latches operates. As in an edge-
triggered design, we must pay attention to clock skew, particularly between the two 
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clock phases. By increasing the amount of nonoverlap between the two phases, we 
can reduce the potential margin of error. Thus, the system is guaranteed to operate 
correctly if each phase is long enough and if there is large enough nonoverlap 
between the phases.

Asynchronous Inputs and Synchronizers
By using a single clock or a two-phase clock, we can eliminate race conditions 
if clock-skew problems are avoided. Unfortunately, it is impractical to make an 
entire system function with a single clock and still keep the clock skew small. 
While the CPU may use a single clock, I/O devices will probably have their own 
clock. An asynchronous device may communicate with the CPU through a series 
of handshaking steps. To translate the asynchronous input to a synchronous signal 
that can be used to change the state of a system, we need to use a synchronizer, 
whose inputs are the asynchronous signal and a clock and whose output is a signal 
synchronous with the input clock.

Our first attempt to build a synchronizer uses an edge-triggered D flip-flop, 
whose D input is the asynchronous signal, as Figure A.11.5 shows. Because we 
communicate with a handshaking protocol, it does not matter whether we detect 
the asserted state of the asynchronous signal on one clock or the next, since the 
signal will be held asserted until it is acknowledged. Thus, you might think that this 
simple structure is enough to sample the signal accurately, which would be the case 
except for one small problem.

metastability  
A situation that occurs if 
a signal is sampled when 
it is not stable for the 
required setup and hold 
times, possibly causing 
the sampled value to 
fall in the indeterminate 
region between a high and 
low value.

Flip-flop
D

C

Q

Clock

Asynchronous input Synchronous output

FIGURE A.11.5 A synchronizer built from a D flip-flop is used to sample an asynchronous 
signal to produce an output that is synchronous with the clock. This “synchronizer” will not 
work properly!

The problem is a situation called metastability. Suppose the asynchronous 
signal is transitioning between high and low when the clock edge arrives. Clearly, 
it is not possible to know whether the signal will be latched as high or low. That 
problem we could live with. Unfortunately, the situation is worse: when the signal 
that is sampled is not stable for the required setup and hold times, the flip-flop may 
go into a metastable state. In such a state, the output will not have a legitimate high 
or low value, but will be in the indeterminate region between them. Furthermore, 
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the flip-flop is not guaranteed to exit this state in any bounded amount of time. 
Some logic blocks that look at the output of the flip-flop may see its output as 0, 
while others may see it as 1. This situation is called a synchronizer failure.

In a purely synchronous system, synchronizer failure can be avoided by ensuring 
that the setup and hold times for a flip-flop or latch are always met, but this is 
impossible when the input is asynchronous. Instead, the only solution possible is 
to wait long enough before looking at the output of the flip-flop to ensure that 
its output is stable, and that it has exited the metastable state, if it ever entered it. 
How long is long enough? Well, the probability that the flip-flop will stay in the 
metastable state decreases exponentially, so after a very short time the probability 
that the flip-flop is in the metastable state is very low; however, the probability 
never reaches 0! So designers wait long enough such that the probability of a 
synchronizer failure is very low, and the time between such failures will be years or 
even thousands of years.

For most flip-flop designs, waiting for a period that is several times longer than 
the setup time makes the probability of synchronization failure very low. If the 
clock rate is longer than the potential metastability period (which is likely), then a 
safe synchronizer can be built with two D flip-flops, as Figure A.11.6 shows. If you 
are interested in reading more about these problems, look into the references.

synchronizer failure  
A situation in which 
a flip-flop enters a 
metastable state and 
where some logic blocks 
reading the output of the 
flip-flop see a 0 while 
others see a 1.

propagation time The 
time required for an input 
to a flip-flop to propagate 
to the outputs of the flip-
flop.

Suppose we have a design with very large clock skew—longer than the register 
propagation time. Is it always possible for such a design to slow the clock down 
enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the 
design will work, even if the skew is very large.

b. No, since it is possible that two registers see the same clock edge far enough 
apart that a register is triggered, and its outputs propagated and seen by a 
second register with the same clock edge.

Flip-flop

D

C

Q

Clock

Asynchronous input
Flip-flop

D

C

Q Synchronous output

FIGURE A.11.6 This synchronizer will work correctly if the period of metastability that 
we wish to guard against is less than the clock period. Although the output of the first flip-flop 
may be metastable, it will not be seen by any other logic element until the second clock, when the second D 
flip-flop samples the signal, which by that time should no longer be in a metastable state.

Check  
Yourself
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 A.12 Field Programmable Devices

Within a custom or semicustom chip, designers can make use of the flexibility of the 
underlying structure to easily implement combinational or sequential logic. How 
can a designer who does not want to use a custom or semicustom IC implement 
a complex piece of logic taking advantage of the very high levels of integration 
available? The most popular component used for sequential and combinational 
logic design outside of a custom or semicustom IC is a field programmable 
device (FPD). An FPD is an integrated circuit containing combinational logic, and 
possibly memory devices, that are configurable by the end user.

FPDs generally fall into two camps: programmable logic devices (PLDs), 
which are purely combinational, and field programmable gate arrays (FPGAs), 
which provide both combinational logic and flip-flops. PLDs consist of two forms: 
simple PLDs (SPLDs), which are usually either a PLA or a programmable array 
logic (PAL), and complex PLDs, which allow more than one logic block as well as 
configurable interconnections among blocks. When we speak of a PLA in a PLD, 
we mean a PLA with user programmable and-plane and or-plane. A PAL is like a 
PLA, except that the or-plane is fixed.

Before we discuss FPGAs, it is useful to talk about how FPDs are configured. 
Configuration is essentially a question of where to make or break connections. 
Gate and register structures are static, but the connections can be configured. 
Notice that by configuring the connections, a user determines what logic functions 
are implemented. Consider a configurable PLA: by determining where the 
connections are in the and-plane and the or-plane, the user dictates what logical 
functions are computed in the PLA. Connections in FPDs are either permanent 
or reconfigurable. Permanent connections involve the creation or destruction of 
a connection between two wires. Current FPLDs all use an antifuse technology, 
which allows a connection to be built at programming time that is then permanent. 
The other way to configure CMOS FPLDs is through a SRAM. The SRAM is 
downloaded at power-on, and the contents control the setting of switches, which 
in turn determines which metal lines are connected. The use of SRAM control 
has the advantage in that the FPD can be reconfigured by changing the contents 
of the SRAM. The disadvantages of the SRAM-based control are two-fold: the 
configuration is volatile and must be reloaded on power-on, and the use of active 
transistors for switches slightly increases the resistance of such connections.

FPGAs include both logic and memory devices, usually structured in a two-
dimensional array with the corridors dividing the rows and columns used for 

field programmable 
devices (FPD) An 
integrated circuit 
containing combinational 
logic, and possibly 
memory devices, that are 
configurable by the end 
user.

programmable logic 
device (PLD)  
An integrated circuit 
containing combinational 
logic whose function is 
configured by the end 
user.

field programmable 
gate array (FPGA)  
A configurable integrated 
circuit containing both 
combinational logic 
blocks and flip-flops.

simple programmable 
logic device 
(SPLD) Programmable 
logic device, usually 
containing either a single 
PAL or PLA.

programmable array 
logic (PAL) Contains a 
programmable and-plane 
followed by a fixed or-
plane.

antifuse A structure in 
an integrated circuit that 
when programmed makes 
a permanent connection 
between two wires.
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global interconnect between the cells of the array. Each cell is a combination of 
gates and flip-flops that can be programmed to perform some specific function. 
Because they are basically small, programmable RAMs, they are also called lookup 
tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as 
pieces of adders and RAM blocks that can be used to build register files. Some 
FPGAs even contain 64-bit RISC-V cores!

In addition to programming each cell to perform a specific function, the 
interconnections between cells are also programmable, allowing modern FPGAs 
with hundreds of blocks and hundreds of thousands of gates to be used for complex 
logic functions. Interconnect is a major challenge in custom chips, and this is even 
more true for FPGAs, because cells do not represent natural units of decomposition 
for structured design. In many FPGAs, 90% of the area is reserved for interconnect 
and only 10% is for logic and memory blocks.

Just as you cannot design a custom or semicustom chip without CAD tools, you 
also need them for FPDs. Logic synthesis tools have been developed that target 
FPGAs, allowing the generation of a system using FPGAs from structural and 
behavioral Verilog.

 A.13 Concluding Remarks

This appendix introduces the basics of logic design. If you have digested the 
material in this appendix, you are ready to tackle the material in Chapters 4 and 5, 
both of which use the concepts discussed in this appendix extensively.

Further Reading
There are a number of good texts on logic design. Here are some you might like to 
look into.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood 
Cliffs, NJ: Prentice Hall.
A thorough book on logic design using Verilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.
A general text on logic design.

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood 
Cliffs, NJ: Prentice Hall.
A general text on logic design.

lookup tables (LUTs) In 
a field programmable 
device, the name given 
to the cells because they 
consist of a small amount 
of logic and RAM.
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 A.14 Exercises

 A.1 [10] <§A.2> In addition to the basic laws we discussed in this section, there 
are two important theorems, called DeMorgan’s theorems:

A B A B and A B A B⋅ ⋅

Prove DeMorgan’s theorems with a truth table of the form

A B A B A + B A · B A · B A + B

0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0

 A.2 [15] <§A.2> Prove that the two equations for E in the example starting on 
page A-7 are equivalent by using DeMorgan’s theorems and the axioms shown on 
page A-7.

 A.3 [10] <§A.2> Show that there are 2n entries in a truth table for a function with 
n inputs.

 A.4 [10] <§A.2> One logic function that is used for a variety of purposes 
(including within adders and to compute parity) is exclusive OR. The output of a 
two-input exclusive OR function is true only if exactly one of the inputs is true. 
Show the truth table for a two-input exclusive OR function and implement this 
function using AND gates, OR gates, and inverters.

 A.5 [15] <§A.2> Prove that the NOR gate is universal by showing how to build 
the AND, OR, and NOT functions using a two-input NOR gate.

 A.6 [15] <§A.2> Prove that the NAND gate is universal by showing how to build 
the AND, OR, and NOT functions using a two-input NAND gate.

 A.7 [10] <§§A.2, A.3> Construct the truth table for a four-input odd-parity 
function (see page A-65 for a description of parity).

 A.8 [10] <§§A.2, A.3> Implement the four-input odd-parity function with AND 
and OR gates using bubbled inputs and outputs.

 A.9 [10] <§§A.2, A.3> Implement the four-input odd-parity function with a PLA.



A-80 Appendix A The Basics of Logic Design

 A.10 [15] <§§A.2, A.3> Prove that a two-input multiplexor is also universal by 
showing how to build the NAND (or NOR) gate using a multiplexor.

 A.11 [5] <§§4.2, A.2, A.3> Assume that X consists of 3 bits, x2 x1 x0. Write four 
logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

 A.12 [5] <§§4.2, A.2, A.3> Implement the four functions described in Exercise 
A.11 using a PLA.

 A.13 [5] <§§4.2, A.2, A.3> Assume that X consists of 3 bits, x2 x1 x0, and Y 
consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X <Y, where X and Y are thought of as unsigned binary numbers

■ X <Y, where X and Y are thought of as signed (two’s complement) numbers

■ X = Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show 
how can you extend it to 6-bit comparison.

 A.14 [5] <§§A.2, A.3> Implement a switching network that has two data inputs 
(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the 
network is in pass-through mode, and C should equal A, and D should equal B. If 
S equals 0, the network is in crossing mode, and C should equal B, and D should 
equal A.

 A.15 [15] <§§A.2, A.3> Derive the product-of-sums representation for E shown 
on page A-11 starting with the sum-of-products representation. You will need to 
use DeMorgan’s theorems.

 A.16 [30] <§§A.2, A.3> Give an algorithm for constructing the sum-of-products 
representation for an arbitrary logic equation consisting of AND, OR, and NOT. 
The algorithm should be recursive and should not construct the truth table in the 
process.

 A.17 [5] <§§A.2, A.3> Show a truth table for a multiplexor (inputs A, B, and S; 
output C ), using don’t cares to simplify the table where possible.
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 A.18 [5] <§A.3> What is the function implemented by the following Verilog 
modules:

module FUNC1 (I0, I1, S, out);
  input I0, I1;
  input S;
  output out;
  out = S? I1: I0;
endmodule

module FUNC2 (out,ctl,clk,reset);
  output [7:0] out;
  input ctl, clk, reset;
  reg [7:0] out;
  always @(posedge clk)
  if (reset) begin
     out <= 8’b0 ;
  end
  else if (ctl) begin
     out <= out + 1;
  end
  else begin
     out <= out - 1;
  end
endmodule

 A.19 [5] <§A.4> The Verilog code on page A-53 is for a D flip-flop. Show the 
Verilog code for a D latch.

 A.20 [10] <§§A.3, A.4> Write down a Verilog module implementation of a 2-to-
4 decoder (and/or encoder).

 A.21 [10] <§§A.3, A.4> Given the following logic diagram for an accumulator, 
write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.
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 A.22 [20] <§§B3, A.4, A.5> Section 3.3 presents basic operation and possible 
implementations of multipliers. A basic unit of such implementations is a shift-
and-add unit. Show a Verilog implementation for this unit. Show how can you use 
this unit to build a 32-bit multiplier.

 A.23 [20] <§§B3, A.4, A.5> Repeat Exercise A.22, but for an unsigned divider 
rather than a multiplier.

 A.24 [15] <§A.5> The ALU supported set on less than (slt) using just the sign bit 
of the adder. Let’s try a set on less than operation using the values − 7ten and 6ten. To 
make it simpler to follow the example, let’s limit the binary representations to 4 bits: 
1001two and 0110two.

1001two − 0110two = 1001two + 1010two = 0011two

This result would suggest that −7> 6, which is clearly wrong. Hence, we must 
factor in overflow in the decision. Modify the 1-bit ALU in Figure A.5.10 on page 
A-33 to handle slt correctly. Make your changes on a photocopy of this figure to 
save time.

 A.25 [20] <§A.6> A simple check for overflow during addition is to see if the 
CarryIn to the most significant bit is not the same as the CarryOut of the most 
significant bit. Prove that this check is the same as in Figure 3.2.

 A.26 [5] <§A.6> Rewrite the equations on page A-44 for a carry-lookahead logic 
for a 16-bit adder using a new notation. First, use the names for the CarryIn signals 
of the individual bits of the adder. That is, use c4, c8, c12, … instead of C1, C2, 
C3, …. In addition, let Pi,j; mean a propagate signal for bits i to j, and Gi,j; mean a 
generate signal for bits i to j. For example, the equation

C G P G P P c2 1 1 0 1 0 0( ) ( )⋅ ⋅ ⋅
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can be rewritten as

c G P G P P c08 7 4 7 4 3 0 7 4 3 0, , , , ,( ) ( )⋅ ⋅ ⋅

This more general notation is useful in creating wider adders.

 A.27 [15] <§A.6> Write the equations for the carry-lookahead logic for a 64-
bit adder using the new notation from Exercise A.26 and using 16-bit adders as 
building blocks. Include a drawing similar to Figure A.6.3 in your solution.

 A.28 [10] <§A.6> Now calculate the relative performance of adders. Assume that 
hardware corresponding to any equation containing only OR or AND terms, such 
as the equations for pi and gi on page A-40, takes one time unit T. Equations that 
consist of the OR of several AND terms, such as the equations for c1, c2, c3, and 
c4 on page A-40, would thus take two time units, 2T. The reason is it would take T 
to produce the AND terms and then an additional T to produce the result of the 
OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple 
carry and carry lookahead. If the terms in equations are further defined by other 
equations, then add the appropriate delays for those intermediate equations, and 
continue recursively until the actual input bits of the adder are used in an equation. 
Include a drawing of each adder labeled with the calculated delays and the path of 
the worst-case delay highlighted.

 A.29 [15] <§A.6> This exercise is similar to Exercise A.28, but this time calculate 
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit 
groups that use carry lookahead, and the carry-lookahead scheme on page A-39.

 A.30 [15] <§A.6> This exercise is similar to Exercises A.28 and A.29, but this 
time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple 
carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use 
carry lookahead, and the carry-lookahead scheme from Exercise A.27.

 A.31 [10] <§A.6> Instead of thinking of an adder as a device that adds two 
numbers and then links the carries together, we can think of the adder as a 
hardware device that can add three inputs together (ai, bi, ci) and produce two 
outputs (s, ci + 1). When adding two numbers together, there is little we can do with 
this observation. When we are adding more than two operands, it is possible to 
reduce the cost of the carry. The idea is to form two independent sums, called S′ 
(sum bits) and C′ (carry bits). At the end of the process, we need to add C′ and S′ 
together using a normal adder. This technique of delaying carry propagation until 
the end of a sum of numbers is called carry save addition. The block drawing on the 
lower right of Figure A.14.1 (see below) shows the organization, with two levels of 
carry save adders connected by a single normal adder.

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders 
versus carry save with a carry-lookahead adder forming the final sum. (The time 
unit T in Exercise A.28 is the same.)
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 A.32 [20] <§A.6> Perhaps the most likely case of adding many numbers at once 
in a computer would be when trying to multiply more quickly by using many 
adders to add many numbers in a single clock cycle. Compared to the multiply 
algorithm in Chapter 3, a carry save scheme with many adders could multiply more 
than 10 times faster. This exercise estimates the cost and speed of a combinational 
multiplier to multiply two positive 16-bit numbers. Assume that you have 16 
intermediate terms M15, M14, …, M0, called partial products, that contain the 
multiplicand ANDed with multiplier bits m15, m14, …, m0. The idea is to use 
carry save adders to reduce the n operands into 2n/3 in parallel groups of three, 
and do this repeatedly until you get two large numbers to add together with a 
traditional adder.

s4 s3 s2 s1 s0

f0e0b0f1e1b1f2e2b2f3e3b3

a0a1a2a3

s5

c'3 s'3s'4 c'2 s'2 c'1 s'1 c'0 s'0

Carry save adder

E FBA

Carry save adder

Traditional adder

S

C' S'

s5 s0

b0a0

e0
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s1

b1a1

e1
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s2
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S
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Traditional adder

Traditional adder
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FIGURE A.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. The 
details are shown on the left, with the individual signals in lowercase, and the corresponding higher-level 
blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can 
take n + 2 bits.
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First, show the block organization of the 16-bit carry save adders to add these 16 
terms, as shown on the right in Figure A.14.1. Then calculate the delays to add 
these 16 numbers. Compare this time to the iterative multiplication scheme in 
Chapter 3 but only assume 16 iterations using a 16-bit adder that has full carry 
lookahead whose speed was calculated in Exercise A.29.

 A.33 [10] <§A.6> There are times when we want to add a collection of numbers 
together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit 
full adders. Let’s ignore carry lookahead for now. You would likely connect the 
1-bit adders in the organization at the top of Figure A.14.1. Below the traditional 
organization is a novel organization of full adders. Try adding four numbers using 
both organizations to convince yourself that you get the same answer.

 A.34 [5] <§A.6> First, show the block organization of the 16-bit carry save adders 
to add these 16 terms, as shown in Figure A.14.1. Assume that the time delay 
through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to 
the organization at the top versus the organization at the bottom of Figure A.14.1.

 A.35 [5] <§A.8> Quite often, you would expect that given a timing diagram 
containing a description of changes that take place on a data input D and a clock 
input C (as in Figures A.8.3 and A.8.6 on pages A-52 and A-54, respectively), there 
would be differences between the output waveforms (Q) for a D latch and a D flip-
flop. In a sentence or two, describe the circumstances (e.g., the nature of the inputs) 
for which there would not be any difference between the two output waveforms.

 A.36 [5] <§A.8> Figure A.8.8 on page A-55 illustrates the implementation of the 
register file for the RISC-V datapath. Pretend that a new register file is to be built, 
but that there are only two registers and only one read port, and that each register 
has only 2 bits of data. Redraw Figure A.8.8 so that every wire in your diagram 
corresponds to only 1 bit of data (unlike the diagram in Figure A.8.8, in which 
some wires are 5 bits and some wires are 32 bits). Redraw the registers using D flip-
flops. You do not need to show how to implement a D flip-flop or a multiplexor.

 A.37 [10] <§A.10> A friend would like you to build an “electronic eye” for use 
as a fake security device. The device consists of three lights lined up in a row, 
controlled by the outputs Left, Middle, and Right, which, if asserted, indicate that 
a light should be on. Only one light is on at a time, and the light “moves” from 
left to right and then from right to left, thus scaring away thieves who believe that 
the device is monitoring their activity. Draw the graphical representation for the 
finite-state machine used to specify the electronic eye. Note that the rate of the eye’s 
movement will be controlled by the clock speed (which should not be too great) 
and that there are essentially no inputs.

 A.38 [10] <§A.10> Assign state numbers to the states of the finite-state machine 
you constructed for Exercise A.37 and write a set of logic equations for each of the 
outputs, including the next-state bits.
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 A.39 [15] <§§A.2, A.8, A.10> Construct a 3-bit counter using three D flip-
flops and a selection of gates. The inputs should consist of a signal that resets the 
counter to 0, called reset, and a signal to increment the counter, called inc. The 
outputs should be the value of the counter. When the counter has value 7 and is 
incremented, it should wrap around and become 0.

 A.40 [20] <§A.10> A Gray code is a sequence of binary numbers with the property 
that no more than 1 bit changes in going from one element of the sequence to 
another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110, 
111, 101, and 100. Using three D flip-flops and a PLA, construct a 3-bit Gray code 
counter that has two inputs: reset, which sets the counter to 000, and inc, which 
makes the counter go to the next value in the sequence. Note that the code is cyclic, 
so that the value after 100 in the sequence is 000.

 A.41 [25] <§A.10> We wish to add a yellow light to our traffic light example on 
page A-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock 
cycle time), which is the duration of a yellow light. To prevent the green and red lights 
from cycling too fast, we add a 30-second timer. The timer has a single input, called 
TimerReset, which restarts the timer, and a single output, called TimerSignal, which 
indicates that the 30-second period has expired. Also, we must redefine the traffic 
signals to include yellow. We do this by defining two output signals for each light: 
green and yellow. If the output NSgreen is asserted, the green light is on; if the output 
NSyellow is asserted, the yellow light is on. If both signals are off, the red light is on. Do 
not assert both the green and yellow signals at the same time, since American drivers 
will certainly be confused, even if European drivers understand what this means! Draw 
the graphical representation for the finite-state machine for this improved controller. 
Choose names for the states that are different from the names of the outputs.

 A.42 [15] <§A.10> Write down the next-state and output-function tables for the 
traffic light controller described in Exercise A.41.

 A.43 [15] <§§A.2, A.10> Assign state numbers to the states in the traffic light 
example of Exercise A.41 and use the tables of Exercise A.42 to write a set of logic 
equations for each of the outputs, including the next-state outputs.

 A.44 [15] <§§A.3, A.10> Implement the logic equations of Exercise A.43 as a 
PLA.

§A.2, page A-8: No. If A = 1, C = 1, B = 0, the first is true, but the second is false.
§A.3, page A-20: C.
§A.4, page A-22: They are all exactly the same.
§A.4, page A-26: A = 0, B = 1.
§A.5, page A-37: 2.
§A.6, page A-46: 1.
§A.8, page A-57: c.
§A.10, page A-71: b.
§A.11, page A-76: b.

Answers to 
Check Yourself
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defined, 420–421
fast, 430–432
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TLB for, 430–432

Address-control lines, C-26f
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base, 69
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memory, 78b
virtual, 420–421, 440, 441b

Addressing
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in branches, 115–117
displacement, 118
immediate, 118f
PC-relative, 115–116, 118f
register, 118f
RISC-V modes, 117–118
x86 modes, 151

Addressing modes
desktop architectures, D-5–D-6

Advanced Vector Extensions (AVX), 
218–219

AGP, B-9–B-10
Algol-60, 162.e6
Aliasing, 436
Alignment restriction, 70
All-pairs N-body algorithm, B-65
Alpha architecture

bit count instructions, D-29
floating-point instructions, D-28–D-29
instructions, D-27–D-29
no divide, D-28
PAL code, D-28
unaligned load-store, D-28

VAX floating-point formats, D-29
ALU control, 251–253. See also 

Arithmetic logic unit (ALU)
bits, 252–253, 252f
logic, C-6–C-7
mapping to gates, C-4–C-7
truth tables, C-5f

ALU control block, 255
defined, C-4–C-6
generating ALU control bits, C-6f

ALUOp, 252, C-6b–C-7b
bits, 252–253
control signal, 255

Amazon Web Services (AWS), 417b
AMD Opteron X4 (Barcelona), 535, 536f
AMD64, 148, 162.e5, 217
Amdahl’s law, 393, 495–496

corollary, 49
defined, 49
fallacy, 548

and (and), 64f
AND gates, A-12–A-13, C-7
AND operation, 90, A-6
andi (and immediate), 64f
Annual failure rate (AFR), 410–411

versus MTTF of disks, 410b–411b
Antidependence, 327
Antifuse, A-77
Apple computer, 54.e6
Apple iPad 2 A1395, 20f

logic board of, 20f
processor integrated circuit of, 21f

Application binary interface (ABI), 22
Application programming interfaces 

(APIs)
defined, B-4
graphics, B-14

Architectural registers, 337–338
Arithmetic, 172

addition, 174–177
addition and subtraction, 174–177
division, 183–191
fallacies and pitfalls, 222–225

I-1



I-2 Index

floating-point, 191–216
historical perspective, 227
multiplication, 177–183
parallelism and, 216–217
Streaming SIMD Extensions and 

advanced vector extensions in  
x86, 217–218

subtraction, 174–177
subword parallelism, 216–217
subword parallelism and matrix 

multiply, 218–222
Arithmetic instructions. See also 

Instructions
desktop RISC, D-11f
embedded RISC, D-13f
logical, 243–244
operands, 67–74

Arithmetic intensity, 533–534
Arithmetic logic unit (ALU). See also 

ALU control; Control units
1-bit, A-26–A-29
64-bit, A-29–A-31
before forwarding, 299f
branch datapath, 246–247
hardware, 176
memory-reference instruction  

use, 237
for register values, 244
R-format operations, 245f
signed-immediate input, 302

ARM Cortex-A53, 236, 334–342
address translation for, 460f
caches in, 461f
data cache miss rates for, 462f
memory hierarchies of, 459
performance of, 462–464
specification, 335f
TLB hardware for, 460f

ARPAnet, 54.e9
Arrays, 407f

logic elements, A-18–A-20
multiple dimension, 212
pointers versus, 141–144
procedures for setting to zero, 141f

ASCII
binary numbers versus, 109b
character representation, 108f
defined, 108–109
symbols, 111

Assemblers, 125–127
defined, 14
function, 125–127

microcode, C-30
number acceptance, 126
object file, 126

Assembly language, 15f
defined, 14, 125
floating-point, 207f
illustrated, 15f
programs, 125
RISC-V, 64f, 85b–86b
translating into machine language, 

85b–86b
Asserted signals, 242, A-4
Associativity

in caches, 397b–398b
degree, increasing, 396–398, 444
increasing, 401–402
set, tag size versus, 401b–402b

Atomic compare and swap, 123b
Atomic exchange, 122
Atomic fetch-and-increment, 123b
Atomic memory operation, B-21
Attribute interpolation, B-43–B-44
auipc’s effect, 156
Automobiles, computer application in, 4
Average memory access time (AMAT), 

394
calculating, 394b

B

Bandwidth, 29–30
bisection, 527
external to DRAM, 390
memory, 390
network, 525–526

Barrier synchronization, B-18
defined, B-20
for thread communication, B-34

Base addressing, 69, 118
Base registers, 69
Basic block, 95b
Benchmarks, 530–540

defined, 46
Linpack, 227.e2–227.e3,  

530
multiprocessor, 530–540
NAS parallel, 532
parallel, 531f
PARSEC suite, 532
SPEC CPU, 46–48
SPEC power, 48–49
SPECrate, 530
Stream, 540b

Biased notation, 81, 195
Binary numbers, 82

ASCII versus, 109b
conversion to decimal numbers, 77b
defined, 74

Bisection bandwidth, 527
Bit maps

defined, 18
goal, 18
storing, 18

Bit-Interleaved Parity (RAID 3), 458.e4
Bits

ALUOp, 252–253
defined, 14
dirty, 430b
guard, 214
patterns, 214b–215b
reference, 428b
rounding, 214
sign, 75
state, C-8–C-10
sticky, 214
valid, 376–378

Blocking assignment, A-24
Blocking factor, 406
Block-Interleaved Parity (RAID 4), 458.

e4–458.e5
Blocks

combinational, A-4–A-5
defined, 367–368
finding, 444–445
flexible placement, 394–398
least recently used (LRU), 401
locating in cache, 399–401
miss rate and, 383f
multiword, mapping addresses to, 

382b–383b
placement locations, 443
placement strategies, 396
replacement selection, 401
replacement strategies, 446
spatial locality exploitation, 383
state, A-4–A-5
valid data, 376–378

Bonding, 28
Boolean algebra, A-6–A-7
Bounds check shortcut, 96
Branch datapath

ALU, 246–247
operations, 246–247

Branch if Equal (beq), A-32
Branch if greater than or equal, unsigned 

(bgeu), 95–96
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Branch if less than (blt) instruction, 
95–96

Branch if less than, unsigned (bltu), 
95–96

Branch instructions
pipeline impact, 308f

Branch not taken
assumption, 307–308
defined, 246

Branch prediction
buffers, 310
as control hazard solution, 274
defined, 273–274
dynamic, 274, 310–314
static, 324

Branch predictors
accuracy, 312
correlation, 312–313
information from, 312–313
tournament, 313–314

Branch table, 97–98
Branch taken

cost reduction, 308–309
defined, 246

Branch target
addresses, 246
buffers, 312

Branches. See also Conditional  
branches

addressing in, 115–117
compiler creation, 93–94
decision, moving up, 308–309
delayed, 274, 308–310
ending, 95b
execution in ID stage, 309
pipelined, 310b
target address, 308–309

Branch-on-zero instruction, 260–261
Bubble Sort, 140
Bubbles, 305
Bus-based coherent multiprocessors, 

553.e1
Buses, A-18–A-19
Bytes

addressing, 70
order, 70

C

C language
assignment, compiling into RISC-V, 

65b
compiling, 144.e1–144.e2, 144–145

compiling assignment with registers, 
67b–68b

compiling while loops in, 94b–95b
sort algorithms, 141f
translation hierarchy, 124f
translation to RISC-V assembly 

language, 65
variables, 104b

C.mmp, 553.e3–553.e4
C + + language, 144.e26, 162.e7
Cache blocking and matrix multiply, 

465–468
Cache coherence, 454–458

coherence, 454
consistency, 454
enforcement schemes, 456
implementation techniques, 459.

e10–459.e11
migration, 456
problem, 454, 455f, 458b
protocol example, 459.e11–459.e15
protocols, 456
replication, 456
snooping protocol, 456–458
snoopy, 459.e16
state diagram, 459.e15f

Cache coherency protocol, 459.e11–459.
e15

finite-state transition diagram, 459.e14f
functioning, 459.e13f
mechanism, 459.e13f
state diagram, 459.e15f
states, 459.e12
write-back cache, 459.e14f

Cache controllers, 459
coherent cache implementation 

techniques, 459.e10–459.e11
implementing, 459.e1
snoopy cache coherence, 459.e16
SystemVerilog, 459.e1–459.e4

Cache hits, 460
Cache misses

block replacement on, 445–446
capacity, 447–448
compulsory, 447
conflict, 447
defined, 384
direct-mapped cache, 396
fully associative cache, 398
handling, 384–385
memory-stall clock cycles, 391
reducing with flexible block placement, 

394–398

set-associative cache, 397
steps, 385
in write-through cache, 385

Cache performance, 390–410
calculating, 392b–393b
hit time and, 393–394
impact on processor performance, 

392–393
Cache-aware instructions, 472
Caches, 375–390. See also Blocks

accessing, 378–384
in ARM cortex-A53, 461f
associativity in, 397b–398b
bits in, 382b
bits needed for, 382
contents illustration, 379f
defined, 19–22, 375–376
direct-mapped, 376, 377f, 382, 394
empty, 378
FSM for controlling, 449–454
fully associative, 395
GPU, B-38
inconsistent, 385
index, 380
in Intel Core i7, 461f
Intrinsity FastMATH example, 

387–389
locating blocks in, 399–401
locations, 377f
multilevel, 390, 402–405
nonblocking, 460
physically addressed, 436–437
physically indexed, 436b–437b
physically tagged, 436b–437b
primary, 402, 409–410
secondary, 402, 409–410
set-associative, 395
simulating, 468b
size, 381–383
split, 389b
summary, 389–390
tag field, 380
tags, 459.e10–459.e11, 459.e1f
virtual memory and TLB integration, 

435–437
virtually addressed, 436
virtually indexed, 436
virtually tagged, 436
write-back, 386–387, 446
write-through, 385, 387, 446
writes, 385–387

Callee, 99, 101
Caller, 99
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Capabilities, 473.e12
Capacity misses, 447
Carry lookahead, A-37–A-47

4-bit ALUs using, A-43f
adder, A-38
fast, with first level of abstraction, 

A-38–A-40
fast, with “infinite” hardware, A-38
fast, with second level of abstraction, 

A-40–A-45
plumbing analogy, A-41f, A-42f
ripple carry speed versus, A-45b
summary, A-45–A-47

Carry save adders, 183
CDC 6600, 54.e6, 347.e2
Cell phones, 6–7
Central processor unit (CPU). See also 

Processors
classic performance equation, 36–40
defined, 19
execution time, 32–34
performance, 33–35
system, time, 32
time, 391
time measurements, 33–34
user, time, 32

Cg pixel shader program, B-15
Characters

ASCII representation, 108–109
in Java, 111–113

Chips, 19, 25–26
manufacturing process, 26

Classes
defined, 144.e14
packages, 144.e20

Clock cycles
defined, 33
memory-stall, 391
number of registers and, 67
worst-case delay and, 262

Clock cycles per instruction (CPI), 
35–36, 272

one level of caching, 402
two levels of caching, 402

Clock rate
defined, 33
frequency switched as function of, 41
power and, 40

Clocking methodology, 241–243, A-47
edge-triggered, 241, A-47, A-72–A-73
level-sensitive, A-73–A-74, A-74–A-75
for predictability, 241

Clocks, A-47–A-49
edge, A-47, A-49b
in edge-triggered design, A-72f
skew, A-73
specification, A-56f
synchronous system, A-47–A-48

Cloud computing, 524–525
defined, 7

Cluster networking, 529.e3–529.e5, 529.
e6–529.e9, 529–530, 529.e1

Clusters, 553.e7–553.e8
defined, 492, 522, 553.e7
isolation, 523
organization, 491
scientific computing on, 553.e7

Cm*, 553.e3–553.e4
CMOS (complementary metal oxide 

semiconductor), 41
Coarse-grained multithreading, 506–507
Cobol, 162.e6
Code generation, 144.e12
Code motion, 144.e6
Cold-start miss, 447
Collision misses, 447
Column major order, 405
Combinational blocks, A-4–A-5
Combinational control units, C-4–C-8
Combinational elements, 240
Combinational logic, 241, A-3–A-4, 

A-9–A-20
arrays, A-18–A-19
decoders, A-9–A-10
defined, A-4–A-5
don’t cares, A-17–A-18
multiplexors, A-10
ROMs, A-14–A-16
two-level, A-11–A-14
Verilog, A-23–A-26

Commercial computer development, 54.
e3–54.e9

Commit units
buffer, 329
defined, 329
in update control, 334b

Common case fast, 11
Common subexpression elimination, 

144.e5
Communication, 23–24

overhead, reducing, 44–45
thread, B-34

Compact code, 162.e3–162.e4
Compare and branch zero, 309

Comparisons
constant operands in, 72–74
signed versus unsigned, 95–96

Compilers, 125
branch creation, 94b
brief history, 162.e7–162.e8
conservative, 144.e6
defined, 14
front end, 144.e2
function, 14, 125
high-level optimizations, 144.e3–144.e4
ILP exploitation, 347.e4–347.e5
Just In Time (JIT), 133
optimization, 141, 162.e8
speculation, 323–324
structure, 144.e1f

Compiling
C assignment statements, 65b
C language, 94b–95b, 144–145, 144.

e1, 144.e2
floating-point programs, 208b–209b
if-then-else, 93b
in Java, 144.e18–144.e19
procedures, 100b–101b, 102b–103b
recursive procedures, 102b–103b
while loops, 94b–95b

Compressed sparse row (CSR) matrix, 
B-55, B-56

Compulsory misses, 447–449
Computer architects, 11–13

abstraction to simplify design, 11
common case fast, 11
dependability via redundancy, 12
hierarchy of memories, 12
Moore’s law, 11
parallelism, 12
pipelining, 12
prediction, 12

Computers
application classes, traditional, 3
applications, 4
arithmetic for, 172
characteristics, 54.e12f
commercial development, 54.e3–54.e9
component organization, 17f
components, 17f
design measure, 53
desktop, 5
embedded, 5–6
first, 54.e2
in information revolution, 4
instruction representation, 81–89
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performance measurement, 54.e1–54.e3
post-PC era, 6–7
servers, 5

Condition codes/flags, 96
Conditional branches

changing program counter with, 312b
compiling if-then-else into, 93b
defined, 92–93
desktop RISC, D-16f
embedded RISC, D-16f
implementation, 97b
in loops, 117
PA-RISC, D-34–D-36, D-35f
PC-relative addressing, 115–116
RISC, D-10–D-16
SPARC, D-10–D-12

Conditional move instructions, 313b–
314b

Conflict misses, 447
Constant memory, B-40
Constant operands, 72–74

frequent occurrence, 72
Content Addressable Memory (CAM), 

400b–401b
Context switch, 438b
Control

ALU, 251–253
challenge, 315
finalizing, 261
forwarding, 300
FSM, C-8–C-22
implementation, optimizing, C-27
mapping to hardware, C-3–C-4, 

C-4–C-8, C-8–C-22, C-22–C-28, 
C-28–C-32, C-32–C-33

memory, C-26f
organizing, to reduce logic, C-31–C-32
pipelined, 290–294

Control and status register (CSR) access 
instructions, 464–465

Control flow graphs, 144.e8, 144.e9
illustrated examples, 144.e8f, 144.e9f, 

144.e11f
Control functions

ALU, mapping to gates, C-4–C-7
defining, 256
PLA, implementation, C-7, C-20
ROM, encoding, C-19
for single-cycle implementation, 

261–262
Control hazards, 271–274, 307–315

branch delay reduction, 308–310

branch not taken assumption, 307–308
branch prediction as solution, 274
delayed decision approach, 274b
dynamic branch prediction, 310–314
logic implementation in Verilog, 345.

e8
pipeline stalls as solution, 272f
pipeline summary, 314–315
solutions, 272f
static multiple-issue processors and, 324

Control lines
asserted, 256
in datapath, 255f
execution/address calculation, 291
final three stages, 293f
instruction decode/register file read, 

291
instruction fetch, 291
memory access, 291
setting of, 256
values, 291
write-back, 291

Control signals
ALUOp, 255
defined, 242
effect of, 256f
multi-bit, 256
pipelined datapaths with, 290–294
truth tables, C-14f

Control units, 239–240. See also 
Arithmetic logic unit (ALU)

address select logic, C-24, C-25f
combinational, implementing, 

C-4–C-8
with explicit counter, C-23f
illustrated, 257f
logic equations, C-11–C-12
main, designing, 253–256
as microcode, C-28f
next-state outputs, C-10, C-12b–C-13b
output, 251–253, C-10
RISC-V, C-10f

Cooperative thread arrays (CTAs), B-30
Coprocessors

defined, 212b
Core RISC-V instruction set

abstract view, 238f
desktop RISC, D-9f
implementation, 236–237
implementation illustration, 239f
overview, 237–240
subset, 236

Cores
defined, 43
number per chip, 43

Correlation predictor, 312–313
Cosmic Cube, 553.e6–553.e7
CPU, 9
Cray computers, 227.e4, 227.e5
Critical word first, 384
Crossbar networks, 527–528
CTSS (Compatible Time-Sharing 

System), 473.e13
CUDA programming environment, 515, 

B-5–B-6
barrier synchronization, B-18, B-34
development, B-17, B-17–B-18
hierarchy of thread groups, B-18
kernels, B-19, B-24
key abstractions, B-18
paradigm, B-19–B-22
parallel plus-scan template, B-61f
per-block shared memory, B-58
plus-reduction implementation,  

B-63f
programs, B-6, B-24
scalable parallel programming with, 

B-17–B-23
shared memories, B-18
threads, B-36

Cyclic redundancy check, 415b–416b
Cylinder, 374

D

D flip-flops, A-50–A-51, A-52
D latches, A-50–A-51, A-51
Data bits, 413f
Data flow analysis, 144.e8
Data hazards, 268–271, 294–307. See also 

Hazards
forwarding, 268–269, 294–307
load-use, 269–271, 308
stalls and, 303–307

Data parallel problem decomposition, 
B-17, B-18f

Data race, 121
Data selectors, 237–238
Data transfer instructions. See also 

Instructions
defined, 68–69
load, 69
offset, 69
store, 70–71
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Datacenters, 7
Data-level parallelism, 500
Datapath elements

defined, 243
sharing, 248–249

Datapaths
branch, 246–247
building, 243–251
control signal truth tables, C-14f
control unit, 257f
defined, 19
design, 243
exception handling, 318f
for fetching instructions, 245f
for hazard resolution via forwarding, 

302f
for memory instructions, 247
in operation for branch-if-equal 

instruction, 260–261
in operation for load instruction, 259f
in operation for R-type instruction, 

258f
operation of, 256–261
pipelined, 276–294
for RISC-V architecture, 249
for R-type instructions, 256–259
single, creating, 247–251
single-cycle, 275
static two-issue, 326f

Deasserted signals, 242, A-4
DEC PDP-8, 162.e2f
Decimal numbers

binary number conversion to, 77b
defined, 74

Decision-making instructions, 92–98
Decoders, A-9–A-10

two-level, A-64
Decoding machine language, 118–120
Defect, 26–27
Delayed branches, 274. See also Branches

as control hazard solution, 274
embedded RISCs and, D-23
reducing, 308–310

Delayed decision, 274b
DeMorgan’s theorems, A-11
Denormalized numbers, 216
Dependability via redundancy, 12
Dependable memory hierarchy, 410–416

failure, defining, 410–412
Dependences

between pipeline registers, 238–239
between pipeline registers and ALU 

inputs, 297–298

bubble insertion and, 305
detection, 297b
name, 327
sequence, 295

Design
compromises and, 84
datapath, 243
digital, 345
logic, 240–243
main control unit, 253–256
memory hierarchy, challenges, 449f
pipelining instruction sets, 267

Desktop and server RISCs. See also 
Reduced instruction set computer 
(RISC) architectures

addressing modes, D-6
architecture summary, D-4f
arithmetic/logical instructions, D-11f
conditional branches, D-16
constant extension summary, D-9f
control instructions, D-11f
conventions equivalent to MIPS core, 

D-12f
data transfer instructions, D-10f
features added to, D-45f
floating-point instructions, D-12f
instruction formats, D-7f
multimedia extensions, D-16–D-18
multimedia support, D-18f

Desktop computers, defined, 5
Device driver, 529.e4
DGEMM (Double precision General 

Matrix Multiply), 218–219, 342, 
344–345, 405, 530

cache blocked version of, 407f
optimized C version of, 220f, 342f, 466f
performance, 344f, 408f

Dicing, 27
Dies, 26–27
Digital design pipeline, 345
Digital signal-processing (DSP) 

extensions, D-19
DIMMs (dual inline memory modules), 

473.e4
Direct Data IO (DDIO), 529.e6
Direct memory access (DMA), 529.e2f, 

529.e3
Direct3D, B-13
Direct-mapped caches. See also Caches

address portions, 399f
choice of, 400–401
defined, 376, 394
illustrated, 377f

memory block location, 395f
misses, 397b–398b
single comparator, 399
total number of bits, 382

Dirty bit, 430b
Dirty pages, 430b
Disk memory, 373–375
Displacement addressing, 118
Distributed Block-Interleaved Parity 

(RAID 5), 458.e5–458.e6
Divide algorithm, 186b
Dividend, 184
Division, 183–191

algorithm, 185f
dividend, 184
divisor, 184

Divisor, 184
divu (Divide Unsigned). See also Arithmetic

faster, 188–189
floating-point, 206–212
hardware, 184–187
hardware, improved version, 187f
operands, 184
quotient, 184
remainder, 184
in RISC-V, 189
signed, 187–188
SRT, 189

Don’t cares, A-17–A-18
example, A-17b–A-18b
term, 253

Double data rate (DDR), 371–372
Double Data Rate (DDR) SDRAM, 

371–372, A-64
Double precision. See also Single 

precision
defined, 193
FMA, B-45, B-45–B-46
GPU, B-45, B-74b
representation, 212–214

Doubleword, 67, 151
Dual inline memory modules (DIMMs), 

373
Dynamic branch prediction, 310–314. See 

also Control hazards
branch prediction buffer, 310
loops and, 312b

Dynamic hardware predictors, 274
Dynamic multiple-issue processors, 322, 

328–333. See also Multiple issue
pipeline scheduling, 329–333
superscalar, 328

Dynamic pipeline scheduling, 329–333
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commit unit, 329
concept, 329
hardware-based speculation, 331–333
primary units, 330f
reorder buffer, 334b
reservation station, 329

Dynamic random access memory 
(DRAM), 370–373, A-62–A-64

bandwidth external to, 390
cost, 23
defined, 19, A-62
DIMM, 473.e4
Double Date Rate (DDR), 371–372
early board, 473.e4f
GPU, B-37–B-38
growth of capacity, 25f
history, 473.e1
internal organization of, 372f
pass transistor, A-62b–A-64b
SIMM, 473.e4, 473.e5f
single-transistor, A-63f
size, 390
speed, 23–24
synchronous (SDRAM), 371–372, 

A-59, A-64
two-level decoder, A-64

Dynamically linked libraries (DLLs), 
130–132

defined, 130
lazy procedure linkage version, 130

E

Early restart, 384b
Edge-triggered clocking methodology, 

241–242, A-47, A-72–A-73
advantage, A-48
clocks, A-72–A-73
drawbacks, A-73–A-74
illustrated, A-49f
rising edge/falling edge, A-47

EDSAC (Electronic Delay Storage 
Automatic Calculator), 54.e2, 473.
e1, 473.e2f

Eispack, 227.e2–227.e3
Electrically erasable programmable read-

only memory (EEPROM), 373
Elements

combinational, 240
datapath, 243, 248–249
memory, A-49–A-57
state, 240, 242, 244f, A-47, A-49b

Embedded computers, 5–6

application requirements, 6
design, 5
growth, 54.e11

Embedded Microprocessor Benchmark 
Consortium (EEMBC), 54.e11

Embedded RISCs. See also Reduced 
instruction set computer (RISC) 
architectures

addressing modes, D-6
architecture summary, D-4f
arithmetic/logical instructions,  

D-14f
conditional branches, D-16
constant extension summary, D-9f
control instructions, D-15f
data transfer instructions, D-13f
delayed branch and, D-23
DSP extensions, D-19
general purpose registers, D-5
instruction conventions, D-15f
instruction formats, D-8f
multiply-accumulate approaches, 

D-19f
Encoding

defined, C-31
RISC-V instruction, 85f, 119f
ROM control function, C-18
ROM logic function, A-15
x86 instruction, 153–154

ENIAC (Electronic Numerical  
Integrator and Calculator), 54.
e2–54.e3, 473.e1

EPIC, 347.e4
Error correction, A-64–A-66
Error Detecting and Correcting Code 

(RAID 2), 458.e4
Error detection, A-65–A-66
Error detection code, 412
Ethernet, 23–24
EX stage

load instructions, 282f
overflow exception detection, 317, 320f
store instructions, 284f

Exabyte, 6f
Exception enable, 439b
Exceptions, 315–321

association, 321b
datapath with controls for handling, 

318f
defined, 193, 315
detecting, 315
event types and, 315
imprecise, 321b

interrupts versus, 315
pipelined computer example, 318b–

319b
in pipelined implementation, 317–321
precise, 321b
reasons for, 316–317
result due to overflow in add 

instruction, 320f
in RISC-V architecture, 316–317
saving/restoring stage on, 440

Executable files
defined, 127–129

Execute or address calculation stage, 282
Execute/address calculation

control line, 291
load instruction, 282
store instruction, 282

Execution time
CPU, 32–34
pipelining and, 276
as valid performance measure, 50–51

Explicit counters, C-23–C-24, C-26f
Exponents, 192

F

Failures, synchronizer, A-75–A-76
Fallacies. See also Pitfalls

Amdahl’s law, 548
arithmetic, 222
assembly language for performance, 

158b
commercial binary compatibility 

importance, 158b
defined, 49
GPUs, B-72, B-75
low utilization uses little power, 50b
peak performance, 548b
pipelining, 345
powerful instructions mean higher 

performance, 157
right shift, 222b

False sharing, 457
Fast carry

with first level of abstraction, 
A-38–A-40

with “infinite” hardware, A-38
with second level of abstraction, 

A-40–A-45
Fast Fourier Transforms (FFT), B-53
Fault avoidance, 411
Fault forecasting, 411
Fault tolerance, 411
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Fermi architecture, 515, 544
Field programmable devices (FPDs), 

A-77–A-78
Field programmable gate arrays (FPGAs), 

A-77
Fields

defined, 83
format, C-31
names, 83
RISC-V, 83–89

Files, register, 244, 249, A-49b, A-53–A-55
Fine-grained multithreading, 506
Finite-state machines (FSMs), 449–454, 

A-66–A-71
control, C-8–C-22
controllers, 452f
for multicycle control, C-9f
for simple cache controller, 453–454
implementation, 451, A-69
Mealy, 452
Moore, 452b–453b
next-state function, 451, A-66
output function, A-66, A-68
state assignment, A-69
state register implementation, A-70f
style of, 452b–453b
synchronous, A-66
SystemVerilog, 459.e6f
traffic light example, A-67

Flash memory, 373
defined, 23

Flat address space, 469
Flip-flops

D flip-flops, A-50–A-51, A-52
defined, A-50–A-51

Floating point, 191–216
assembly language, 207f
backward step, 227.e3–227.e4
binary to decimal conversion, 197b
branch, 206
challenges, 226
diversity versus portability, 227.e2–227.

e3
division, 206
first dispute, 227.e1–227.e2
form, 192
fused multiply add, 214b
guard digits, 213b
history, 227.e2
IEEE 754 standard, 193–198
intermediate calculations, 212–213
operands, 207f

overflow, 192
packed format, 218
precision, 223
procedure with two-dimensional 

matrices, 80b
programs, compiling, 79b–80b
registers, 212b
representation, 192–193
RISC-V instruction frequency for,  

226f
RISC-V instructions, 206–212
rounding, 212–213
sign and magnitude, 192
SSE2 architecture, 217, 217f
subtraction, 206
underflow, 192
units, 213–214
in x86, 217f

Floating vectors, 227.e2
Floating-point addition, 198–201

arithmetic unit block diagram, 202f
binary, 199b–201b
illustrated, 200f
instructions, 206–212
steps, 198–199

Floating-point arithmetic (GPUs), 
B-41–B-46

basic, B-42
double precision, B-45–B-46, B-74b
performance, B-44
specialized, B-42–B-44
supported formats, B-42
texture operations, B-44

Floating-point control and status register 
(fcsr), 193

Floating-point instructions
desktop RISC, D-12f
SPARC, D-31–D-32

Floating-point multiplication, 201–206
binary, 205b–206b
illustrated, 204f
instructions, 206
significands, 201–205
steps, 201–205

Flow-sensitive information, 144.e13b–
144.e14b

Flushing instructions, 308–310
exceptions and, 319b

For loops, 142, 144.e25
inner, 144.e23
SIMD and, 553.e2

Format fields, C-31

Fortran, 162.e6
Forwarding, 294–307

ALU before, 299f
control, 300
datapath for hazard resolution, 302f
defined, 268–269
graphical representation, 269f
illustrations, 345.e20
multiple results and, 271
multiplexors, 300f
pipeline registers before, 299f
with two instructions, 268b–269b
Verilog implementation, 345.e3

Fractions, 192–193
Frame buffer, 18
Frame pointers, 104–105
Front end, 144.e2
Fully associative caches. See also Caches

block replacement strategies,  
445–446

choice of, 445
defined, 395
memory block location, 395f
misses, 398

Fully connected networks, 527
Fused-multiply-add (FMA) operation, 

214b, B-45

G

Game consoles, B-9
Gates, A-3–A-4, A-4–A-9

AND, A-12–A-13, C-7
delays, A-45
mapping ALU control function to, 

C-4–C-7
NAND, A-8–A-9
NOR, A-8–A-9, A-49f

Gather-scatter, 503, 544
General Purpose GPUs (GPGPUs), B-5
General-purpose registers, 147

architectures, 162.e2f
embedded RISCs, D-5

Generate
defined, A-39
example, A-44b–A-45b
super, A-40

Gigabyte, 6f
Global common subexpression 

elimination, 144.e5
Global memory, B-21, B-39
Global miss rates, 408b
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Global optimization, 144.e4–144.e10
code, 144.e6
implementing, 144.e7

Global pointers, 104b
GPU computing. See also Graphics 

processing units (GPUs)
defined, B-5–B-6
visual applications, B-6

GPU system architectures, B-7–B-12
graphics logical pipeline, B-10
heterogeneous, B-7–B-9
implications for, B-24–B-25
interfaces and drivers, B-9–B-10
unified, B-10–B-11

Graph coloring, 144.e11
Graphics displays

computer hardware support, 18
LCD, 18

Graphics logical pipeline, B-10
Graphics processing units (GPUs), 514–

521. See also GPU computing
as accelerators, 514
attribute interpolation, B-43–B-44
defined, 46, 498–499, B-3
evolution, B-5
fallacies and pitfalls, B-72–B-75
floating-point arithmetic, B-16, 

B-41–B-46, B-74
GeForce 8-series generation, B-5
general computation, B-73b
General Purpose (GPGPUs), B-5
graphics mode, B-6
graphics trends, B-4
history, B-3–B-4
logical graphics pipeline, B-13–B-14
mapping applications to, B-55–B-72
memory, 514
multilevel caches and, 514
N-body applications, B-65–B-68
NVIDIA architecture, 515–517
parallel memory system, B-36–B-41
parallelism, 515, B-76
performance doubling, B-4
perspective, 519–521
programming, B-12–B-25
programming interfaces to, B-17
real-time graphics, B-13

Graphics shader programs, B-14–B-15
Gresham’s Law, 227, 227.e1
Grid computing, 525b–526b
Grids, B-19
GTX 280, 540–541

Guard digits
defined, 212–213
rounding with, 213b

H

Half precision, B-42
Halfwords, 112
Hamming, Richard, 412
Hamming distance, 412
Hamming Error Correction Code (ECC), 

412–413
calculating, 412

Hard disks
access times, 23
defined, 23

Hardware
as hierarchical layer, 13f
language of, 14–16
operations, 63–67
supporting procedures in, 98–108
synthesis, A-21
translating microprograms to, 

C-28–C-32
virtualizable, 418

Hardware description languages. See also 
Verilog

defined, A-20
using, A-20–A-26
VHDL, A-20–A-21

Hardware multithreading, 506–509
coarse-grained, 506–507
options, 507f
simultaneous, 507

Hardware-based speculation, 331–333
Harvard architecture, 54.e3
Hazard detection units, 303

pipeline connections for, 306–307
Hazards. See also Pipelining

control, 271–274, 307–315
data, 268–271, 294–307
forwarding and, 302b
structural, 267–268, 284

Heap
allocating space on, 104–105
defined, 105

Heterogeneous systems, B-4–B-5
architecture, B-7–B-12
defined, B-3

Hexadecimal numbers, 82
binary number conversion to, 82f, 83b

Hierarchy of memories, 12

High-level languages, 14–16
benefits, 16
computer architectures, 162.e4
importance, 16

High-level optimizations, 144.e3–144.e4
Hit rate, 368
Hit time

cache performance and, 393–394
defined, 368–369

Hit under miss, 460
Hold time, A-52–A-53
Horizontal microcode, C-32
Hot-swapping, 458.e6–458.e7
Human genome project, 4

I

I/O, 529.e1–529.e2
on system performance, 458.e1b–458.

e2b
I/O benchmarks. See Benchmarks
IBM 360/85, 473.e5
IBM 701, 54.e4
IBM 7030, 347.e1
IBM ALOG, 227.e6
IBM Blue Gene, 553.e8–553.e9
IBM Personal Computer, 54.e7, 162.e5
IBM System/360 computers, 54.e5f, 227.

e5, 227.e6, 347.e1
IBM z/VM, 473.e12
ID stage

branch execution in, 309–310
load instructions, 282f
store instruction in, 281f

IEEE 754 floating-point standard, 227.
e7–227.e9, 193–198, 194f. See also 
Floating point

first chips, 227.e7–227.e9
in GPU arithmetic, B-42
implementation, 227.e9
rounding modes, 213–214
today, 227.e9

If statements, 115–116
If-then-else, 93b
Imagination Technologies, 145
Immediate addressing, 118
Immediate instructions, 72
Imprecise interrupts, 347.e2–347.e3, 321b
Index-out-of-bounds check, 96
Induction variable elimination, 144.e6
Inheritance, 144.e14
In-order commit, 330–331
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Input devices, 16–17
Inputs, 253
Instances, 144.e14
Instruction count, 36, 38
Instruction decode/register file read stage

control line, 290–294
load instruction, 279
store instruction, 284

Instruction execution illustrations, 345.
e13–345.e20

clock cycle 9, 345.e25f
clock cycles 1 and 2, 345.e21f
clock cycles 3 and 4, 345.e22f
clock cycles 5 and 6, 345.e23f
clock cycles 7 and 8, 345.e24f
examples, 345.e15–345.e20
forwarding, 345.e20
no hazard, 345.e15
pipelines with stalls and forwarding, 

345.e20
Instruction fetch stage

control line, 291
load instruction, 279
store instruction, 284

Instruction formats, 153
defined, 82
desktop/server RISC architectures, 

D-7f
embedded RISC architectures, D-8f
I-type, 84
MIPS, 146f
RISC-V, 146f
R-type, 84, 253–254
SB-type, 115
S-type, 84–85
UJ-type, 115
U-type, 113–114
x86, 153–154

Instruction latency, 346–347
Instruction mix, 39–40, 54.e9
Instruction set architecture

branch address calculation, 246
defined, 22, 52
history, 162
maintaining, 52
protection and, 419
thread, B-31–B-34
virtual machine support, 418

Instruction sets, B-49
MIPS-32, 146f
RISC-V, 160
x86 growth, 162f

Instruction-level parallelism (ILP), 344–
345. See also Parallelism

compiler exploitation, 347.e4–347.e5
defined, 43b, 321–322
exploitation, increasing, 333
and matrix multiply, 342–345

Instructions, 60, D-25–D-27, D-40, 
D-40–D-43. See also Arithmetic 
instructions; MIPS; Operands

add immediate, 72–74
addition, 176
Alpha, D-27–D-29
arithmetic-logical, 243–244
ARM, D-36–D-38
assembly, 65
basic block, 95b
cache-aware, 472
conditional branch, 92–93, 93b
conditional move, 313b–314b
data transfer, 68
decision-making, 92–98
defined, 14, 62
desktop RISC conventions, D-12f
as electronic signals, 81–82
embedded RISC conventions, D-15f
encoding, 85f
fetching, 245f
floating-point, 206–212
floating-point (x86), 217f
flushing, 308–310
immediate, 72
introduction to, 62–63
left-to-right flow, 277
load, 69
logical operations, 89–92
M32R, D-40
memory access, B-33–B-34
memory-reference, 237
multiplication, 183
nop, 304–305
PA-RISC, D-34–D-36
performance, 35–36
pipeline sequence, 304f
PowerPC, D-12–D-13, D-32–D-34
PTX, B-31, B-32f
representation in computer, 81–89
restartable, 440–441
resuming, 440b–441b
R-type, 243–244, 248–249
SPARC, D-29–D-32
store, 71
store-conditional doubleword, 122–123
subtraction, 176
SuperH, D-39–D-40
thread, B-30–B-31
Thumb, D-38–D-39

vector, 500–502
as words, 62
x86, 146–155

Instructions per clock cycle (IPC), 322
Integrated circuits (ICs), 19. See also 

specific chips
cost, 27
defined, 25
manufacturing process, 26
very large-scale (VLSIs), 25

Intel Core i7, 46–49, 236, 493, 540–545
address translation for, 460f
architectural registers, 337–338
caches in, 461f
memory hierarchies of, 459–464
microarchitecture, 337
performance of, 462
SPEC CPU benchmark, 46–48
SPEC power benchmark, 48–49
TLB hardware for, 460f

Intel Core i7 920, 337–340
microarchitecture, 337

Intel Core i7 960
benchmarking and rooflines of, 

540–545
Intel Core i7 Pipelines, 334–342

memory components, 338f
performance, 340–342
program performance, 341b
specification, 335f

Intel IA-64 architecture, 162.e2f
Intel Paragon, 553.e6–553.e7
Intel Threading Building Blocks, B-60
Intel x86 microprocessors

clock rate and power for, 40f
Interference graphs, 144.e10
Interleaving, 390
Interprocedural analysis, 144.e13b–144.

e14b
Interrupt enable, 439b
Interrupt-driven I/O, 529.e3
Interrupts

defined, 193, 315
event types and, 315
exceptions versus, 315
imprecise, 347.e2–347.e3, 321b
precise, 321b
vectored, 316

Intrinsity FastMATH processor, 387–389
caches, 388f
data miss rates, 389f, 399f
read processing, 434f
TLB, 432–435
write-through processing, 434f
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Inverted page tables, 429
Issue packets, 324–325
I-type, 87b

J

Java
bytecode, 132
bytecode architecture, 144.e10–144.e12
characters in, 111–113
compiling in, 144.e18–144.e19
goals, 132
interpreting, 132, 144–145, 144.e14
keywords, 144.e20
method invocation in, 144.e20
pointers, 144.e25–144.e26
primitive types, 144.e25
programs, starting, 132–133
reference types, 144.e25
sort algorithms, 141f
strings in, 111–113
translation hierarchy, 132f
while loop compilation in, 144.e17b–

144.e18b
Java Virtual Machine (JVM), 144.e15, 145
Jump-and-link register instruction (jalr), 

97–99
Jump instructions, D-26

branch instruction versus, 250f
control and datapath for, 251
implementing, 237–240
instruction format, 250

Just In Time (JIT) compilers, 133, 552

K

Karnaugh maps, A-18
Kernel mode, 437
Kernels

CUDA, B-19, B-24
defined, B-19–B-22

Kilobyte, 6f

L

LAPACK, 223–224
Large-scale multiprocessors, 553.e6–553.

e7
Latches

D latch, A-50–A-51, A-51
defined, A-50–A-51

Latency
instruction, 346–347
memory, B-74b

pipeline, 276b
use, 325–327

lb (load byte), 64f
lbu (load byte, unsigned), 64f
ld (load doubleword), 64f
Leaf procedures. See also Procedures

defined, 102
example, 112f

Least recently used (LRU)
as block replacement strategy, 445–446
defined, 401
pages, 426–428

Least significant bits
defined, 74
SPARC, D-31

Left-to-right instruction flow, 277
Level-sensitive clocking, A-73–A-74, 

A-74–A-75
defined, A-73–A-74
two-phase, A-74

lh (load halfword), 64f
lhu (load halfword, unsigned), 64f
Link, 529.e1–529.e2
Linkers, 127–129

defined, 127
executable files, 127–129
steps, 127

Linking object files, 128b–129b
Linpack, 227.e2–227.e3, 530
Liquid crystal displays (LCDs), 18
LISP, SPARC support, D-30
Live range, 144.e10
Livermore Loops, 54.e10
Load balancing, 497b–498b
Load byte, 109
Load doubleword, 69, 71–72
Load instructions. See also Store instructions

access, B-41
base register, 254
compiling with, 71b
datapath in operation for, 259f
defined, 69
EX stage, 282f
halfword unsigned, 112
ID stage, 281f
IF stage, 281f
load byte unsigned, 78
load half, 112
MEM stage, 283f
pipelined datapath in, 286f
signed, 78b
unit for implementing, 247f
unsigned, 78b
WB stage, 283f

Loaders, 130
Load-reserved doubleword, 122–123
Load-store architectures, 162.e2
Load upper immediate, 113–114
Load-use data hazard, 269–271, 308
Load-use stalls, 308
Load word, 113b
Load word unsigned, 113b
Local area networks (LANs), 24. See also 

Networks
Local memory, B-21, B-40
Local miss rates, 408b
Local optimization, 144.e4. See also 

Optimization
implementing, 144.e7

Locality
principle, 366–367
spatial, 366, 369b
temporal, 366, 369b

Lock synchronization, 121
Locks, 510–513
Logic

address select, C-24, C-25f
ALU control, C-6–C-7
combinational, 242, A-5, A-9–A-20
components, 241
control unit equations, C-11f
design, 240–243
equations, A-7b
minimization, A-18
programmable array (PAL), A-77
sequential, A-4–A-5, A-55–A-57
two-level, A-11–A-14

Logical operations, 89–92
AND, 90
desktop RISC, D-11f
embedded RISC, D-13f
NOT, 91
OR, 91
shifts, 90
xor, 91

Long instruction word (LIW), 347.e4
Lookup tables (LUTs), A-77–A-78
Loop unrolling

defined, 144.e3–144.e4, 327–328
for multiple-issue pipelines, 327b–328b
register renaming and, 327

Loops, 94–96
conditional branches in, 115–116
for, 142
prediction and, 312b
test, 142–143
while, compiling, 94b–95b

lr.d (load reserved), 64f
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lui (load upper immediate), 64f
lw (load word), 64f
lwu (load word, unsigned), 64f

M

M32R, D-15, D-40
Machine code, 82
Machine instructions, 82
Machine language, 15f

branch offset in, 116b–117b
decoding, 118–120
defined, 14, 82
illustrated, 15f
RISC-V, 87–89
SRAM, 19–22
translating RISC-V assembly language 

into, 85b–86b
Main memory, 420. See also Memory

defined, 23
page tables, 429
physical addresses, 420

Mapping applications, B-55–B-72
Mark computers, 54.e3
Matrix multiply, 218–222, 545–548
Mealy machine, 452, A-67, A-70–A-71, 

A-71b
Mean time to failure (MTTF), 410–411

versus AFR of disks, 410b–411b
improving, 411–412

Media Access Control (MAC) address, 
529.e6

Megabyte, 6f
Memory

addresses, 78b
affinity, 538f
atomic, B-21
bandwidth, 371–372, 389b
cache, 19–22, 375–410
CAM, 400b–401b
constant, B-40
control, C-26
defined, 19
DRAM, 19, 371–373, A-62–A-64
flash, 23
global, B-21, B-39
GPU, 514
instructions, datapath for, 247
local, B-21, B-40
main, 23
nonvolatile, 22–23
operands, 68–72
parallel system, B-36–B-41

read-only (ROM), A-14–A-16
SDRAM, 371–372
secondary, 23
shared, B-17, B-39–B-40
spaces, B-39
SRAM, A-57–A-59
stalls, 392
technologies for building, 24–28
texture, B-40
virtual, 419–443
volatile, 22–23

Memory access instructions, B-33–B-34
Memory access stage

control line, 292f
load instruction, 282f
store instruction, 282

Memory bandwidth, 540–541, 549b
Memory consistency model, 458b
Memory elements, A-49–A-57

clocked, A-50
D flip-flop, A-50–A-51, A-52
D latch, A-51
DRAMs, A-62–A-64
flip-flop, A-50
hold time, A-52–A-53
latch, A-50
setup time, A-52–A-53, A-53f
SRAMs, A-57–A-59
unclocked, A-50

Memory hierarchies, 537
of ARM cortex-A53, 459–464
block (or line), 367–368
cache performance, 390–410
caches, 375–390
common framework, 443–449
defined, 367
design challenges, 449b
development, 473.e5–473.e7
exploiting, 364
of Intel Core i7, 459–464
level pairs, 368f
multiple levels, 367
overall operation of, 435b–436b
parallelism and, 458.e1–458.e2, 

454–458
pitfalls, 468–472
program execution time and, 409
quantitative design parameters, 443f
redundant arrays and inexpensive 

disks, 458
reliance on, 369
structure, 367f
structure diagram, 370f

variance, 409b
virtual memory, 419–443

Memory rank, 373
Memory technologies, 370–375

disk memory, 373–375
DRAM technology, 370–373
flash memory, 373
SRAM technology, 370–371

Memory-mapped I/O, 529.e2
Memory-stall clock cycles, 391
Message passing

defined, 521
multiprocessors, 521–526

Metastability, A-75–A-76
Methods

defined, 144.e14
invoking in Java, 144.e19–144.e20

Microarchitectures, 337
Intel Core i7 920, 337–340

Microcode
assembler, C-30
control unit as, C-28f
defined, C-27
dispatch ROMs, C-30, C-30f
horizontal, C-32
vertical, C-32

Microinstructions, C-31
Microprocessors

design shift, 493
multicore, 8, 43, 492–493

Microprograms
as abstract control representation, 

C-30–C-31
field translation, C-28–C-29
translating to hardware, C-28–C-32

Migration, 456
Million instructions per second (MIPS), 

51
Minterms

defined, A-12–A-13, C-20
in PLA implementation, C-20

MIP-map, B-44
MIPS and RISC-V

common features between, 145
MIPS-16

16-bit instruction set, D-41–D-42
immediate fields, D-41
instructions, D-40–D-43
MIPS core instruction changes, 

D-42–D-43
PC-relative addressing, D-41

MIPS-32 instruction set, 145
MIPS-64 instructions, 145, D-25–D-27
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conditional procedure call instructions, 
D-27

constant shift amount, D-25
jump/call not PC-relative, D-26
move to/from control  

registers, D-26
nonaligned data transfers, D-25
NOR, D-25
parallel single precision floating-point 

operations, D-27
reciprocal and reciprocal square root, 

D-27
SYSCALL, D-25
TLB instructions, D-26–D-27

Mirroring, 458.e4
Miss penalty

defined, 368–369
determination, 383–384
multilevel caches, reducing,  

402–405
Miss rates

block size versus, 383–384
data cache, 444f
defined, 368
global, 408b
improvement, 383–384
Intrinsity FastMATH processor, 389
local, 408b
miss sources, 448
split cache, 389b

Miss under miss, 460
MMX (MultiMedia eXtension), 217
Moore machines, 452, A-67, A-70–A-71, 

A-71b
Moore’s law, 529.e1–529.e2, 11, 371, 514, 

B-72b
Most significant bit

1-bit ALU for, A-33f
defined, 74

MS-DOS, 473.e15
Multicore, 509–514
Multicore multiprocessors, 8, 43

defined, 8, 492–493
MULTICS (Multiplexed Information and 

Computing Service), 473.e8
Multilevel caches. See also Caches

complications, 408b
defined, 390, 408b
miss penalty, reducing, 402–405
performance of, 402b–403b
summary, 409–410

Multimedia extensions
desktop/server RISCs, D-16–D-18

as SIMD extensions to instruction sets, 
553.e3

vector versus, 501b–502b
Multiple dimension arrays, 212
Multiple instruction multiple data 

(MIMD), 550–551
defined, 499–500
first multiprocessor, 553.e3–553.e4

Multiple instruction single data (MISD), 
499–500

Multiple issue, 322
code scheduling, 326b–327b
dynamic, 322, 328–333
issue packets, 324–325
loop unrolling and, 327b–328b
processors, 322
static, 322, 324–328
throughput and, 332b

Multiple processors, 545–548
Multiple-clock-cycle pipeline diagrams, 

286–287
five instructions, 288f
illustrated, 287–290

Multiplexors, A-10
controls, 451
in datapath, 255f
defined, 237–238
forwarding, control values, 300f
selector control, 251
two-input, A-10

Multiplicand, 178
Multiplication, 177–183. See also 

Arithmetic
fast, hardware, 182
faster, 182–183
first algorithm, 180f
floating-point, 201–206
hardware, 178–182
instructions, 183
operands, 183
product, 183
sequential version, 178–182
signed, 182

Multiplier, 178
Multiply algorithm, 178–182
Multiply-add (MAD), B-42
Multiprocessors

benchmarks, 530–540
bus-based coherent, 553.e6
defined, 492
historical perspective, 553
large-scale, 553.e6–553.e7
message-passing, 521–526

multithreaded architecture, B-26–B-27, 
B-36

organization, 491, 521
for performance, 549
shared memory, 492–493, 509–514
software, 493f
TFLOPS, 553.e5
UMA, 510

Multistage networks, 527–528
Multithreaded multiprocessor 

architecture, B-25–B-36
conclusion, B-36
ISA, B-31–B-34
massive multithreading, B-25–B-26
multiprocessor, B-26–B-27
multiprocessor comparison, B-35–B-36
SIMT, B-27–B-29
special function units (SFUs), B-35
streaming processor (SP), B-34
thread instructions, B-30–B-31
threads/thread blocks management, 

B-30
Multithreading, B-25–B-26

coarse-grained, 506–507
defined, 498–499
fine-grained, 506
hardware, 506–509
simultaneous (SMT), 507

Must-information, 144.e13b–144.e14b
Mutual exclusion, 121

N

Name dependence, 327
NAND gates, A-8–A-9
NAS (NASA Advanced Supercomputing), 

532
N-body

all-pairs algorithm, B-65
GPU simulation, B-71
mathematics, B-65–B-66
multiple threads per body, B-68–B-72
optimization, B-67
performance comparison, B-69–B-70
results, B-70–B-72
shared memory use, B-67–B-68

Negation shortcut, 78–79
Nested procedures, 102–104

compiling recursive procedure 
showing, 102b–103b

NetFPGA 10-Gigagit Ethernet card, 529.
e1f, 529.e2f

Network of Workstations, 553.e7–553.e8
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Network topologies, 526–529
implementing, 528–529
multistage, 529f

Networking, 529.e3–529.e4
operating system in, 529.e3–529.e5
performance improvement, 529.

e6–529.e9
Networks, 23–24

advantages, 23
bandwidth, 527
crossbar, 527–528
fully connected, 527
local area (LANs), 23–24
multistage, 527–528
wide area (WANs), 23–24

Newton’s iteration, 212b
Next state

nonsequential, C-24
sequential, C-23–C-24

Next-state function, 451, A-66
defined, 451
implementing, with sequencer, 

C-22–C-28
Next-state outputs, C-12b–C-13b, C-27

example, C-12
implementation, C-12–C-13
logic equations, C-12b–C-13b
truth tables, C-13–C-15

No Redundancy (RAID 0), 458.e3
No write allocation, 386
Nonblocking assignment, A-24
Nonblocking caches, 334b, 460
Nonuniform memory access (NUMA), 

510
Nonvolatile memory, 22–23
Nops, 304–305
NOR gates, A-8–A-9

cross-coupled, A-49f
D latch implemented with, A-51f

NOR operation, D-25
NOT operation, 91, A-6
Numbers

binary, 74
computer versus real-world, 215
decimal, 74, 77b
denormalized, 216
hexadecimal, 83
signed, 74–81
unsigned, 74–81

NVIDIA GeForce 8800, B-46–B-55
all-pairs N-body algorithm, B-71
dense linear algebra computations, 

B-51–B-53

FFT performance, B-53
instruction set, B-49
performance, B-51
rasterization, B-50
ROP, B-50–B-51
scalability, B-51
sorting performance, B-54–B-55
special function approximation 

statistics, B-43f
special function unit (SFU), B-50
streaming multiprocessor (SM), 

B-48–B-49
streaming processor, B-49–B-50
streaming processor array (SPA), B-46
texture/processor cluster (TPC), B-47

NVIDIA GPU architecture, 515–517
NVIDIA GTX 280, 541f, 542f
NVIDIA Tesla GPU, 540–545

O

Object files, 128b–129b
debugging information, 127
header, 126
linking, 128b–129b
relocation information, 126
static data segment, 126
symbol table, 127
text segment, 126

Object-oriented languages. See also Java
brief history, 162.e7
defined, 144.e14, 145

One’s complement, 81, A-29
Opcodes

control line setting and, 256
defined, 83, 254

OpenGL, B-13
OpenMP (Open MultiProcessing), 

512b–513b, 532
Operands, 67–74. See also Instructions

32-bit immediate, 113–114
adding, 175
arithmetic instructions, 67
compiling assignment when in 

memory, 69b
constant, 72–74
division, 183–191
floating-point, 207f
memory, 68–72
multiplication, 177–183
RISC-V, 64f

Operating systems
brief history, 473.e8

defined, 13
encapsulation, 22
in networking, 529.e3–529.e5

Operations
atomic, implementing, 122
hardware, 63–67
logical, 89–92
x86 integer, 151–152

Optimization
class explanation, 144.e13f
compiler, 141f
control implementation, C-27
global, 144.e4–144.e10
high-level, 144.e3–144.e4
local, 144.e4–144.e10
manual, 144

or (inclusive or), 64f
OR operation, 176, A-6
ori (inclusive or immediate), 64f
Out-of-order execution

defined, 330
performance complexity, 408b–409b
processors, 334b

Output devices, 16–17
Overflow

defined, 75, 192
detection, 176
exceptions, 318f
floating-point, 193
occurrence, 175
saturation and, 177b
subtraction, 175

P

P + Q redundancy (RAID 6), 458.e6
Packed floating-point format, 218
Page faults, 426. See also Virtual memory

for data access, 461
defined, 420–421
handling, 422, 439–441
virtual address causing, 432–435

Page tables, 445
defined, 424–425
illustrated, 427f
indexing, 424–425
inverted, 429
levels, 429
main memory, 429
register, 424–425
storage reduction techniques, 429
updating, 424
VMM, 441b
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Pages. See also Virtual memory
defined, 420–421
dirty, 430b
finding, 424–425
LRU, 426–428
offset, 421
physical number, 421
placing, 424–425
size, 422f
virtual number, 421

Parallel bus, 529.e1–529.e2
Parallel execution, 121
Parallel memory system, B-36–B-41. 

See also Graphics processing units 
(GPUs)

caches, B-38
constant memory, B-40
DRAM considerations, B-37–B-38
global memory, B-39
load/store access, B-41
local memory, B-40
memory spaces, B-39
MMU, B-38–B-39
ROP, B-41
shared memory, B-39–B-40
surfaces, B-41
texture memory, B-40

Parallel processing programs, 494–499
creation difficulty, 494–499
defined, 492
for message passing, 511b–513b
great debates in, 553.e4–553.e6
for shared address space, 511b–513b
use of, 549

Parallel reduction, B-62
Parallel scan, B-60–B-63

CUDA template, B-61f
inclusive, B-60
tree-based, B-62f

Parallel software, 493
Parallelism, 12, 43b, 321–334

and computers arithmetic, 216–217
data-level, 226, 500
debates, 553.e4–553.e6
GPUs and, 514, B-76
instruction-level, 43, 321–322, 333
memory hierarchies and, 458.e1–458.

e2, 454–458
multicore and, 509b
multiple issue, 322b
multithreading and, 507
performance benefits, 44
process-level, 492

redundant arrays and inexpensive 
disks, 458

subword, D-17
task, B-24
task-level, 492
thread, B-22

Paravirtualization, 472
PA-RISC, D-14, D-17

branch vectored, D-35
conditional branches, D-34, D-35f
debug instructions, D-36
decimal operations, D-35
extract and deposit, D-35
instructions, D-34–D-36
load and clear instructions, D-36
multiply/add and multiply/subtract, 

D-36
nullification, D-34
nullifying branch option, D-25
store bytes short, D-36
synthesized multiply and divide, 

D-34–D-35
Parity, 458.e4

bits, 412–413
code, 420, A-64–A-65

PARSEC (Princeton Application 
Repository for Shared Memory 
Computers), 532

Pass transistor, A-62b–A-64b
PCI-Express (PCIe), 529.e1–529.e2, 

B-7–B-8, 529
PC-relative addressing, 115–116, 118
Peak floating-point performance, 534
Pentium bug morality play, 224f
Performance, 28–40

assessing, 28
classic CPU equation, 36–40
components, 38f
CPU, 33–35
defining, 29–32
equation, using, 36–40
improving, 34b–35b
instruction, 35–36
measuring, 32–33, 54.e9
program, 9–10
ratio, 31
relative, 31b
response time, 30b
sorting, B-49–B-50
throughput, 30b
time measurement, 32

Personal computers (PCs), 7f
defined, 5

Personal mobile device (PMD)
defined, 6–7

Petabyte, 6f
Physical addresses, 420

mapping to, 420–421
space, 509, 511b–513b

Physically addressed caches, 436–437
Pipeline registers

before forwarding, 298–300
dependences, 297–298, 298f
forwarding unit selection, 302

Pipeline stalls, 270
avoiding with code reordering, 

270b–271b
data hazards and, 303–307
insertion, 305f
load-use, 308
as solution to control hazards, 272f

Pipelined branches, 310b
Pipelined control, 290–294. See also 

Control
control lines, 290–291
overview illustration, 306f
specifying, 291

Pipelined datapaths, 276–294
with connected control  

signals, 294f
with control signals, 290–294
corrected, 286f
illustrated, 279f
in load instruction stages, 286f

Pipelined dependencies, 296f
Pipelines

branch instruction impact, 308f
effectiveness, improving, 347.e3–347.

e4
execute and address calculation stage, 

280, 282
five-stage, 264, 280, 288b–290b
graphic representation, 269f, 286–290
instruction decode and register file 

read stage, 278f, 282
instruction fetch stage, 279f, 282
instructions sequence, 304f
latency, 276b
memory access stage, 280, 282
multiple-clock-cycle diagrams, 

286–287
performance bottlenecks, 332–333
single-clock-cycle diagrams, 286–287
stages, 264–265
static two-issue, 325f
write-back stage, 279, 284
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Pipelining, 12, 262–276
advanced, 333–334
benefits, 262
control hazards, 271–274
data hazards, 268–271
exceptions and, 317–321
execution time and, 276b
fallacies, 345–346
hazards, 267–271
instruction set design for, 267
laundry analogy, 263f
overview, 262–276
paradox, 263–264
performance improvement, 267
pitfall, 345–346
simultaneous executing instructions, 

276b
speed-up formula, 265
structural hazards, 267–268, 284
summary, 314–315
throughput and, 276b

Pitfalls. See also Fallacies
address space extension, 384–385
arithmetic, 222–225
associativity, 469b
defined, 49
GPUs, B-74
ignoring memory system behavior, 

468b
memory hierarchies, 468–472
out-of-order processor evaluation, 

469b
performance equation subset, 50b
pipelining, 345–346
pointer to automatic variables, 159b
sequential word addresses, 159b
simulating cache, 468
software development with 

multiprocessors, 548b
VMM implementation, 470–472

Pixel shader example, B-15–B-17
Pixels, 18
Pointers

arrays versus, 141–144
frame, 104–105
global, 104b
incrementing, 143
Java, 144.e25–144.e26
stack, 99, 102–104

Polling, 529.e6
Pop, 99
Power

clock rate and, 40
critical nature of, 53
efficiency, 333–334
relative, 41b–42b

PowerPC
algebraic right shift, D-33
branch registers, D-32–D-33
condition codes, D-12–D-13
instructions, D-12–D-13
instructions unique to, D-32–D-34
load multiple/store multiple, D-33
logical shifted immediate, D-33
rotate with mask, D-33

Precise interrupts, 321b
Prediction, 12

2-bit scheme, 312
accuracy, 312
dynamic branch, 310–314
loops and, 312b
steady-state, 312

Prefetching, 472, 536
Primitive types, 144.e25
Procedure calls

preservation across, 104
Procedures, 98–108

compiling, 100b–101b
compiling, showing nested procedure 

linking, 100b–101b
execution steps, 98
frames, 104
leaf, 102
nested, 102b–103b
recursive, 107b
for setting arrays to zero, 141f
sort, 135–140
strcpy, 110b–111b
string copy, 110b–111b
swap, 134–135

Process identifiers, 438
Process-level parallelism, 492
Processors, 234

control, 19
as cores, 43
datapath, 19
defined, 17b, 19
dynamic multiple-issue, 322
multiple-issue, 322
out-of-order execution, 334b, 408b–

409b
performance growth, 44f
ROP, B-12, B-41
speculation, 323–324

static multiple-issue, 322, 324–328
streaming, B-34
superscalar, 328, 347.e4, 507–508
technologies for building, 24–28
two-issue, 325–327
vector, 499–500
VLIW, 324

Product, 178
Product of sums, A-11
Program counters (PCs), 243

changing with conditional branch, 
313b–314b

defined, 99, 243
exception, 437, 439
incrementing, 243, 245f
instruction updates, 279

Program performance
elements affecting, 39t
understanding, 9

Programmable array logic (PAL), A-77
Programmable logic arrays (PLAs)

component dots illustration, A-16f
control function implementation, C-7f, 

C-20
defined, A-12–A-13
example, A-13b–A-14b
illustrated, A-13f
ROMs and, A-15–A-16
size, C-20
truth table implementation, A-13

Programmable logic devices (PLDs), 
A-77

Programmable ROMs (PROMs), A-14
Programming languages. See also specific 

languages
brief history of, 162.e6–162.e7
object-oriented, 145
variables, 67

Programs
assembly language, 125
Java, starting, 132–133
parallel processing, 492
starting, 124–133
translating, 124–133

Propagate
defined, A-39
example, A-44b–A-45b
super, A-40

Protected keywords, 144.e20
Protection

defined, 420
implementing, 437–439
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mechanisms, 473.e12
VMs for, 416–417

Protection group, 458.e4
Pseudoinstructions

defined, 125
summary, 126

Pthreads (POSIX threads), 532
PTX instructions, B-31, B-32f
Public keywords, 144.e20
Push

defined, 99
using, 102–104

Q

Quad words, 151
Quicksort, 403b–405b, 404f
Quotient, 184

R

Race, A-72–A-73
Radix sort, 403b–405b, 404f,  

B-63–B-65
CUDA code, B-64f
implementation, B-63–B-65

RAID. See Redundant arrays of 
inexpensive disks (RAID)

RAM, 9
Raster operation (ROP) processors, B-12, 

B-41, B-50–B-51
fixed function, B-41

Raster refresh buffer, 18
Rasterization, B-50
Ray casting (RC), 544
Read-only memories (ROMs), 

A-14–A-16
control entries, C-16b–C-18b
control function encoding, C-19
dispatch, C-25f
implementation, C-15–C-19
logic function encoding, A-15
overhead, C-18
PLAs and, A-15–A-16, A-16
programmable (PROM), A-14
total size, C-15–C-16

Read-stall cycles, 391
Read-write head, 373
Receive message routine, 521
Recursive procedures, 107b. See also 

Procedures
clone invocation, 102

Reduced instruction set computer 
(RISC) architectures, 162.e4, 347.
e3, D-3–D-5, D-5–D-9, D-9–D-16, 
D-16–D-18, D-19, D-20–D-25, 
D-25–D-27, D-27–D-29, 
D-29–D-32, D-32–D-34, 
D-34–D-36, D-36–D-38, 
D-38–D-39, D-39–D-40, D-40, 
D-40–D-43, D-43–D-45. See 
also Desktop and server RISCs; 
Embedded RISCs

group types, D-3–D-4
instruction set lineage, D-44f

Reduction, 511
Redundant arrays of inexpensive disks 

(RAID), 458.e1–458.e2
history, 458.e6–458.e7
RAID 0, 458.e3
RAID 1, 458.e4
RAID 2, 458.e4
RAID 3, 458.e4
RAID 4, 458.e4–458.e5
RAID 5, 458.e5–458.e6
RAID 6, 458.e6
spread of, 458.e5
summary, 458.e6–458.e7
use statistics, 458.e6f

Reference bit, 428b
References

absolute, 127
types, 144.e25

Register addressing, 118f
Register allocation, 144.e10–144.e12
Register files, A-49b, A-53–A-55

in behavioral Verilog, A-56
defined, 244, A-49b, A-53
single, 249
two read ports implementation, A-54f
with two read ports/one write port, 

A-54f
write port implementation, A-55f

Register-memory architecture, 162.e2
Registers, 148–151

architectural, 316, 337–338
base, 69
clock cycle time and, 67
compiling C assignment with, 67b–68b
defined, 67
destination, 254
floating-point, 212b
left half, 280
number specification, 244

page table, 424–425
pipeline, 297–298, 298f, 302
primitives, 67
renaming, 327
right half, 280
RISC-V conventions, 255f
spilling, 71
Status, 316
temporary, 68, 100
variables, 68

Relative performance, 31b
Relative power, 41b–42b
Reliability, 410–411
Remainder, defined, 184
Reorder buffers, 334b
Replication, 456
Requested word first, 384
Request-level parallelism, 524
Reservation stations

buffering operands in, 329
defined, 329

Response time, 30b
Restartable instructions, 440–441
Return address, 99
R-format

ALU operations, 245f
Ripple carry

adder, A-29
carry lookahead speed versus, A-45b

RISC-V, 62, 85–87
architecture, 190f
arithmetic instructions, 63
arithmetic/logical instructions not in, 

D-21f, D-23f
assembly instruction, mapping, 

81b–82b
common extensions to, D-20–D-25
compiling C assignment statements 

into, 65b
compiling complex C assignment into, 

66b
control instructions not in, D-21f
control registers, 439b
control unit, C-10
data transfer instructions not in, D-20f, 

D-22f
divide in, 189
exceptions in, 316–317
fields, 83–89
floating-point instructions, 206–212
floating-point instructions not in, 

D-22f
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instruction classes, 157f
instruction encoding, 85f, 119f
instruction formats, 120, 146f
instruction set, 62, 159–160, 226, 236, 

D-9–D-16
machine language, 87–89
memory addresses, 70f
memory allocation for program and 

data, 106f
multiply in, 183
Pseudo, 226f
register conventions, 107f
static multiple issue with, 324–328

Roofline model, 534–535, 536f, 537
with ceilings, 538f
computational roofline, 535, 537
illustrated, 534f
Opteron generations, 535
with overlapping areas shaded, 539f
peak floating-point performance, 538f
peak memory performance, 542f
with two kernels, 539f

Rotational delay. See Rotational latency
Rotational latency, 375
Rounding, 212–213

accurate, 212–213
bits, 214
with guard digits, 213b
IEEE 754 modes, 213–214

Row-major order, 211b–212b, 405
R-type, defined, 87b
R-type instructions, 248b–249b

datapath for, 256–259
datapath in operation for, 258f

RV32, 73b
RV64, 73b

S

Saturation, 177b
sb (store byte), 64f
SB-type instruction format, 115
sc.d (store conditional), 64f
SCALAPAK, 223–224
Scaling

strong, 497
weak, 497

Scientific notation
adding numbers in, 199
defined, 191
for reals, 191

sd (store doubleword), 64f

Search engines, 4
Secondary memory, 23
Sectors, 373–374
Seek, 374
Segmentation, 423b
Selector values, A-10
Semiconductors, 25–26
Send message routine, 521
Sensitivity list, A-23–A-24
Sequencers

explicit, C-32
implementing next-state function with, 

C-22–C-28
Sequential logic, A-4
Servers, 458.e6. See also Desktop and 

server RISCs
cost and capability, 5

Service accomplishment, 410–411
Service interruption, 410
Set-associative caches, 395. See also 

Caches
address portions, 399f
block replacement strategies, 445
choice of, 444
four-way, 396f, 399
memory-block location, 395f
misses, 397b–398b
n-way, 395
two-way, 396f

Set less than instruction (slt), A-31
Setup time, A-52–A-53, A-53f
sh (store halfword), 64f
Shaders

defined, B-14
floating-point arithmetic, B-14
graphics, B-14–B-15
pixel example, B-15–B-17

Shading languages, B-14
Shadowing, 458.e4
Shared memory. See also Memory

as low-latency memory, B-21
caching in, B-58–B-60
CUDA, B-58
N-body and, B-66f
per-CTA, B-39
SRAM banks, B-40

Shared memory multiprocessors (SMP), 
509–514

defined, 492–493, 509–510
single physical address space, 509
synchronization, 510–513

Shift left logical immediate (slli), 90
Shift right arithmetic (srai), 90

Shift right logical immediate (srli), 90
Sign and magnitude, 192
Sign bit, 77
Sign extension, 246

defined, 78b
shortcut, 78–79

Signals
asserted, 242, A-4
control, 242, 255
deasserted, 242, A-4

Signed division, 187–188
Signed multiplication, 182
Signed numbers, 74–81

sign and magnitude, 75
treating as unsigned, 96

Significands, 193–194
addition, 198–199
multiplication, 201–205

Silicon, 25–26
as key hardware technology, 53
crystal ingot, 26
defined, 25–26
wafers, 26

Silicon crystal ingot, 26
SIMD (Single Instruction Multiple Data), 

498–499, 550–551
computers, 553.e1–553.e3
data vector, B-35
extensions, 553.e3
for loops and, 553.e2
massively parallel multiprocessors, 

553.e1
small-scale, 553.e3
vector architecture, 500–502
in x86, 500

SIMMs (single inline memory modules), 
473.e4, 473.e5f

Simple programmable logic devices 
(SPLDs), A-77

Simplicity, 65–67
Simultaneous multithreading  

(SMT), 507
support, 507f
thread-level parallelism, 507
unused issue slots, 507f

Single error correcting/Double error 
correcting (SEC/DEC), 412–416

Single instruction single data (SISD), 500, 
504–506

Single precision. See also Double 
precision

binary representation, 196b
defined, 193

RISC-V (Continued)
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Single-clock-cycle pipeline diagrams, 
287–290

illustrated, 289f
Single-cycle datapaths. See also Datapaths

illustrated, 277f
instruction execution, 278f

Single-cycle implementation
control function for, 261
nonpipelined execution versus 

pipelined execution, 266f
non-use of, 261–262
penalty, 262
pipelined performance versus, 264b–265b

Single-instruction multiple-thread 
(SIMT), B-27–B-29

overhead, B-35
multithreaded warp scheduling, B-28f
processor architecture, B-28–B-29
warp execution and divergence, 

B-29–B-30
Single-program multiple data (SPMD), 

B-22
sll (shift left logical), 64f
slli (shift left logical immediate), 64f
Smalltalk-80, 162.e7
Smart phones, 7
Snooping protocol, 456–458
Snoopy cache coherence, 459.e16
Software optimization

via blocking, 405–409
Software

layers, 13f
multiprocessor, 492
parallel, 493
as service, 7, 524, 550
systems, 13

Sort algorithms, 141f
Sort procedure, 135–140. See also 

Procedures
code for body, 136–138
full procedure, 139–140
passing parameters in, 138
preserving registers in, 138–139
procedure call, 138
register allocation for, 136

Sorting performance, B-54–B-55
Space allocation

on heap, 105–108
on stack, 104–105

SPARC
annulling branch, D-23–D-25
CASA, D-31–D-32
conditional branches, D-10–D-16

fast traps, D-30
floating-point operations, D-31
instructions, D-29–D-32
least significant bits, D-31f
multiple precision floating-point 

results, D-32
nonfaulting loads, D-32
overlapping integer operations, D-31
quadruple precision floating-point 

arithmetic, D-36
register windows, D-29–D-30
support for LISP and Smalltalk, D-30

Sparse matrices, B-55–B-58
Sparse Matrix-Vector multiply (SpMV), 

B-55, B-57f, B-58
CUDA version, B-57f
serial code, B-57f
shared memory version, B-59f

Spatial locality, 366
large block exploitation of, 383
tendency, 369

SPEC, 54.e10–54.e11
CPU benchmark, 46–48
power benchmark, 48–49
SPEC89, 54.e10
SPEC92, 54.e11
SPEC95, 54.e11
SPEC2000, 54.e11
SPEC2006, 54.e11
SPECrate, 530
SPECratio, 47–48

Special function units (SFUs), B-35, B-50
defined, B-42–B-43

Speculation, 323–324
hardware-based, 331–333
implementation, 323
performance and, 323–324
problems, 323
recovery mechanism, 323

Speed-up challenge
balancing load, 497b–498b
bigger problem, 496b–497b

Spilling registers, 71b–72b, 99
Split algorithm, 544
Split caches, 389b
sra (shift right arithmetic), 64f
srai (shift right arithmetic immediate), 64f
srl (shift right logical), 64f
srli (shift right logical immediate), 64f
Stack architectures, 162.e3–162.e4
Stack pointers

adjustment, 102–104
defined, 99

values, 101f
Stacks

allocating space on, 104–105
for arguments, 99
defined, 99
pop, 99
push, 99, 102–104

Stalls, 270
avoiding with code reordering, 

270b–271b
behavioral Verilog with detection, 345.

e3–345.e8
data hazards and, 303–307
illustrations, 345.e20
insertion into pipeline, 305f
load-use, 308
memory, 391
as solution to control hazard, 271
write-back scheme, 392
write buffer, 391

Standby spares, 458.e7
State

in 2-bit prediction scheme, 312
assignment, A-69, C-27
bits, C-8–C-10
exception, saving/restoring, 440
logic components, 241
specification of, 424b

State elements
clock and, 241
combinational logic and, 241
defined, 240–241, A-47
inputs, 241
register file, A-49b
in storing/accessing instructions, 244f

Static branch prediction, 324
Static data

segment, 105
Static multiple-issue processors, 322, 

324–328. See also Multiple issue
control hazards and, 324–325
instruction sets, 324
with RISC-V ISA, 324–328

Static random access memories (SRAMs), 
370–371, A-57–A-66

array organization, A-61f
basic structure, A-60f
defined, 19–22, A-57
fixed access time, A-57
large, A-58
read/write initiation, A-58
synchronous (SSRAMs), A-59
three-state buffers, A-58, A-59f
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Static variables, 104b
Steady-state prediction, 312
Sticky bits, 214
Store buffers, 334b
Store byte, 109
Store-conditional doubleword, 122–123
Store doubleword, 70–71
Store instructions. See also Load 

instructions
access, B-41
base register, 254
compiling with, 71
conditional, 122–123
defined, 71b
EX stage, 284f
ID stage, 281f
IF stage, 281f
instruction dependency, 302b
MEM stage, 283f
unit for implementing, 247f
WB stage, 283f

Store word, 113b
Stored program concept, 63

as computer principle, 88b
illustrated, 88f
principles, 159–160

Strcpy procedure, 110b–111b. See also 
Procedures

as leaf procedure, 111
pointers, 111

Stream benchmark, 540b
Streaming multiprocessor (SM), B-13
Streaming processors, B-34, B-49–B-50

array (SPA), B-41, B-46
Streaming SIMD Extension 2 (SSE2) 

floating-point architecture, 217
Streaming SIMD Extensions (SSE) and 

advanced vector extensions in x86, 
217

Stretch computer, 347.e1, 347.e1f
Strings

defined, 109–111
in Java, 111–113
representation, 108f

Strip mining, 502b
Striping, 458.e3
Strong scaling, 497
Structural hazards, 267, 284
sub (subtract), 64f
Subnormals, 216
Subtraction, 174–177. See also Arithmetic

binary, 174b–175b

floating-point, 206
negative number, 176
overflow, 176

Subword parallelism, 216–217, 344f, D-17
and matrix multiply, 218–222

Sum of products, A-11, A-12b
Supercomputers, 347.e2

defined, 5
SuperH, D-15, D-39–D-40
Superscalars

defined, 347.e3–347.e4, 328
dynamic pipeline scheduling, 328–329
multithreading options, 494

Supervisor Exception Cause Register 
(SCAUSE), 316

Supervisor exception program counter 
(SEPC), 316, 364, 439

address capture, 319–321
defined, 317–319
in restart determination, 316

Supervisor exception return (sret), 437
Supervisor Page Table Base Register 

(SPTBR), 427f
Supervisor Trap Vector (STVEC), 321b
Surfaces, B-41
sw (store word), 64f
Swap procedure, 134. See also Procedures

body code, 134–135
full, 135, 139–140
register allocation, 134

Swap space, 426
Symbol tables, 126
Synchronization, 121–124, 544

barrier, B-18, B-20, B-34
defined, 510–513
lock, 121
overhead, reducing, 44–45
unlock, 121

Synchronizers
from D flip-flop, A-75f
defined, A-75
failure, A-75–A-76

Synchronous DRAM (SRAM), 371, A-59, 
A-64

Synchronous SRAM (SSRAM), A-59
Synchronous system, A-47–A-48
Syntax tree, 144.e2
System calls, defined, 364
Systems software, 13
SystemVerilog

cache controller, 459.e1–459.e4
cache data and tag modules, 459.e16

FSM, 459.e6f
simple cache block diagram, 459.e3f
type declarations, 459.e1f

T

Tablets, 7f
Tags

defined, 376
in locating block, 399
page tables and, 426
size of, 401b–402b

Tail call, 107
Task identifiers, 438
Task parallelism, B-24
Task-level parallelism, 492
Tebibyte (TiB), 5
Telsa PTX ISA, B-31

arithmetic instructions, B-33
barrier synchronization, B-34
GPU thread instructions, B-32f
memory access instructions, 208

Temporal locality, 366
tendency, 369

Temporary registers, 68, 100
Terabyte (TB), 6f

defined, 5
Texture memory, B-40
Texture/processor cluster (TPC), B-47
TFLOPS multiprocessor, 553.e4–553.e5
Thrashing, 442
Thread blocks, 518f

creation, B-23
defined, B-19
managing, B-30
memory sharing, B-20–B-21
synchronization, B-20–B-21

Thread parallelism, B-22
Threads

creation, B-23
CUDA, B-36
ISA, B-31–B-34
managing, B-30
memory latencies and, B-74b
multiple, per body, B-68–B-72
warps, B-27–B-28

Three Cs model, 447b
Three-state buffers, A-58, A-59f
Throughput

defined, 29–30
multiple issue and, 322
pipelining and, 264
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Thumb, D-15f, D-38–D-39
Timing

asynchronous inputs, A-75–A-76
level-sensitive, A-74–A-75
methodologies, A-71–A-77
two-phase, A-74f

TLB misses, 431. See also Translation-
lookaside buffer (TLB)

handling, 439–441
occurrence, 439
problem, 442

Tomasulo’s algorithm, 347.e2
Touchscreen, 19
Tournament branch predicators, 313–314
Tracks, 373–374
Transfer time, 375
Transistors, 25
Translation-lookaside buffer (TLB), 

430–432, 473.e5, D-26–D-27. See 
also TLB misses

associativities, 432
illustrated, 431f
integration, 435
Intrinsity FastMATH, 432–435
typical values, 432

Transmit driver and NIC hardware 
time versus receive driver and NIC 
hardware time, 529.e7f

Tree-based parallel scan, B-62f
Truth tables, A-5

ALU control lines, C-5f
for control bits, 253
datapath control outputs, C-17f
datapath control signals, C-14f
defined, 253
example, A-5b
next-state output bits, C-15f
PLA implementation, A-13

Two’s complement representation, 76
advantage, 77
negation shortcut, 78b–79b
rule, 80b
sign extension shortcut, 79b–80b

Two-level logic, A-11–A-14
Two-phase clocking, A-74, A-74f
TX-2 computer, 553.e3

U

Unconditional branches, 93
Underflow, 192
Unicode

alphabets, 111
defined, 111
example alphabets, 112f

Unified GPU architecture, B-10–B-11
illustrated, B-11f
processor array, B-11–B-12

Uniform memory access (UMA), 510, 
B-9

multiprocessors, 510
Units

commit, 329, 334b
control, 239–240, 251–253, C-4–C-8, 

C-10f, C-12–C-13
defined, 213–214
floating point, 213–214
hazard detection, 303, 306–307
for load/store implementation, 247f
special function (SFUs), B-35, 

B-42–B-43, B-50
UNIVAC I, 54.e3–54.e4, 54.e4f
UNIX, 162.e7, 473.e10, 473.e13, 473.e14

AT&T, 473.e14
Berkeley version (BSD), 473.e14
genius, 473.e16
history, 473.e13, 473.e14

Unlock synchronization, 121
Unsigned numbers, 74–81
Use latency

defined, 325–327
one-instruction, 325–327

V

Vacuum tubes, 25f
Valid bit, 376–378
Variables

C language, 104b
programming language, 67
register, 67
static, 104b
storage class, 104b
type, 104b

VAX architecture, 162.e3, 473.e6
Vector lanes, 502
Vector processors, 499–506. See also 

Processors
conventional code comparison, 

501b–502b
instructions, 501
multimedia extensions and, 500–502
scalar versus, 502–503

Vectored interrupts, 316

Verilog
behavioral definition of RISC-V ALU, 

A-25f
behavioral definition with bypassing, 

345.e4f
behavioral definition with stalls for 

loads, 345.e6f
behavioral specification, 345.e1–345.

e3, A-21
behavioral specification of multicycle 

MIPS design, 345.e12f
behavioral specification with 

simulation, 345.e1–345.e3
behavioral specification with stall 

detection, 345.e3–345.e8
behavioral specification with synthesis, 

345.e8–345.e13
blocking assignment, A-24
branch hazard logic implementation, 

345.e8
combinational logic, A-23–A-26
datatypes, A-21–A-23
defined, A-20–A-21
forwarding implementation, 345.e3
modules, A-23f
multicycle MIPS datapath, 345.e14f
nonblocking assignment, A-24
operators, A-22–A-23
program structure, A-23
reg, A-21
RISC-V ALU definition in,  

A-36–A-37
sensitivity list, A-23–A-24
sequential logic specification, 

A-55–A-57
structural specification, A-21
wire, A-21, A-22

Vertical microcode, C-32
Very large-scale integrated (VLSI) 

circuits, 25
Very Long Instruction Word (VLIW)

defined, 324
first generation computers, 347.e4
processors, 324

VHDL, A-20–A-21
Video graphics array (VGA) controllers, 

B-3–B-4
Virtual addresses

causing page faults, 440
defined, 420–421
mapping from, 420–421
size, 422–423
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Virtual machine monitors (VMMs)
defined, 416
implementing, 470b
laissez-faire attitude, 470
page tables, 441b
in performance improvement, 419
requirements, 418

Virtual machines (VMs), 416–419
benefits, 416–417
illusion, 441b
instruction set architecture support, 

419
performance improvement, 419
for protection improvement, 416–417

Virtual memory, 419–443. See also Pages
address translation, 420–421, 430–432
integration, 435–437
for large virtual addresses, 428–429
mechanism, 442
motivations, 419–420
page faults, 420–421, 426
protection implementation, 437–439
segmentation, 423b
summary, 441–443
virtualization of, 441b
writes, 430

Virtualizable hardware, 418
Virtually addressed caches, 436
Visual computing, B-3
Volatile memory, 22

W

Wafers, 26
defects, 26–27
dies, 27–28
yield, 27

Warehouse Scale Computers (WSCs), 7, 
521–526, 550

Warps, B-27–B-28
Weak scaling, 497
Wear levelling, 373
While loops, 94b–95b

Whirlwind, 473.e1
Wide area networks (WANs), 24. See also 

Networks
Wide immediate operands, 113–114
Words

accessing, 68
defined, 67
double, 151
load, 69, 71
quad, 151
store, 71b

Working set, 442
World Wide Web, 4
Worst-case delay, 262
Write buffers

defined, 387
stalls, 383
write-back cache, 387

Write invalidate protocols, 456
Write serialization, 455–456
Write-back caches. See also Caches

advantages, 446
cache coherency protocol, 459.e4
complexity, 387
defined, 386, 446
stalls, 391
write buffers, 387

Write-back stage
control line, 292f
load instruction, 282
store instruction, 284

Writes
complications, 386b–387b
expense, 442
handling, 385–387
memory hierarchy handling of, 

333–334
schemes, 386
virtual memory, 429
write-back cache, 386–387
write-through cache, 386–387

Write-stall cycles, 391
Write-through caches. See also Caches

advantages, 446
defined, 385, 446
tag mismatch, 386

X

x86, 146–155
Advanced Vector Extensions in, 

217–218
brief history, 162.e5–162.e6
conclusion, 154–155
data addressing modes, 149–151
evolution, 96
first address specifier encoding, 155f
instruction encoding, 153–154
instruction formats, 154f
instruction set growth, 162f
instruction types, 152f
integer operations, 151–152
registers, 149–151
SIMD in, 498–499
Streaming SIMD Extensions in, 

217–218
typical instructions/functions, 154f
typical operations, 153f
unique, D-36–D-38

Xerox Alto computer, 54.e7–54.e9
XMM, 217
xor (exclusive or), 64f
xori (exclusive or immediate), 64f

Y

Yahoo! Cloud Serving Benchmark 
(YCSB), 532

Yield, 27
YMM, 218

Z

Zettabyte, 6f
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 B.1 Introduction

This appendix focuses on the GPU—the ubiquitous graphics processing unit 
in every PC, laptop, desktop computer, and workstation. In its most basic form, 
the GPU generates 2D and 3D graphics, images, and video that enable Window-
based operating systems, graphical user interfaces, video games, visual imaging 
applications, and video. The modern GPU that we describe here is a highly parallel, 
highly multithreaded multiprocessor optimized for visual computing. To provide 
real-time visual interaction with computed objects via graphics, images, and video, 
the GPU has a unified graphics and computing architecture that serves as both a 
programmable graphics processor and a scalable parallel computing platform. PCs 
and game consoles combine a GPU with a CPU to form heterogeneous systems.

A Brief History of GPU Evolution
Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were 
performed by a video graphics array (VGA) controller. A VGA controller was 
simply a memory controller and display generator connected to some DRAM. In 
the 1990s, semiconductor technology advanced sufficiently that more functions 
could be added to the VGA controller. By 1997, VGA controllers were beginning 
to incorporate some three-dimensional (3D) acceleration functions, including 

graphics processing 
unit (GPU) A processor 
optimized for 2D and 3D 
graphics, video, visual 
computing, and display.

visual computing A mix 
of graphics processing 
and computing that lets 
you visually interact with 
computed objects via 
graphics, images, and 
video.

heterogeneous 
system A system 
combining different 
processor types. A PC is a 
heterogeneous CPU–GPU 
system.
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hardware for triangle setup and rasterization (dicing triangles into individual 
pixels) and texture mapping and shading (applying “decals” or patterns to pixels 
and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail of 
the traditional high-end workstation graphics pipeline and, therefore, deserved a 
new name beyond VGA controller. The term GPU was coined to denote that the 
graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors 
replaced fixed-function dedicated logic while maintaining the basic 3D graphics 
pipeline organization. In addition, computations became more precise over time, 
progressing from indexed arithmetic, to integer and fixed point, to single-precision 
floating-point, and recently to double-precision floating-point. GPUs have become 
massively parallel programmable processors with hundreds of cores and thousands 
of threads.

Recently, processor instructions and memory hardware were added to support 
general purpose programming languages, and a programming environment was 
created to allow GPUs to be programmed using familiar languages, including C 
and C++. This innovation makes a GPU a fully general-purpose, programmable, 
manycore processor, albeit still with some special benefits and limitations.

GPU Graphics Trends
GPUs and their associated drivers implement the OpenGL and DirectX 
models of graphics processing. OpenGL is an open standard for 3D graphics 
programming available for most computers. DirectX is a series of Microsoft 
multimedia programming interfaces, including Direct3D for 3D graphics. Since 
these application programming interfaces (APIs) have well-defined behavior, 
it is possible to build effective hardware acceleration of the graphics processing 
functions defined by the APIs. This is one of the reasons (in addition to increasing 
device density) why new GPUs are being developed every 12 to 18 months that 
double the performance of the previous generation on existing applications.

Frequent doubling of GPU performance enables new applications that were 
not previously possible. The intersection of graphics processing and parallel 
computing invites a new paradigm for graphics, known as visual computing. It 
replaces large sections of the traditional sequential hardware graphics pipeline 
model with programmable elements for geometry, vertex, and pixel programs. 
Visual computing in a modern GPU combines graphics processing and parallel 
computing in novel ways that permit new graphics algorithms to be implemented, 
and opens the door to entirely new parallel processing applications on pervasive 
high-performance GPUs.

Heterogeneous System
Although the GPU is arguably the most parallel and most powerful processor in 
a typical PC, it is certainly not the only processor. The CPU, now multicore and 

application 
programming interface 
(API) A set of function 
and data structure 
definitions providing an 
interface to a library of 
functions.
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soon to be manycore, is a complementary, primarily serial processor companion 
to the massively parallel manycore GPU. Together, these two types of processors 
comprise a heterogeneous multiprocessor system.

The best performance for many applications comes from using both the CPU 
and the GPU. This appendix will help you understand how and when to best split 
the work between these two increasingly parallel processors.

GPU Evolves into Scalable Parallel Processor
GPUs have evolved functionally from hardwired, limited capability VGA controllers 
to programmable parallel processors. This evolution has proceeded by changing 
the logical (API-based) graphics pipeline to incorporate programmable elements 
and also by making the underlying hardware pipeline stages less specialized and 
more programmable. Eventually, it made sense to merge disparate programmable 
pipeline elements into one unified array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel 
processing all run on the same type of processor. This unification allows for 
dramatic scalability. More programmable processor cores increase the total system 
throughput. Unifying the processors also delivers very effective load balancing, 
since any processing function can use the whole processor array. At the other end 
of the spectrum, a processor array can now be built with very few processors, since 
all of the functions can be run on the same processors.

Why CUDA and GPU Computing?
This uniform and scalable array of processors invites a new model of programming 
for the GPU. The large amount of floating-point processing power in the GPU 
processor array is very attractive for solving nongraphics problems. Given the large 
degree of parallelism and the range of scalability of the processor array for graphics 
applications, the programming model for more general computing must express 
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a 
parallel programming language and API, without using the traditional graphics 
API and graphics pipeline model. This is in contrast to the earlier General Purpose 
computation on GPU (GPGPU) approach, which involves programming the GPU 
using a graphics API and graphics pipeline to perform nongraphics tasks.

Compute Unifed Device Architecture (CUDA) is a scalable parallel programming 
model and software platform for the GPU and other parallel processors that allows 
the programmer to bypass the graphics API and graphics interfaces of the GPU 
and simply program in C or C++. The CUDA programming model has an SPMD 
(single-program multiple data) software style, in which a programmer writes a 
program for one thread that is instanced and executed by many threads in parallel 
on the multiple processors of the GPU. In fact, CUDA also provides a facility for 
programming multiple CPU cores as well, so CUDA is an environment for writing 
parallel programs for the entire heterogeneous computer system.

GPU computing Using 
a GPU for computing via 
a parallel programming 
language and API.

GPGPU Using a GPU 
for general-purpose 
computation via a 
traditional graphics API 
and graphics pipeline.

CUDA A scalable 
parallel programming 
model and language based 
on C/C++. It is a parallel 
programming platform 
for GPUs and multicore 
CPUs.
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GPU Unifes Graphics and Computing
With the addition of CUDA and GPU computing to the capabilities of the GPU, 
it is now possible to use the GPU as both a graphics processor and a computing 
processor at the same time, and to combine these uses in visual computing 
applications. The underlying processor architecture of the GPU is exposed in two 
ways: first, as implementing the programmable graphics APIs, and second, as a 
massively parallel processor array programmable in C/C++ with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary 
that all of the SPMD thread programs are the same. The GPU can run graphics 
shader programs for the graphics aspect of the GPU, processing geometry, vertices, 
and pixels, and also run thread programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of 
processing tasks. GPUs are excellent at graphics and visual computing as they were 
specifically designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are “first cousins” of graphics, in that they 
perform a lot of parallel work, as well as having a lot of regular problem structure. 
In general, they are a good match to data-parallel problems (see Chapter  6), 
particularly large problems, but less so for less regular, smaller problems.

GPU Visual Computing Applications
Visual computing includes the traditional types of graphics applications plus many 
new applications. The original purview of a GPU was “anything with pixels,” but it 
now includes many problems without pixels but with regular computation and/or 
data structure. GPUs are effective at 2D and 3D graphics, since that is the purpose 
for which they are designed. Failure to deliver this application performance would 
be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the 
processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™. 
Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important 
applications for GPUs. These can be implemented using the graphics APIs or as 
computational programs, using CUDA to program the GPU in computing mode. 
Using CUDA, image processing is simply another data-parallel array program. To 
the extent that the data access is regular and there is good locality, the program 
will be efficient. In practice, image processing is a very good application for GPUs. 
Video processing, especially encode and decode (compression and decompression 
according to some standard algorithms), is quite efficient.

The greatest opportunity for visual computing applications on GPUs is to “break 
the graphics pipeline.” Early GPUs implemented only specific graphics APIs, albeit at 
very high performance. This was wonderful if the API supported the operations that 
you wanted to do. If not, the GPU could not accelerate your task, because early GPU 
functionality was immutable. Now, with the advent of GPU computing and CUDA, 
these GPUs can be programmed to implement a different virtual pipeline by simply 
writing a CUDA program to describe the computation and data flow that is desired. So, 
all applications are now possible, which will stimulate new visual computing approaches.
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 B.2 GPU System Architectures

In this section, we survey GPU system architectures in common use today. We 
discuss system configurations, GPU functions and services, standard programming 
interfaces, and a basic GPU internal architecture.

Heterogeneous CPU–GPU System Architecture
A heterogeneous computer system architecture using a GPU and a CPU can be 
described at a high level by two primary characteristics: first, how many functional 
subsystems and/or chips are used and what are their interconnection technologies 
and topology; and second, what memory subsystems are available to these 
functional subsystems. See Chapter 6 for background on the PC I/O systems and 
chip sets.

The Historical PC (circa 1990)

Figure B.2.1 shows a high-level block diagram of a legacy PC, circa 1990. The north 
bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU, 
memory, and PCI bus. The south bridge contains legacy interfaces and devices: 
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In  
this system, the display was driven by a simple framebuffer subsystem known  

CPU

North
Bridge

South
Bridge

Front Side Bus

PCI Bus

Framebuffer
Memory

VGA
Controller

Memory

UARTLAN
VGA

Display

FIGURE B.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory.
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as a VGA (video graphics array) which was attached to the PCI bus. Graphics 
subsystems with built-in processing elements (GPUs) did not exist in the PC 
landscape of 1990.

Figure B.2.2 illustrates two confgurations in common use today. These are 
characterized by a separate GPU (discrete GPU) and CPU with respective memory 
subsystems. In Figure B.2.2a, with an Intel CPU, we see the GPU attached via a  
16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate (peak of 
8 GB/s in each direction). Similarly, in Figure B.2.2b, with an AMD CPU, the GPU  

is attached to the chipset, also via PCI-Express with the same available bandwidth. 
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less 
available bandwidth than their access to the more directly attached memories. In 
the case of the AMD system, the north bridge or memory controller is integrated 
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA) 
system, uses only CPU system memory, omitting GPU memory from the system. 
These systems have relatively low-performance GPUs, since their achieved 
performance is limited by the available system memory bandwidth and increased 
latency of memory access, whereas dedicated GPU memory provides high 
bandwidth and low latency.

A high-performance system variation uses multiple attached GPUs, typically 
two to four working in parallel, with their displays daisy-chained. An example 
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for 
high-performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or 
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space. 
With CPUs and GPUs, there are multiple address spaces. GPUs can access their 
own physical local memory and the CPU system’s physical memory using virtual 
addresses that are translated by an MMU on the GPU. The operating system kernel 
manages the GPU’s page tables. A system physical page can be accessed using either 
coherent or noncoherent PCI-Express transactions, determined by an attribute in 
the GPU’s page table. The CPU can access GPU’s local memory through an address 
range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360 
resemble the PC system architectures previously described. Console systems are 
designed to be shipped with identical performance and functionality over a lifespan 
that can last five years or more. During this time, a system may be reimplemented 
many times to exploit more advanced silicon manufacturing processes and thereby 
to provide constant capability at ever lower costs. Console systems do not need 
to have their subsystems expanded and upgraded the way PC systems do, so the 
major internal system buses tend to be customized rather than standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations 
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D 
[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor. 
The APIs send commands, programs, and data to the GPU via a graphics device 
driver optimized for the particular GPU.

PCI-Express (PCIe)  
A standard system I/O 
interconnect that uses 
point-to-point links. 
Links have a configurable 
number of lanes and 
bandwidth.

unified memory 
architecture (UMA)  
A system architecture in 
which the CPU and GPU 
share a common system 
memory.

AGP An extended 
version of the original PCI 
I/O bus, which provided 
up to eight times the 
bandwidth of the original 
PCI bus to a single card 
slot. Its primary purpose 
was to connect graphics 
subsystems into PC 
systems.
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FIGURE B.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of 
the components and interconnects in this figure.
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is attached to the chipset, also via PCI-Express with the same available bandwidth. 
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less 
available bandwidth than their access to the more directly attached memories. In 
the case of the AMD system, the north bridge or memory controller is integrated 
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA) 
system, uses only CPU system memory, omitting GPU memory from the system. 
These systems have relatively low-performance GPUs, since their achieved 
performance is limited by the available system memory bandwidth and increased 
latency of memory access, whereas dedicated GPU memory provides high 
bandwidth and low latency.

A high-performance system variation uses multiple attached GPUs, typically 
two to four working in parallel, with their displays daisy-chained. An example 
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for 
high-performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or 
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space. 
With CPUs and GPUs, there are multiple address spaces. GPUs can access their 
own physical local memory and the CPU system’s physical memory using virtual 
addresses that are translated by an MMU on the GPU. The operating system kernel 
manages the GPU’s page tables. A system physical page can be accessed using either 
coherent or noncoherent PCI-Express transactions, determined by an attribute in 
the GPU’s page table. The CPU can access GPU’s local memory through an address 
range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360 
resemble the PC system architectures previously described. Console systems are 
designed to be shipped with identical performance and functionality over a lifespan 
that can last five years or more. During this time, a system may be reimplemented 
many times to exploit more advanced silicon manufacturing processes and thereby 
to provide constant capability at ever lower costs. Console systems do not need 
to have their subsystems expanded and upgraded the way PC systems do, so the 
major internal system buses tend to be customized rather than standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations 
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D 
[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor. 
The APIs send commands, programs, and data to the GPU via a graphics device 
driver optimized for the particular GPU.

PCI-Express (PCIe)  
A standard system I/O 
interconnect that uses 
point-to-point links. 
Links have a configurable 
number of lanes and 
bandwidth.

unified memory 
architecture (UMA)  
A system architecture in 
which the CPU and GPU 
share a common system 
memory.

AGP An extended 
version of the original PCI 
I/O bus, which provided 
up to eight times the 
bandwidth of the original 
PCI bus to a single card 
slot. Its primary purpose 
was to connect graphics 
subsystems into PC 
systems.
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Graphics Logical Pipeline
The graphics logical pipeline is described in Section B.3. Figure B.2.3 illustrates 
the major processing stages, and highlights the important programmable stages 
(vertex, geometry, and pixel shader stages).

Input
Assembler

Vertex
Shader

Geometry
Shader

Setup &
Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

FIGURE B.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are white.

Mapping Graphics Pipeline to Unified GPU Processors
Figure B.2.4 shows how the logical pipeline comprising separate independent 
programmable stages is mapped onto a physical distributed array of processors.

Basic Unified GPU Architecture
Unified GPU architectures are based on a parallel array of many programmable 
processors. They unify vertex, geometry, and pixel shader processing and parallel 
computing on the same processors, unlike earlier GPUs which had separate 
processors dedicated to each processing type. The programmable processor array is 
tightly integrated with fixed function processors for texture filtering, rasterization, 
raster operations, anti-aliasing, compression, decompression, display, video 
decoding, and high-definition video processing. Although the fixed-function 
processors significantly outperform more general programmable processors in 
terms of absolute performance constrained by an area, cost, or power budget, we 
will focus on the programmable processors here.

Compared with multicore CPUs, manycore GPUs have a different architectural 
design point, one focused on executing many parallel threads efficiently on many 
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FIGURE B.2.4 Logical pipeline mapped to physical processors. The programmable shader 
stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates 
through the processors.
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processor cores. By using many simpler cores and optimizing for data-parallel 
behavior among groups of threads, more of the per-chip transistor budget is 
devoted to computation, and less to on-chip caches and overhead.

Processor Array
A unified GPU processor array contains many processor cores, typically organized 
into multithreaded multiprocessors. Figure B.2.5 shows a GPU with an array of 
112 streaming processor (SP) cores, organized as 14 multithreaded streaming 
multiprocessors (SMs). Each SP core is highly multithreaded, managing 96 
concurrent threads and their state in hardware. The processors connect with 
four 64-bit-wide DRAM partitions via an interconnection network. Each SM 
has eight SP cores, two special function units (SFUs), instruction and constant 
caches, a multithreaded instruction unit, and a shared memory. This is the basic 
Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unified 
architecture in which the traditional graphics programs for vertex, geometry, and 
pixel shading run on the unified SMs and their SP cores, and computing programs 
run on the same processors.
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FIGURE B.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming 
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors 
connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), 
instruction and constant caches, a multithreaded instruction unit, and a shared memory.
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The processor array architecture is scalable to smaller and larger GPU 
configurations by scaling the number of multiprocessors and the number of 
memory partitions. Figure B.2.5 shows seven clusters of two SMs sharing a texture 
unit and a texture L1 cache. The texture unit delivers filtered results to the SM 
given a set of coordinates into a texture map. Because filter regions of support 
often overlap for successive texture requests, a small streaming L1 texture cache is 
effective to reduce the number of requests to the memory system. The processor 
array connects with raster operation processors (ROPs), L2 texture caches, external 
DRAM memories, and system memory via a GPU-wide interconnection network. 
The number of processors and number of memories can scale to design balanced 
GPU systems for different performance and market segments.

 B.3 Programming GPUs

Programming multiprocessor GPUs is qualitatively different than programming 
other multiprocessors like multicore CPUs. GPUs provide two to three orders of 
magnitude more thread and data parallelism than CPUs, scaling to hundreds of 
processor cores and tens of thousands of concurrent threads. GPUs continue 
to increase their parallelism, doubling it about every 12 to 18 months, enabled 
by Moore’s law [1965] of increasing integrated circuit density and by improving 
architectural efficiency. To span the wide price and performance range of different 
market segments, different GPU products implement widely varying numbers of 
processors and threads. Yet users expect games, graphics, imaging, and computing 
applications to work on any GPU, regardless of how many parallel threads it 
executes or how many parallel processor cores it has, and they expect more 
expensive GPUs (with more threads and cores) to run applications faster. As a 
result, GPU programming models and application programs are designed to scale 
transparently to a wide range of parallelism.

The driving force behind the large number of parallel threads and cores in a 
GPU is real-time graphics performance—the need to render complex 3D scenes 
with high resolution at interactive frame rates, at least 60 frames per second. 
Correspondingly, the scalable programming models of graphics shading languages 
such as Cg (C for graphics) and HLSL (high-level shading language) are designed to 
exploit large degrees of parallelism via many independent parallel threads and to 
scale to any number of processor cores. The CUDA scalable parallel programming 
model similarly enables general parallel computing applications to leverage large 
numbers of parallel threads and scale to any number of parallel processor cores, 
transparently to the application.

In these scalable programming models, the programmer writes code for a single 
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale 
transparently over a wide range of hardware parallelism. This simple paradigm 
arose from graphics APIs and shading languages that describe how to shade one 
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vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly 
increased their parallelism and performance since the late 1990s.

This section briefly describes programming GPUs for real-time graphics 
applications using graphics APIs and programming languages. It then describes 
programming GPUs for visual computing and general parallel computing 
applications using the C language and the CUDA programming model.

Programming Real-Time Graphics
APIs have played an important role in the rapid, successful development of GPUs 
and processors. There are two primary standard graphics APIs: OpenGL and 
Direct3D, one of the Microsoft DirectX multimedia programming interfaces. 
OpenGL, an open standard, was originally proposed and defined by Silicon 
Graphics Incorporated. The ongoing development and extension of the OpenGL 
standard [Segal and Akeley, 2006; Kessenich, 2006] is managed by Khronos, an 
industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined 
and evolved forward by Microsoft and partners. OpenGL and Direct3D are 
similarly structured, and continue to evolve rapidly with GPU hardware advances. 
They define a logical graphics processing pipeline that is mapped onto the GPU 
hardware and processors, along with programming models and languages for the 
programmable pipeline stages.

Logical Graphics Pipeline
Figure B.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a 
similar graphics pipeline structure. The API and logical pipeline provide a streaming 
dataflow infrastructure and plumbing for the programmable shader stages, shown in 
blue. The 3D application sends the GPU a sequence of vertices grouped into geometric 
primitives—points, lines, triangles, and polygons. The input assembler collects 
vertices and primitives. The vertex shader program executes per-vertex processing, 

OpenGL An open-
standard graphics API.

Direct3D A graphics 
API defined by Microsoft 
and partners.
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FIGURE B.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor.  
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric 
primitive, or pixel in a streaming dataflow fashion.
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including transforming the vertex 3D position into a screen position and lighting the 
vertex to determine its color. The geometry shader program executes per-primitive 
processing and can add or drop primitives. The setup and rasterizer unit generates 
pixel fragments (fragments are potential contributions to pixels) that are covered by 
a geometric primitive. The pixel shader program performs per-fragment processing, 
including interpolating per-fragment parameters, texturing, and coloring. Pixel 
shaders make extensive use of sampled and filtered lookups into large 1D, 2D, or 
3D arrays called textures, using interpolated floating-point coordinates. Shaders use 
texture accesses for maps, functions, decals, images, and data. The raster operations 
processing (or output merger) stage performs Z-buffer depth testing and stencil 
testing, which may discard a hidden pixel fragment or replace the pixel’s depth with 
the fragment’s depth, and performs a color blending operation that combines the 
fragment color with the pixel color and writes the pixel with the blended color.

The graphics API and graphics pipeline provide input, output, memory objects, 
and infrastructure for the shader programs that process each vertex, primitive, and 
pixel fragment.

Graphics Shader Programs
Real-time graphics applications use many different shader programs to model 
how light interacts with different materials and to render complex lighting and 
shadows. Shading languages are based on a dataflow or streaming programming 
model that corresponds with the logical graphics pipeline. Vertex shader programs 
map the position of triangle vertices onto the screen, altering their position, color, 
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w) 
vertex position and computes a floating-point (x, y, z) screen position. Geometry 
shader programs operate on geometric primitives (such as lines and triangles) 
defined by multiple vertices, changing them or generating additional primitives. 
Pixel fragment shaders each “shade” one pixel, computing a floating-point red, 
green, blue, alpha (RGBA) color contribution to the rendered image at its pixel 
sample (x, y) image position. Shaders (and GPUs) use floating-point arithmetic 
for all pixel color calculations to eliminate visible artifacts while computing the 
extreme range of pixel contribution values encountered while rendering scenes with 
complex lighting, shadows, and high dynamic range. For all three types of graphics 
shaders, many program instances can be run in parallel, as independent parallel 
threads, because each works on independent data, produces independent results, 
and has no side effects. Independent vertices, primitives, and pixels further enable 
the same graphics program to run on differently sized GPUs that process different 
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale 
transparently to GPUs with different amounts of parallelism and performance.

Users program all three logical graphics threads with a common targeted high-
level language. HLSL (high-level shading language) and Cg (C for graphics) are 
commonly used. They have C-like syntax and a rich set of library functions for 
matrix operations, trigonometry, interpolation, and texture access and filtering, 
but are far from general computing languages: they currently lack general memory 

texture A 1D, 2D, or 
3D array that supports 
sampled and filtered 
lookups with interpolated 
coordinates.

shader A program that 
operates on graphics data 
such as a vertex or a pixel 
fragment.

shading language  
A graphics rendering 
language, usually having 
a dataflow or streaming 
programming model.
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access, pointers, file I/O, and recursion. HLSL and Cg assume that programs live 
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel 
fragment shader may expect the geometric normal and multiple texture coordinates 
to have been interpolated from vertex values by upstream fixed-function stages and 
can simply assign a value to the COLOR output parameter to pass it downstream to 
be blended with a pixel at an implied (x, y) position.

The GPU hardware creates a new independent thread to execute a vertex, 
geometry, or pixel shader program for every vertex, every primitive, and every pixel 
fragment. In video games, the bulk of threads execute pixel shader programs, as 
there are typically 10 to 20 times more pixel fragments than vertices, and complex 
lighting and shadows require even larger ratios of pixel to vertex shader threads. 
The graphics shader programming model drove the GPU architecture to efficiently 
execute thousands of independent fine-grained threads on many parallel processor 
cores.

Pixel Shader Example
Consider the following Cg pixel shader program that implements the “environment 
mapping” rendering technique. For each pixel thread, this shader is passed five 
parameters, including 2D floating-point texture image coordinates needed to 
sample the surface color, and a 3D floating-point vector giving the refection of 
the view direction off the surface. The other three “uniform” parameters do not 
vary from one pixel instance (thread) to the next. The shader looks up color in 
two texture images: a 2D texture access for the surface color, and a 3D texture 
access into a cube map (six images corresponding to the faces of a cube) to obtain 
the external world color corresponding to the refection direction. Then the final 
four-component (red, green, blue, alpha) floating-point color is computed using a 
weighted average called a “lerp” or linear interpolation function.

void refection(
 float2  texCoord  : TEXCOORD0,
 float3  refection_dir  : TEXCOORD1,
 out float4  color  : COLOR,
 uniform float  shiny,
 uniform sampler2D  surfaceMap,
 uniform samplerCUBE  envMap)
{
// Fetch the surface color from a texture
 float4 surfaceColor = tex2D(surfaceMap, texCoord);

// Fetch reflected color by sampling a cube map
 float4 reflectedColor = texCUBE(environmentMap, refection_dir);

// Output is weighted average of the two colors
 color = lerp(surfaceColor, refectedColor, shiny);
}
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Although this shader program is only three lines long, it activates a lot of GPU 
hardware. For each texture fetch, the GPU texture subsystem makes multiple 
memory accesses to sample image colors in the vicinity of the sampling coordinates, 
and then interpolates the final result with floating-point filtering arithmetic. The 
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads 
in parallel, deeply interleaving them to hide texture fetch and memory latency.

Cg focuses the programmer’s view to a single vertex or primitive or pixel, 
which the GPU implements as a single thread; the shader program transparently 
scales to exploit thread parallelism on the available processors. Being application-
specific, Cg provides a rich set of useful data types, library functions, and language 
constructs to express diverse rendering techniques.

Figure B.3.2 shows skin rendered by a fragment pixel shader. Real skin appears 
quite different from flesh-color paint because light bounces around a lot before 
re-emerging. In this complex shader, three separate skin layers, each with unique 
subsurface scattering behavior, are modeled to give the skin a visual depth and 
translucency. Scattering can be modeled by a blurring convolution in a fattened 
“texture” space, with red being blurred more than green, and blue blurred less. The 
compiled Cg shader executes 1400 instructions to compute the color of one skin pixel.

FIGURE B.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader 
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400 
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.
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As GPUs have evolved superior floating-point performance and very high 
streaming memory bandwidth for real-time graphics, they have attracted highly 
parallel applications beyond traditional graphics. At first, access to this power 
was available only by couching an application as a graphics-rendering algorithm, 
but this GPGPU approach was often awkward and limiting. More recently, the 
CUDA programming model has provided a far easier way to exploit the scalable 
high-performance floating-point and memory bandwidth of GPUs with the C 
programming language.

Programming Parallel Computing Applications
CUDA, Brook, and CAL are programming interfaces for GPUs that are focused 
on data parallel computation rather than on graphics. CAL (Compute Abstraction 
Layer) is a low-level assembler language interface for AMD GPUs. Brook is a 
streaming language adapted for GPUs by Buck et  al. [2004]. CUDA, developed  
by NVIDIA [2007], is an extension to the C and C+ + languages for scalable  
parallel programming of manycore GPUs and multicore CPUs. The CUDA 
programming model is described below, adapted from an article by Nickolls et al. 
[2008].

With the new model the GPU excels in data parallel and throughput computing, 
executing high-performance computing applications as well as graphics applications.

Data Parallel Problem Decomposition

To map large computing problems effectively to a highly parallel processing 
architecture, the programmer or compiler decomposes the problem into many 
small problems that can be solved in parallel. For example, the programmer 
partitions a large result data array into blocks and further partitions each block into 
elements, such that the result blocks can be computed independently in parallel, 
and the elements within each block are computed in parallel. Figure B.3.3 shows 
a decomposition of a result data array into a 3 × 2 grid of blocks, where each 
block is further decomposed into a 5 × 3 array of elements. The two-level parallel 
decomposition maps naturally to the GPU architecture: parallel multiprocessors 
compute result blocks, and parallel threads compute result elements.

The programmer writes a program that computes a sequence of result data 
grids, partitioning each result grid into coarse-grained result blocks that can be 
computed independently in parallel. T0he program computes each result block 
with an array of fine-grained parallel threads, partitioning the work among threads 
so that each computes one or more result elements.

Scalable Parallel Programming with CUDA
The CUDA scalable parallel programming model extends the C and C++ 
languages to exploit large degrees of parallelism for general applications on highly 
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows 
that many sophisticated programs can be readily expressed with a few easily 
understood abstractions. Since NVIDIA released CUDA in 2007, developers have 



B-18 Appendix B Graphics and Computing GPUs

rapidly developed scalable parallel programs for a wide range of applications, 
including seismic data processing, computational chemistry, linear algebra, sparse 
matrix solvers, sorting, searching, physics models, and visual computing. These 
applications scale transparently to hundreds of processor cores and thousands of 
concurrent threads. NVIDIA GPUs with the Tesla unified graphics and computing 
architecture (described in Sections B.4 and B.7) run CUDA C programs, and are 
widely available in laptops, PCs, workstations, and servers. The CUDA model is 
also applicable to other shared memory parallel processing architectures, including 
multicore CPUs.

CUDA provides three key abstractions—a hierarchy of thread groups, shared 
memories, and barrier synchronization—that provide a clear parallel structure to 
conventional C code for one thread of the hierarchy. Multiple levels of threads, 
memory, and synchronization provide fine-grained data parallelism and thread 
parallelism, nested within coarse-grained data parallelism and task parallelism. The 
abstractions guide the programmer to partition the problem into coarse subproblems 
that can be solved independently in parallel, and then into finer pieces that can be 
solved in parallel. The programming model scales transparently to large numbers of 
processor cores: a compiled CUDA program executes on any number of processors, 
and only the runtime system needs to know the physical processor count.

Step 1:
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FIGURE B.3.3 Decomposing result data into a grid of blocks of elements to be computed 
in parallel.
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The CUDA Paradigm

CUDA is a minimal extension of the C and C++ programming languages. The 
programmer writes a serial program that calls parallel kernels, which may be simple 
functions or full programs. A kernel executes in parallel across a set of parallel 
threads. The programmer organizes these threads into a hierarchy of thread blocks 
and grids of thread blocks. A thread block is a set of concurrent threads that can 
cooperate among themselves through barrier synchronization and through shared 
access to a memory space private to the block. A grid is a set of thread blocks that 
may each be executed independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the number of threads per 
block and the number of blocks comprising the grid. Each thread is given a unique 
thread ID number threadIdx within its thread block, numbered 0, 1, 2, …, 
blockDim-1, and each thread block is given a unique block ID number blockIdx 
within its grid. CUDA supports thread blocks containing up to 512 threads. For 
convenience, thread blocks and grids may have one, two, or three dimensions, 
accessed via .x, .y, and .z index fields.

As a very simple example of parallel programming, suppose that we are given 
two vectors x and y of n floating-point numbers each and that we wish to compute 
the result of y = ax + y for some scalar value a. This is the so-called SAXPY kernel 
defined by the BLAS linear algebra library. Figure B.3.4 shows C code for performing 
this computation on both a serial processor and in parallel using CUDA.

The __global__ declaration specifier indicates that the procedure is a kernel 
entry point. CUDA programs launch parallel kernels with the extended function 
call syntax:

kernel<<<dimGrid, dimBlock>>>(… parameter list …);

where dimGrid and dimBlock are three-element vectors of type dim3 that specify 
the dimensions of the grid in blocks and the dimensions of the blocks in threads, 
respectively. Unspecified dimensions default to one.

In Figure B.3.4, we launch a grid of n threads that assigns one thread to each 
element of the vectors and puts 256 threads in each block. Each individual thread 
computes an element index from its thread and block IDs and then performs the 
desired calculation on the corresponding vector elements. Comparing the serial and 
parallel versions of this code, we see that they are strikingly similar. This represents 
a fairly common pattern. The serial code consists of a loop where each iteration is 
independent of all the others. Such loops can be mechanically transformed into 
parallel kernels: each loop iteration becomes an independent thread. By assigning 
a single thread to each output element, we avoid the need for any synchronization 
among threads when writing results to memory.

The text of a CUDA kernel is simply a C function for one sequential thread. 
Thus, it is generally straightforward to write and is typically simpler than writing 
parallel code for vector operations. Parallelism is determined clearly and explicitly 
by specifying the dimensions of a grid and its thread blocks when launching a 
kernel.

kernel A program or 
function for one thread, 
designed to be executed 
by many threads.

thread block A set 
of concurrent threads 
that execute the same 
thread program and may 
cooperate to compute a 
result.

grid A set of thread 
blocks that execute the 
same kernel program.
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Parallel execution and thread management is automatic. All thread creation, 
scheduling, and termination is handled for the programmer by the underlying 
system. Indeed, a Tesla architecture GPU performs all thread management directly 
in hardware. The threads of a block execute concurrently and may synchronize 
at a synchronization barrier by calling the __syncthreads() intrinsic. This 
guarantees that no thread in the block can proceed until all threads in the block 
have reached the barrier. After passing the barrier, these threads are also guaranteed 
to see all writes to memory performed by threads in the block before the barrier. 
Thus, threads in a block may communicate with each other by writing and reading 
per-block shared memory at a synchronization barrier.

Since threads in a block may share memory and synchronize via barriers, they 
will reside together on the same physical processor or multiprocessor. The number 
of thread blocks can, however, greatly exceed the number of processors. The CUDA 
thread programming model virtualizes the processors and gives the programmer the 
flexibility to parallelize at whatever granularity is most convenient. Virtualization 

synchronization 
barrier Threads wait at 
a synchronization barrier 
until all threads in the 
thread block arrive at the 
barrier.

Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
  y[i] = alpha*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y = ax + y in parallel using CUDA:

__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if( i<n ) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIGURE B.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY 
(see Chapter 6). CUDA parallel threads replace the C serial loop—each thread computes the same result 
as one loop iteration. The parallel code computes n results with n threads organized in blocks of 256 threads.
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into threads and thread blocks allows intuitive problem decompositions, as the 
number of blocks can be dictated by the size of the data being processed rather than 
by the number of processors in the system. It also allows the same CUDA program 
to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA 
requires that thread blocks be able to execute independently. It must be possible to 
execute blocks in any order, in parallel or in series. Different blocks have no means of 
direct communication, although they may coordinate their activities using atomic 
memory operations on the global memory visible to all threads—by atomically 
incrementing queue pointers, for example. This independence requirement allows 
thread blocks to be scheduled in any order across any number of cores, making 
the CUDA model scalable across an arbitrary number of cores as well as across a 
variety of parallel architectures. It also helps to avoid the possibility of deadlock. 
An application may execute multiple grids either independently or dependently. 
Independent grids may execute concurrently, given sufficient hardware resources. 
Dependent grids execute sequentially, with an implicit interkernel barrier between 
them, thus guaranteeing that all blocks of the first grid complete before any block 
of the second, dependent grid begins.

Threads may access data from multiple memory spaces during their execution. 
Each thread has a private local memory. CUDA uses local memory for thread-
private variables that do not fit in the thread’s registers, as well as for stack frames 
and register spilling. Each thread block has a shared memory, visible to all threads 
of the block, which has the same lifetime as the block. Finally, all threads have 
access to the same global memory. Programs declare variables in shared and 
global memory with the __shared__ and __device__ type qualifers. On a 
Tesla architecture GPU, these memory spaces correspond to physically separate 
memories: per-block shared memory is a low-latency on-chip RAM, while global 
memory resides in the fast DRAM on the graphics board.

Shared memory is expected to be a low-latency memory near each processor, 
much like an L1 cache. It can therefore provide high-performance communication 
and data sharing among the threads of a thread block. Since it has the same lifetime 
as its corresponding thread block, kernel code will typically initialize data in shared 
variables, compute using shared variables, and copy shared memory results to 
global memory. Thread blocks of sequentially dependent grids communicate via 
global memory, using it to read input and write results.

Figure B.3.5 shows diagrams of the nested levels of threads, thread blocks, 
and grids of thread blocks. It further shows the corresponding levels of memory 
sharing: local, shared, and global memories for per-thread, per-thread-block, and 
per-application data sharing.

A program manages the global memory space visible to kernels through calls 
to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may 
execute on a physically separate device, as is the case when running kernels on 
the GPU. Consequently, the application must use cudaMemcpy() to copy data 
between the allocated space and the host system memory.

atomic memory 
operation A memory 
read, modify, write 
operation sequence that 
completes without any 
intervening access.

local memory Per-
thread local memory 
private to the thread.

shared memory Per-
block memory shared by 
all threads of the block.

global memory Per-
application memory 
shared by all threads.
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The CUDA programming model is similar in style to the familiar single- 
program multiple data (SPMD) model—it expresses parallelism explicitly, and 
each kernel executes on a fixed number of threads. However, CUDA is more flexible 
than most realizations of SPMD, because each kernel call dynamically creates a 
new grid with the right number of thread blocks and threads for that application 
step. The programmer can use a convenient degree of parallelism for each kernel, 
rather than having to design all phases of the computation to use the same number 
of threads. Figure B.3.6 shows an example of an SPMD-like CUDA code sequence. 
It first instantiates kernelF on a 2D grid of 3 × 2 blocks where each 2D thread 
block consists of 5 × 3 threads. It then instantiates kernelG on a 1D grid of four 
1D thread blocks with six threads each. Because kernelG depends on the results 
of kernelF, they are separated by an interkernel synchronization barrier.

The concurrent threads of a thread block express fine-grained data parallelism and 
thread parallelism. The independent thread blocks of a grid express coarse-grained 
data parallelism. Independent grids express coarse-grained task parallelism. A  
kernel is simply C code for one thread of the hierarchy.

single-program 
multiple data 
(SPMD) A style of 
parallel programming 
model in which all 
threads execute the same 
program. SPMD threads 
typically coordinate with 
barrier synchronization.
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FIGURE B.3.5 Nested granularity levels—thread, thread block, and grid—have 
corresponding memory sharing levels—local, shared, and global. Per-thread local memory is 
private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global 
memory is shared by all threads.
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Restrictions
For efficiency, and to simplify its implementation, the CUDA programming model 
has some restrictions. Threads and thread blocks may only be created by invoking 
a parallel kernel, not from within a parallel kernel. Together with the required 
independence of thread blocks, this makes it possible to execute CUDA programs 
with a simple scheduler that introduces minimal runtime overhead. In fact, the 
Tesla GPU architecture implements hardware management and scheduling of 
threads and thread blocks.

kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Sequence

Interkernel Synchronization Barrier  

Block 2

Thread 5Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

kernelF<<<(3, 2), (5, 3)>>>(params);

kernelF 2D Grid is 3  2 thread blocks; each block is 5  3 threads

Block 1, 1

Thread 0, 0 Thread 1, 0 Thread 2, 0 Thread 3, 0 Thread 4, 0

Thread 0, 1 Thread 1, 1 Thread 2, 1 Thread 3, 1 Thread 4, 1

Thread 0, 2 Thread 1, 2 Thread 2, 2 Thread 3, 2 Thread 4, 2

Block 0, 1 Block 2, 1Block 1, 1

Block 0, 0 Block 2, 0Block 1, 0

kernelG<<<4, 6>>>(params);

Block 0 Block 2Block 1 Block 3

FIGURE B.3.6 Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel 
synchronization barrier, followed by kernel G on a 1D grid of 1D thread blocks.
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Task parallelism can be expressed at the thread block level but is difficult to 
express within a thread block because thread synchronization barriers operate on 
all the threads of the block. To enable CUDA programs to run on any number of 
processors, dependencies among thread blocks within the same kernel grid are not 
allowed—blocks must execute independently. Since CUDA requires that thread 
blocks be independent and allows blocks to be executed in any order, combining 
results generated by multiple blocks must in general be done by launching a second 
kernel on a new grid of thread blocks (although thread blocks may coordinate their 
activities using atomic memory operations on the global memory visible to all 
threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion 
is unattractive in a massively parallel kernel, because providing stack space for the 
tens of thousands of threads that may be active would require substantial amounts 
of memory. Serial algorithms that are normally expressed using recursion, such as 
quicksort, are typically best implemented using nested data parallelism rather than 
explicit recursion.

To support a heterogeneous system architecture combining a CPU and a 
GPU, each with its own memory system, CUDA programs must copy data and 
results between host memory and device memory. The overhead of CPU–GPU 
interaction and data transfers is minimized by using DMA block transfer engines 
and fast interconnects. Compute-intensive problems large enough to need a GPU 
performance boost amortize the overhead better than small problems.

Implications for Architecture
The parallel programming models for graphics and computing have driven 
GPU architecture to be different than CPU architecture. The key aspects of GPU 
programs driving GPU processor architecture are:

■	 Extensive use of fine-grained data parallelism: Shader programs describe how 
to process a single pixel or vertex, and CUDA programs describe how to 
compute an individual result.

■	 Highly threaded programming model: A shader thread program processes a 
single pixel or vertex, and a CUDA thread program may generate a single 
result. A GPU must create and execute millions of such thread programs per 
frame, at 60 frames per second.

■	 Scalability: A program must automatically increase its performance when 
provided with additional processors, without recompiling.

■	 Intensive floating-point (or integer) computation.

■	 Support of high-throughput computations.
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 B.4 Multithreaded Multiprocessor 
Architecture

To address different market segments, GPUs implement scalable numbers of multi-
processors—in fact, GPUs are multiprocessors composed of multiprocessors. 
Furthermore, each multiprocessor is highly multithreaded to execute many fine-
grained vertex and pixel shader threads efficiently. A quality basic GPU has two to 
four multiprocessors, while a gaming enthusiast’s GPU or computing platform has 
dozens of them. This section looks at the architecture of one such multithreaded 
multiprocessor, a simplified version of the NVIDIA Tesla streaming multiprocessor 
(SM) described in Section B.7.

Why use a multiprocessor, rather than several independent processors? The 
parallelism within each multiprocessor provides localized high performance and 
supports extensive multithreading for the fine-grained parallel programming 
models described in Section B.3. The individual threads of a thread block execute 
together within a multiprocessor to share data. The multithreaded multiprocessor 
design we describe here has eight scalar processor cores in a tightly coupled 
architecture, and executes up to 512 threads (the SM described in Section B.7 
executes up to 768 threads). For area and power efficiency, the multiprocessor shares 
large complex units among the eight processor cores, including the instruction 
cache, the multithreaded instruction unit, and the shared memory RAM.

Massive Multithreading
GPU processors are highly multithreaded to achieve several goals:

■	 Cover the latency of memory loads and texture fetches from DRAM

■	 Support fine-grained parallel graphics shader programming models

■	 Support fine-grained parallel computing programming models

■	 Virtualize the physical processors as threads and thread blocks to provide 
transparent scalability

■	 Simplify the parallel programming model to writing a serial program for one 
thread

Memory and texture fetch latency can require hundreds of processor clocks, 
because GPUs typically have small streaming caches rather than large working-set 
caches like CPUs. A fetch request generally requires a full DRAM access latency 
plus interconnect and buffering latency. Multithreading helps cover the latency with 
useful computing—while one thread is waiting for a load or texture fetch to complete, 
the processor can execute another thread. The fine-grained parallel programming 
models provide literally thousands of independent threads that can keep many 
processors busy despite the long memory latency seen by individual threads.
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A graphics vertex or pixel shader program is a program for a single thread that 
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a 
single thread that computes a result. Graphics and computing programs instantiate 
many parallel threads to render complex images and compute large result arrays. 
To dynamically balance shifting vertex and pixel shader thread workloads, each 
multiprocessor concurrently executes multiple different thread programs and 
different types of shader programs.

To support the independent vertex, primitive, and pixel programming model of 
graphics shading languages and the single-thread programming model of CUDA 
C/C+ +, each GPU thread has its own private registers, private per-thread memory, 
program counter, and thread execution state, and can execute an independent code 
path. To efficiently execute hundreds of concurrent lightweight threads, the GPU 
multiprocessor is hardware multithreaded—it manages and executes hundreds 
of concurrent threads in hardware without scheduling overhead. Concurrent 
threads within thread blocks can synchronize at a barrier with a single instruction. 
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier 
synchronization efficiently support very fine-grained parallelism.

Multiprocessor Architecture
A unified graphics and computing multiprocessor executes vertex, geometry, and 
pixel fragment shader programs, and parallel computing programs. As Figure B.4.1 
shows, the example multiprocessor consists of eight scalar processor (SP) cores each 
with a large multithreaded register file (RF), two special function units (SFUs), a 
multithreaded instruction unit, an instruction cache, a read-only constant cache, 
and a shared memory.

The 16 KB shared memory holds graphics data buffers and shared computing 
data. CUDA variables declared as __shared__ reside in the shared memory. To 
map the logical graphics pipeline workload through the multiprocessor multiple 
times, as shown in Section B.2, vertex, geometry, and pixel threads have independent 
input and output buffers, and workloads arrive and depart independently of thread 
execution.

Each SP core contains scalar integer and floating-point arithmetic units that 
execute most instructions. The SP is hardware multithreaded, supporting up to 
64 threads. Each pipelined SP core executes one scalar instruction per thread per 
clock, which ranges from 1.2 GHz to 1.6 GHz in different GPU products. Each SP 
core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its 
assigned threads. Programs declare their register demand, typically 16 to 64 scalar 
32-bit registers per thread. The SP can concurrently run many threads that use 
a few registers or fewer threads that use more registers. The compiler optimizes 
register allocation to balance the cost of spilling registers versus the cost of fewer 
threads. Pixel shader programs often use 16 or fewer registers, enabling each SP to 
run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled 
CUDA programs often need 32 registers per thread, limiting each SP to 32 threads, 
which limits such a kernel program to 256 threads per thread block on this example 
multiprocessor, rather than its maximum of 512 threads.
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The pipelined SFUs execute thread instructions that compute special functions 
and interpolate pixel attributes from primitive vertex attributes. These instructions 
can execute concurrently with instructions on the SPs. The SFU is described later.

The multiprocessor executes texture fetch instructions on the texture unit via the 
texture interface, and uses the memory interface for external memory load, store, 
and atomic access instructions. These instructions can execute concurrently with 
instructions on the SPs. Shared memory access uses a low-latency interconnection 
network between the SP processors and the shared memory banks.

Single-Instruction Multiple-Thread (SIMT)
To manage and execute hundreds of threads running several different programs 
efficiently, the multiprocessor employs a single-instruction multiple-thread 
(SIMT) architecture. It creates, manages, schedules, and executes concurrent threads 
in groups of parallel threads called warps. The term warp originates from weaving, 
the first parallel thread technology. The photograph in Figure B.4.2 shows a warp of 
parallel threads emerging from a loom. This example multiprocessor uses a SIMT 
warp size of 32 threads, executing four threads in each of the eight SP cores over four 
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FIGURE B.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. The 
eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded 
instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a 
multibank shared memory.

warp The set of parallel 
threads that execute the 
same instruction together 
in a SIMT architecture.

single-instruction 
multiple-thread 
(SIMT) A processor 
architecture that applies 
one instruction to 
multiple independent 
threads in parallel.
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clocks. The Tesla SM multiprocessor described in Section B.7 also uses a warp size 
of 32 parallel threads, executing four threads per SP core for efficiency on plentiful 
pixel threads and computing threads. Thread blocks consist of one or more warps.

This example SIMT multiprocessor manages a pool of 16 warps, a total of 512 
threads. Individual parallel threads composing a warp are the same type and start 
together at the same program address, but are otherwise free to branch and execute 
independently. At each instruction issue time, the SIMT multithreaded instruction 
unit selects a warp that is ready to execute its next instruction, and then issues that 
instruction to the active threads of that warp. A SIMT instruction is broadcast 
synchronously to the active parallel threads of a warp; individual threads may be 
inactive due to independent branching or predication. In this multiprocessor, each 
SP scalar processor core executes an instruction for four individual threads of a 
warp using four clocks, reflecting the 4:1 ratio of warp threads to cores.

SIMT processor architecture is akin to single-instruction multiple data (SIMD) 
design, which applies one instruction to multiple data lanes, but differs in that 
SIMT applies one instruction to multiple independent threads in parallel, not just 
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FIGURE B.4.2 SIMT multithreaded warp scheduling. The scheduler selects a ready warp and issues 
an instruction synchronously to the parallel threads composing the warp. Because warps are independent, 
the scheduler may select a different warp each time.
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to multiple data lanes. An instruction for a SIMD processor controls a vector of 
multiple data lanes together, whereas an instruction for a SIMT processor controls 
an individual thread, and the SIMT instruction unit issues an instruction to a warp 
of independent parallel threads for efficiency. The SIMT processor finds data-level 
parallelism among threads at runtime, analogous to the way a superscalar processor 
finds instruction-level parallelism among instructions at runtime.

A SIMT processor realizes full efficiency and performance when all threads 
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and 
when all paths complete, the threads converge to the same execution path. For equal 
length paths, a divergent if-else code block is 50% efficient. The multiprocessor 
uses a branch synchronization stack to manage independent threads that diverge 
and converge. Different warps execute independently at full speed regardless of 
whether they are executing common or disjoint code paths. As a result, SIMT 
GPUs are dramatically more efficient and flexible on branching code than earlier 
GPUs, as their warps are much narrower than the SIMD width of prior GPUs.

In contrast with SIMD vector architectures, SIMT enables programmers 
to write thread-level parallel code for individual independent threads, as well 
as data-parallel code for many coordinated threads. For program correctness, 
the programmer can essentially ignore the SIMT execution attributes of warps; 
however, substantial performance improvements can be realized by taking care that 
the code seldom requires threads in a warp to diverge. In practice, this is analogous 
to the role of cache lines in traditional codes: cache line size can be safely ignored 
when designing for correctness but must be considered in the code structure when 
designing for peak performance.

SIMT Warp Execution and Divergence
The SIMT approach of scheduling independent warps is more flexible than the 
scheduling of previous GPU architectures. A warp comprises parallel threads of 
the same type: vertex, geometry, pixel, or compute. The basic unit of pixel fragment 
shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads. 
The multiprocessor controller packs the pixel quads into a warp. It similarly groups 
vertices and primitives into warps, and packs computing threads into a warp. A 
thread block comprises one or more warps. The SIMT design shares the instruction 
fetch and issue unit efficiently across parallel threads of a warp, but requires a full 
warp of active threads to get full performance efficiency.

This unified multiprocessor schedules and executes multiple warp types 
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp 
scheduler operates at less than the processor clock rate, because there are four thread 
lanes per processor core. During each scheduling cycle, it selects a warp to execute 
a SIMT warp instruction, as shown in Figure B.4.2. An issued warp-instruction 
executes as four sets of eight threads over four processor cycles of throughput.  
The processor pipeline uses several clocks of latency to complete each instruction.  
If the number of active warps times the clocks per warp exceeds the pipeline  
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latency, the programmer can ignore the pipeline latency. For this multiprocessor, a 
round-robin schedule of eight warps has a period of 32 cycles between successive 
instructions for the same warp. If the program can keep 256 threads active per 
multiprocessor, instruction latencies up to 32 cycles can be hidden from an 
individual sequential thread. However, with few active warps, the processor pipeline 
depth becomes visible and may cause processors to stall.

A challenging design problem is implementing zero-overhead warp scheduling 
for a dynamic mix of different warp programs and program types. The instruction 
scheduler must select a warp every four clocks to issue one instruction per clock 
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are 
independent, the only dependences are among sequential instructions from the 
same warp. The scheduler uses a register dependency scoreboard to qualify warps 
whose active threads are ready to execute an instruction. It prioritizes all such ready 
warps and selects the highest priority one for issue. Prioritization must consider 
warp type, instruction type, and the desire to be fair to all active warps.

Managing Threads and Thread Blocks
The multiprocessor controller and instruction unit manage threads and thread 
blocks. The controller accepts work requests and input data and arbitrates access 
to shared resources, including the texture unit, memory access path, and I/O 
paths. For graphics workloads, it creates and manages three types of graphics 
threads concurrently: vertex, geometry, and pixel. Each of the graphics work 
types has independent input and output paths. It accumulates and packs each of 
these input work types into SIMT warps of parallel threads executing the same 
thread program. It allocates a free warp, allocates registers for the warp threads, 
and starts warp execution in the multiprocessor. Every program declares its per-
thread register demand; the controller starts a warp only when it can allocate the 
requested register count for the warp threads. When all the threads of the warp 
exit, the controller unpacks the results and frees the warp registers and resources.

The controller creates cooperative thread arrays (CTAs) which implement 
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA 
when it can create all CTA warps and allocate all CTA resources. In addition to 
threads and registers, a CTA requires allocating shared memory and barriers. 
The program declares the required capacities, and the controller waits until it can 
allocate those amounts before launching the CTA. Then it creates CTA warps at the 
warp scheduling rate, so that a CTA program starts executing immediately at full 
multiprocessor performance. The controller monitors when all threads of a CTA 
have exited, and frees the CTA shared resources and its warp resources.

Thread Instructions
The SP thread processors execute scalar instructions for individual threads, unlike 
earlier GPU vector instruction architectures, which executed four-component 
vector instructions for each vertex or pixel shader program. Vertex programs 

cooperative thread 
array (CTA) A set 
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that executes the same 
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generally compute (x, y, z, w) position vectors, while pixel shader programs compute 
(red, green, blue, alpha) color vectors. However, shader programs are becoming 
longer and more scalar, and it is increasingly difficult to fully occupy even two 
components of a legacy GPU four-component vector architecture. In effect, the 
SIMT architecture parallelizes across 32 independent pixel threads, rather than 
parallelizing the four vector components within a pixel. CUDA C/C++ programs 
have predominantly scalar code per thread. Previous GPUs employed vector 
packing (e.g., combining subvectors of work to gain efficiency) but that complicated 
the scheduling hardware as well as the compiler. Scalar instructions are simpler 
and compiler-friendly. Texture instructions remain vector-based, taking a source 
coordinate vector and returning a filtered color vector.

To support multiple GPUs with different binary microinstruction formats, high-
level graphics and computing language compilers generate intermediate assembler-
level instructions (e.g., Direct3D vector instructions or PTX scalar instructions), 
which are then optimized and translated to binary GPU microinstructions. 
The NVIDIA PTX (parallel thread execution) instruction set definition [2007] 
provides a stable target ISA for compilers, and provides compatibility over several 
generations of GPUs with evolving binary microinstruction-set architectures. The 
optimizer readily expands Direct3D vector instructions to multiple scalar binary 
microinstructions. PTX scalar instructions translate nearly one to one with scalar 
binary microinstructions, although some PTX instructions expand to multiple 
binary microinstructions, and multiple PTX instructions may fold into one binary 
microinstruction. Because the intermediate assembler-level instructions use virtual 
registers, the optimizer analyzes data dependencies and allocates real registers. The 
optimizer eliminates dead code, folds instructions together when feasible, and 
optimizes SIMT branch diverge and converge points.

Instruction Set Architecture (ISA)
The thread ISA described here is a simplified version of the Tesla architecture 
PTX ISA, a register-based scalar instruction set comprising floating-point, integer, 
logical, conversion, special functions, flow control, memory access, and texture 
operations. Figure B.4.3 lists the basic PTX GPU thread instructions; see the 
NVIDIA PTX specification [2007] for details. The instruction format is:

opcode.type d, a, b, c;

where d is the destination operand, a, b, c are source operands, and .type is  
one of:

 .type SpeciferType

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating-point 16, 32, and 64 bits .f16, .f32, .f64
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Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64
add.type add.f32 d, a, b d = a + b;
sub.type sub.f32 d, a, b d = a – b;
mul.type mul.f32 d, a, b d = a * b;
mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d = 0 - a;
min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special 
Function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic. type = .pred, .b32, .b64
and.type and.b32 d, a, b d = a & b;
or.type or.b32 d, a, b d = a | b;
xor.type xor.b32 d, a, b d = a ^ b;
not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory
Access

memory .space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64
ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type atom.global.add.u32 d,[a], b 
atom.global.cas.b32 d,[a], b, c

atomic { d = *a; 
  *a = op(*a, b); }

atomic read-modify-write  
operation

atom .op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control
Flow

branch @p bra target if (p) goto 
target;

conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

FIGURE B.4.3 Basic PTX GPU thread instructions.
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Source operands are scalar 32-bit or 64-bit values in registers, an immediate 
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are 
registers, except for store to memory. Instructions are predicated by prefixing them 
with @p or @!p, where p is a predicate register. Memory and texture instructions 
transfer scalars or vectors of two to four components, up to 128 bits in total. PTX 
instructions specify the behavior of one thread.

The PTX arithmetic instructions operate on 32-bit and 64-bit floating-point, 
signed integer, and unsigned integer types. Recent GPUs support 64-bit double-
precision floating-point; see Section B.6. On current GPUs, PTX 64-bit integer 
and logical instructions are translated to two or more binary microinstructions 
that perform 32-bit operations. The GPU special function instructions are limited 
to 32-bit floating-point. The thread control flow instructions are conditional 
branch, function call and return, thread exit, and bar.sync (barrier 
synchronization). The conditional branch instruction @p bra target uses a 
predicate register p (or !p) previously set by a compare and set predicate setp 
instruction to determine whether the thread takes the branch or not. Other 
instructions can also be predicated on a predicate register being true or false.

Memory Access Instructions

The tex instruction fetches and filters texture samples from 1D, 2D, and 3D 
texture arrays in memory via the texture subsystem. Texture fetches generally use 
interpolated floating-point coordinates to address a texture. Once a graphics pixel 
shader thread computes its pixel fragment color, the raster operations processor 
blends it with the pixel color at its assigned (x, y) pixel position and writes the final 
color to memory.

To support computing and C/C++ language needs, the Tesla PTX ISA 
implements memory load/store instructions. It uses integer byte addressing with 
register plus offset address arithmetic to facilitate conventional compiler code 
optimizations. Memory load/store instructions are common in processors, but are 
a significant new capability in the Tesla architecture GPUs, as prior GPUs provided 
only the texture and pixel accesses required by the graphics APIs.

For computing, the load/store instructions access three read/write memory 
spaces that implement the corresponding CUDA memory spaces in Section B.3:

■	 Local memory for per-thread private addressable temporary data 
(implemented in external DRAM)

■	 Shared memory for low-latency access to data shared by cooperating threads 
in the same CTA/thread block (implemented in on-chip SRAM)

■	 Global memory for large data sets shared by all threads of a computing 
application (implemented in external DRAM)

The memory load/store instructions ld.global, st.global, ld.shared, st.
shared, ld.local, and st.local access the global, shared, and local memory 
spaces. Computing programs use the fast barrier synchronization instruction bar.
sync to synchronize threads within a CTA/thread block that communicate with 
each other via shared and global memory.
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To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT 
warp together into a single memory block request when the addresses fall in the 
same block and meet alignment criteria. Coalescing memory requests provides a 
significant performance boost over separate requests from individual threads. The 
multiprocessor’s large thread count, together with support for many outstanding 
load requests, helps cover load-to-use latency for local and global memory 
implemented in external DRAM.

The latest Tesla architecture GPUs also provide efficient atomic memory operations 
on memory with the atom.op.u32 instructions, including integer operations add, 
min, max, and, or, xor, exchange, and cas (compare-and-swap) operations, 
facilitating parallel reductions and parallel data structure management.

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently 
via shared memory and global memory by simply calling __syncthreads(); as 
part of each interthread communication step. The synchronization intrinsic function 
generates a single bar.sync instruction. However, implementing fast barrier 
synchronization among up to 512 threads per CUDA thread block is a challenge.

Grouping threads into SIMT warps of 32 threads reduces the synchronization 
difficulty by a factor of 32. Threads wait at a barrier in the SIMT thread scheduler so 
they do not consume any processor cycles while waiting. When a thread executes 
a bar.sync instruction, it increments the barrier’s thread arrival counter and the 
scheduler marks the thread as waiting at the barrier. Once all the CTA threads 
arrive, the barrier counter matches the expected terminal count, and the scheduler 
releases all the threads waiting at the barrier and resumes executing threads.

Streaming Processor (SP)
The multithreaded streaming processor (SP) core is the primary thread instruction 
processor in the multiprocessor. Its register file (RF) provides 1024 scalar 32-
bit registers for up to 64 threads. It executes all the fundamental floating-point 
operations, including add.f32, mul.f32, mad.f32 (floating multiply-add), min.
f32, max.f32, and setp.f32 (floating compare and set predicate). The floating-
point add and multiply operations are compatible with the IEEE 754 standard 
for single-precision FP numbers, including not-a-number (NaN) and infinity 
values. The SP core also implements all of the 32-bit and 64-bit integer arithmetic, 
comparison, conversion, and logical PTX instructions shown in Figure B.4.3.

The floating-point add and mul operations employ IEEE round-to-nearest-even 
as the default rounding mode. The mad.f32 floating-point multiply-add operation 
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. The SP flushes input denormal operands to sign-preserved-zero. 
Results that underflow the target output exponent range are flushed to sign-
preserved-zero after rounding.
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Special Function Unit (SFU)
Certain thread instructions can execute on the SFUs, concurrently with other 
thread instructions executing on the SPs. The SFU implements the special function 
instructions of Figure B.4.3, which compute 32-bit floating-point approximations 
to reciprocal, reciprocal square root, and key transcendental functions. It also 
implements 32-bit floating-point planar attribute interpolation for pixel shaders, 
providing accurate interpolation of attributes such as color, depth, and texture 
coordinates.

Each pipelined SFU generates one 32-bit floating-point special function result 
per cycle; the two SFUs per multiprocessor execute special function instructions 
at a quarter the simple instruction rate of the eight SPs. The SFUs also execute the 
mul.f32 multiply instruction concurrently with the eight SPs, increasing the peak 
computation rate up to 50% for threads with a suitable instruction mixture.

For functional evaluation, the Tesla architecture SFU employs quadratic 
interpolation based on enhanced minimax approximations for approximating the 
reciprocal, reciprocal square-root, log2x, 2x, and sin/cos functions. The accuracy of 
the function estimates ranges from 22 to 24 mantissa bits. See Section B.6 for more 
details on SFU arithmetic.

Comparing with Other Multiprocessors
Compared with SIMD vector architectures such as x86 SSE, the SIMT multiprocessor 
can execute individual threads independently, rather than always executing them 
together in synchronous groups. SIMT hardware finds data parallelism among 
independent threads, whereas SIMD hardware requires the software to express 
data parallelism explicitly in each vector instruction. A SIMT machine executes a 
warp of 32 threads synchronously when the threads take the same execution path, 
yet can execute each thread independently when they diverge. The advantage is 
significant because SIMT programs and instructions simply describe the behavior 
of a single independent thread, rather than a SIMD data vector of four or more 
data lanes. Yet the SIMT multiprocessor has SIMD-like efficiency, spreading the 
area and cost of one instruction unit across the 32 threads of a warp and across the 
eight streaming processor cores. SIMT provides the performance of SIMD together 
with the productivity of multithreading, avoiding the need to explicitly code SIMD 
vectors for edge conditions and partial divergence.

The SIMT multiprocessor imposes little overhead because it is hardware 
multithreaded with hardware barrier synchronization. That allows graphics 
shaders and CUDA threads to express very fine-grained parallelism. Graphics and 
CUDA programs use threads to express fine-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector 
instructions. It is simpler and more productive to develop scalar single-thread code 
than vector code, and the SIMT multiprocessor executes the code with SIMD-like 
efficiency.



B-36 Appendix B Graphics and Computing GPUs

Coupling eight streaming processor cores together closely into a multiprocessor 
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. The CUDA programming model 
exploits the two-level hierarchy by providing individual threads for fine-grained 
parallel computations, and by providing grids of thread blocks for coarse-grained 
parallel operations. The same thread program can provide both fine-grained and 
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must 
use two different programming models to provide fine-grained and coarse-grained 
operations: coarse-grained parallel threads on different cores, and SIMD vector 
instructions for fine-grained data parallelism.

Multithreaded Multiprocessor Conclusion
The example GPU multiprocessor based on the Tesla architecture is highly 
multithreaded, executing a total of up to 512 lightweight threads concurrently to 
support fine-grained pixel shaders and CUDA threads. It uses a variation on SIMD 
architecture and multithreading called SIMT (single-instruction multiple-thread) 
to efficiently broadcast one instruction to a warp of 32 parallel threads, while 
permitting each thread to branch and execute independently. Each thread executes 
its instruction stream on one of the eight streaming processor (SP) cores, which are 
multithreaded up to 64 threads.

The PTX ISA is a register-based load/store scalar ISA that describes the execution 
of a single thread. Because PTX instructions are optimized and translated to binary 
microinstructions for a specific GPU, the hardware instructions can evolve rapidly 
without disrupting compilers and software tools that generate PTX instructions.

 B.5 Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important 
determiner of the performance of a graphics system. Graphics workloads demand 
very high transfer rates to and from memory. Pixel write and blend (read-modify-
write) operations, depth buffer reads and writes, and texture map reads, as well 
as command and object vertex and attribute data reads, comprise the majority of 
memory traffic.

Modern GPUs are highly parallel, as shown in Figure B.2.5. For example, the 
GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically 
requires a color read and write and a depth read and write of a 4-byte pixel. Usually 
an average of two or three texels of four bytes each are read to generate the pixel’s 
color. So for a typical case, there is a demand of 28 bytes times 32 pixels = 896 bytes 
per clock. Clearly the bandwidth demand on the memory system is enormous.
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To supply these requirements, GPU memory systems have the following 
characteristics:

■	 They are wide, meaning there are a large number of pins to convey data 
between the GPU and its memory devices, and the memory array itself 
comprises many DRAM chips to provide the full total data bus width.

■	 They are fast, meaning aggressive signaling techniques are used to maximize 
the data rate (bits/second) per pin.

■	 GPUs seek to use every available cycle to transfer data to or from the memory 
array. To achieve this, GPUs specifically do not aim to minimize latency to the 
memory system. High throughput (utilization efficiency) and short latency 
are fundamentally in conflict.

■	 Compression techniques are used, both lossy, of which the programmer must 
be aware, and lossless, which is invisible to the application and opportunistic.

■	 Caches and work coalescing structures are used to reduce the amount of off-
chip traffic needed and to ensure that cycles spent moving data are used as 
fully as possible.

DRAM Considerations
GPUs must take into account the unique characteristics of DRAM. DRAM chips 
are internally arranged as multiple (typically four to eight) banks, where each bank 
includes a power-of-2 number of rows (typically around 16,384), and each row 
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of 
timing requirements on their controlling processor. For example, dozens of cycles 
are required to activate one row, but once activated, the bits within that row are 
randomly accessible with a new column address every four clocks. Double-data 
rate (DDR) synchronous DRAMs transfer data on both rising and falling edges 
of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers 
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32 
bidirectional data pins, so eight bytes can be read or written from the DRAM per 
clock.

GPUs internally have a large number of generators of memory traffic. Different 
stages of the logical graphics pipeline each have their own request streams: command 
and vertex attribute fetch, shader texture fetch and load/store, and pixel depth and 
color read-write. At each logical stage, there are often multiple independent units 
to deliver the parallel throughput. These are each independent memory requestors. 
When viewed at the memory system, there is an enormous number of uncorrelated 
requests in flight. This is a natural mismatch to the reference pattern preferred by 
the DRAMs. A solution is for the GPU’s memory controller to maintain separate 
heaps of traffic bound for different DRAM banks, and wait until enough traffic for 
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a particular DRAM row is pending before activating that row and transferring all 
the traffic at once. Note that accumulating pending requests, while good for DRAM 
row locality and thus efficient use of the data bus, leads to longer average latency 
as seen by the requestors whose requests spend time waiting for others. The design 
must take care that no particular request waits too long, otherwise some processing 
units can starve waiting for data and ultimately cause neighboring processors to 
become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of 
which comprises a fully independent memory controller and one or two DRAM 
devices that are fully and exclusively owned by that partition. To achieve the best 
load balance and therefore approach the theoretical performance of n partitions, 
addresses are finely interleaved evenly across all memory partitions. The partition 
interleaving stride is typically a block of a few hundred bytes. The number of 
memory partitions is designed to balance the number of processors and other 
memory requesters.

Caches
GPU workloads typically have very large working sets—on the order of hundreds 
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not 
practical to construct caches on chips large enough to hold anything close to the 
full working set of a graphics application. Whereas CPUs can assume very high 
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must 
therefore cope with many misses in flight. While a CPU can reasonably be designed 
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and 
hits intermingled. We call this a streaming cache architecture.

GPU caches must deliver very high-bandwidth to their clients. Consider the case 
of a texture cache. A typical texture unit may evaluate two bilinear interpolations for 
each of four pixels per clock cycle, and a GPU may have many such texture units all 
operating independently. Each bilinear interpolation requires four separate texels, 
and each texel might be a 64-bit value. Four 16-bit components are typical. Thus, 
total bandwidth is 2 × 4 × 4 × 64 = 2048 bits per clock. Each separate 64-bit texel 
is independently addressed, so the cache needs to handle 32 unique addresses per 
clock. This naturally favors a multibank and/or multiport arrangement of SRAM 
arrays.

MMU
Modern GPUs are capable of translating virtual addresses to physical addresses. 
On the GeForce 8800, all processing units generate memory addresses in a  
40-bit virtual address space. For computing, load and store thread instructions use 
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a 
40-bit offset. A memory management unit performs virtual to physical address 
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translation; hardware reads the page tables from local memory to respond to 
misses on behalf of a hierarchy of translation lookaside buffers spread out among 
the processors and rendering engines. In addition to physical page bits, GPU page 
table entries specify the compression algorithm for each page. Page sizes range 
from 4 to 128 kilobytes.

Memory Spaces
As introduced in Section B.3, CUDA exposes different memory spaces to allow the 
programmer to store data values in the most performance-optimal way. For the 
following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory
Global memory is stored in external DRAM; it is not local to any one physical 
streaming multiprocessor (SM) because it is meant for communication among 
different CTAs (thread blocks) in different grids. In fact, the many CTAs that 
reference a location in global memory may not be executing in the GPU at the 
same time; by design, in CUDA a programmer does not know the relative order 
in which CTAs are executed. Because the address space is evenly distributed 
among all memory partitions, there must be a read/write path from any streaming 
multiprocessor to any DRAM partition.

Access to global memory by different threads (and different processors) is not 
guaranteed to have sequential consistency. Thread programs see a relaxed memory 
ordering model. Within a thread, the order of memory reads and writes to the same 
address is preserved, but the order of accesses to different addresses may not be 
preserved. Memory reads and writes requested by different threads are unordered. 
Within a CTA, the barrier synchronization instruction bar.sync can be used 
to obtain strict memory ordering among the threads of the CTA. The membar 
thread instruction provides a memory barrier/fence operation that commits prior 
memory accesses and makes them visible to other threads before proceeding. 
Threads can also use the atomic memory operations described in Section B.4 to 
coordinate work on memory they share.

Shared memory
Per-CTA shared memory is only visible to the threads that belong to that CTA, 
and shared memory only occupies storage from the time a CTA is created to the 
time it terminates. Shared memory can therefore reside on-chip. This approach has 
many benefits. First, shared memory traffc does not need to compete with limited 
off-chip bandwidth needed for global memory references. Second, it is practical to 
build very high-bandwidth memory structures on-chip to support the read/write 
demands of each streaming multiprocessor. In fact, the shared memory is closely 
coupled to the streaming multiprocessor.
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Each streaming multiprocessor contains eight physical thread processors. During 
one shared memory clock cycle, each thread processor can process two threads’ 
worth of instructions, so 16 threads’ worth of shared memory requests must be 
handled in each clock. Because each thread can generate its own addresses, and the 
addresses are typically unique, the shared memory is built using 16 independently 
addressable SRAM banks. For common access patterns, 16 banks are sufficient 
to maintain throughput, but pathological cases are possible; for example, all 16 
threads might happen to access a different address on one SRAM bank. It must be 
possible to route a request from any thread lane to any bank of SRAM, so a 16-by-
16 interconnection network is required.

Local Memory
Per-thread local memory is private memory visible only to a single thread. Local 
memory is architecturally larger than the thread’s register file, and a program 
can compute addresses into local memory. To support large allocations of local 
memory (recall the total allocation is the per-thread allocation times the number 
of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off-chip, they are well-
suited to being cached on-chip.

Constant Memory
Constant memory is read-only to a program running on the SM (it can be written 
via commands to the GPU). It is stored in external DRAM and cached in the SM. 
Because commonly most or all threads in a SIMT warp read from the same address 
in constant memory, a single address lookup per clock is sufficient. The constant 
cache is designed to broadcast scalar values to threads in each warp.

Texture Memory
Texture memory holds large read-only arrays of data. Textures for computing have 
the same attributes and capabilities as textures used with 3D graphics. Although 
textures are commonly two-dimensional images (2D arrays of pixel values), 1D 
(linear) and 3D (volume) textures are also available.

A compute program references a texture using a tex instruction. Operands 
include an identifier to name the texture, and one, two, or three coordinates 
based on the texture dimensionality. The floating-point coordinates include a 
fractional portion that specifies a sample location, often in-between texel locations. 
Noninteger coordinates invoke a bilinear weighted interpolation of the four closest 
values (for a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize 
throughput of texture fetches from thousands of concurrent threads. Some 
programs use texture fetches as a way to cache global memory.
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Surfaces
Surface is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats 
are defined; for example, a pixel may be defined as four 8-bit RGBA integer 
components, or four 16-bit floating-point components. A program kernel does 
not need to know the surface type. A tex instruction recasts its result values as 
floating-point, depending on the surface format.

Load/Store Access
Load/store instructions with integer byte addressing enable the writing and 
compiling of programs in conventional languages like C and C++. CUDA 
programs use load/store instructions to access memory.

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp 
together into a single memory block request when the addresses fall in the same 
block and meet alignment criteria. Coalescing individual small memory requests 
into large block requests provides a significant performance boost over separate 
requests. The large thread count, together with support for many outstanding load 
requests, helps cover load-to-use latency for local and global memory implemented 
in external DRAM.

ROP
As shown in Figure B.2.5, NVIDIA Tesla architecture GPUs comprise a scalable 
streaming processor array (SPA), which performs all of the GPU’s programmable 
calculations, and a scalable memory system, which comprises external DRAM 
control and fixed function Raster Operation Processors (ROPs) that perform color 
and depth framebuffer operations directly on memory. Each ROP unit is paired 
with a specific memory partition. ROP partitions are fed from the SMs via an 
interconnection network. Each ROP is responsible for depth and stencil tests and 
updates, as well as color blending. The ROP and memory controllers cooperate 
to implement lossless color and depth compression (up to 8:1) to reduce external 
bandwidth demand. ROP units also perform atomic operations on memory.

 B.6 Floating-point Arithmetic

GPUs today perform most arithmetic operations in the programmable processor 
cores using IEEE 754-compatible single precision 32-bit floating-point operations 
(see Chapter 3). The fixed-point arithmetic of early GPUs was succeeded by 16-bit, 
24-bit, and 32-bit floating-point, then IEEE 754-compatible 32-bit floating-point. 
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Some fixed-function logic within a GPU, such as texture-filtering hardware, 
continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754- 
compatible double-precision 64-bit floating-point instructions.

Supported Formats
The IEEE 754 standard for floating-point arithmetic specifies basic and storage 
formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit 
binary floating-point, commonly called single precision and double precision. The 
standard also specifies a 16-bit binary storage floating-point format, half precision. 
GPUs and the Cg shading language employ the narrow 16-bit half data format for 
efficient data storage and movement, while maintaining high dynamic range. GPUs 
perform many texture filtering and pixel blending computations at half precision 
within the texture filtering unit and the raster operations unit. The OpenEXR high 
dynamic-range image file format developed by Industrial Light and Magic [2003] 
uses the identical half format for color component values in computer imaging and 
motion picture applications.

Basic Arithmetic
Common single-precision floating-point operations in GPU programmable cores 
include addition, multiplication, multiply-add, minimum, maximum, compare, 
set predicate, and conversions between integer and floating-point numbers. 
Floating-point instructions often provide source operand modifiers for negation 
and absolute value.

The floating-point addition and multiplication operations of most GPUs today 
are compatible with the IEEE 754 standard for single precision FP numbers, 
including not-a-number (NaN) and infinity values. The FP addition and 
multiplication operations use IEEE round-to-nearest-even as the default rounding 
mode. To increase floating-point instruction throughput, GPUs often use a 
compound multiply-add instruction (mad). The multiply-add operation performs 
FP multiplication with truncation, followed by FP addition with round-to-nearest-
even. It provides two floating-point operations in one issuing cycle, without 
requiring the instruction scheduler to dispatch two separate instructions, but the 
computation is not fused and truncates the product before the addition. This makes 
it different from the fused multiply-add instruction discussed in Chapter  3 and 
later in this section. GPUs typically flush denormalized source operands to sign-
preserved zero, and they flush results that underflow the target output exponent 
range to sign-preserved zero after rounding.

Specialized Arithmetic
GPUs provide hardware to accelerate special function computation, attribute 
interpolation, and texture filtering. Special function instructions include cosine, 

half precision A 16-bit 
binary floating-point 
format, with 1 sign bit, 
5-bit exponent, 10-bit 
fraction, and an implied 
integer bit.

multiply-add (MAD)  
A single floating-point 
instruction that performs 
a compound operation: 
multiplication followed by 
addition.
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sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root. 
Attribute interpolation instructions provide efficient generation of pixel attributes, 
derived from plane equation evaluation. The special function unit (SFU) 
introduced in Section B.4 computes special functions and interpolates planar 
attributes [Oberman and Siu, 2005].

Several methods exist for evaluating special functions in hardware. It has been 
shown that quadratic interpolation based on Enhanced Minimax Approximations 
is a very efficient method for approximating functions in hardware, including 
reciprocal, reciprocal square-root, log2x, 2x, sin, and cos.

We can summarize the method of SFU quadratic interpolation. For a binary 
input operand X with n-bit significand, the significand is divided into two parts: 
Xu is the upper part containing m bits, and Xl is the lower part containing n-m bits. 
The upper m bits Xu are used to consult a set of three lookup tables to return three 
finite-word coefficients C0, C1, and C2. Each function to be approximated requires 
a unique set of tables. These coefficients are used to approximate a given function 
f(X) in the range Xu ≤ X < Xu + 2−m by evaluating the expression:

f X C C X C X( ) 0 1 1 2 1
2

The accuracy of each of the function estimates ranges from 22 to 24 significand 
bits. Example function statistics are shown in Figure B.6.1.

The IEEE 754 standard specifies exact-rounding requirements for division 
and square root; however, for many GPU applications, exact compliance is not 
required. Rather, for those applications, higher computational throughput is more 
important than last-bit accuracy. For the SFU special functions, the CUDA math 
library provides both a full accuracy function and a fast function with the SFU 
instruction accuracy.

Another specialized arithmetic operation in a GPU is attribute interpolation. 
Key attributes are usually specified for vertices of primitives that make up a scene 
to be rendered. Example attributes are color, depth, and texture coordinates. These 
attributes must be interpolated in the (x,y) screen space as needed to determine the 

special function unit 
(SFU) A hardware unit 
that computes special 
functions and interpolates 
planar attributes.

Function
Input 

interval
Accuracy

(good bits)
ULP*

error
% exactly 
rounded Monotonic

1/x [1, 2) 24.02 0.98 87 Yes

1/sqrt(x) [1, 4) 23.40 1.52 78 Yes

2x [0, 1) 22.51 1.41 74 Yes

log2x [1, 2) 22.57 N/A** N/A Yes

sin/cos [0, /2) 22.47 N/A N/A No

*ULP: unit in the last place. **N/A: not applicable.

FIGURE B.6.1 Special function approximation statistics. For the NVIDIA GeForce 8800 special 
function unit (SFU).
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values of the attributes at each pixel location. The value of a given attribute U in an 
(x, y) plane can be expressed using plane equations of the form:

U x,y A x B Y Cu u u( )

where A, B, and C are interpolation parameters associated with each attribute U. 
The interpolation parameters A, B, and C are all represented as single-precision 
floating-point numbers.

Given the need for both a function evaluator and an attribute interpolator in a 
pixel shader processor, a single SFU that performs both functions for efficiency can 
be designed. Both functions use a sum of products operation to interpolate results, 
and the number of terms to be summed in both functions is very similar.

Texture Operations

Texture mapping and filtering is another key set of specialized floating-point 
arithmetic operations in a GPU. The operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and 
t are single-precision floating-point numbers.

2. Compute the level of detail to identify the correct texture MIP-map level.

3. Compute the trilinear interpolation fraction.

4. Scale texture address (s, t) for the selected MIP-map level.

5. Access memory and retrieve desired texels (texture elements).

6. Perform filtering operation on texels.

Texture mapping requires a significant amount of floating-point computation 
for full-speed operation, much of which is done at 16-bit half precision. As an 
example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format 
floating-point computation for texture mapping instructions, in addition to its 
conventional IEEE single-precision floating-point instructions. For more details 
on texture mapping and filtering, see Foley and van Dam [1995].

Performance
The floating-point addition and multiplication arithmetic hardware is fully 
pipelined, and latency is optimized to balance delay and area. While pipelined, 
the throughput of the special functions is less than the floating-point addition  
and multiplication operations. Quarter-speed throughput for the special functions 
is typical performance in modern GPUs, with one SFU shared by four SP cores.  
In contrast, CPUs typically have significantly lower throughput for similar 
functions, such as division and square root, albeit with more accurate results. The 
attribute interpolation hardware is typically fully pipelined to enable full-speed 
pixel shaders.

MIP-map A Latin 
phrase multum in parvo, 
or much in a small space. 
A MIP-map contains 
precalculated images of 
different resolutions, used 
to increase rendering 
speed and reduce 
artifacts.
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Double precision
Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision 
operations in hardware. Standard floating-point arithmetic operations in double 
precision include addition, multiplication, and conversions between different 
floating-point and integer formats. The 2008 IEEE 754 floating-point standard 
includes specification for the fused-multiply-add (FMA) operation, as discussed 
in Chapter  3. The FMA operation performs a floating-point multiplication 
followed by an addition, with a single rounding. The fused multiplication and 
addition operations retain full accuracy in intermediate calculations. This behavior 
enables more accurate floating-point computations involving the accumulation 
of products, including dot products, matrix multiplication, and polynomial 
evaluation. The FMA instruction also enables efficient software implementations 
of exactly rounded division and square root, removing the need for a hardware 
division or square root unit.

A double-precision hardware FMA unit implements 64-bit addition, 
multiplication, conversions, and the FMA operation itself. The architecture of a 
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FIGURE B.6.2 Double-precision fused-multiply-add (FMA) unit. Hardware to implement 
floating-point A× B+ C for double precision.



B-46 Appendix B Graphics and Computing GPUs

double-precision FMA unit enables full-speed denormalized number support on 
both inputs and outputs. Figure B.6.2 shows a block diagram of an FMA unit.

As shown in Figure B.6.2, the significands of A and B are multiplied to form a 106-
bit product, with the results left in carry-save form. In parallel, the 53-bit addend C is 
conditionally inverted and aligned to the 106-bit product. The sum and carry results 
of the 106-bit product are summed with the aligned addend through a 161-bit-
wide carry-save adder (CSA). The carry-save output is then summed together in 
a carry-propagate adder to produce an unrounded result in nonredundant, two’s 
complement form. The result is conditionally recomplemented, so as to return a 
result in sign-magnitude form. The complemented result is normalized, and then it 
is rounded to fit within the target format.

 B.7 Real Stuff: The NVIDIA GeForce 8800

The NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unified vertex 
and pixel processor design that also supports parallel computing applications written 
in C using the CUDA parallel programming model. It is the first implementation 
of the Tesla unified graphics and computing architecture described in Section B.4 
and in Lindholm et al. [2008]. A family of Tesla architecture GPUs addresses the 
different needs of laptops, desktops, workstations, and servers.

Streaming Processor Array (SPA)
The GeForce 8800 GPU shown in Figure B.7.1 contains 128 streaming processor (SP) 
cores organized as 16 streaming multiprocessors (SMs). Two SMs share a texture 
unit in each texture/processor cluster (TPC). An array of eight TPCs makes up the 
streaming processor array (SPA), which executes all graphics shader programs and 
computing programs.

The host interface unit communicates with the host CPU via the PCI-Express 
bus, checks command consistency, and performs context switching. The input 
assembler collects geometric primitives (points, lines, triangles). The work 
distribution blocks dispatch vertices, pixels, and compute thread arrays to the 
TPCs in the SPA. The TPCs execute vertex and geometry shader programs and 
computing programs. Output geometric data are sent to the viewport/clip/setup/
raster/zcull block to be rasterized into pixel fragments that are then redistributed 
back into the SPA to execute pixel shader programs. Shaded pixels are sent across 
the interconnection network for processing by the ROP units. The network also 
routes texture memory read requests from the SPA to DRAM and reads data from 
DRAM through a level-2 cache back to the SPA.
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Texture/Processor Cluster (TPC)
Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as 
shown in Figure B.7.2.

The geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and 
topology flow in the TPC.

The SMC controls multiple SMs, arbitrating the shared texture unit, load/store 
path, and I/O path. The SMC serves three graphics workloads simultaneously: 
vertex, geometry, and pixel.

The texture unit processes a texture instruction for one vertex, geometry, or pixel 
quad, or four compute threads per cycle. Texture instruction sources are texture 
coordinates, and the outputs are weighted samples, typically a four-component 
(RGBA) floating-point color. The texture unit is deeply pipelined. Although it 
contains a streaming cache to capture filtering locality, it streams hits mixed with 
misses without stalling.
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FIGURE B.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8800 has 128 streaming processor 
(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). The processors connect with six 64-bit-
wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs, 
DRAM partitions, and other units.
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Streaming Multiprocessor (SM)
The SM is a unified graphics and computing multiprocessor that executes vertex, 
geometry, and pixel-fragment shader programs and parallel computing programs. 
The SM consists of eight SP thread processor cores, two SFUs, a multithreaded 
instruction fetch and issue unit (MT issue), an instruction cache, a read-only 
constant cache, and a 16 KB read/write shared memory. It executes scalar 
instructions for individual threads.

The GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of 
36 GFLOPS per SM. To optimize power and area efficiency, some SM nondatapath 
units operate at half the SP clock rate.
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FIGURE B.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each SM has eight streaming processor 
(SP) cores, two SFUs, and a shared memory.
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To efficiently execute hundreds of parallel threads while running several different 
programs, the SM is hardware multithreaded. It manages and executes up to 768 
concurrent threads in hardware with zero scheduling overhead. Each thread has its 
own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel, 
or compute. The SIMT design, previously described in Section B.4, shares the SM 
instruction fetch and issue unit efficiently across 32 threads but requires a full warp 
of active threads for full performance efficiency.

The SM schedules and executes multiple warp types concurrently. Each issue 
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction. 
An issued warp instruction executes as four sets of eight threads over four processor 
cycles. The SP and SFU units execute instructions independently, and by issuing 
instructions between them on alternate cycles, the scheduler can keep both fully 
occupied. A scoreboard qualifies each warp for issue each cycle. The instruction 
scheduler prioritizes all ready warps and selects the one with highest priority for 
issue. Prioritization considers warp type, instruction type, and “fairness” to all 
warps executing in the SM.

The SM executes cooperative thread arrays (CTAs) as multiple concurrent warps 
which access a shared memory region allocated dynamically for the CTA.

Instruction Set
Threads execute scalar instructions, unlike previous GPU vector instruction 
architectures. Scalar instructions are simpler and compiler-friendly. Texture 
instructions remain vector-based, taking a source coordinate vector and returning 
a filtered color vector.

The register-based instruction set includes all the floating-point and integer 
arithmetic, transcendental, logical, flow control, memory load/store, and texture 
instructions listed in the PTX instruction table of Figure B.4.3. Memory load/store 
instructions use integer byte addressing with register-plus-offset address arithmetic. 
For computing, the load/store instructions access three read-write memory spaces: 
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for data 
shared by all threads. Computing programs use the fast barrier synchronization 
bar.sync instruction to synchronize threads within a CTA that communicate 
with each other via shared and global memory. The latest Tesla architecture GPUs 
implement PTX atomic memory operations, which facilitate parallel reductions 
and parallel data structure management.

Streaming Processor (SP)
The multithreaded SP core is the primary thread processor, as introduced in 
Section B.4. Its register file provides 1024 scalar 32-bit registers for up to 96 threads 
(more threads than in the example SP of Section B.4). Its floating-point add and 
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multiply operations are compatible with the IEEE 754 standard for single-precision 
FP numbers, including not-a-number (NaN) and infinity. The add and multiply 
operations use IEEE round-to-nearest-even as the default rounding mode. The SP 
core also implements all of the 32-bit and 64-bit integer arithmetic, comparison, 
conversion, and logical PTX instructions in Figure B.4.3. The processor is fully 
pipelined, and latency is optimized to balance delay and area.

Special Function Unit (SFU)
The SFU supports computation of both transcendental functions and planar 
attribute interpolation. As described in Section B.6, it uses quadratic interpolation 
based on enhanced minimax approximations to approximate the reciprocal, 
reciprocal square root, log2x, 2x, and sin/cos functions at one result per cycle. The 
SFU also supports pixel attribute interpolation such as color, depth, and texture 
coordinates at four samples per cycle.

Rasterization
Geometry primitives from the SMs go in their original round-robin input order 
to the viewport/clip/setup/raster/zcull block. The viewport and clip units clip 
the primitives to the view frustum and to any enabled user clip planes, and then 
transform the vertices into screen (pixel) space.

Surviving primitives then go to the setup unit, which generates edge equations 
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at 
least partially inside the primitive. The zcull unit maintains a hierarchical z surface, 
rejecting pixel tiles if they are conservatively known to be occluded by previously 
drawn pixels. The rejection rate is up to 256 pixels per clock. Pixels that survive zcull 
then go to a fine-rasterization stage that generates detailed coverage information 
and depth values.

The depth test and update can be performed ahead of the fragment shader, or 
after, depending on current state. The SMC assembles surviving pixels into warps 
to be processed by an SM running the current pixel shader. The SMC then sends 
surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System
Each ROP is paired with a specific memory partition. For each pixel fragment 
emitted by a pixel shader program, ROPs perform depth and stencil testing and 
updates, and in parallel, color blending and updates. Lossless color compression 
(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth. 
Each ROP has a peak rate of four pixels per clock and supports 16-bit floating-
point and 32-bit floating-point HDR formats. ROPs support double-rate-depth 
processing when color writes are disabled.
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Antialiasing support includes up to 16× multisampling and supersampling. The 
coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean 
coverage at up to 16 samples and compresses redundant color, depth, and stencil 
information into the memory footprint and a bandwidth of four or eight samples 
for improved performance.

The DRAM memory data bus width is 384 pins, arranged in six independent 
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and 
graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of 
about 16 GB/s per partition, or 96 GB/s.

The memory controllers support a wide range of DRAM clock rates, protocols, 
device densities, and data bus widths. Texture and load/store requests can occur 
between any TPC and any memory partition, so an interconnection network routes 
requests and responses.

Scalability
The Tesla unified architecture is designed for scalability. Varying the number of 
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for 
different performance and cost targets in GPU market segments. Scalable link 
interconnect (SLI) connects multiple GPUs, providing further scalability.

Performance
The GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz, 
for a theoretical operation peak of 576 GFLOPS. The GeForce 8800 GTX has a 1.35 GHz 
processor clock and a corresponding peak of 518 GFLOPS.

The following three sections compare the performance of a GeForce 8800 GPU 
with a multicore CPU on three different applications—dense linear algebra, fast 
Fourier transforms, and sorting. The GPU programs and libraries are compiled 
CUDA C code. The CPU code uses the single-precision multithreaded Intel MKL 
10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance
Dense linear algebra computations are fundamental in many applications. Volkov 
and Demmel [2008] present GPU and CPU performance results for single-
precision dense matrix-matrix multiplication (the SGEMM routine) and LU, 
QR, and Cholesky matrix factorizations. Figure B.7.3 compares GFLOPS rates on 
SGEMM dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a 
quad-core CPU. Figure B.7.4 compares GFLOPS rates on matrix factorization for a 
GPU with a quad-core CPU.

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the 
bulk of the work in matrix factorization, their performance sets an upper bound on 
factorization rate. As the matrix order increases beyond 200 to 400, the factorization 
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problem becomes large enough that SGEMM can leverage the GPU parallelism and 
overcome the CPU–GPU system and copy overhead. Volkov’s SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak 
multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3 
times the quad-core CPU.

FFT Performance
Fast Fourier Transforms (FFTs) are used in many applications. Large transforms 
and multidimensional transforms are partitioned into batches of smaller 1D 
transforms.

Figure B.7.5 compares the in-place 1D complex single-precision FFT  
performance of a 1.35 GHz GeForce 8800 GTX (dating from late 2006) with a 
2.8 GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating 
from late 2007). CPU performance was measured using the Intel Math Kernel 
Library (MKL) 10.0 FFT with four threads. GPU performance was measured using 
the NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency 
FFTs. Both CPU and GPU throughput performance was measured using batched 
FFTs; batch size was 224/n, where n is the transform size. Thus, the workload for 
every transform size was 128 MB. To determine GFLOPS rate, the number of 
operations per transform was taken as 5n log2 n.
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FIGURE B.7.5 Fast Fourier transform throughput performance. The graph compares the 
performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with a 
quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600 
FSB, Red Hat Linux, Intel MKL 10.0.
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Sorting Performance
In contrast to the applications just discussed, sort requires far more substantial 
coordination among parallel threads, and parallel scaling is correspondingly 
harder to obtain. Nevertheless, a variety of well-known sorting algorithms can 
be efficiently parallelized to run well on the GPU. Satish et  al. [2008] detail the 
design of sorting algorithms in CUDA, and the results they report for radix sort 
are summarized below.

Figure B.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra 
with an 8-core Intel Clovertown system, both of which date to early 2007. The 
CPU cores are distributed between two physical sockets. Each socket contains a 
multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All 
sorting routines were designed to sort key-value pairs where both keys and values 
are 32-bit integers. The primary algorithm being studied is radix sort, although 
the quicksort-based parallel_sort() procedure provided by Intel’s Threading 
Building Blocks is also included for comparison. Of the two CPU-based radix sort 
codes, one was implemented using only the scalar instruction set and the other 
utilizes carefully hand-tuned assembly language routines that take advantage of the 
SSE2 SIMD vector instructions.

The graph itself shows the achieved sorting rate—defined as the number of 
elements sorted divided by the time to sort—for a range of sequence sizes. It is 
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apparent from this graph that the GPU radix sort achieved the highest sorting 
rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6 
times faster than the quicksort-based routine and roughly two times faster than the 
radix sort routines, all of which were using the eight available CPU cores. The CPU 
radix sort performance varies widely, likely due to poor cache locality of its global 
permutations.

 B.8 Real Stuff: Mapping Applications to GPUs

The advent of multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Furthermore, their parallelism continues 
to scale with Moore’s law. The challenge is to develop mainstream visual computing 
and high-performance computing applications that transparently scale their 
parallelism to leverage the increasing number of processor cores, much as 3D 
graphics applications transparently scale their parallelism to GPUs with widely 
varying numbers of cores.

This section presents examples of mapping scalable parallel computing 
applications to the GPU using CUDA.

Sparse Matrices
A wide variety of parallel algorithms can be written in CUDA in a fairly 
straightforward manner, even when the data structures involved are not simple 
regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of an 
important numerical building block that can be parallelized quite directly using the 
abstractions provided by CUDA. The kernels we discuss below, when combined 
with the provided CUBLAS vector routines, make writing iterative solvers such as 
the conjugate gradient method straightforward.

A sparse n × n matrix is one in which the number of nonzero entries m is only 
a small fraction of the total. Sparse matrix representations seek to store only the 
nonzero elements of a matrix. Since it is fairly typical that a sparse n × n matrix 
will contain only m= O(n) nonzero elements, this represents a substantial saving  
in storage space and processing time.

One of the most common representations for general unstructured sparse 
matrices is the compressed sparse row (CSR) representation. The m nonzero 
elements of the matrix A are stored in row-major order in an array Av. A second 
array Aj records the corresponding column index for each entry of Av. Finally, an 
array Ap of n+ 1 elements records the extent of each row in the previous arrays; the 
entries for row i in Aj and Av extend from index Ap[i] up to, but not including, 
index Ap[i + 1]. This implies that Ap[0] will always be 0 and Ap[n] will always 
be the number of nonzero elements in the matrix. Figure B.8.1 shows an example 
of the CSR representation of a simple matrix.
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Given a matrix A in CSR form and a vector x, we can compute a single row of 
the product y = Ax using the multiply_row() procedure shown in Figure B.8.2. 
Computing the full product is then simply a matter of looping over all rows and 
computing the result for that row using multiply_row(), as in the serial C code 
shown in Figure B.8.3.

This algorithm can be translated into a parallel CUDA kernel quite easily. We 
simply spread the loop in csrmul_serial() over many parallel threads. Each 
thread will compute exactly one row of the output vector y. The code for this kernel 
is shown in Figure B.8.4. Note that it looks extremely similar to the serial loop 
used in the csrmul_serial() procedure. There are really only two points of 
difference. First, the row index for each thread is computed from the block and 
thread indices assigned to each thread, eliminating the for-loop. Second, we have a 
conditional that only evaluates a row product if the row index is within the bounds 
of the matrix (this is necessary since the number of rows n need not be a multiple 
of the block size used in launching the kernel).
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FIGURE B.8.1 Compressed sparse row (CSR) matrix.

float multiply_row(unsigned int rowsize,
                   unsigned int *Aj, // column indices for row
                   float *Av,        // nonzero entries for row
                   float *x)         // the RHS vector
{
    float sum = 0;

    for(unsigned int column=0; column<rowsize; ++column)
        sum += Av[column] * x[Aj[column]];

    return sum;
}

FIGURE B.8.2 Serial C code for a single row of sparse matrix-vector multiply.
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Assuming that the matrix data structures have already been copied to the GPU 
device memory, launching this kernel will look like:

unsigned int blocksize = 128; // or any size up to 512
unsigned int nblocks = (num_rows + blocksize - 1) / blocksize;
csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);

void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    for(unsigned int row=0; row<num_rows; ++row)
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

FIGURE B.8.3 Serial code for sparse matrix-vector multiply.

__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   float *x, float *y)
{
    unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
                              Av+row_begin, x);
    }
}

FIGURE B.8.4 CUDA version of sparse matrix-vector multiply.
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The pattern that we see here is a very common one. The original serial 
algorithm is a loop whose iterations are independent of each other. Such loops 
can be parallelized quite easily by simply assigning one or more iterations of the 
loop to each parallel thread. The programming model provided by CUDA makes 
expressing this type of parallelism particularly straightforward.

This general strategy of decomposing computations into blocks of independent 
work, and more specifically breaking up independent loop iterations, is not unique 
to CUDA. This is a common approach used in one form or another by various 
parallel programming systems, including OpenMP and Intel’s Threading Building 
Blocks.

Caching in Shared Memory
The SpMV algorithms outlined above are fairly simplistic. There are a number of 
optimizations that can be made in both the CPU and GPU codes that can improve 
performance, including loop unrolling, matrix reordering, and register blocking. 
The parallel kernels can also be reimplemented in terms of data parallel scan 
operations presented by Sengupta et al. [2007].

One of the important architectural features exposed by CUDA is the presence of 
the per-block shared memory, a small on-chip memory with very low latency. Taking 
advantage of this memory can deliver substantial performance improvements. One 
common way of doing this is to use shared memory as a software-managed cache 
to hold frequently reused data. Modifcations using shared memory are shown in 
Figure B.8.5.

In the context of sparse matrix multiplication, we observe that several rows of A 
may use a particular array element x[i]. In many common cases, and particularly 
when the matrix has been reordered, the rows using x[i] will be rows near row i. 
We can therefore implement a simple caching scheme and expect to achieve some 
performance benefit. The block of threads processing rows i through j will load 
x[i] through x[j] into its shared memory. We will unroll the multiply_row() 
loop and fetch elements of x from the cache whenever possible. The resulting 
code is shown in Figure B.8.5. Shared memory can also be used to make other 
optimizations, such as fetching Ap[row+1] from an adjacent thread rather than 
refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared 
memory, rather than an implicitly active hardware cache, it is fairly common to add 
this sort of optimization. Although this can impose some additional development 
burden on the programmer, it is relatively minor, and the potential performance 
benefits can be substantial. In the example shown above, even this fairly simple 
use of shared memory returns a roughly 20% performance improvement on 
representative matrices derived from 3D surface meshes. The availability of an 
explicitly managed memory in lieu of an implicit cache also has the advantage 
that caching and prefetching policies can be specifically tailored to the application 
needs.
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__global__ 
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
                   float *Av, unsigned int num_rows,
                   const float *x, float *y)
{
    // Cache the rows of x[] corresponding to this block.
    __shared__ float cache[blocksize];

    unsigned int block_begin = blockIdx.x * blockDim.x;
    unsigned int block_end   = block_begin + blockDim.x;
    unsigned int row         = block_begin + threadIdx.x;

    // Fetch and cache our window of x[].
    if( row<num_rows)  cache[threadIdx.x] = x[row];
    __syncthreads();

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];
        float sum = 0, x_j;

        for(unsigned int col=row_begin; col<row_end; ++col)
        {
            unsigned int j = Aj[col];
            
            // Fetch x_j from our cache when possible
            if( j>=block_begin && j<block_end )
                x_j = cache[j-block_begin];
            else
                x_j = x[j];

            sum += Av[col] * x_j;
        }

        y[row] = sum;
    }
}

FIGURE B.8.5 Shared memory version of sparse matrix-vector multiply.
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These are fairly simple kernels whose purpose is to illustrate basic techniques 
in writing CUDA programs, rather than how to achieve maximal performance. 
Numerous possible avenues for optimization are available, several of which are 
explored by Williams et al. [2007] on a handful of different multicore architectures. 
Nevertheless, it is still instructive to examine the comparative performance of even 
these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor, the csrmul_
serial() kernel runs at roughly 202 million nonzeros processed per second, for 
a collection of Laplacian matrices derived from 3D triangulated surface meshes. 
Parallelizing this kernel with the parallel_for construct provided by Intel’s 
Threading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running 
on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra, 
the csrmul_kernel() and csrmul_cached() kernels achieve processing rates 
of roughly 772 and 920 million nonzeros per second, corresponding to parallel 
speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core.

Scan and Reduction
Parallel scan, also known as parallel prefix sum, is one of the most important 
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a 
of n elements:

[ , , , ]a a an0 1 1… �

and a binary associative operator ⊕, the scan function computes the sequence:

scan( , ) [ ,( ), ,( )]a a a a a a an⊕ ⊕ … ⊕ ⊕…⊕0 0 1 0 1 1

As an example, if we take ⊕ to be the usual addition operator, then applying scan 
to the input array

a � [ ]317 0 4 16 3

will produce the sequence of partial sums:

scan( , ) [ ]a 3 4 11111516 22 25

This scan operator is an inclusive scan, in the sense that element i of the output 
sequence incorporates element ai of the input. Incorporating only previous elements 
would yield an exclusive scan operator, also known as a prefix-sum operation.

The serial implementation of this operation is extremely simple. It is simply a 
loop that iterates once over the entire sequence, as shown in Figure B.8.6.

At first glance, it might appear that this operation is inherently serial. However, 
it can actually be implemented in parallel efficiently. The key observation is that 
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because addition is associative, we are free to change the order in which elements 
are added together. For instance, we can imagine adding pairs of consecutive 
elements in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An 
implementation of their algorithm in CUDA is shown in Figure B.8.7. It assumes 
that the input array x[ ] contains exactly one element per thread of the thread 
block. It performs log2 n iterations of a loop collecting partial sums together.

To understand the action of this loop, consider Figure B.8.8, which illustrates 
the simple case for n=8 threads and elements. Each level of the diagram represents 
one step of the loop. The lines indicate the location from which the data are being 
fetched. For each element of the output (i.e., the final row of the diagram) we are 
building a summation tree over the input elements. The edges highlighted in blue 
show the form of this summation tree for the final element. The leaves of this tree 
are all the initial elements. Tracing back from any output element shows that it 
incorporates all input values up to and including itself.

template<class T>
__host__ T plus_scan(T *x, unsigned int n)
{
    for(unsigned int i=1; i<n; ++i)
        x[i] = x[i-1] + x[i];
}

FIGURE B.8.6 Template for serial plus-scan.

template<class T>
__device__ T plus_scan(T *x)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;

    for(unsigned int offset=1; offset<n; offset *= 2)
    {
        T t;

        if(i>=offset)  t = x[i-offset];
        __syncthreads();

        if(i>=offset)  x[i] = t + x[i];
        __syncthreads();
    }
    return x[i];
}

FIGURE B.8.7 CUDA template for parallel plus-scan.
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While simple, this algorithm is not as efficient as we would like. Examining 
the serial implementation, we see that it performs O(n) additions. The parallel 
implementation, in contrast, performs O(n log n) additions. For this reason, it 
is not work efficient, since it does more work than the serial implementation to 
compute the same result. Fortunately, there are other techniques for implementing 
scan that are work-efficient. Details on more efficient implementation techniques 
and the extension of this per-block procedure to multiblock arrays are provided by 
Sengupta et al. [2007].

In some instances, we may only be interested in computing the sum of all 
elements in an array, rather than the sequence of all prefix sums returned by scan. 
This is the parallel reduction problem. We could simply use a scan algorithm to 
perform this computation, but reduction can generally be implemented more 
efficiently than scan.

Figure B.8.9 shows the code for computing a reduction using addition. In this 
example, each thread simply loads one element of the input sequence (i.e., it initially 
sums a subsequence of length 1). At the end of the reduction, we want thread 0 to 
hold the sum of all elements initially loaded by the threads of its block. The loop in 
this kernel implicitly builds a summation tree over the input elements, much like 
the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this block. 
If we want the final value of the location pointed to by total to contain the total of all 
elements in the array, we must combine the partial sums of all the blocks in the grid. 
One strategy to do this would be to have each block write its partial sum into a second 
array and then launch the reduction kernel again, repeating the process until we had 
reduced the sequence to a single value. A more attractive alternative supported by 
the Tesla GPU architecture is to use the atomicAdd() primitive, an efficient atomic 

x[0]

x[0]

x[0]

x[0]

x[1]

x[1]

x[1]

x[1]

x[2]

x[2]

x[2]

x[2]

x[3]

x[3]

x[3]

x[3]

x[4]

x[4]

x[4]

x[4]

x[5]

x[5]

x[5]

x[6]

x[6]

x[6]

x[5] x[6] x[7]

x[7] x [ i ]  + = x [ i – 1 ] ;

x [ i ]  + = x [ i – 2 ] ;

x [ i ]  + = x [ i – 4 ] ;

x[7]

x[7]

FIGURE B.8.8 Tree-based parallel scan data references.



 B.8 Real Stuff: Mapping Applications to GPUs B-63

read-modify-write primitive supported by the memory subsystem. This eliminates 
the need for additional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and 
highlights the importance of per-block shared memory and low-cost barriers in 
making cooperation among threads efficient. This degree of data shuffling among 
threads would be prohibitively expensive if done in off-chip global memory.

Radix Sort
One important application of scan primitives is in the implementation of sorting 
routines. The code in Figure B.8.10 implements a radix sort of integers across a 
single thread block. It accepts as input an array values containing one 32-bit 
integer for each thread of the block. For efficiency, this array should be stored in 
per-block shared memory, but this is not required for the sort to behave correctly.

This is a fairly simple implementation of radix sort. It assumes the availability of 
a procedure partition_by_bit() that will partition the given array such that 

__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
    unsigned int tid = threadIdx.x;
    unsigned int i   = blockIdx.x*blockDim.x + threadIdx.x;

    // Each block loads its elements into shared memory, padding
    // with 0 if N is not a multiple of blocksize
    __shared__ int x[blocksize];
    x[tid] = (i<N) ? input[i] : 0;
    __syncthreads();

    // Every thread now holds 1 input value in x[]
    //
    // Build summation tree over elements.
    for(int s=blockDim.x/2; s>0; s=s/2)
    {
        if(tid < s)  x[tid] += x[tid + s];
        __syncthreads();
    }

    // Thread 0 now holds the sum of all input values
    // to this block. Have it add that sum to the running total
    if( tid == 0 )  atomicAdd(total, x[tid]);
}

FIGURE B.8.9 CUDA implementation of plus-reduction.
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all values with a 0 in the designated bit will come before all values with a 1 in that 
bit. To produce the correct output, this partitioning must be stable.

Implementing the partitioning procedure is a simple application of scan. Thread 
i holds the value xi and must calculate the correct output index at which to write 
this value. To do so, it needs to calculate (1) the number of threads j < i for which 
the designated bit is 1 and (2) the total number of bits for which the designated bit 
is 0. The CUDA code for partition_by_bit() is shown in Figure B.8.11.

__device__ void partition_by_bit(unsigned int *values,
                                 unsigned int bit)
{
    unsigned int i    = threadIdx.x;    
    unsigned int size = blockDim.x;
    unsigned int x_i  = values[i];
    unsigned int p_i  = (x_i >> bit) & 1;

    values[i] = p_i;
    __syncthreads();

    // Compute number of T bits up to and including p_i.
    // Record the total number of F bits as well.
    unsigned int T_before = plus_scan(values);    
    unsigned int T_total  = values[size-1];
    unsigned int F_total  = size - T_total;
    __syncthreads();

    // Write every x_i to its proper place
    if( p_i )
        values[T_before-1 + F_total] = x_i;
    else
        values[i - T_before] = x_i;
}

FIGURE B.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort.

__device__ void radix_sort(unsigned int *values)
{
    for(int bit=0; bit<32; ++bit)
    {
        partition_by_bit(values, bit);
        __syncthreads();
    }
}

FIGURE B.8.10 CUDA code for radix sort.
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A similar strategy can be applied for implementing a radix sort kernel that sorts 
an array of large length, rather than just a one-block array. The fundamental step 
remains the scan procedure, although when the computation is partitioned across 
multiple kernels, we must double-buffer the array of values rather than doing the 
partitioning in place. Details on performing radix sorts on large arrays efficiently 
are provided by Satish et al. [2008].

N-Body Applications on a GPU1

Nyland et al. [2007] describe a simple yet useful computational kernel with excellent 
GPU performance—the all-pairs N-body algorithm. It is a time-consuming 
component of many scientific applications. N-body simulations calculate the 
evolution of a system of bodies in which each body continuously interacts with 
every other body. One example is an astrophysical simulation in which each body 
represents an individual star, and the bodies gravitationally attract each other. 
Other examples are protein folding, where N-body simulation is used to calculate 
electrostatic and van der Waals forces; turbulent fluid flow simulation; and global 
illumination in computer graphics.

The all-pairs N-body algorithm calculates the total force on each body in the 
system by computing each pair-wise force in the system, summing for each body. 
Many scientists consider this method to be the most accurate, with the only loss of 
precision coming from the floating-point hardware operations. The drawback is its 
O(n2) computational complexity, which is far too large for systems with more than 
10 bodies. To overcome this high cost, several simplifications have been proposed 
to yield O(n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm, 
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast 
methods still rely on the all-pairs method as a kernel for accurate computation of 
short-range forces; thus it continues to be important.

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary 
physics. Between two bodies indexed by i and j, the 3D force vector is:
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The force magnitude is calculated in the left term, while the direction is computed 
in the right (unit vector pointing from one body to the other).

Given a list of interacting bodies (an entire system or a subset), the calculation is 
simple: for all pairs of interactions, compute the force and sum for each body. Once 
the total forces are calculated, they are used to update each body’s position and 
velocity, based on the previous position and velocity. The calculation of the forces 
has complexity O(n2), while the update is O(n).

1  Adapted from Nyland et al. [2007], “Fast N-Body Simulation with CUDA,” Chapter 31 of 
GPU Gems 3.
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The serial force-calculation code uses two nested for-loops iterating over pairs of 
bodies. The outer loop selects the body for which the total force is being calculated, 
and the inner loop iterates over all the bodies. The inner loop calls a function that 
computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the 
calculation of force on each body is independent of the calculation on all other 
bodies. Once all of the forces are computed, the positions and velocities of the 
bodies can be updated.

The code for the serial and parallel versions is shown in Figure B.8.12 and Figure 
B.8.13. The serial version has two nested for-loops. The conversion to CUDA,  
like many other examples, converts the serial outer loop to a per-thread kernel 
where each thread computes the total force on a single body. The CUDA kernel 
computes a global thread ID for each thread, replacing the iterator variable of the 
serial outer loop. Both kernels finish by storing the total acceleration in a global 
array used to compute the new position and velocity values in a subsequent step. 
The outer loop is replaced by a CUDA kernel grid that launches N threads, one  
for each body.

void accel_on_all_bodies()
{
 int i, j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
 }
}

FIGURE B.8.12 Serial code to compute all pair-wise forces on N bodies.

__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j;
 float3 acc(0.0f, 0.0f, 0.0f);

 for (j = 0; j < N; j++) {
  acc = body_body_interaction(acc, body[i], body[j]);
 }
 accel[i] = acc;
}

FIGURE B.8.13 CUDA thread code to compute the total force on a single body.
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Optimization for GPU Execution

The CUDA code shown is functionally correct, but is not efficient, as it ignores 
key architectural features. Better performance can be achieved with three main 
optimizations. First, shared memory can be used to avoid identical memory reads 
between threads. Second, using multiple threads per body improves performance 
for small values of N. Third, loop unrolling reduces loop overhead.

Using Shared Memory

Shared memory can hold a subset of body positions, much like a cache, eliminating 
redundant global memory requests between threads. We optimize the code shown 
above to have each of p threads in a thread-block load one position into shared 
memory (for a total of p positions). Once all the threads have loaded a value into 
shared memory, ensured by __syncthreads(), each thread can then perform 
p interactions (using the data in shared memory). This is repeated N/p times to 
complete the force calculation for each body, which reduces the number of requests 
to memory by a factor of p (typically in the range 32–128).

The function called accel_on_one_body() requires a few changes to support 
this optimization. The modified code is shown in Figure B.8.14.

__shared__ float4 shPosition[256];
…
__global__ void accel_on_one_body()
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int j, k;
 int p = blockDim.x;
 float3 acc(0.0f, 0.0f, 0.0f);
 float4 myBody = body[i];

 for (j = 0; j < N; j += p) {  // Outer loops jumps by p each time
  shPosition[threadIdx.x] = body[j+threadIdx.x];
  __syncthreads();
  for (k = 0; k < p; k++) { // Inner loop accesses p positions
   acc = body_body_interaction(acc, myBody, shPosition[k]);
  }
  __syncthreads();
 }
 accel[i] = acc;
}

FIGURE B.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance.
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The loop that formerly iterated over all bodies now jumps by the block dimension 
p. Each iteration of the outer loop loads p successive positions into shared memory 
(one position per thread). The threads synchronize, and then p force calculations 
are computed by each thread. A second synchronization is required to ensure that 
new values are not loaded into shared memory prior to all threads completing the 
force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than 
10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s). 
This optimization keeps the application busy performing computation rather than 
waiting on memory accesses, as it would have done without the use of shared 
memory. The performance for varying values of N is shown in Figure B.8.15.

Using Multiple Threads per Body
Figure B.8.15 shows performance degradation for problems with small values of N 
(N< 4096) on the GeForce 8800 GTX. Many research efforts that rely on N-body 
calculations focus on small N (for long simulation times), making it a target of 
our optimization efforts. Our presumption to explain the lower performance was 
that there was simply not enough work to keep the GPU busy when N is small. 
The solution is to allocate more threads per body. We change the thread-block 
dimensions from (p, 1, 1) to (p, q, 1), where q threads divide the work of a single body 
into equal parts. By allocating the additional threads within the same thread block, 
partial results can be stored in shared memory. When all the force calculations are 
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FIGURE B.8.15 Performance measurements of the N-body application on a GeForce 8800 
GTX and a GeForce 9600. The 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at 
0.80 GHz (about 30% of the 8800). The peak performance is 242 GFLOPS. For a GPU with more processors, 
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the 
8800 doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can significantly 
improve performance, but eventually incurs a performance penalty as N grows.
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done, the q partial results can be collected and summed to compute the final result. 
Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 GTX jumps by 110% when  
N = 1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS). 
Performance degrades slightly on large N, so we only use this optimization for N 
smaller than 4096. The performance increases are shown in Figure B.8.15 for a 
GPU with 128 processors and a smaller GPU with 64 processors clocked at two-
thirds the speed.

Performance Comparison

The performance of the N-body code is shown in Figure B.8.15 and Figure B.8.16. 
In Figure B.8.15, performance of high- and medium-performance GPUs is shown, 
along with the performance improvements achieved by using multiple threads per 
body. The performance on the faster GPU ranges from 90 to just under 250 GFLOPS.

Figure B.8.16 shows nearly identical code (C++ versus CUDA) running on  
Intel Core2 CPUs. The CPU performance is about 1% of the GPU, in the range of 
0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes.
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FIGURE B.8.16 Performance measurements on the N-body code on a CPU. The graph shows 
single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note 
the dramatic reduction in GFLOPS performance (shown in GFLOPS on the y-axis), demonstrating how 
much faster the GPU is compared to the CPU. The performance on the CPU is generally independent of 
problem size, except for an anomalously low performance when N = 16,384 on the X9775 CPU. The graph 
also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler) 
on a single CPU core, where it outperforms the C++ code by 24%. As a programming language, CUDA 
exposes parallelism and locality that a compiler can exploit. The Intel CPUs are a 3.2 GHz Extreme X9775 
(code named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a 
1.83 GHz T2400 (code named “Yonah”), a 2007 laptop CPU. The Penryn version of the Core 2 architecture 
is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root 
operations to execute four times faster than previous Intel CPUs.
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The graph also shows the results of compiling the CUDA version of the code 
for a CPU, where the performance improves by 24%. CUDA, as a programming 
language, exposes parallelism, allowing the compiler to make better use of the SSE 
vector unit on a single core. The CUDA version of the N-body code naturally maps 
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect 
scaling on an eight-core system with N = 4096 (ratios of 2.0, 3.97, and 7.94 on two, 
four, and eight cores, respectively).

Results

With a modest effort, we developed a computational kernel that improves GPU 
performance over multicore CPUs by a factor of up to 157. Execution time for 
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz, 
single core) took more than 3 seconds per frame to run the same code that runs at a 
44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires 
6–16 seconds, and on older Core2 processors and Pentium IV processor, the time 
is about 25 seconds. We must divide the apparent increase in performance in half, 
as the CPU requires only half as many calculations to compute the same result 
(using the optimization that the forces on a pair of bodies are equal in strength and 
opposite in direction).

How can the GPU speed up the code by such a large amount? The answer 
requires inspecting architectural details. The pair-wise force calculation requires 
20 floating-point operations, comprised mostly of addition and multiplication 
instructions (some of which can be combined using a multiply-add instruction), 
but there are also division and square root instructions for vector normalization. 
Intel CPUs take many cycles for single-precision division and square root 
instructions,2 although this has improved in the latest Penryn CPU family with its 
faster 4-bit divider.3 Additionally, the limitations in register capacity lead to many 
MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the 
GeForce 8800 executes a reciprocal square-root thread instruction in four clocks; 
see Section B.6 for special function accuracy. It has a larger register file (per thread) 
and shared memory that can be accessed as an instruction operand. Finally, the 
CUDA compiler emits 15 instructions for one iteration of the loop, compared 
with more than 40 instructions from a variety of x86 CPU compilers. Greater 
parallelism, faster execution of complex instructions, more register space, and an 
efficient compiler all combine to explain the dramatic performance improvement 
of the N-body code between the CPU and the GPU.

2  The x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were 
not considered, as their accuracy is too low to be comparable.
3  Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual. 
November 2007. Order Number: 248966-016. Also available at www.intel.com/design/
processor/manuals/248966.pdf.

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/design/processor/manuals/248966.pdf
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On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240 
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential 
processors. Compiling and executing the CUDA version of the code on a CPU 
demonstrates that the problem scales well to multicore CPUs, but is still significantly 
slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion, 
and can interactively display 16K bodies interacting at 44 frames per second. 
This allows astrophysical and biophysical events to be displayed and navigated at 
interactive rates. Additionally, we can parameterize many settings, such as noise 
reduction, damping, and integration techniques, immediately displaying their 
effects on the dynamics of the system. This provides scientists with stunning visual 
imagery, boosting their insights on otherwise invisible systems (too large or small, 
too fast or too slow), allowing them to create better models of physical phenomena.

Figure B.8.17 shows a time-series display of an astrophysical simulation of 16K 
bodies, with each body acting as a galaxy. The initial configuration is a spherical shell 

FIGURE B.8.17 Twelve images captured during the evolution of an N-body system with 16,384 bodies.
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of bodies rotating about the z-axis. One phenomenon of interest to astrophysicists 
is the clustering that occurs, along with the merging of galaxies over time. For the 
interested reader, the CUDA code for this application is available in the CUDA 
SDK from www.nvidia.com/CUDA.

 B.9 Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have 
arisen. We cover a few here.

Fallacy GPUs are just SIMD vector multiprocessors.
It is easy to draw the false conclusion that GPUs are simply SIMD vector 
multiprocessors. GPUs do have a SPMD-style programming model, in that 
a programmer can write a single program that is executed in multiple thread 
instances with multiple data. The execution of these threads is not purely SIMD 
or vector, however; it is single-instruction multiple-thread (SIMT), described in 
Section B.4. Each GPU thread has its own scalar registers, thread private memory, 
thread execution state, thread ID, independent execution and branch path, and 
effective program counter, and can address memory independently. Although a 
group of threads (e.g., a warp of 32 threads) executes more efficiently when the PCs 
for the threads are the same, this is not necessary. So, the multiprocessors are not 
purely SIMD. The thread execution model is MIMD with barrier synchronization 
and SIMT optimizations. Execution is more efficient if individual thread load/
store memory accesses can be coalesced into block accesses, as well. However, this 
is not strictly necessary. In a purely SIMD vector architecture, memory/register 
accesses for different threads must be aligned in a regular vector pattern. A GPU 
has no such restriction for register or memory accesses; however, execution is more 
efficient if warps of threads access local blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute 
more than one warp of threads concurrently. In graphics applications, there may 
be multiple groups of vertex programs, pixel programs, and geometry programs 
running in the multiprocessor array concurrently. Computing programs may also 
execute different programs concurrently in different warps.

Fallacy GPU performance cannot grow faster than Moore’s law.
Moore’s law is simply a rate. It is not a “speed of light” limit for any other rate. 
Moore’s law describes an expectation that, over time, as semiconductor technology 
advances and transistors become smaller, the manufacturing cost per transistor will 
decline exponentially. Put another way, given a constant manufacturing cost, the 

http://www.nvidia.com/CUDA
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number of transistors will increase exponentially. Gordon Moore [1965] predicted 
that this progression would provide roughly two times the number of transistors 
for the same manufacturing cost every year, and later revised it to doubling every 
2 years. Although Moore made the initial prediction in 1965 when there were just 
50 components per integrated circuit, it has proved remarkably consistent. The 
reduction of transistor size has historically had other benefits, such as lower power 
per transistor and faster clock speeds at constant power.

This increasing bounty of transistors is used by chip architects to build processors, 
memory, and other components. For some time, CPU designers have used the 
extra transistors to increase processor performance at a rate similar to Moore’s law, 
so much so that many people think that processor performance growth of two 
times every 18–24 months is Moore’s law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores, 
improving the architecture and design, and pipelining for more clock speed. The 
rest of the new transistors are used for providing more cache, to make memory 
access faster. In contrast, GPU designers use almost none of the new transistors to 
provide more cache; most of the transistors are used for improving the processor 
cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law 
bounty directly by applying exponentially more transistors to building more parallel, 
and thus faster, processors. Second, GPU designers can improve on the architecture 
over time, increasing the efficiency of the processing. Third, Moore’s law assumes 
constant cost, so the Moore’s law rate can clearly be exceeded by spending more for 
larger chips with more transistors. Fourth, GPU memory systems have increased their 
effective bandwidth at a pace nearly comparable to the processing rate, by using faster 
memories, wider memories, data compression, and better caches. The combination of 
these four approaches has historically allowed GPU performance to double regularly, 
roughly every 12 to 18 months. This rate, exceeding the rate of Moore’s law, has been 
demonstrated on graphics applications for approximately 10 years and shows no sign 
of significant slowdown. The most challenging rate limiter appears to be the memory 
system, but competitive innovation is advancing that rapidly too.

Fallacy GPUs only render 3D graphics; they can’t do general computation.
GPUs are built to render 3D graphics as well as 2D graphics and video. To meet 
the demands of graphics software developers as expressed in the interfaces and 
performance/feature requirements of the graphics APIs, GPUs have become 
massively parallel programmable floating-point processors. In the graphics 
domain, these processors are programmed through the graphics APIs and with 
arcane graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and 
Direct3D). However, there is nothing preventing GPU architects from exposing 
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the parallel processor cores to programmers without the graphics API or the arcane 
graphics languages.

In fact, the Tesla architecture family of GPUs exposes the processors through 
a software environment known as CUDA, which allows programmers to develop 
general application programs using the C language and soon C++. GPUs are 
Turing-complete processors, so they can run any program that a CPU can run, 
although perhaps less well. And perhaps faster.

Fallacy GPUs cannot run double-precision floating-point programs fast.
In the past, GPUs could not run double-precision floating-point programs at all, 
except through software emulation. And that’s not very fast at all. GPUs have made 
the progression from indexed arithmetic representation (lookup tables for colors) 
to 8-bit integers per color component, to fixed-point arithmetic, to single-precision 
floating-point, and recently added double precision. Modern GPUs perform 
virtually all calculations in single-precision IEEE floating-point arithmetic, and are 
beginning to use double precision in addition.

For a small additional cost, a GPU can support double-precision floating-point 
as well as single-precision floating-point. Today, double-precision runs more slowly 
than the single-precision speed, about five to ten times slower. For incremental 
additional cost, double-precision performance can be increased relative to single 
precision in stages, as more applications demand it.

Fallacy GPUs don’t do floating-point correctly.
GPUs, at least in the Tesla architecture family of processors, perform single-
precision floating-point processing at a level prescribed by the IEEE 754 floating-
point standard. So, in terms of accuracy, GPUs are the equal of any other IEEE 
754-compliant processors.

Today, GPUs do not implement some of the specific features described in the 
standard, such as handling denormalized numbers and providing precise floating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full 
IEEE rounding, fused-multiply-add, and denormalized number support for double 
precision.

Pitfall Just use more threads to cover longer memory latencies.
CPU cores are typically designed to run a single thread at full speed. To run at full 
speed, every instruction and its data need to be available when it is time for that 
instruction to run. If the next instruction is not ready or the data required for that 
instruction is not available, the instruction cannot run and the processor stalls. 
External memory is distant from the processor, so it takes many cycles of wasted 
execution to fetch data from memory. Consequently, CPUs require large local 



 B.9 Fallacies and Pitfalls B-75

caches to keep running without stalling. Memory latency is long, so it is avoided 
by striving to run in the cache. At some point, program working set demands may 
be larger than any cache. Some CPUs have used multithreading to tolerate latency, 
but the number of threads per core has generally been limited to a small number.

The GPU strategy is different. GPU cores are designed to run many threads 
concurrently, but only one instruction from any thread at a time. Another way to 
say this is that a GPU runs each thread slowly, but in aggregate runs the threads 
efficiently. Each thread can tolerate some amount of memory latency, because 
other threads can run.

The downside of this is that multiple—many multiple threads—are required to 
cover the memory latency. In addition, if memory accesses are scattered or not 
correlated among threads, the memory system will get progressively slower in 
responding to each individual request. Eventually, even the multiple threads will 
not be able to cover the latency. So, the pitfall is that for the “just use more threads” 
strategy to work for covering latency, you have to have enough threads, and the 
threads have to be well-behaved in terms of locality of memory access.

Fallacy O(n) algorithms are difficult to speed up.
No matter how fast the GPU is at processing data, the steps of transferring data to 
and from the device may limit the performance of algorithms with O(n) complexity 
(with a small amount of work per datum). The highest transfer rate over the PCIe 
bus is approximately 48 GB/second when DMA transfers are used, and slightly less 
for nonDMA transfers. The CPU, in contrast, has typical access speeds of 8–12 GB/
second to system memory. Example problems, such as vector addition, will be 
limited by the transfer of the inputs to the GPU and the returning output from the 
computation.

There are three ways to overcome the cost of transferring data. First, try to leave 
the data on the GPU for as long as possible, instead of moving the data back and 
forth for different steps of a complicated algorithm. CUDA deliberately leaves data 
alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and 
computation, so data can be streamed in and out of the device while it is computing. 
This model is useful for any data stream that can be processed as it arrives. Examples 
are video processing, network routing, data compression/decompression, and even 
simpler computations such as large vector mathematics.

The third suggestion is to use the CPU and GPU together, improving performance 
by assigning a subset of the work to each, treating the system as a heterogeneous 
computing platform. The CUDA programming model supports allocation of work 
to one or more GPUs along with continued use of the CPU without the use of 
threads (via asynchronous GPU functions), so it is relatively simple to keep all 
GPUs and a CPU working concurrently to solve problems even faster.
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 B.10 Concluding Remarks

GPUs are massively parallel processors and have become widely used, not only 
for 3D graphics, but also for many other applications. This wide application was 
made possible by the evolution of graphics devices into programmable processors. 
The graphics application programming model for GPUs is usually an API such 
as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA 
programming model uses an SPMD (single-program multiple data) style, executing 
a program with many parallel threads.

GPU parallelism will continue to scale with Moore’s law, mainly by increasing 
the number of processors. Only the parallel programming models that can readily 
scale to hundreds of processor cores and thousands of threads will be successful 
in supporting manycore GPUs and CPUs. Also, only those applications that have 
many largely independent parallel tasks will be accelerated by massively parallel 
manycore architectures.

Parallel programming models for GPUs are becoming more flexible, for both 
graphics and parallel computing. For example, CUDA is evolving rapidly in the 
direction of full C/C++ functionality. Graphics APIs and programming models 
will likely adapt parallel computing capabilities and models from CUDA. Its 
SPMD-style threading model is scalable, and is a convenient, succinct, and easily 
learned model for expressing large amounts of parallelism.

Driven by these changes in the programming models, GPU architecture is in 
turn becoming more flexible and more programmable. GPU fixed-function units 
are becoming accessible from general programs, along the lines of how CUDA 
programs already use texture intrinsic functions to perform texture lookups using 
the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics 
and other application programmers. GPUs will continue to expand to include 
more processing power through additional processor cores, as well as increasing 
the thread and memory bandwidth available for programs. In addition, the 
programming models must evolve to include programming heterogeneous 
manycore systems including both GPUs and CPUs.
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 B.11 Historical Perspective and Further 
Reading

Graphics Pipeline Evolution
3D graphics pipeline hardware evolved from the large expensive systems of the 
early 1980s to small workstations and then to PC accelerators in the mid- to late-
1990s. During this period, three major transitions occurred:

■	 Performance-leading graphics subsystems declined in price from $50,000 to 
$200.

■	 Performance increased from 50 million pixels per second to 1 billion pixels per 
second and from 100,000 vertices per second to 10 million vertices per second.

■	 Native hardware capabilities evolved from wireframe (polygon outlines) to 
flat shaded (constant color) filled polygons, to smooth shaded (interpolated 
color) filled polygons, to full-scene anti-aliasing with texture mapping and 
rudimentary multitexturing.

Fixed-Function Graphics Pipelines
Throughout this period, graphics hardware was configurable, but not programmable 
by the application developer. With each generation, incremental improvements 
were offered. But developers were growing more sophisticated and asking for 
more new features than could be reasonably offered as built-in fixed functions. The 
NVIDIA GeForce 3, described by Lindholm et al. [2001], took the first step toward 
true general shader programmability. It exposed to the application developer what 
had been the private internal instruction set of the floating-point vertex engine. 
This coincided with the release of Microsoft’s DirectX 8 and OpenGL’s vertex shader 
extensions. Later GPUs, at the time of DirectX 9, extended general programmability 
and floating point capability to the pixel fragment stage, and made texture 
available at the vertex stage. The ATI Radeon 9700, introduced in 2002, featured 
a programmable 24-bit floating-point pixel fragment processor programmed 
with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel 
processors. This was part of a general trend toward unifying the functionality of 
the different stages, at least as far as the application programmer was concerned. 
NVIDIA’s GeForce 6800 and 7800 series were built with separate processor designs 
and separate hardware dedicated to the vertex and to the fragment processing. The 
XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and 
pixel shaders to execute on the same processor.
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Evolution of Programmable Real-Time Graphics
During the last 30 years, graphics architecture has evolved from a simple pipeline for 
drawing wireframe diagrams to a highly parallel design consisting of several deep 
parallel pipelines capable of rendering complex interactive imagery that appears 
three-dimensional. Concurrently, many of the calculations involved became far 
more sophisticated and user-programmable.

In these graphics pipelines, certain stages do a great deal of floating-point 
arithmetic on completely independent data, such as transforming the position 
of triangle vertexes or generating pixel colors. This data independence is a key 
difference between GPUs and CPUs. A single frame, rendered in 1/60th of a 
second, might have 1 million triangles and 6 million pixels. The opportunity to use 
hardware parallelism to exploit this data independence is tremendous.

The specific functions executed at a few graphics pipeline stages vary with 
rendering algorithms and have evolved to be programmable. Vertex programs 
map the position of triangle vertices on to the screen, altering their position, color, 
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w) 
vertex position and computes a floating-point (x, y, z) screen position. Geometry 
programs operate on primitives defined by multiple vertices, changing them or 
generating additional primitives. Pixel fragment shaders each “shade” one pixel, 
computing a floating-point red, green, blue, alpha (RGBA) color contribution to 
the rendered image at its pixel sample (x, y) image position. For all three types of 
graphics shaders, program instances can be run in parallel, because each works on 
independent data, produces independent results, and has no side effects.

Between these programmable graphics pipeline stages are dozens of fixed-function 
stages which perform well-defined tasks far more efficiently than a programmable 
processor could and which would benefit far less from programmability. For 
example, between the geometry processing stage and the pixel processing stage is 
a “rasterizer,” a complex state machine that determines exactly which pixels (and 
portions thereof) lie within each geometric primitive’s boundaries. Together, the 
mix of programmable and fixed-function stages is engineered to balance extreme 
performance with user control over the rendering algorithms.

Common rendering algorithms perform a single pass over input primitives and 
access other memory resources in a highly coherent manner; these algorithms 
provide excellent bandwidth utilization and are largely insensitive to memory 
latency. Combined with a pixel shader workload that is usually compute-limited, 
these characteristics have guided GPUs along a different evolutionary path than 
CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated 
by floating-point datapath and fixed-function logic. GPU memory interfaces 
emphasize bandwidth over latency (since latency can be readily hidden by a high 
thread count); indeed, bandwidth is typically many times higher than a CPU, 
exceeding 100 GB/second in some cases. The far-higher number of fine-grained 
lightweight threads effectively exploits the rich parallelism available.
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Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable 
graphics stages are mapped to an array of unified processors; the logical graphics 
pipeline is physically a recirculating path that visits these processors three times, 
with much fixed-function graphics logic between visits. Since different rendering 
algorithms present wildly different loads among the three programmable stages, 
this unification provides processor load balancing.

Unified Graphics and Computing Processors
By the DirectX 10 generation, the functionality of vertex and pixel fragment 
shaders was to be made identical to the programmer, and in fact a new logical 
stage was introduced, the geometry shader, to process all the vertices of a primitive 
rather than vertices in isolation. The GeForce 8800 was designed with DirectX 10 
in mind. Developers were coming up with more sophisticated shading algorithms, 
and this motivated a sharp increase in the available shader operation rate, 
particularly floating-point operations. NVIDIA chose to pursue a processor design 
with higher operating frequency than standard-cell methodologies had allowed, 
to deliver the desired operation throughput as area-efficiently as possible. High-
clock-speed design requires substantially more engineering effort, and this favored 
designing one processor, rather than two (or three, given the new geometry stage). 
It became worthwhile to take on the engineering challenges of a unified processor 
(load balancing and recirculation of a logical pipeline onto threads of the processor 
array) to get the benefits of one processor design.

GPGPU: an Intermediate Step
As DirectX 9-capable GPUs became available, some researchers took notice of the 
raw performance growth path of GPUs and began to explore the use of GPUs to 
solve complex parallel problems. DirectX 9 GPUs had been designed only to match 
the features required by the graphics API. To access the computational resources, a 
programmer had to cast their problem into native graphics operations. For example, 
to run many simultaneous instances of a pixel shader, a triangle had to be issued to 
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did 
not have the means to perform arbitrary scatter operations to memory. The only 
way to write a result to memory was to emit it as a pixel color value, and configure 
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass 
of computation to the next was to write all parallel results to a pixel framebuffer, 
then use that framebuffer as a texture map as input to the pixel fragment shader of 
the next stage of the computation. Mapping general computations to a GPU in this 
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful 
of useful applications with painstaking efforts. This field was called “GPGPU” for 
general purpose computing on GPUs.
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GPU Computing
While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its 
potential usefulness would be much greater if programmers could think of the GPU 
as a processor. NVIDIA selected a programming approach in which programmers 
would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a high-
efficiency floating-point and integer processor that could run a variety of 
simultaneous workloads to support the logical graphics pipeline. This processor 
was designed to take advantage of the common case of groups of threads executing 
the same code path. NVIDIA added memory load and store instructions with 
integer byte addressing to support the requirements of compiled C programs. It 
introduced the thread block (cooperative thread array), grid of thread blocks, and 
barrier synchronization to dispatch and manage highly parallel computing work. 
Atomic memory operations were added. NVIDIA developed the CUDA C/C++ 
compiler, libraries, and runtime software to enable programmers to readily access 
the new data-parallel computation model and develop applications.

Scalable GPUs
Scalability has been an attractive feature of graphics systems from the beginning. 
Workstation graphics systems gave customers a choice in pixel horsepower by 
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the 
VGA controller. As 3D-capable accelerators appeared, the market had room for a 
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan 
Line Interleave) on their Voodoo2, which held the performance crown for its time 
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single 
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first 
by speed binning and packaging, then with separate chip designs (GeForce 2 GTS & 
GeForce 2 MX). At present, for a given architecture generation, four or five separate 
GPU chip designs are needed to cover the range of desktop PC performance and 
price points. In addition, there are separate segments in notebook and workstation 
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in 
2004, starting with GeForce 6800—providing multi-GPU scalability transparently 
to the programmer and to the user. Functional behavior is identical across the 
scaling range; one application will run unchanged on any implementation of an 
architectural family.

CPUs are scaling to higher transistor counts by increasing the number of 
constant-performance cores on a die, rather than increasing the performance of 
a single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to 
eightfold task parallelism to fully utilize these processors, and applications using 
task parallelism must be rewritten frequently to target each successive doubling of 
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core count. In contrast, the highly multithreaded GPU encourages the use of many-
fold data parallelism and thread parallelism, which readily scales to thousands of 
parallel threads on many processors. The GPU scalable parallel programming 
model for graphics and parallel computing is designed for transparent and 
portable scalability. A graphics program or CUDA program is written once and 
runs on a GPU with any number of processors. As shown in Section B.1, a CUDA 
programmer explicitly states both fine-grained and coarse-grained parallelism in 
a thread program by decomposing the problem into grids of thread blocks—the 
same program will run efficiently on GPUs or CPUs of any size in current and 
future generations as well.

Recent Developments
Academic and industrial work on applications using CUDA has produced 
hundreds of examples of successful CUDA programs. Many of these programs run 
the application tens or hundreds of times faster than multicore CPUs are capable 
of running them. Examples include n-body simulation, molecular modeling, 
computational finance, and oil and gas exploration data processing. Although many 
of these use single-precision floating-point arithmetic, some problems require 
double precision. The recent arrival of double-precision floating-point in GPUs 
enables an even broader range of applications to benefit from GPU acceleration.

For a comprehensive list and examples of current developments in applications 
that are accelerated by GPUs, visit CUDAZone: www.nvidia.com/CUDA.

Future Trends
Naturally, the number of processor cores will continue to increase in proportion to 
increases in available transistors as silicon processes improve. In addition, GPUs 
will continue to enjoy vigorous architectural evolution. Despite their demonstrated 
high performance on data-parallel applications, GPU core processors are still of 
relatively simple design. More aggressive techniques will be introduced with each 
successive architecture to increase the actual utilization of the calculating units. 
Because scalable parallel computing on GPUs is a new field, novel applications 
are rapidly being created. By studying them, GPU designers will discover and 
implement new machine optimizations.
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 C.1 Introduction

Control typically has two parts: a combinational part that lacks state and a sequential 
control unit that handles sequencing and the main control in a multicycle design. 
Combinational control units are often used to handle part of the decode and 
control process. The ALU control in Chapter 4 is such an example. A single-cycle 
implementation like that in Chapter  4 can also use a combinational controller, 
since it does not require multiple states. Section C.2 examines the implementation 
of these two combinational units from the truth tables of Chapter 4.

Since sequential control units are larger and often more complex, there are a wider 
variety of techniques for implementing a sequential control unit. The usefulness of 
these techniques depends on the complexity of the control, characteristics such 
as the average number of next states for any given state, and the implementation 
technology.

The most straightforward way to implement a sequential control function is with 
a block of logic that takes as inputs the current state and the opcode field of the 
Instruction register and produces as outputs the datapath control signals and the 
value of the next state. The initial representation may be either a finite-state diagram 
or a microprogram. In the latter case, each microinstruction represents a state.
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In an implementation using a finite-state controller, the next-state function will 
be computed with logic. Section C.3 constructs such an implementation both for 
a ROM and a PLA.

An alternative method of implementation computes the next-state function by 
using a counter that increments the current state to determine the next state. When 
the next state doesn’t follow sequentially, other logic is used to determine the state. 
Section C.4 explores this type of implementation and shows how it can be used to 
implement finite-state control.

In Section C.5, we show how a microprogram representation of sequential 
control is translated to control logic.

 C.2 Implementing Combinational  
Control Units

In this section, we show how the ALU control unit and main control unit for the 
single clock design are mapped down to the gate level. With modern computer-
aided design (CAD) systems, this process is completely mechanical. The examples 
illustrate how a CAD system takes advantage of the structure of the control 
function, including the presence of don’t-care terms.

Mapping the ALU Control Function to Gates
Figure C.2.1 shows the truth table for the ALU control function that was developed 
in Chapter 4, Section 4.4. A logic block that implements this ALU control function 
will have four distinct outputs (called Operation3, Operation2, Operation1, and 
Operation0), each corresponding to one of the four bits of the ALU control in the 
last column of Figure C.2.1. The logic function for each output is constructed by 
combining all the truth table entries that set that particular output. For example, the 
low-order bit of the ALU control (Operation0) is set by the last two entries of the 
truth table in Figure C.2.1. Thus, the truth table for Operation0 will have these two 
entries.

Figure C.2.2 shows the truth tables for each of the four ALU control bits.  
We have taken advantage of the common structure in each truth table to 
incorporate additional don’t cares. For example, the five lines in the truth table of 
Figure C.2.1 that set Operation1 are reduced to just two entries in Figure C.2.2.  
A logic minimization program will use the don’t-care terms to reduce the number 
of gates and the number of inputs to each gate in a logic gate realization of these 
truth tables.

A confusing aspect of Figure C.2.2 is that there is no logic function for Opera-
tion3. That is because this control line is only used for the NOR operation, which is 
not needed for the RISC-V subset in Figure 4.12.

From the simplified truth table in Figure C.2.2, we can generate the logic shown 
in Figure C.2.3, which we call the ALU control block. This process is straightforward 
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ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110 

1 X X X 0 0 0 0 0010 

1 X X X 0 0 1 0 0110 

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001 

1 X X X 1 0 1 0 0111 

FIGURE C.2.1 The truth table for the four ALU control bits (called Operation) as a function 
of the ALUOp and function code field. This table is the same as that shown in Figure 4.13.

fi edoc noitcnuFpOULA  elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 1 X X X X X X

1 X X X X X 1 X

a. The truth table for Operation2 = 1 (this table corresponds to the second to left bit of the Operation 
� eld in Figure C.2.1)

fi edoc noitcnuFpOULA  elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 X X X X X X X

X X X X X 0 X X

b. The truth table for Operation1 = 1

fi edoc noitcnuFpOULA  elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

1 X X X X X X 1

1 X X X 1 X X X

c. The truth table for Operation0 = 1

FIGURE C.2.2 The truth tables for three ALU control lines. Only the entries for which the  
output is 1 are shown. The bits in each field are numbered from right to left starting with 0; thus F5 is the 
most significant bit of the function field, and F0 is the least significant bit. Similarly, the names of the signals 
corresponding to the 4-bit operation code supplied to the ALU are Operation3, Operation2, Operation1, 
and Operation0 (with the last being the least significant bit). Thus the truth table above shows the input 
combinations for which the ALU control should be 0010, 0001, 0110, or 0111 (the other combinations are 
not used). The ALUOp bits are named ALUOp1 and ALUOp0. The three output values depend on the 2-bit 
ALUOp field and, when that field is equal to 10, the 6-bit function code in the instruction. Accordingly, when 
the ALUOp field is not equal to 10, we don’t care about the function code value (it is represented by an X). 
There is no truth table for when Operation3=1 because it is always set to 0 in Figure C.2.1. See Appendix A 
for more background on don’t cares.
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and can be done with a CAD program. An example of how the logic gates can be 
derived from the truth tables is given in the legend to Figure C.2.3.

This ALU control logic is simple because there are only three outputs, and only a 
few of the possible input combinations need to be recognized. If a large number of 
possible ALU function codes had to be transformed into ALU control signals, this 
simple method would not be efficient. Instead, you could use a decoder, a memory, 
or a structured array of logic gates. These techniques are described in Appendix A, 
and we will see examples when we examine the implementation of the multicycle 
controller in Section C.3.

Elaboration: In general, a logic equation and truth table representation of a logic 
function are equivalent. (We discuss this in further detail in Appendix A). However, when a 
truth table only specifies the entries that result in nonzero outputs, it may not completely 
describe the logic function. A full truth table completely indicates all don’t-care entries. 
For example, the encoding 11 for ALUOp always generates a don’t care in the output. 
Thus a complete truth table would have XXX in the output portion for all entries with 11 
in the ALUOp field. These don’t-care entries allow us to replace the ALUOp field 10 and 
01 with 1X and X1, respectively. Incorporating the don’t-care terms and minimizing the 
logic is both complex and error-prone and, thus, is better left to a program.

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

Operation3

FIGURE C.2.3 The ALU control block generates the four ALU control bits, based on the 
function code and ALUOp bits. This logic is generated directly from the truth table in Figure C.2.2. 
Only 4 of the 6 bits in the function code are actually needed as inputs, since the upper 2 bits are always don’t 
cares. Let’s examine how this logic relates to the truth table of Figure C.2.2. Consider the Operation2 output, 
which is generated by two lines in the truth table for Operation2. The second line is the AND of two terms 
(F1 = 1 and ALUOp1 = 1); the top two-input AND gate corresponds to this term. The other term that causes 
Operation2 to be asserted is simply ALUOp0. These two terms are combined with an OR gate whose output 
is Operation2. The outputs Operation0 and Operation1 are derived in similar fashion from the truth table. 
Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND gate to generate 0.



 C.2 Implementing Combinational Control Units  C-7

Mapping the Main Control Function to Gates
Implementing the main control function with an unstructured collection of gates, 
as we did for the ALU control, is reasonable because the control function is neither 
complex nor large, as we can see from the truth table shown in Figure C.2.4. 
However, if most of the 64 possible opcodes were used and there were many more 
control lines, the number of gates would be much larger and each gate could have 
many more inputs.

Since any function can be computed in two levels of logic, another way to 
implement a logic function is with a structured two-level logic array. Figure C.2.5 
shows such an implementation. It uses an array of AND gates followed by an array 
of OR gates. This structure is called a programmable logic array (PLA). A PLA is one 
of the most common ways to implement a control function. We will return to the 
topic of using structured logic elements to implement control when we implement 
the finite-state controller in the next section.

Control Signal name R-format lw sw beq

Inputs

Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs

RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

FIGURE C.2.4 The control function for the simple one-clock implementation is completely 
specified by this truth table. This table is the same as that shown in Figure 4.22.
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R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

FIGURE C.2.5 The structured implementation of the control function as described by the 
truth table in Figure C.2.4. The structure, called a programmable logic array (PLA), uses an array of 
AND gates followed by an array of OR gates. The inputs to the AND gates are the function inputs and their 
inverses (bubbles indicate inversion of a signal). The inputs to the OR gates are the outputs of the AND gates 
(or, as a degenerate case, the function inputs and inverses). The output of the OR gates is the function outputs.

 C.3 Implementing Finite-State Machine 
Control

To implement the control as a finite-state machine, we must first assign a number to 
each of the 10 states; any state could use any number, but we will use the sequential 
numbering for simplicity. Figure C.3.1 shows the finite-state diagram. With 10 
states, we will need 4 bits to encode the state number, and we call these state bits S3, 
S2, S1, and S0. The current-state number will be stored in a state register, as shown 
in Figure C.3.2. If the states are assigned sequentially, state i is encoded using the 
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PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch
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FIGURE C.3.1 The finite-state diagram for multicycle control.
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PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

FIGURE C.3.2 The control unit for RISC-V will consist of some control logic and a register 
to hold the state. The state register is written at the active clock edge and is stable during the clock  
cycle.

state bits as the binary number i. For example, state 6 is encoded as 0110two or S3 = 
0, S2 = 1, S1 = 1, S0 = 0, which can also be written as

S S S S3 2 1 0⋅ ⋅ ⋅

The control unit has outputs that specify the next state. These are written into 
the state register on the clock edge and become the new state at the beginning of 
the next clock cycle following the active clock edge. We name these outputs NS3, 
NS2, NS1, and NS0. Once we have determined the number of inputs, states, and 
outputs, we know what the basic outline of the control unit will look like, as we 
show in Figure C.3.2.
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The block labeled “control logic” in Figure C.3.2 is combinational logic. We can 
think of it as a big table giving the value of the outputs in terms of the inputs. The 
logic in this block implements the two different parts of the finite-state machine. 
One part is the logic that determines the setting of the datapath control outputs, 
which depend only on the state bits. The other part of the control logic implements 
the next-state function; these equations determine the values of the next-state bits 
based on the current-state bits and the other inputs (the 6-bit opcode).

Figure C.3.3 shows the logic equations: the top portion shows the outputs, and 
the bottom portion shows the next-state function. The values in this table were 

pOsetats tnerruCtuptuO

PCWrite state0 + state9

PCWriteCond state8

IorD state3 + state5

MemRead state0 + state3

MemWrite state5

IRWrite state0

MemtoReg state4

PCSource1 state9

PCSource0 state8

ALUOp1 state6

ALUOp0 state8

ALUSrcB1 state1 +state2 

ALUSrcB0 state0 + state1

ALUSrcA state2 + state6 + state8

RegWrite state4 + state7

RegDst state7

NextState0 state4 + state5 + state7 + state8 + state9

NextState1 state0

NextState2 state1 (Op = 'lw') + (Op = 'sw')   

NextState3 state2 (Op = 'lw') 

NextState4 state3

NextState5 state2 (Op = 'sw')  

NextState6 state1 (Op = 'R-type') 

NextState7 state6

NextState8 state1 (Op = 'beq') 

NextState9 state1 (Op = 'jmp') 

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form. Remember 
that “+” stands for OR in logic equations. The state inputs and NextState outputs must be expanded by using 
the state encoding. Any blank entry is a don’t care.
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EXAMPLE

ANSWER

determined from the state diagram in Figure C.3.1. Whenever a control line is 
active in a state, that state is entered in the second column of the table. Likewise, the 
next-state entries are made whenever one state is a successor to another.

In Figure C.3.3, we use the abbreviation stateN to stand for current state N. 
Thus, stateN is replaced by the term that encodes the state number N. We use 
NextStateN to stand for the setting of the next-state outputs to N. This output is 
implemented using the next-state outputs (NS). When NextStateN is active, the 
bits NS[3–0] are set corresponding to the binary version of the value N. Of course, 
since a given next-state bit is activated in multiple next states, the equation for 
each state bit will be the OR of the terms that activate that signal. Likewise, when 
we use a term such as (Op = ‘lw’), this corresponds to an AND of the opcode 
inputs that specifies the encoding of the opcode lw in 6 bits, just as we did for the 
simple control unit in the previous section of this chapter. Translating the entries in  
Figure C.3.3 into logic equations for the outputs is straightforward.

Logic Equations for Next-State Outputs

Give the logic equation for the low-order next-state bit, NS0.

The next-state bit NS0 should be active whenever the next state has NS0 = 1  
in the state encoding. This is true for NextState1, NextState3, NextState5, 
NextState7, and NextState9. The entries for these states in Figure C.3.3 supply 
the conditions when these next-state values should be active. The equation for 
each of these next states is given below. The first equation states that the next 
state is 1 if the current state is 0; the current state is 0 if each of the state input 
bits is 0, which is what the rightmost product term indicates.

NextState State S S S S
NextState State Op 1w

1 0 3 2 1 0
3 2 5 0
5 5

5 5

⋅ ⋅ ⋅
⋅ ( [ - ] ))

(
5

5

S S S S Op Op Op Op Op Op
NextState State O

3 2 1 0 5 4 3 2 1 0
5 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ pp sw

S S S S Op Op Op Op Op Op
NextState

[ - ] )5 0

3 2 1 0 5 4 3 2 1 0
7

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅5

5 SState S3 S S S
NextState State Op jmp

S S S

6 2 1 0
9 1 5 0

3 2

5

5 5

5

⋅ ⋅ ⋅
⋅

⋅ ⋅

( [ - ] )

11 0 5 4 3 2 1 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅S Op Op Op Op Op Op
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NS0 is the logical sum of all these terms.

As we have seen, the control function can be expressed as a logic equation for each 
output. This set of logic equations can be implemented in two ways: corresponding 
to a complete truth table, or corresponding to a two-level logic structure that allows 
a sparse encoding of the truth table. Before we look at these implementations, let’s 
look at the truth table for the complete control function.

It is simplest if we break the control function defined in Figure C.3.3 into two 
parts: the next-state outputs, which may depend on all the inputs, and the control 
signal outputs, which depend only on the current-state bits. Figure C.3.4 shows 
the truth tables for all the datapath control signals. Because these signals actually 
depend only on the state bits (and not the opcode), each of the entries in a table 
in Figure C.3.4 actually represents 64 (= 26) entries, with the 6 bits named Op 
having all possible values; that is, the Op bits are don’t-care bits in determining 
the data path control outputs. Figure C.3.5 shows the truth table for the next-state 
bits NS[3–0], which depend on the state input bits and the instruction bits, which 
supply the opcode.

Elaboration: There are many opportunities to simplify the control function by 
observing similarities among two or more control signals and by using the semantics of 
the implementation. For example, the signals PCWriteCond, PCSource0, and ALUOp0 are 
all asserted in exactly one state, state 8. These three control signals can be replaced 
by a single signal.

NextState State S S S S
NextState State Op 1w

1 0 3 2 1 0
3 2 5 0
5 5

5 5

⋅ ⋅ ⋅
⋅ ( [ - ] ))

(
5

5

S S S S Op Op Op Op Op Op
NextState State O

3 2 1 0 5 4 3 2 1 0
5 2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ pp sw

S S S S Op Op Op Op Op Op
NextState

[ - ] )5 0
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7

=
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5 SState S3 S S S
NextState State Op jmp

S S S

6 2 1 0
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3 2

5

5 5

5

⋅ ⋅ ⋅
⋅

⋅ ⋅

( [ - ] )

11 0 5 4 3 2 1 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅S Op Op Op Op Op Op
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s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 1 0 0 0 0 0 1 1

10101001

dnoCetirWCProfelbathturT.betirWCProfelbathturT.a c. Truth table for IorD

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 1

d. Truth table for MemRead e. Truth table for MemWrite f. Truth table for IRWrite

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 0 0 1 0 0 1 1 0 0 0

g. Truth table for MemtoReg h. Truth table for PCSource1 i. Truth table for PCSource0

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 1 0 1 0 0 0 0 0 0 1

0 0 1 0

1BcrSULArofelbathturT.l0pOULArofelbathturT.k1pOULArofelbathturT.j

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 0 0 1 1 1

1 0 0 0

m. Truth table for ALUSrcB0 n. Truth table for ALUSrcA o. Truth table for RegWrite

s3 s2 s1 s0

0 1 1 1

p. Truth table for RegDst

FIGURE C.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state 
input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the six Op 
bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0, 
and ALUOp0, these signals are active only in state 8 (see b, i, and k). These three signals could be replaced by one signal. There are other 
opportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables.
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A ROM Implementation
Probably the simplest way to implement the control function is to encode the truth 
tables in a read-only memory (ROM). The number of entries in the memory for the 
truth tables of Figures C.3.4 and C.3.5 is equal to all possible values of the inputs 
(the 6 opcode bits plus the 4 state bits), which is 2# inputs = 210 = 1024. The inputs 

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when 
the current state is 1.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 0 1 1

X X X X X X 0 1 1 0

b. The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation 
occurs when the current state is one of 1, 2, 3, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1

1 0 1 0 1 1 0 0 0 1

1 0 0 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

c. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state 
is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

X X X X X X 0 0 0 0

1 0 0 0 1 1 0 0 1 0

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

0 0 0 0 1 0 0 0 0 1

d. The truth table for the NS0 output, which is active when the next state is 1, 3, 5, 7, or 9. This happens 
only if the current state is one of 0, 1, 2, or 6.

FIGURE C.3.5 The four truth tables for the four next-state output bits (NS[3–0]). The next-
state outputs depend on the value of Op[5-0], which is the opcode field, and the current state, given by S[3– 
0]. The entries with X are don’t-care terms. Each entry with a don’t-care term corresponds to two entries, one 
with that input at 0 and one with that input at 1. Thus an entry with n don’t-care terms actually corresponds 
to 2n truth table entries.
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EXAMPLE

to the control unit become the address lines for the ROM, which implements 
the control logic block that was shown in Figure C.3.2. The width of each entry  
(or word in the memory) is 20 bits, since there are 16 datapath control outputs and 
4 next-state bits. This means the total size of the ROM is 210 × 20 = 20 Kbits.

The setting of the bits in a word in the ROM depends on which outputs are active 
in that word. Before we look at the control words, we need to order the bits within 
the control input (the address) and output words (the contents), respectively. We 
will number the bits using the order in Figure C.3.2, with the next-state bits being 
the low-order bits of the control word and the current-state input bits being the 
low-order bits of the address. This means that the PCWrite output will be the high-
order bit (bit 19) of each memory word, and NS0 will be the low-order bit. The 
high-order address bit will be given by Op5, which is the high-order bit of the 
instruction, and the low-order address bit will be given by S0.

We can construct the ROM contents by building the entire truth table in a form 
where each row corresponds to one of the 2n unique input combinations, and a 
set of columns indicates which outputs are active for that input combination. We 
don’t have the space here to show all 1024 entries in the truth table. However, by 
separating the datapath control and next-state outputs, we do, since the datapath 
control outputs depend only on the current state. The truth table for the datapath 
control outputs is shown in Figure C.3.6. We include only the encodings of the state 
inputs that are in use (that is, values 0 through 9 corresponding to the 10 states of 
the state machine).

The truth table in Figure C.3.6 directly gives the contents of the upper 16 bits of 
each word in the ROM. The 4-bit input field gives the low-order 4 address bits of 
each word, and the column gives the contents of the word at that address.

If we did show a full truth table for the datapath control bits with both 
the state number and the opcode bits as inputs, the opcode inputs would all 
be don’t cares. When we construct the ROM, we cannot have any don’t cares, 
since the addresses into the ROM must be complete. Thus, the same datapath 
control outputs will occur many times in the ROM, since this part of the ROM 
is the same whenever the state bits are identical, independent of the value of the 
opcode inputs.

Control ROM Entries

For what ROM addresses will the bit corresponding to PCWrite, the high bit 
of the control word, be 1?
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)]0–3[S( seulav tupnIstuptuO

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

PCWrite 1 0 0 0 0 0 0 0 0 1

PCWriteCond 0 0 0 0 0 0 0 0 1 0

IorD 0 0 0 1 0 1 0 0 0 0

MemRead 1 0 0 1 0 0 0 0 0 0

MemWrite 0 0 0 0 0 1 0 0 0 0

IRWrite 1 0 0 0 0 0 0 0 0 0

MemtoReg 0 0 0 0 1 0 0 0 0 0

PCSource1 0 0 0 0 0 0 0 0 0 1

PCSource0 0 0 0 0 0 0 0 0 1 0

ALUOp1 0 0 0 0 0 0 1 0 0 0

ALUOp0 0 0 0 0 0 0 0 0 1 0

ALUSrcB1 0 1 1 0 0 0 0 0 0 0

ALUSrcB0 1 1 0 0 0 0 0 0 0 0

ALUSrcA 0 0 1 0 0 0 1 0 1 0

RegWrite 0 0 0 0 1 0 0 1 0 0

RegDst 0 0 0 0 0 0 0 1 0 0

FIGURE C.3.6 The truth table for the 16 datapath control outputs, which depend only on 
the state inputs. The values are determined from Figure C.3.4. Although there are 16 possible values for 
the 4-bit state field, only 10 of these are used and are shown here. The 10 possible values are shown at the top; 
each column shows the setting of the datapath control outputs for the state input value that appears at the 
top of the column. For example, when the state inputs are 0011 (state 3), the active datapath control outputs 
are IorD or MemRead.

ANSWER
PCWrite is high in states 0 and 9; this corresponds to addresses with the 4 
low-order bits being either 0000 or 1001. The bit will be high in the memory 
word independent of the inputs Op[5–0], so the addresses with the bit high 
are 000000000, 0000001001, 0000010000, 0000011001, .  .  . , 1111110000, 
1111111001. The general form of this is XXXXXX0000 or XXXXXX1001, 
where XXXXXX is any combination of bits, and corresponds to the 6-bit 
opcode on which this output does not depend.
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We will show the entire contents of the ROM in two parts to make it easier to 
show. Figure C.3.7 shows the upper 16 bits of the control word; this comes directly 
from Figure C.3.6. These datapath control outputs depend only on the state inputs, 
and this set of words would be duplicated 64 times in the full ROM, as we discussed 
above. The entries corresponding to input values 1010 through 1111 are not used, so  
we do not care what they contain.

Figure C.3.8 shows the lower four bits of the control word corresponding to the 
next-state outputs. The last column of the table in Figure C.3.8 corresponds to all the 
possible values of the opcode that do not match the specified opcodes. In state 0, the 
next state is always state 1, since the instruction was still being fetched. After state 1, 
the opcode field must be valid. The table indicates this by the entries marked illegal; 
we discuss how to deal with these exceptions and interrupts opcodes in Section 4.9.

Not only is this representation as two separate tables a more compact way to 
show the ROM contents; it is also a more efficient way to implement the ROM. The 
majority of the outputs (16 of 20 bits) depends only on four of the 10 inputs. The 
number of bits in total when the control is implemented as two separate ROMs  
is 24 × 16 + 210 × 4 = 256 + 4096 = 4.3 Kbits, which is about one-fifth of the  
size of a single ROM, which requires 210 × 20 = 20 Kbits. There is some overhead 
associated with any structured-logic block, but in this case the additional overhead 
of an extra ROM would be much smaller than the savings from splitting the single 
ROM.

Lower 4 bits of the address Bits 19–4 of the word

00010000001010010000

00011000000000001000

00101000000000000100

00000000000011001100

01000000010000000010

00000000000101001010

00100010000000000110

11000000000000001110

00100101000000100001

00000000100000011001

FIGURE C.3.7 The contents of the upper 16 bits of the ROM depend only on the state 
inputs. These values are the same as those in Figure C.3.6, simply rotated 90°. This set of control words 
would be duplicated 64 times for every possible value of the upper six bits of the address.
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Although this ROM encoding of the control function is simple, it is wasteful, 
even when divided into two pieces. For example, the values of the Instruction 
register inputs are often not needed to determine the next state. Thus, the next-
state ROM has many entries that are either duplicated or are don’t care. Consider 
the case when the machine is in state 0: there are 26 entries in the ROM (since the 
opcode field can have any value), and these entries will all have the same contents 
(namely, the control word 0001). The reason that so much of the ROM is wasted is 
that the ROM implements the complete truth table, providing the opportunity to 
have a different output for every combination of the inputs. But most combinations 
of the inputs either never happen or are redundant!

Op [5–0]

Current state
S[3–0]

000000
(R-format)

000010
(jmp)

000100
(beq)

100011
(lw)

101011
(sw)

Any other
value

0000 0001 0001 0001 0001 0001 0001

0001 0110 1001 1000 0010 0010 Illegal

0010 XXXX XXXX XXXX 0011 0101 Illegal

0011 0100 0100 0100 0100 0100 Illegal

0100 0000 0000 0000 0000 0000 Illegal

0101 0000 0000 0000 0000 0000 Illegal

0110 0111 0111 0111 0111 0111 Illegal

0111 0000 0000 0000 0000 0000 Illegal

1000 0000 0000 0000 0000 0000 Illegal

1001 0000 0000 0000 0000 0000 Illegal

FIGURE C.3.8 This table contains the lower 4 bits of the control word (the NS outputs), 
which depend on both the state inputs, S[3–0], and the opcode, Op[5–0], which correspond 
to the instruction opcode. These values can be determined from Figure C.3.5. The opcode name is 
shown under the encoding in the heading. The four bits of the control word whose address is given by the 
current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the 
output is always 0001, independent of the other inputs; when the state is two, the next state is don’t care for 
three of the inputs, three for lw, and five for sw. Together with the entries in Figure C.3.7, this table specifies 
the contents of the control unit ROM. For example, the word at address 1000110001 is obtained by finding 
the upper 16 bits in the table in Figure C.3.7 using only the state input bits (0001) and concatenating the lower 
four bits found by using the entire address (0001 to find the row and 100011 to find the column). The entry 
from Figure C.3.7 yields 0000000000011000, while the appropriate entry in the table immediately above is 
0010. Thus the control word at address 1000110001 is 00000000000110000010. The column labeled “Any 
other value” applies only when the Op bits do not match one of the specified opcodes.
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A PLA Implementation
We can reduce the amount of control storage required at the cost of using more 
complex address decoding for the control inputs, which will encode only the input 
combinations that are needed. The logic structure most often used to do this is 
a programmed logic array (PLA), which we mentioned earlier and illustrated in 
Figure C.2.5. In a PLA, each output is the logical OR of one or more minterms. 
A minterm, also called a product term, is simply a logical AND of one or more 
inputs. The inputs can be thought of as the address for indexing the PLA, while 
the minterms select which of all possible address combinations are interesting. A 
minterm corresponds to a single entry in a truth table, such as those in Figure 
C.3.4, including possible don’t-care terms. Each output consists of an OR of these 
minterms, which exactly corresponds to a complete truth table. However, unlike 
a ROM, only those truth table entries that produce an active output are needed, 
and only one copy of each minterm is required, even if the minterm contains don’t 
cares. Figure C.3.9 shows the PLA that implements this control function.

As we can see from the PLA in Figure C.3.9, there are 17 unique minterms—10 
that depend only on the current state and seven others that depend on a combination 
of the Op field and the current-state bits. The total size of the PLA is proportional 
to (#inputs × #product terms) + (#outputs × #product terms), as we can see 
symbolically from the figure. This means the total size of the PLA in Figure C.3.9 is  
proportional to (10 × 17) + (20 × 17) = 510. By comparison, the size of a single 
ROM is proportional to 20 Kb, and even the two-part ROM has a total of 4.3 Kb. 
Because the size of a PLA cell will be only slightly larger than the size of a bit in a 
ROM, a PLA will be a much more efficient implementation for this control unit.

Of course, just as we split the ROM in two, we could split the PLA into two PLAs: 
one with four inputs and 10 minterms that generates the 16 control outputs, and 
one with 10 inputs and seven minterms that generates the four next-state outputs. 
The first PLA would have a size proportional to (4 × 10) + (10 × 16) = 200, and 
the second PLA would have a size proportional to (10 × 7) + (4 × 7) = 98. This 
would yield a total size proportional to 298 PLA cells, about 55% of the size of a 
single PLA. These two PLAs will be considerably smaller than an implementation 
using two ROMs. For more details on PLAs and their implementation, as well as 
the references for books on logic design, see Appendix A.
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Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

FIGURE C.3.9 This PLA implements the control function logic for the multicycle 
implementation. The inputs to the control appear on the left and the outputs on the right. The top half 
of the figure is the AND plane that computes all the minterms. The minterms are carried to the OR plane 
on the vertical lines. Each colored dot corresponds to a signal that makes up the minterm carried on that 
line. The sum terms are computed from these minterms, with each gray dot representing the presence of the 
intersecting minterm in that sum term. Each output consists of a single sum term.
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 C.4 Implementing the Next-State Function 
with a Sequencer

Let’s look carefully at the control unit we built in the last section. If you examine  
the ROMs that implement the control in Figures C.3.7 and C.3.8, you can see 
that much of the logic is used to specify the next-state function. In fact, for the 
implementation using two separate ROMs, 4096 out of the 4368 bits (94%) 
correspond to the next-state function! Furthermore, imagine what the control 
logic would look like if the instruction set had many more different instruction 
types, some of which required many clocks to implement. There would be many 
more states in the finite-state machine. In some states, we might be branching to 
a large number of different states depending on the instruction type (as we did in 
state 1 of the finite-state machine in Figure C.3.1). However, many of the states 
would proceed in a sequential fashion, just as states 3 and 4 do in Figure C.3.1.

For example, if we included floating point, we would see a sequence of many 
states in a row that implement a multicycle floating-point instruction. Alternatively, 
consider how the control might look for a machine that can have multiple memory 
operands per instruction. It would require many more states to fetch multiple 
memory operands. The result of this would be that the control logic will be 
dominated by the encoding of the next-state function. Furthermore, much of the 
logic will be devoted to sequences of states with only one path through them that 
look like states 2 through 4 in Figure C.3.1. With more instructions, these sequences 
will consist of many more sequentially numbered states than for our simple subset.

To encode these more complex control functions efficiently, we can use a 
control unit that has a counter to supply the sequential next state. This counter 
often eliminates the need to encode the next-state function explicitly in the control 
unit. As shown in Figure C.4.1, an adder is used to increment the state, essentially 
turning it into a counter. The incremented state is always the state that follows 
in numerical order. However, the finite-state machine sometimes “branches.” For 
example, in state 1 of the finite-state machine (see Figure C.3.1), there are four 
possible next states, only one of which is the sequential next state. Thus, we need 
to be able to choose between the incremented state and a new state based on the 
inputs from the Instruction register and the current state. Each control word will 
include control lines that will determine how the next state is chosen.

It is easy to implement the control output signal portion of the control word, 
since, if we use the same state numbers, this portion of the control word will 
look exactly like the ROM contents shown in Figure C.3.7. However, the method 
for selecting the next state differs from the next-state function in the finite-state 
machine.
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With an explicit counter providing the sequential next state, the control unit 
logic need only specify how to choose the state when it is not the sequentially 
following state. There are two methods for doing this. The first is a method we have 
already seen: namely, the control unit explicitly encodes the next-state function. 
The difference is that the control unit need only set the next-state lines when the 
designated next state is not the state that the counter indicates. If the number of 
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Outputs

PLA or ROM

State

Address select logic

O
p[

5–
0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB

ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

FIGURE C.4.1 The control unit using an explicit counter to compute the next state. In this 
control unit, the next state is computed using a counter (at least in some states). By comparison, Figure C.3.2 
encodes the next state in the control logic for every state. In this control unit, the signals labeled AddrCtl 
control how the next state is determined.
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states is large and the next-state function that we need to encode is mostly empty, 
this may not be a good choice, since the resulting control unit will have lots of 
empty or redundant space. An alternative approach is to use separate external logic 
to specify the next state when the counter does not specify the state. Many control 
units, especially those that implement large instruction sets, use this approach, and 
we will focus on specifying the control externally.

Although the nonsequential next state will come from an external table, the 
control unit needs to specify when this should occur and how to find that next state.  
There are two kinds of “branching” that we must implement in the address select 
logic. First, we must be able to jump to one of a number of states based on the 
opcode portion of the Instruction register. This operation, called a dispatch, is 
usually implemented by using a set of special ROMs or PLAs included as part of the 
address selection logic. An additional set of control outputs, which we call AddrCtl, 
indicates when a dispatch should be done. Looking at the finite-state diagram 
(Figure C.3.1), we see that there are two states in which we do a branch based on a 
portion of the opcode. Thus we will need two small dispatch tables. (Alternatively, 
we could also use a single dispatch table and use the control bits that select the table 
as address bits that choose from which portion of the dispatch table to select the  
address.)

The second type of branching that we must implement consists of branching 
back to state 0, which initiates the execution of the next RISC-V instruction.  
Thus there are four possible ways to choose the next state (three types of branches, 
plus incrementing the current-state number), which can be encoded in 2 bits. Let’s 
assume that the encoding is as follows:

AddrCtl value Action

0 Set state to 0

1 Dispatch with ROM 1

2 Dispatch with ROM 2

3 Use the incremented state

If we use this encoding, the address select logic for this control unit can be 
implemented as shown in Figure C.4.2.

To complete the control unit, we need only specify the contents of the dispatch 
ROMs and the values of the address-control lines for each state. We have already 
specified the datapath control portion of the control word using the ROM contents 
of Figure C.3.7 (or the corresponding portions of the PLA in Figure C.3.9). The 
next-state counter and dispatch ROMs take the place of the portion of the control 
unit that was computing the next state, which was shown in Figure C.3.8. We are 
only implementing a portion of the instruction set, so the dispatch ROMs will be 
largely empty. Figure C.4.3 shows the entries that must be assigned for this subset.
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State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

FIGURE C.4.2 This is the address select logic for the control unit of Figure C.4.1.

2 MOR hctapsiD1 MOR hctapsiD

Op Opcode name Value Op Opcode name Value

000000 R-format 0110 100011 lw 0011

000010 jmp 1001 101011 sw 0101

000100 beq 1000

100011 lw 0010

101011 sw 0010

FIGURE C.4.3 The dispatch ROMs each have 26 = 64 entries that are 4 bits wide, since 
that is the number of bits in the state encoding. This figure only shows the entries in the ROM that 
are of interest for this subset. The first column in each table indicates the value of Op, which is the address 
used to access the dispatch ROM. The second column shows the symbolic name of the opcode. The third 
column indicates the value at that address in the ROM.
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Now we can determine the setting of the address selection lines (AddrCtl) in 
each control word. The table in Figure C.4.4 shows how the address control must 
be set for every state. This information will be used to specify the setting of the 
AddrCtl field in the control word associated with that state.

The contents of the entire control ROM are shown in Figure C.4.5. The total 
storage required for the control is quite small. There are 10 control words, each 18 
bits wide, for a total of 180 bits. In addition, the two dispatch tables are 4 bits wide 
and each has 64 entries, for a total of 512 additional bits. This total of 692 bits beats 
the implementation that uses two ROMs with the next-state function encoded in 
the ROMs (which requires 4.3 Kbits).

Of course, the dispatch tables are sparse and could be more efficiently implemented 
with two small PLAs. The control ROM could also be replaced with a PLA.

State number Address-control action Value of AddrCtl

3etats detnemercni esU0

11 MOR hctapsid esU1

22 MOR hctapsid esU2

3etats detnemercni esU3

00 yb rebmun etats ecalpeR4

00 yb rebmun etats ecalpeR5

3etats detnemercni esU6

00 yb rebmun etats ecalpeR7

00 yb rebmun etats ecalpeR8

00 yb rebmun etats ecalpeR9

FIGURE C.4.4 The values of the address-control lines are set in the control word that 
corresponds to each state.

State number Control word bits 17–2 Control word bits 1–0

1100010000001010010

1000011000000000001

0100101000000000002

1100000000000011003

0001000000010000004

0000000000000101005

1100100010000000006

0011000000000000007

0000100101000000108

0000000000100000019

FIGURE C.4.5 The contents of the control memory for an implementation using an explicit 
counter. The first column shows the state, while the second shows the datapath control bits, and the last 
column shows the address-control bits in each control word. Bits 17–2 are identical to those in Figure C.3.7.
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Optimizing the Control Implementation
We can further reduce the amount of logic in the control unit by two different 
techniques. The first is logic minimization, which uses the structure of the logic 
equations, including the don’t-care terms, to reduce the amount of hardware 
required. The success of this process depends on how many entries exist in the 
truth table, and how those entries are related. For example, in this subset, only  
the lw and sw opcodes have an active value for the signal Op5, so we can  
replace the two truth table entries that test whether the input is lw or sw by a single 
test on this bit; similarly, we can eliminate several bits used to index the dispatch 
ROM because this single bit can be used to find lw and sw in the first dispatch ROM. 
Of course, if the opcode space were less sparse, opportunities for this optimization 
would be more difficult to locate. However, in choosing the opcodes, the architect 
can provide additional opportunities by choosing related opcodes for instructions 
that are likely to share states in the control.

A different sort of optimization can be done by assigning the state numbers in a 
finite-state or microcode implementation to minimize the logic. This optimization, 
called state assignment, tries to choose the state numbers such that the resulting 
logic equations contain more redundancy and can thus be simplified. Let’s consider 
the case of a finite-state machine with an encoded next-state control first, since it 
allows states to be assigned arbitrarily. For example, notice that in the finite-state 
machine, the signal RegWrite is active only in states 4 and 7. If we encoded those 
states as 8 and 9, rather than 4 and 7, we could rewrite the equation for RegWrite as 
simply a test on bit S3 (which is only on for states 8 and 9). This renumbering allows 
us to combine the two truth table entries in part (o) of Figure C.3.4 and replace 
them with a single entry, eliminating one term in the control unit. Of course, we 
would have to renumber the existing states 8 and 9, perhaps as 4 and 7.

The same optimization can be applied in an implementation that uses an explicit 
program counter, though we are more restricted. Because the next-state number is 
often computed by incrementing the current-state number, we cannot arbitrarily 
assign the states. However, if we keep the states where the incremented state is used 
as the next state in the same order, we can reassign the consecutive states as a block. 
In an implementation with an explicit next-state counter, state assignment may 
allow us to simplify the contents of the dispatch ROMs.

If we look again at the control unit in Figure C.4.1, it looks remarkably like a 
computer in its own right. The ROM or PLA can be thought of as memory supplying 
instructions for the datapath. The state can be thought of as an instruction address. 
Hence the origin of the name microcode or microprogrammed control. The control 
words are thought of as microinstructions that control the datapath, and the State 
register is called the microprogram counter. Figure C.4.6 shows a view of the control 
unit as microcode. The next section describes how we map from a microprogram 
to microcode.
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 C.5 Translating a Microprogram to Hardware

To translate a microprogram into actual hardware, we need to specify how each 
field translates into control signals. We can implement a microprogram with either 
finite-state control or a microcode implementation with an explicit sequencer. If 
we choose a finite-state machine, we need to construct the next-state function from 

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
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Adder

1

Instruction register
opcode field

BWrite

Datapath

FIGURE C.4.6 The control unit as a microcode. The use of the word “micro” serves to distinguish between the program counter in 
the datapath and the microprogram counter, and between the microcode memory and the instruction memory.
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the microprogram. Once this function is known, we can map a set of truth table 
entries for the next-state outputs. In this section, we will show how to translate  
the microprogram, assuming that the next state is specified by a sequencer. 
From the truth tables we will construct, it would be straightforward to build the  
next-state function for a finite-state machine.

tnemmoCevitca slangiSeulaVeman dleiF

ALU control

Add ALUOp = 00 Cause the ALU to add.

Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for branches.

Func code ALUOp = 10 Use the instruction’s function code to determine ALU control.

SRC1
PC ALUSrcA = 0 Use the PC as the � rst ALU input.

A ALUSrcA = 1 Register A is the � rst ALU input.

SRC2

B ALUSrcB = 00 Register B is the second ALU input.

4 ALUSrcB = 01 Use 4 as the second ALU input.

Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.

Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.

Register 
control

 srebmun retsiger eht sa RI eht fo sdle � tr dna sr eht gnisu sretsiger owt daeRdaeR
and putting the data into registers A and B.

Write ALU RegWrite,
RegDst = 1, 
MemtoReg = 0

Write a register using the rd � eld of the IR as the register number and the 
contents of ALUOut as the data. 

Write MDR RegWrite, 
RegDst = 0, 
MemtoReg = 1

Write a register using the rt � eld of the IR as the register number and the 
contents of the MDR as the data.

Memory

Read PC MemRead, 
IorD = 0, IRWrite

Read memory using the PC as address; write result into IR (and the MDR).

Read ALU MemRead, 
IorD = 1

Read memory using ALUOut as address; write result into MDR.

Write ALU MemWrite, 
IorD = 1

Write memory using the ALUOut as address, contents of B as the data.

PC write control

ALU PCSource = 00, 
PCWrite

Write the output of the ALU into the PC.

ALUOut-cond PCSource = 01, 
PCWriteCond 

If the Zero output of the ALU is active, write the PC with the contents of the 
register ALUOut.

Jump address PCSource = 10, 
PCWrite

Write the PC with the jump address from the instruction.

Sequencing

Seq AddrCtl = 11 Choose the next microinstruction sequentially.

Fetch AddrCtl = 00 Go to the � rst microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

FIGURE C.5.1 Each microcode field translates to a set of control signals to be set. These 22 different values of the fields specify 
all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor 
control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don’t care and is not used.
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Assuming an explicit sequencer, we need to do two additional tasks to translate 
the microprogram: assign addresses to the microinstructions and fill in the 
contents of the dispatch ROMs. This process is essentially the same as the process 
of translating an assembly language program into machine instructions: the fields 
of the assembly language or microprogram instruction are translated, and labels on 
the instructions must be resolved to addresses.

Figure C.5.1 shows the various values for each microinstruction field that 
controls the datapath and how these fields are encoded as control signals. If the 
field corresponding to a signal that affects a unit with state (i.e., Memory, Memory 
register, ALU destination, or PCWriteControl) is blank, then no control signal 
should be active. If a field corresponding to a multiplexor control signal or the ALU 
operation control (i.e., ALUOp, SRC1, or SRC2) is blank, the output is unused, so 
the associated signals may be set as don’t care.

The sequencing field can have four values: Fetch (meaning go to the Fetch 
state), Dispatch 1, Dispatch 2, and Seq. These four values are encoded to set the 
2-bit address control just as they were in Figure C.4.4: Fetch = 0, Dispatch 1 = 1, 
Dispatch 2 = 2, Seq = 3. Finally, we need to specify the contents of the dispatch 
tables to relate the dispatch entries of the sequence field to the symbolic labels in 
the microprogram. We use the same dispatch tables as we did earlier in Figure 
C.4.3.

A microcode assembler would use the encoding of the sequencing field, the 
contents of the symbolic dispatch tables in Figure C.5.2, the specification in Figure 
C.5.1, and the actual microprogram to generate the microinstructions.

Since the microprogram is an abstract representation of the control, there is a 
great deal of flexibility in how the microprogram is translated. For example, the 
address assigned to many of the microinstructions can be chosen arbitrarily; the 
only restrictions are those imposed by the fact that certain microinstructions must 

2 elbat hctapsid edocorciM1 elbat hctapsid

Opcode fi eld Opcode name Value Opcode fi eld Opcode name Value

000000 R-format Rformat1 100011 lw LW2

000010 jmp JUMP1 101011 sw SW2

000100 beq BEQ1

100011 lw Mem1

101011 sw Mem1

FIGURE C.5.2 The two microcode dispatch ROMs showing the contents in symbolic form 
and using the labels in the microprogram.
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occur in sequential order (so that incrementing the State register generates the 
address of the next instruction). Thus the microcode assembler may reduce the 
complexity of the control by assigning the microinstructions cleverly.

Organizing the Control to Reduce the Logic
For a machine with complex control, there may be a great deal of logic in the 
control unit. The control ROM or PLA may be very costly. Although our simple 
implementation had only an 18-bit microinstruction (assuming an explicit 
sequencer), there have been machines with microinstructions that are hundreds of 
bits wide. Clearly, a designer would like to reduce the number of microinstructions 
and the width.

The ideal approach to reducing control store is to first write the complete 
microprogram in a symbolic notation and then measure how control lines are set 
in each microinstruction. By taking measurements we are able to recognize control 
bits that can be encoded into a smaller field. For example, if no more than one of 
eight lines is set simultaneously in the same microinstruction, then this subset of 
control lines can be encoded into a 3-bit field (log2 8 = 3). This change saves five bits 
in every microinstruction and does not hurt CPI, though it does mean the extra 
hardware cost of a 3-to-8 decoder needed to generate the eight control lines when 
they are required at the datapath. It may also have some small clock cycle impact, 
since the decoder is in the signal path. However, shaving five bits off control store 
width will usually overcome the cost of the decoder, and the cycle time impact will 
probably be small or nonexistent. For example, this technique can be applied to bits 
13–6 of the microinstructions in this machine, since only one of the seven bits of 
the control word is ever active (see Figure C.4.5).

This technique of reducing field width is called encoding. To further save space, 
control lines may be encoded together if they are only occasionally set in the same 
microinstruction; two microinstructions instead of one are then required when 
both must be set. As long as this doesn’t happen in critical routines, the narrower 
microinstruction may justify a few extra words of control store.

Microinstructions can be made narrower still if they are broken into different 
formats and given an opcode or format field to distinguish them. The format field 
gives all the unspecified control lines their default values, so as not to change 
anything else in the machine, and is similar to the opcode of an instruction in a 
more powerful instruction set. For example, we could use a different format for 
microinstructions that did memory accesses from those that did register-register 
ALU operations, taking advantage of the fact that the memory access control lines 
are not needed in microinstructions controlling ALU operations.

Reducing hardware costs by using format fields usually has an additional 
performance cost beyond the requirement for more decoders. A microprogram 
using a single microinstruction format can specify any combination of operations 
in a datapath and can take fewer clock cycles than a microprogram made up of 
restricted microinstructions that cannot perform any combination of operations in 
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a single microinstruction. However, if the full capability of the wider microprogram 
word is not heavily used, then much of the control store will be wasted, and the 
machine could be made smaller and faster by restricting the microinstruction 
capability.

The narrow, but usually longer, approach is often called vertical microcode, while 
the wide but short approach is called horizontal microcode. It should be noted that 
the terms “vertical microcode” and “horizontal microcode” have no universal 
definition—the designers of the 8086 considered its 21-bit microinstruction to be 
more horizontal than in other single-chip computers of the time. The related terms 
maximally encoded and minimally encoded are probably better than vertical and 
horizontal.

 C.6 Concluding Remarks

We began this appendix by looking at how to translate a finite-state diagram to an 
implementation using a finite-state machine. We then looked at explicit sequencers 
that use a different technique for realizing the next-state function. Although large 
microprograms are often targeted at implementations using this explicit next-state 
approach, we can also implement a microprogram with a finite-state machine. As 
we saw, both ROM and PLA implementations of the logic functions are possible. 
The advantages of explicit versus encoded next state and ROM versus PLA 
implementation are summarized below.

Independent of whether the control is represented as a finite-state diagram 
or as a microprogram, translation to a hardware control implementation is 
similar. Each state or microinstruction asserts a set of control outputs and 
specifies how to choose the next state.

The next-state function may be implemented by either encoding it in a 
finite-state machine or using an explicit sequencer. The explicit sequencer 
is more efficient if the number of states is large and there are many 
sequences of consecutive states without branching.

The control logic may be implemented with either ROMs or PLAs (or 
even a mix). PLAs are more efficient unless the control function is very 
dense. ROMs may be appropriate if the control is stored in a separate 
memory, as opposed to within the same chip as the datapath.

The BIG  
Picture
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 C.7 Exercises

C.1 [10] <§C.2> Instead of using four state bits to implement the finite-state 
machine in Figure C.3.1, use nine state bits, each of which is a 1 only if the finite-
state machine is in that particular state (e.g., S1 is 1 in state 1, S2 is 1 in state 2, etc.). 
Redraw the PLA (Figure C.3.9).

C.2 [5] <§C.3> We wish to add the instruction jal (jump and link). Make any 
necessary changes to the datapath or to the control signals if needed. You can 
photocopy figures to make it faster to show the additions. How many product terms 
are required in a PLA that implements the control for the single-cycle datapath for 
jal?

C.3 [5] <§C.3> Now we wish to add the instruction addi (add immediate). 
Add any necessary changes to the datapath and to the control signals. How many 
product terms are required in a PLA that implements the control for the single-
cycle datapath for addiu?

C.4 [10] <§C.3> Determine the number of product terms in a PLA that 
implements the finite-state machine for addi. The easiest way to do this is to 
construct the additions to the truth tables for addi.

C.5 [20] <§C.4> Implement the finite-state machine of using an explicit counter 
to determine the next state. Fill in the new entries for the additions to Figure C.4.5. 
Also, add any entries needed to the dispatch ROMs of Figure C.5.2.

C.6 [15] <§§C.3–C.6> Determine the size of the PLAs needed to implement the 
multicycle machine, assuming that the next-state function is implemented with 
a counter. Implement the dispatch tables of Figure C.5.2 using two PLAs and the 
contents of the main control unit in Figure C.4.5 using another PLA. How does  
the total size of this solution compare to the single PLA solution with the next state 
encoded? What if the main PLAs for both approaches are split into two separate 
PLAs by factoring out the next-state or address select signals?
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 D.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in 
this appendix. The first group is the desktop and server RISCs:

■	 Digital Alpha

■	 Hewlett-Packard PA-RISC

■	 IBM and Motorola PowerPC

■	 MIPS INC MIPS-64

■	 Sun Microsystems SPARC
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The second group is the embedded RISCs:

■	 Advanced RISC Machines ARM

■	 Advanced RISC Machines Thumb

■	 Hitachi SuperH

■	 Mitsubishi M32R

■	 MIPS INC MIPS-16

Alpha MIPS I PA-RISC 1.1 PowerPC SPARCv8

Date announced            1992      1986    1986               1993           1987

Instruction size (bits) 32 32 32 32 32 

Address space (size, model) 64 bits, fl at 32 bits, fl at 48 bits, 
segmented

32 bits, fl at 32 bits, fl at 

 dengilA dengilanU dengilA dengilA dengilA tnemngila ataD

Data addressing modes 1 1 5 4 2 

 egaP egaP egaP egaP egaP noitcetorP

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB 

 deppam yromeM deppam yromeM deppam yromeM deppam yromeM deppam yromeM O/I

Integer registers (number, model, size) 31 GPR × 64 bits 31 GPR × 32 bits 31 GPR × 32 bits 32 GPR × 32 bits  31 GPR × 32 bits

Separate fl oating-point registers 31 × 32 or 
31 × 64 bits 

16 × 32 or 
16 × 64 bits 

56 × 32 or 
28 × 64 bits 

32 × 32 or 
32 × 64 bits 

32 × 32 or 
32 × 64 bits 

Floating-point format IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

FIGURE D.1.1 Summary of the first version of five architectures for desktops and servers. Except for the number of data 
address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure 
D.17.1. Later versions of these architectures all support a flat, 64-bit address space.

ARM Thumb SuperH M32R MIPS-16 

 6991 7991  5991  2991 5891 decnuonna etaD

Instruction size (bits) 32 16 16 16/32 16/32 

Address space (size, model) 32 bits, fl at 32 bits, fl at 32 bits, fl at 32 bits, fl at 32/64 bits, fl at 

 dengilA dengilA dengilA dengilA dengilA tnemngila ataD

Data addressing modes 6 6 4 3 2 

Integer registers (number, model, size) 15 GPR x 32 bits 8 GPR + SP, 
LR x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP, 
RA x 32/64 bits 

 deppam yromeM deppam yromeM deppam yromeM deppam yromeM deppam yromeM O/I

FIGURE D.1.2 Summary of five architectures for embedded applications. Except for number of data address modes and some 
instruction set details, the integer instruction sets of these architectures are similar. Contrast this with Figure D.17.1.
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There has never been another class of computers so similar. This similarity 
allows the presentation of 10 architectures in about 50 pages. Characteristics of the 
desktop and server RISCs are found in Figure D.1.1 and the embedded RISCs in 
Figure D.1.2.

Notice that the embedded RISCs tend to have eight to 16 general-purpose 
registers while the desktop/server RISCs have 32, and that the length of instructions 
is 16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Thumb 
and MIPS-16 are really optional modes of ARM and MIPS invoked by call 
instructions. When in this mode, they execute a subset of the native architecture 
using 16-bit-long instructions. These 16-bit instruction sets are not intended to be 
full architectures, but they are enough to encode most procedures. Both machines 
expect procedures to be homogeneous, with all instructions in either 16-bit mode 
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or 
in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have been 
extended over the years. We have decided to describe the latest versions of the 
architectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for 
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R 
version 1, and MIPS-16 version 1 for the embedded ones.

The remaining sections proceed as follows: after discussing the addressing 
modes and instruction formats of our RISC architectures, we present the survey of 
the instructions in five steps:

■	 Instructions found in the MIPS core, which is defined in Chapters 2 and 3 of 
the main text

■	 Multimedia extensions of the desktop/server RISCs

■	 Digital signal-processing extensions of the embedded RISCs

■	 Instructions not found in the MIPS core but found in two or more architectures

■	 The unique instructions and characteristics of each of the 10 architectures

We give the evolution of the instruction sets in the final section and conclude with 
speculation about future directions for RISCs.

 D.2 Addressing Modes and Instruction 
Formats

Figure D.2.1 shows the data addressing modes supported by the desktop 
architectures. Since all have one register that always has the value 0 when used in 
address modes, the absolute address mode with limited range can be synthesized 
using zero as the base in displacement addressing. (This register can be changed 
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by ALU operations in PowerPC; it is always 0 in the other machines.) Similarly, 
register indirect addressing is synthesized by using displacement addressing with 
an offset of 0. Simplified addressing modes is one distinguishing feature of RISC 
architectures.

Figure D.2.2 shows the data addressing modes supported by the embedded 
architectures. Unlike the desktop RISCs, these embedded machines do not reserve 
a register to contain 0. Although most have two to three simple addressing modes, 
ARM and SuperH have several, including fairly complex calculations. ARM has 
an addressing mode that can shift one register by any amount, add it to the other 
registers to form the address, and then update one register with this new address.

References to code are normally PC-relative, although jump register indirect 
is supported for returning from procedures, for case statements, and for pointer 
function calls. One variation is that PC-relative branch addresses are shifted left 
2 bits before being added to the PC for the desktop RISCs, thereby increasing the 
branch distance. This works because the length of all instructions for the desktop 
RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory. 
Embedded architectures with 16-bit-long instructions usually shift the PC-relative 
address by one for similar reasons.

Addressing mode Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Register + offset (displacement or based) X X X X X 

 X X )sdaoL( X )PF( X  )dexedni( retsiger + retsigeR

Register + scaled register (scaled)   X  

Register + offset and update register   X X  

Register + register and update register   X X  

FIGURE D.2.1 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short address 
versions of the offset addressing modes. MIPS-64 has indexed addressing for floating-point loads and stores. (These addressing modes are 
described in Figure 2.18.)

Addressing mode ARMv4 Thumb SuperH M32R MIPS-16 

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X   

   X )delacs( retsiger delacs + retsigeR

Register + offset and update register X     

Register + register and update register X     

  X X   tceridni retsigeR

Autoincrement, autodecrement X X X X 

)sdaol( X  X )sdaol( X X atad evitaler-CP

FIGURE D.2.2 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R have 
separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the latter mode. This increases the 
use of 16-bit instructions in the M32R, and it gives a wider set of address modes to different data transfer instructions in SuperH. To get 
greater addressing range, ARM and Thumb shift the offset left one or two bits if the data size is halfword or word. (These addressing modes are 
described in Figure 2.18.)
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Figure D.2.3 shows the format of the desktop RISC instructions, which include 
the size of the address. Each instruction set architecture uses these four primary 
instruction formats. Figure D.2.4 shows the six formats for the embedded RISC 
machines. The desire to have smaller code size via 16-bit instructions leads to more 
instruction formats.

Register-register

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 4 0

31 25 20 15 10 4 0

Op6 Opx11

Opx6

Opx11

Opx8

Opx11

Op6

Op6

Op6

Rs15

Rs15

Rs15

Rd5

Rd5

Rd5

Rd5

Const5

Op2 Opx6

Rs25

Rs15 0

Rs25

Rs25

Rs25

Rs25

Rs15

Rd5

Register-immediate

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 0

051025213

Op6 Const16

Const16

Const16

Const16

Const13

Op6

Op6

Op6

Rd5

Rs15

Rs25

Rd5

Op2 Opx6

Rs15

Rs15 1

Rd5

Rd5

Rs15

Rd5

Branch

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 18 12 01

051025213

Op6 Const21

Const16

Const14 Opx2

Const11 O C

Const19

Op6

Op6

Op6

Rs15

Rs15

Rs25

Opx6

Op2 Opx11

Opx3

Opx5/Rs25

Rs15

Rs15

Jump/call

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 20 15 12 01

0025213

Op6 Const21

Const26

Const24 Opx2

Const21 O1 C1

Const30

Op6

Op6

Op6

Rs15

Op2

Opcode Register Constant

FIGURE D.2.3 Instruction formats for desktop/server RISC architectures. These four formats 
are found in all five architectures. (The superscrift notation in this figure means the width of a field in bits.) 
Although the register fields are located in similar pieces of the instruction, be aware that the destination and 
two source fields are scrambled. Op = the main opcode, Opx = an opcode extension, Rd = the destination 
register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an immediate or as 
an address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations 
that is different from the data transfer format shown here. It provides an 8-bit immediate in bits 20 to 13 of 
the RR format, with bits 12 to 5 remaining as an opcode extension.
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Opcode Register Constant

Register-register

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 1 0

31 27 19 15 11 3 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8

Op6

Op4

Op4 Rd4

Rd4

Rs24

Op5 Rs13 Rs23

Rs14 Rd4

Opx2

Rd3Rs3

Rs4

Rd3

Rs14

Register-immediate

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4

Op5 Rs3 Const5

Rs14 Rd4

Rd3 Const8

Const8

Rs4

Rd3

Const16

Data transfer

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4 Rs4

Op5 Rs3 Const5

Rs14 Rd4

Const5 Rs3 Rd3

Const4

Rs4

Rd3

Const16

Branch

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 0

0327213

Opx4

Opx4

Opx4

Op4 Const24

Op4

Op8

Op4 Rd4

Op5 Const8

Const8

Const8

Rs4

Rd3

Const16

Jump

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 0

0327213

Opx4

Opx4

Op4 Const24

Op5

Op4

Op4

Op5 Const11

Const11

Const12

Const8

Call

ARM

Thumb

SuperH

M32R

MIPS-16

05251

0327213

Opx4

Op8

Op4 Const24

Op5

Op4

Op6 Const26

Const11 Opx5 Const11

Const12

Const24

FIGURE D.2.4 Instruction formats for embedded RISC architectures. These six formats are 
found in all five architectures. The notation is the same as in Figure D.2.3. Note the similarities in branch, 
jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats. 
The differences result from whether the architecture has eight or 16 registers, whether it is a two- or three-
operand format, and whether the instruction length is 16 or 32 bits.
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Figures D.2.5 and D.2.6 show the variations in extending constant fields to 
the full width of the registers. In this subtle point, the RISCs are similar but not 
identical.

 D.3 Instructions: The MIPS Core Subset

The similarities of each architecture allow simultaneous descriptions, starting with 
the operations equivalent to the MIPS core.

MIPS Core Instructions
Almost every instruction found in the MIPS core is found in the other architectures, 
as Figures D.3.1 through D.3.5 show. (For reference, definitions of the MIPS 
instructions are found in the MIPS Reference Data Card at the beginning of the 
book.) Instructions are listed under four categories: data transfer (Figure D.3.1); 
arithmetic/logical (Figure D.3.2); control (Figure D.3.3); and floating point  
(Figure D.3.4). A fifth category (Figure D.3.5) shows conventions for register 

Format: instruction category Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

ngiSngiSngiSngiSngiSlla:hcnarB

ngiSngiSngiS—ngiSlla:llac/pmuJ

Register-immediate: data transfer Sign Sign Sign Sign Sign 

Register-immediate: arithmetic Zero Sign Sign Sign Sign 

ngiSoreZ—oreZoreZlacigol:etaidemmi-retsigeR

FIGURE D.2.5 Summary of constant extension for desktop RISCs. The constants in the jump and call instructions of MIPS are 
not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate 
instructions.

Format: instruction category Armv4 Thumb SuperH M32R MIPS-16 

 ngiS ngiS ngiS ngiS ngiS lla :hcnarB

 — ngiS ngiS oreZ/ngiS ngiS lla :llac/pmuJ

Register-immediate: data transfer Zero Zero Zero Sign Zero 

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign 

 — oreZ oreZ — oreZlacigol :etaidemmi-retsigeR

FIGURE D.2.6 Summary of constant extension for embedded RISCs. The 16-bit-length instructions have much shorter 
immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have a way to get a long address for 
procedure calls from two sequencial halfwords. The constants in the jump and call instructions of MIPS are not sign-extended, since they only 
replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. The 8-bit immediates in ARM can be rotated right an even number of 
bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM.
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usage and pseudoinstructions on each architecture. If a MIPS core instruction 
requires a short sequence of instructions in other architectures, these instructions 
are separated by semicolons in Figures D.3.1 through D.3.5. (To avoid confusion, 
the destination register will always be the leftmost operand in this appendix, 
independent of the notation normally used with each architecture.) Figures D.3.6 
through D.3.9 show the equivalent listing for embedded RISCs. Note that floating 
point is generally not defined for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch, but 
despite all the similarities, each of these architectures has found a different way to 
perform the operation.

Compare and Conditional Branch
SPARC uses the traditional four condition code bits stored in the program status 
word: negative, zero, carry, and overflow. They can be set on any arithmetic or logical 
instruction; unlike earlier architectures, this setting is optional on each instruction. 
An explicit option leads to fewer problems in pipelined implementation. Although 
condition codes can be set as a side effect of an operation, explicit compares are 
synthesized with a subtract using r0 as the destination. SPARC conditional branches 

Data transfer 
(instruction formats) 

R-I R-I R-I, R-R R-I, R-R R-I, R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Load byte signed LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB 
Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB 
Load halfword signed LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH 
Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH 
Load word LDLS LW LDW, LDWX, LDWS LW LD 
Load SP fl oat LDS* LWC1 FLDWX, FLDWS LFS LDF 
Load DP fl oat LDT LDC1 FLDDX, FLDDS LFD LDDF 
Store byte STB SB STB, STBX, STBS STB STB 
Store halfword STW SH STH, STHX, STHS STH STH 
Store word STL SW STW, STWX, STWS STW ST 
Store SP fl oat STS SWC1 FSTWX, FSTWS STFS STF 
Store DP fl oat STT SDC1 FSTDX, FSTDS STFD STDF 
Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_, 

MTSPR, MT_ 
RD, WR, RDPR, WRPR, 
LDXFSR, STXFSR 

Move integer to FP register ITOFS MFC1/DMFC1 STW; FLDWX STW; LDFS ST; LDF 
Move FP to integer register FTTOIS MTC1/DMTC1 FSTWX; LDW STFS; LW STF; LD 

FIGURE D.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize a 
MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated 
by commas. For this figure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single-precision floating point to double 
precision and loads the entire 64-bit register.
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Arithmetic/logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Add ADDL ADDU, ADDU ADDL, LD0, ADDI, 
UADDCM

ADD, ADDI ADD

Add (trap if overfl ow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; MCRXR; BC ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overfl ow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT, MULTU SHiADD;...; (i=1,2,3) MULLW, MULLI MULX

Multiply (trap if overfl ow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overfl ————— )wo 

And AND AND, ,DNADNAIDNA  ANDI AND

Or BIS OR, ,ROROIRO  ORI OR

Xor XOR XOR, ,ROXROXIROX  XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI 
(B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL
Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL 
Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA
Compare CMPEQ, CMPLT, 

CMPLE
SLT/U, ccBUSRLC)I(PMCBMOCU/ITLS  r0,... 

FIGURE D.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not 
available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If 
there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category, 
all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of these 
instructions but uses a single mnemonic. (Of course these are separate opcodes!)

Control 
(instruction formats) 

B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Branch on integer compare B_ (<, >, <=, 
>=, =, not=)

BEQ, BNE, B_Z 
(<, >, <=, >=) 

COMB, COMIB BC BR_Z, BPcc (<, 
>, <=, >=, =, 
not=) 

Branch on fl oating-point 
compare

FB_(<, >, <=, 
>=, =, not=)

BC1T, BC1F FSTWX f0; 
LDW t; BB t 

BC FBPfcc (<, >, 
<=, >=, =,...) 

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...
Call, call register BSR JAL, JALR BL, BLE BL, BLA, 

BCLRL, BCCTRL
CALL, JMPL 

Trap CALL_PAL 
GENTRAP 

BREAK BREAK TW, TWI Ticc, SIR 

Return from interrupt CALL_PAL REI JR; ERET RFI, RFIR RFI DONE, RETRY, 
RETURN

FIGURE D.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equivalent 
to MIPS core, they are separated by commas.
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test condition codes to determine all possible unsigned and signed relations. 
Floating point uses separate condition codes to encode the IEEE 754 conditions, 
requiring a floating-point compare instruction. Version 9 expanded SPARC 
branches in four ways: a separate set of condition codes for 64-bit operations; a 
branch that tests the contents of a register and branches if the value is =, not =, <, 
<=, >=, or <= 0 (see MIPS below); three more sets of floating-point condition 
codes; and branch instructions that encode static branch prediction.

PowerPC also uses four condition codes—less than, greater than, equal, and 
summary overflow—but it has eight copies of them. This redundancy allows the 
PowerPC instructions to use different condition codes without conflict, essentially 
giving PowerPC eight extra 4-bit registers. Any of these eight condition codes can 
be the target of a compare instruction, and any can be the source of a conditional 
branch. The integer instructions have an option bit that behaves as if the integer op 

Floating point  
(instruction formats) R-R R-R R-R R-R R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Add single, double ADDS, ADDT ADD.S, ADD.D FADD FADD/dbl FADDS, FADD FADDS, FADDD 
Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB FSUB/dbl FSUBS, FSUB FSUBS, FSUBD 
Multiply single, double MULS, MULT MUL.S, MUL.D FMPY FMPY/dbl FMULS, FMUL FMULS, FMULD 
Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, FDIV/dbl FDIVS, FDIV FDIVS, FDIVD 
Compare CMPT_ (=, <, 

<=, UN)
C_.S, C_.D (<, >, 
<=, >=, =,...) 

FCMP, FCMP/dbl 
(<, =, >) 

FCMP FCMPS, FCMPD 

Move R-R ADDT Fd, F31, Fs MOV.S, MOV.D FCPY FMV FMOVS/D/Q 
Convert (single, double, 
integer) to (single, 
double, integer)

CVTST, CVTTS, 
CVTTQ, CVTQS, 
CVTQT 

CVT.S.D, CVT.
D.S, CVT.S.W, 
CVT.D.W, CVT.
W.S, CVT.W.D

FCNVFF,s,d 
FCNVFF,d,s 
FCNVXF,s,s 
FCNVXF,d,d 
FCNVFX,s,s 
FCNVFX,d,s

—, FRSP, —, 
FCTIW,—, — 

FSTOD, FDTOS, 
FSTOI, FDTOI, 
FITOS, FITOD 

FIGURE D.3.4 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not available in 
that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are separated 
by commas.

Conventions Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0 
Return address register (any) r31 r2, r31 link (special) r31 

No-op LDQ_U r31,... SLL r0, r0, r0 OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0 
Move R-R integer BIS..., r31,... ADD..., r0,... OR..., r0,... OR rx, ry, ry OR..., r0,... 
Operand order OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd 

FIGURE D.3.5 Conventions of desktop RISC architectures equivalent to MIPS core.
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is followed by a compare to zero that sets the first condition “register.” PowerPC 
also lets the second “register” be optionally set by floating-point instructions. 
PowerPC provides logical operations among these eight 4-bit condition code 
registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more 
complex conditions to be tested by a single branch.

MIPS uses the contents of registers to evaluate conditional branches. Any two 
registers can be compared for equality (BEQ) or inequality (BNE), and then the 
branch is taken if the condition holds. The set on less than instructions (SLT, SLTI, 
SLTU, SLTIU) compare two operands and then set the destination register to 1 
if less and to 0 otherwise. These instructions are enough to synthesize the full set 
of relations. Because of the popularity of comparisons to 0, MIPS includes special 
compare and branch instructions for all such comparisons: greater than or equal to 
zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less 
than zero (BLTZ). Of course, equal and not equal to zero can be synthesized using 
r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for floating point 
with separate floating-point compare and branch instructions; MIPS IV expanded 
this to eight floating-point condition codes, with the floating point comparisons 
and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers 
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point 
compares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition 
holds and to 0 otherwise. The branch instructions compare one register to 0 (BEQ, 
BGE, BGT, BLE, BLT, BNE) or its least significant bit to 0 (BLBC, BLBS) and 
then branch if the condition holds.

Instruction name ARMv4  Thumb SuperH M32R MIPS-16 

Data transfer  (instruction formats) DT DT DT DT DT 

Load byte signed LDRSB LDRSB MOV.B LDB LB 
Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU 
Load halfword signed LDRSH LDRSH MOV.W LDH LH 
Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU 
Load word LDR LDR MOV.L LD LW 
Store byte STRB STRB MOV.B STB SB 
Store halfword STRH STRH MOV.W STH SH 
Store word STR STR MOV.L ST SW 
Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE 

FIGURE D.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize 
a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defined for the embedded RISCs. Thumb and 
MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction 
set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.
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PA-RISC has many branch options, which we’ll see in Section D.11. The most 
straightforward is a compare and branch instruction (COMB), which compares two 
registers, branches depending on the standard relations, and then tests the least 
significant bit of the result of the comparison.

ARM is similar to SPARC, in that it provides four traditional condition codes 
that are optionally set. CMP subtracts one operand from the other and the difference 
sets the condition codes. Compare negative (CMN) adds one operand to the other, 
and the sum sets the condition codes. TST performs logical AND on the two 
operands to set all condition codes but overflow, while TEQ uses exclusive OR to 
set the first three condition codes. Like SPARC, the conditional version of the ARM 
branch instruction tests condition codes to determine all possible unsigned and 
signed relations.

Arithmetic/logical 
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARMv4  Thumb SuperH M32R MIPS-16 

Add ADD ADD ADD ADD, ADDI, ADD3 ADDU, ADDIU 

Add (trap if overfl ow) ADDS; SWIVS ADD; BVC .+4; SWI ADDV ADDV, ADDV3 —1 

Subtract SUB SUB SUB SUB SUBU 

Subtract (trap if overfl ow) SUBS; SWIVS SUB; BVC .+1; SWI SUBV SUBV —1 

Multiply MUL MUL MUL MUL MULT, MULTU 

Multiply (trap if overfl ow) —

Divide — — DIV1, DIVoS, 
DIVoU 

DIV, DIVU DIV, DIVU 

Divide (trap if overfl ——— )wo 

And AND AND AND AND, AND3 AND 

Or ORR ORR OR OR, OR3 OR 

Xor EOR EOR XOR XOR, XOR3 XOR 

Load high part register — — SETH —1 

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, SLL3 SLLV, SLL 

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, SRL3 SRLV, SRL 

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, SRA3 SRAV, SRA 

Compare CMP,CMN, 
TST,TEQ 

CMP, CMN, TST CMP/cond, 
TST 

CMP/I, CMPU/I CMP/I2, SLT/I, 
SLT/IU 

FIGURE D.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not 
available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. 
If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Thumb and MIPS-16 are just 16-bit 
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to 
show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found 
only in 16-bit mode of Thumb or MIPS-16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with 
superscript 3 are just a variation of a move instruction, such as LSR3.
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As we shall see in Section D.12, one unusual feature of ARM is that every 
instruction has the option of executing conditionally depending on the condition 
codes. (This bears similarities to the annulling option of PA-RISC, seen in Section 
D.11.)

Not surprisingly, Thumb follows ARM. The differences are that setting condition 
codes are not optional, the TEQ instruction is dropped, and there is no conditional 
execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare 
instructions. Two branch instructions decide to branch if either the T bit is 1 
(BT) or the T bit is 0 (BF). The two flavors of branches allow fewer comparison 
instructions.

Mitsubishi M32R also offers a single condition code bit (C) used for signed and 
unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less 
than the other or not, similar to the MIPS set on less than instructions. Two branch 
instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also includes 
instructions to branch on equality or inequality of registers (BEQ and BNE) and all 
relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike 
BC and BNC, these last instructions are all 32 bits wide.

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU), 
but instead of putting the result in one of the eight registers, it is placed in a special 
register named T. MIPS-16 is always implemented in machines that also have the 
full 32-bit MIPS instructions and registers; hence, register T is really register 24 in 
the full MIPS architecture. The MIPS-16 branch instructions test to see if a register 
is or is not equal to zero (BEQZ and BNEZ). There are also instructions that branch 

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C 

Instruction name ARMv4   Thumb SuperH M32R MIPS-16 

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, BC, BNC, B__Z BEQZ2, BNEZ2, BTEQZ2, 
BTNEZ2

Jump, jump register MOV pc, ri MOV pc, ri BRA, JMP BRA, JMP B2, JR 

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

 KAERB PART APART IWS IWS parT

Return from interrupt MOVS pc, r14 —1 — ETR STR 1

FIGURE D.3.8 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS-16 are just 16-bit instruction 
subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show sequences 
that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit 
mode of Thumb or MIPS-16, such as BTEQZ2.

Conventions ARMv4   Thumb SuperH M32R MIPS-16 

Return address reg. R14 R14 PR (special) R14 RA (special) 

No-op MOV r0, r0 MOV r0, r0 NOP NOP SLL r0, r0 

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2 

FIGURE D.3.9 Conventions of embedded RISC instructions equivalent to MIPS core.
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if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two registers are 
equal, MIPS added compare instructions (CMP, CMPI) that compute the exclusive 
OR of two registers and place the result in register T. Compare was added since 
MIPS-16 left out instructions to compare and branch if registers are equal or not 
(BEQ and BNE).

Figures D.3.10 and D.3.11 summarize the schemes used for conditional branches.

 D.4 Instructions: Multimedia Extensions of 
the Desktop/Server RISCs

Since every desktop microprocessor by definition has its own graphical displays, 
as transistor budgets increased it was inevitable that support would be added for 
graphics operations. Many graphics systems use 8 bits to represent each of the three 
primary colors plus 8 bits for the location of a pixel.

Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Number of condition code bits 
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer, 4 × 2 FP 

Basic compare instructions 
(integer and FP) 

1 integer, 1 FP 1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP 

Basic branch instructions 
(integer and FP) 

1 2 integer, 1 FP 7 integer 1 both 3 integer, 1 FP 

Compare register with 
register/const and branch 

— =, not= =, not=, <, <=, >, >=, 
even, odd

— — 

Compare register to zero and 
branch

=, not=, <, <=, >, 
>=, even, odd 

=, not=, <, <=, 
>, >= 

=, not=, <, <=, >, >=, 
even, odd 

— =, not=, <, <=, >, >= 

FIGURE D.3.10 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is 
accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison 
bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARMv4   Thumb SuperH M32R MIPS-16 

Number of condition code bits 4 4 1 1 1 

Basic compare instructions 4 3 2 2 2 

Basic branch instructions 1 1 2 3 2 

Compare register with register/const 
and branch

— — =, >, >= =, not= — 

Compare register to zero and branch — —  =, >, >= =, not=, <, <=, >, >= =, not= 

FIGURE D.3.11 Summary of five embedded RISC approaches to conditional branches.



 D.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs D-17

The addition of speakers and microphones for teleconferencing and video 
games suggested support of sound as well. Audio samples need more than 8 bits of 
precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take 
up less space when stored in memory, but due to the infrequency of arithmetic 
operations on these data sizes in typical integer programs, there is little support 
beyond data transfers. The architects of the Intel i860, which was justified as a 
graphical accelerator within the company, recognized that many graphics and 
audio applications would perform the same operation on vectors of these data. 
Although a vector unit was beyond the transistor budget of the i860 in 1989, by 
partitioning the carry chains within a 64-bit ALU, it could perform simultaneous 
operations on short vectors of eight 8-bit operands, four 16-bit operands, or two 
32-bit operands. The cost of such partitioned ALUs was small. Applications that 
lend themselves to such support include MPEG (video), games like DOOM (3-D 
graphics), Adobe Photoshop (digital photography), and teleconferencing (audio 
and image processing).

Like a virus, over time such multimedia support has spread to nearly every 
desktop microprocessor. HP was the first successful desktop RISC to include such 
support. As we shall see, this virus spread unevenly. The PowerPC is the only 
holdout, and rumors are that it is “running a fever.”

These extensions have been called subword parallelism, vector, or SIMD (single-
instruction, multiple data) (see Chapter  6). Since Intel marketing uses SIMD to 
describe the MMX extension of the 8086, that has become the popular name. 
Figure D.4.1 summarizes the support by architecture.

From Figure D.4.1, you can see that, in general, MIPS MDMX works on eight 
bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-
words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do 
much. The Alpha MAX operations are just byte versions of compare, min, max, and 
absolute difference, leaving it up to software to isolate fields and perform parallel 
adds, subtracts, and multiplies on bytes and halfwords. MIPS also added operations 
to work on two 32-bit floating-point operands per cycle, but they are considered 
part of MIPS V and not simply multimedia extensions (see Section D.7).

One feature not generally found in general-purpose microprocessors is 
saturating operations. Saturation means that when a calculation overflows, the 
result is set to the largest positive number or most negative number, rather than a 
modulo calculation as in two’s complement arithmetic. Commonly found in digital 
signal processors (see the next section), these saturating operations are helpful in 
routines for filtering.

These machines largely used existing register sets to hold operands: integer 
registers for Alpha and HP PA-RISC and floating-point registers for MIPS and Sun. 
Hence data transfers are accomplished with standard load and store instructions. 
MIPS also added a 192-bit (3*64) wide register to act as an accumulator for some 
operations. By having three times the native data width, it can be partitioned to 
accumulate either eight bytes with 24 bits per field or four halfwords with 48 bits 
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per field. This wide accumulator can be used for add, subtract, and multiply/ add 
instructions. MIPS claims performance advantages of two to four times for the 
accumulator.

Perhaps the surprising conclusion of this table is the lack of consistency. The 
only operations found on all four are the logical operations (AND, OR, XOR), 
which do not need a partitioned ALU. If we leave out the frugal Alpha, then the 
only other common operations are parallel adds and subtracts on four halfwords.

Each manufacturer states that these are instructions intended to be used in 
hand-optimized subroutine libraries, an intention likely to be followed, as a 
compiler that works well with multimedia extensions of all desktop RISCs would 
be challenging.

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS 

 W2 ,H4 H4 H4 ,B8 tcartbus/ddA

 H4 H4 ,B8 bus/dda gnitarutaS

 H/B4 H4 ,B8ylpitluM

 )=< ,> ,=ton ,=( W2 ,H4 )=<,<,=( H4 ,B8 )=>( B8 erapmoC

 H4 H4 ,B8 tfel/thgir tfihS

 H4 H4 citemhtira thgir tfihS

 H4 ,B8 dda dna ylpitluM

Shift and add 
(saturating) 

4H 

 W2 ,H4 ,B8 W2 ,H4 ,B8 W2 ,H4 ,B8 W2 ,H4 ,B8 rox/ro/dnA

Absolute difference 8B 8B 

Max/min 8B, 4W 8B, 4H 

Pack (2n bits --> n  ,B2>-W2 ,H2>-W2B8>-H4*2 B8>-H4*2 ,H4>-W2*2 B4>-H4 ,B2>-W2 )stib 
4H->4B 

B8>-B4*2 ,H4>-B4H4>-H2*2 ,B8>-B4*2 H4>-B4 ,W2>-B2 egrem/kcapnU

 H4 H4 ,B8e flfuhs/etumreP

 .tP .lF regetnI .ccA b291 + .tP .lF regetnI stes retsigeR

FIGURE D.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits), and 
W for word (32 bits). Thus 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean 
two operands each with two words. Note that MDMX has vector/scalar operations, where the scalar is specified as an element of one of 
the vector registers. This table is a simplification of the full multimedia architectures, leaving out many details. For example, MIPS MDMX 
includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes 
instructions to set registers to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.
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 D.5 Instructions: Digital Signal-Processing 
Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support 
for integer multiply-accumulate. The multiplies tend to be on shorter words than 
regular integers, such as 16 bits, and the accumulator tends to be on longer words, 
such as 64 bits. The reason for multiply-accumulate is to efficiently implement 
digital filters, common in DSP applications. Since Thumb and MIPS-16 are subset 
architectures, they do not provide such support. Instead, programmers should use 
the DSP or multimedia extensions found in the 32-bit mode instructions of ARM 
and MIPS-64.

Figure D.5.1 shows the size of the multiply, the size of the accumulator, and 
the operations and instruction names for the embedded RISCs. Machines with 
accumulator sizes greater than 32 and less than 64 bits will force the upper bits 
to remain as the sign bits, thereby “saturating” the add to set to maximum and 
minimum fixed-point values if the operations overflow.

ARMv4 Thumb SuperH M32R MIPS-16 

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B — 

 — B65 B46/B84 ,B24/B23 — B46/B23 rotalumucca fo eziS

 — CCA LCAM ,HCAM — sRPG fo sriap ro RPG ynA eman rotalumuccA

Operations 32B/64B product + 64B 
accumulate signed/
unsigned

— 32B product + 42B/32B 
accumulate (operands in 
memory); 64B product 
+ 64B/48B accumulate 
(operands in memory); clear 
MAC 

32B/48B product + 
64B accumulate, 
round, move

— 

Corresponding 
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, MAC.LS, 
CLRMAC

MACHI/MACLO, 
MACWHI/MACWLO, 
RAC, RACH, MVFACHI/
MVFACLO, MVTACHI/
MVTACLO 

— 

FIGURE D.5.1 Summary of five embedded RISC approaches to multiply-accumulate.
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 D.6 Instructions: Common Extensions to 
MIPS Core

Figures D.6.1 through D.6.7 list instructions not found in Figures D.3.5 through 
D.3.11 in the same four categories. Instructions are put in these lists if they appear 
in more than one of the standard architectures. The instructions are defined using 
the hardware description language defined in Figure D.6.8.

Although most of the categories are self-explanatory, a few bear comment:

■	 The “atomic swap” row means a primitive that can exchange a register with 
memory without interruption. This is useful for operating system semaphores 
in a uniprocessor as well as for multiprocessor synchronization (see Section 
2.11 in Chapter 2).

■	 The 64-bit data transfer and operation rows show how MIPS, PowerPC, 
and SPARC define 64-bit addressing and integer operations. SPARC simply 
defines all register and addressing operations to be 64 bits, adding only 

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Atomic swap R/M 
(for locks and 
semaphores) 

Temp<---Rd;  Rd<–Mem[x]; 
Mem[x]<---Temp

LDL/Q_L; 
STL/Q_C 

LL; SC — (see D.8) LWARX; 
STWCX 

CASA, CASX

Load 64-bit integer Rd<–64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer 
unsigned 

Rd32..63<–32 Mem[x]; 
Rd0..31<–32 0 

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer 
signed 

Rd32..63<–32 Mem[x]; 32 
Rd0..31<–32 Mem[x]0 

LDL LW LDW; EXTRD,S 
63, 8 

LWA LDSW

Prefetch Cache[x]<–hint FETCH, 
FETCH_M*

PREF, PREFX LDD, r0 
LDW, r0 

DCBT, 
DCBTST 

PRE-FETCH 

Load coprocessor Coprocessor<– Mem[x] —  LWCi CLDWX, CLDWS —  — 

Store coprocessor Mem[x]<– Coprocessor —  SWCi CSTWX, CSTWS — — 

Endian (Big/little endian?) Either Either Either Either Either

Cache fl ush (Flush cache block at this 
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared memory 
synchronization

(All prior data transfers 
complete before next data 
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

FIGURE D.6.1 Data transfer instructions not found in MIPS core but found in two or more of the five desktop 
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing 
data to be read from memory, modified, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see 
Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, 
R31, and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190).
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special instructions for 64-bit shifts, data transfers, and branches. MIPS 
includes the same extensions, plus it adds separate 64-bit signed arithmetic 
instructions. PowerPC adds 64-bit right shift, load, store, divide, and compare 
and has a separate mode determining whether instructions are interpreted as 
32- or 64-bit operations; 64-bit operations will not work in a machine that 

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

64-bit integer 
arithmetic ops

Rd<–64Rs1 op64 Rs2 ADD, 
SUB, MUL

DADD, DSUB 
DMULT, DDIV

ADD, SUB, 
SHLADD, DS

ADD, SUBF, 
MULLD, DIVD

ADD, SUB, 
MULX, 
S/UDIVX 

64-bit integer 
logical ops

Rd<–64Rs1 op64 Rs2 AND, OR, 
XOR

AND, OR, 
XOR

AND, OR, XOR AND, OR, XOR AND, OR, 
XOR

64-bit shifts Rd<–64Rs1 op64 Rs2 SLL, 
SRA, SRL

DSLL/V, 
DSRA/V, 
DSRL/V

DEPD,Z 
EXTRD,S 
EXTRD,U

SLD, SRAD, 
SRLD

SLLX, SRAX, 
SRLX 

Conditional move if (cond) Rd<–Rs CMOV_ MOVN/Z SUBc, n; ADD — MOVcc, MOVr 

Support for 
multiword integer 
add

CarryOut, Rd <– Rs1 + 
Rs2 + OldCarryOut

— ADU; SLTU; 
ADDU, DADU; 
SLTU; DADDU

ADDC ADDC, ADDE ADDcc 

Support for 
multiword integer 
sub 

CarryOut, Rd <– Rs1 
Rs2 + OldCarryOut

— SUBU; SLTU; 
SUBU, 
DSUBU; 
SLTU; DSUBU 

SUBB SUBFC, SUBFE SUBcc  

And not Rd <– Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN 

Or not Rd <– Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<–Rs10..15 + 
(Const<<16);

— — ADDIL (R-I) ADDIS (R-I) — 

Coprocessor 
operations

(Defi ned by coprocessor) — COPi COPR,i — IMPDEPi 

FIGURE D.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop 
architectures.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Optimized delayed 
branches

(Branch not always 
delayed) 

— BEQL, BNEL, 
B_ZL (<, >, 
<=, >=)

COMBT, n, 
COMBF, n

— BPcc, A, 
FPBcc, A 

Conditional trap if (COND) {R31<---PC; PC 
<–0..0#i} 

— T_,,T_I (=, 
not=, <, >, 
<=, >=)

SUBc, n; BREAK TW, TD, TWI, 
TDI 

Tcc 

No. control 
registers 

Misc. regs (virtual 
memory, interrupts, . . .)

6 equiv. 12 32 33 29

FIGURE D.6.3 Control instructions not found in MIPS core but found in two or more of the five desktop architectures.
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only supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and 
operations in version 2.0.

■	 The “prefetch” instruction supplies an address and hint to the implementation 
about the data. Hints include whether the data are likely to be read or written 
soon, likely to be read or written only once, or likely to be read or written 
many times. Prefetch does not cause exceptions. MIPS has a version that 
adds two registers to get the address for floating-point programs, unlike 
nonfloating-point MIPS programs.

■	 In the “Endian” row, “Big/little” means there is a bit in the program status 
register that allows the processor to act either as big endian or little endian 
(see Appendix A). This can be accomplished by simply complementing some 
of the least significant bits of the address in data transfer instructions.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARCv9 

Multiply and add Fd <– ( Fs1 × Fs2) 
+ Fs3 

— MADD.S/D FMPYFADD sgl/dbl FMADD/S 

Multiply and sub Fd <– ( Fs1 × Fs2) 
– Fs3 

— MSUB.S/D FMSUB/S 

Neg mult and add Fd <– -(( Fs1 × Fs2) 
+ Fs3) 

— NMADD.S/D FMPYFNEG sgl/dbl FNMADD/S 

Neg mult and sub Fd <– -(( Fs1 × Fs2) 
– Fs3) 

— S/BUSMNFD/S.BUSMN  

Square root Fd <– SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<–Fs FCMOV_ MOVF/T, 
MOVF/T.S/D 

FTESTFCPY — FMOVcc 

Negate Fd <– Fs ^ 
x80000000 

CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q 

Absolute value Fd <– Fs & 
x7FFFFFFF 

— ABS.S/D FABS/dbl FABS FABSS/D/Q 

FIGURE D.6.4 Floating-point instructions not found in MIPS core but found in two or more of the five desktop 
architectures.

Name Defi nition ARMv4   Thumb SuperH M32R MIPS-16 

Atomic swap R/M (for 
semaphores)

Temp<–Rd; Rd<–Mem[x]; 
Mem[x]<–Temp

SWP, SWPB —1 (see TAS) LOCK; UNLOCK —1 

Memory management unit Paged address translation Via coprocessor 
instructions

—1 LDTLB —1

Endian (Big/little endian?) Either Either Either Big Either 

FIGURE D.6.5 Data transfer instructions not found in MIPS core but found in two or more of the five embedded 
architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.
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■	 The “shared memory synchronization” helps with cache-coherent multi-
processors: all loads and stores executed before the instruction must complete 
before loads and stores after it can start. (See Chapter 2.)

■	 The “coprocessor operations” row lists several categories that allow for the 
processor to be extended with special-purpose hardware.

Name Defi nition ARMv4   Thumb SuperH M32R MIPS-16 

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI 

Support for multiword integer add CarryOut, Rd <--- Rd + Rs1 + 
OldCarryOut

ADCS ADC ADDC ADDX  —1 

Support for multiword integer sub CarryOut, Rd <--- Rd – Rs1 + 
OldCarryOut

SBCS SBC SUBC SUBX —1 

 1sR – 0 ---< dR etageN NEG2 NEG NEG NEG 

 )1sR(~ ---< dRtoN MVN MVN NOT NOT NOT 

 1sR ---< dR evoM MOV MOV MOV MV MOVE 

Rotate right Rd <--- Rs i, >> Rd0. . . i–1 <--- 
Rs31–i. . . 31

ROR ROR ROTC

 )2sR(~ & 1sR ---< dR ton dnA BIC BIC 

FIGURE D.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embedded 
architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb or MIPS-16. The superscript 
2 shows new instructions found only in 16-bit mode of Thumb or MIPS-16, such as NEG2.

Name Defi nition ARMv4   Thumb SuperH M32R MIPS-16 

No. control registers Misc. registers 21 29  9 5 36 

FIGURE D.6.7 Control information in the five embedded architectures.

One difference that needs a longer explanation is the optimized branches. Figure 
D.6.9 shows the options. The Alpha and PowerPC offer branches that take effect 
immediately, like branches on earlier architectures. To accelerate branches, these 
machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs 
offer delayed branches. The embedded RISCs generally do not support delayed 
branch, with the exception of SuperH, which has it as an option.

The other three desktop RISCs provide a version of delayed branch that makes it 
easier to fill the delay slot. The SPARC “annulling” branch executes the instruction 
in the delay slot only if the branch is taken; otherwise the instruction is annulled. 
This means the instruction at the target of the branch can safely be copied into the 
delay slot, since it will only be executed if the branch is taken. The restrictions are 
that the target is not another branch and that the target is known at compile time. 
(SPARC also offers a nondelayed jump because an unconditional branch with the 
annul bit set does not execute the following instruction.) Later versions of the MIPS 
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 gninaeM elpmaxE gninaeM noitatoN

<- - Data transfer. Length of transfer is given by 
the destination’s length; the length is specifi ed 
when not clear. 

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. 
Registers have a fi xed length, so 
transfers shorter than the register 
size must indicate which bits are 
used. 

M Array of memory accessed in bytes. The 
starting address for a transfer is indicated as 
the index to the memory array. 

Regs[R1]<--M[x]; Place contents of memory location x 
into R1. If a transfer starts at M[i] 
and requires 4 bytes, the transferred 
bytes are M[i], M[i+1], M[i+2], 
and M[i+3]. 

<- -n Transfer an n-bit  fi eld, used whenever length 
of transfer is not clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory 
location x to memory location y. The 
length of the two sides should match. 

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are 
numbered from MSB starting at 0.) 

Xm..n Subscript selects a fi eld. Regs[R3]24..31<--M[x]; Moves contents of memory location x 
into low-order byte of R3. 

Xn Superscript replicates a bit fi eld. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0. 

## Concatenates two fi elds. Regs[R3]<--240## M[x]; 
F2##F3<--64M[x]; 

Moves contents of location x into low 
byte of R3; clears upper three bytes. 
Moves 64 bits from memory starting 
at location x; 1st 32 bits go into F2, 
2nd 32 into F3. 

*, & Dereference a pointer; get the address of a 
variable.

p*<--&x; Assign to object pointed to by p the 
address of the variable x. 

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits. 

==, !=, >, <, 
>=, <= 

C relational operators; equal, not equal, 
greater, less, greater or equal, less or equal. 

(Regs[R1]== Regs[R2]) & 
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the 
contents of R2 and contents of R3 do 
not equal the contents of R4. 

&, |, ^, ! C bitwise logical operations: AND, OR, 
exclusive OR, and complement. 

(Regs[R1] & (Regs[R2]| 
Regs[R3])) 

Bitwise AND of R1 and bitwise OR of 
R2 and R3. 

FIGURE D.6.8 Hardware description notation (and some standard C operators).

(Plain) branch Delayed branch Annulling delayed branch 

Found in architectures Alpha, PowerPC, ARM, Thumb, 
SuperH, M32R, MIPS-16

MIPS-64, PA-RISC, 
SPARC, SuperH

MIPS-64, SPARC PA-RISC 

Execute following instruction Only if branch not taken Always Only if branch 
taken

If forward branch not 
taken or backward 
branch taken 

FIGURE D.6.9 When the instruction following the branch is executed for three types of branches.
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architecture have added a branch likely instruction that also annuls the following 
instruction if the branch is not taken. PA-RISC allows almost any instruction to 
annul the next instruction, including branches. Its “nullifying” branch option will 
execute the next instruction depending on the direction of the branch and whether 
it is taken (i.e., if a forward branch is not taken or a backward branch is taken). 
Presumably this choice was made to optimize loops, allowing the instructions 
following the exit branch and the looping branch to execute in the common case.

Now that we have covered the similarities, we will focus on the unique features 
of each architecture. We first cover the desktop/server RISCs, ordering them by 
length of description of the unique features from shortest to longest, and then the 
embedded RISCs.

 D.7 Instructions Unique to MIPS-64

MIPS has gone through five generations of instruction sets, and this evolution has 
generally added features found in other architectures. Here are the salient unique 
features of MIPS, the first several of which were found in the original instruction set.

Nonaligned Data Transfers
MIPS has special instructions to handle misaligned words in memory. A rare event 
in most programs, it is included for supporting 16-bit minicomputer applications 
and for doing memcpy and strcpy faster. Although most RISCs trap if you try to 
load a word or store a word to a misaligned address, on all architectures misaligned 
words can be accessed without traps by using four load byte instructions and then 
assembling the result using shifts and logical ORs. The MIPS load and store word 
left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just 
two instructions: LWL loads the left portion of the register and LWR loads the right 
portion of the register. SWL and SWR do the corresponding stores. Figure D.7.1 
shows how they work. There are also 64-bit versions of these instructions.

Remaining Instructions
Below is a list of the remaining unique details of the MIPS-64 architecture:

■	 NOR—This logical instruction calculates ~(Rs1 | Rs2).

■	 Constant shift amount—Nonvariable shifts use the 5-bit constant field shown 
in the register-register format in Figure D.2.3.

■	 SYSCALL—This special trap instruction is used to invoke the operating 
system.
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■	 Move to/from control registers—CTCi and CFCi move between the integer 
registers and control registers.

■	 Jump/call not PC-relative—The 26-bit address of jumps and calls is not added 
to the PC. It is shifted left two bits and replaces the lower 28 bits of the PC. 
This would only make a difference if the program were located near a 256 MB 
boundary.

■	 TLB instructions—Translation-lookaside buffer (TLB) misses were handled 
in software in MIPS I, so the instruction set  also had instructions for 
manipulating the registers of the TLB (see Chapter  5 for more on TLBs). 
These registers are considered part of the “system coprocessor.” Since MIPS I 

Case 1
        Before

M[100]

100 101 102 103

D A V

M[104]

R2

R2

After

After

104 105 106 107

E

E

OJ H N

N

LWL R2, 101:

D A V

R2

LWR R2, 104:

D A V

Case 2
        Before

M[200]

200 201 202 203

D

M[204]

R4

R4

After

After

204 205 206 207

EVA

E

OJ H N

N

LWL R4, 203:

D O H

R4

LWR R4, 206:

D A V

FIGURE D.7.1 MIPS instructions for unaligned word reads. This figure assumes operation in 
big-endian mode. Case 1 first loads the three bytes 101, 102, and 103 into the left of R2, leaving the least 
significant byte undisturbed. The following LWR simply loads byte 104 into the least significant byte of 
R2, leaving the other bytes of the register unchanged using LWL. Case 2 first loads byte 203 into the most 
significant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204, 
205, and 206. LWL reads the word with the first byte from memory, shifts to the left to discard the unneeded 
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the first byte to the lowest-order 
byte of the word. The following LWR addresses the last byte, right-shifts to discard the unneeded byte(s), and 
finally changes only those bytes of Rd. The byte(s) transferred are from the last byte up to the highest-order 
byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the 
inverse of LWR. Changing to little-endian mode flips which bytes are selected and discarded. (If big-little, 
left-right, load-store seem confusing, don’t worry; they work!)
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the instructions differ among versions of the architecture; they are more part 
of the implementations than part of the instruction set architecture.

■	 Reciprocal and reciprocal square root—These instructions, which do not 
follow IEEE 754 guidelines of proper rounding, are included apparently for 
applications that value speed of divide and square root more than they value 
accuracy.

■	 Conditional procedure call instructions—BGEZAL saves the return address and 
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL 
does the same for less than zero. The purpose of these instructions is to get a 
PC-relative call. (There are “likely” versions of these instructions as well.)

■	 Parallel single-precision floating-point operations—As well as extending 
the architecture with parallel integer operations in MDMX, MIPS-64 also 
supports two parallel 32-bit floating-point operations on 64-bit registers 
in a single instruction. “Paired single” operations include add (ADD.PS), 
subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL, 
CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, 
MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and 
multiply-subtract (MSUB.PS).

There is no specific provision in the MIPS architecture for floating-point execution 
to proceed in parallel with integer execution, but the MIPS implementations of 
floating point allow this to happen by checking to see if arithmetic interrupts are 
possible early in the cycle. Normally, exception detection would force serialization 
of execution of integer and floating-point operations.

 D.8 Instructions Unique to Alpha

The Alpha was intended to be an architecture that made it easy to build high-
performance implementations. Toward that goal, the architects originally made 
two controversial decisions: imprecise floating-point exceptions and no byte or 
halfword data transfers.

To simplify pipelined execution, Alpha does not require that an exception 
should act as if no instructions past a certain point are executed and that all before 
that point have been executed. It supplies the TRAPB instruction, which stalls until 
all prior arithmetic instructions are guaranteed to complete without incurring 
arithmetic exceptions. In the most conservative mode, placing one TRAPB per 
exception-causing instruction slows execution by roughly five times but provides 
precise exceptions (see Darcy and Gay [1996]).
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Code that does not include TRAPB does not obey the IEEE 754 floating-point 
standard. The reason is that parts of the standard (NaNs, infinities, and denormals) 
are implemented in software on Alpha, as they are on many other microprocessors. 
To implement these operations in software, however, programs must find the 
offending instruction and operand values, which cannot be done with imprecise 
interrupts!

When the architecture was developed, it was believed by the architects that byte 
loads and stores would slow down data transfers. Byte loads require an extra shifter 
in the data transfer path, and byte stores require that the memory system perform 
a read-modify-write for memory systems with error correction codes, since the 
new ECC value must be recalculated. This omission meant that byte stores required 
the sequence load word, replaced the desired byte, and then stored the word. 
(Inconsistently, floating-point loads go through considerable byte swapping to 
convert the obtuse VAX floating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes 
an elaborate set of byte manipulation instructions: extract field and zero rest of a 
register (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields 
of a register (ZAP), and compare multiple bytes (CMPGE).

Apparently, the implementors were not as bothered by load and store byte as 
were the original architects. Beginning with the shrink of the second version of the 
Alpha chip (21164A), the architecture does include loads and stores for bytes and 
halfwords.

Remaining Instructions
Below is a list of the remaining unique instructions of the Alpha architecture:

■	 PAL code—To provide the operations that the VAX performed in microcode, 
Alpha provides a mode that runs with all privileges enabled, interrupts 
disabled, and virtual memory mapping turned off for instructions. PAL 
(privileged architecture library) code is used for TLB management, atomic 
memory operations, and some operating system primitives. PAL code is 
called via the CALL_PAL instruction.

■	 No divide—Integer divide is not supported in hardware.

■	 “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using 
addresses that ignore the least significant three bits. Extract instructions 
then select the desired unaligned word using the lower address bits. These 
instructions are similar to LWL/R, SWL/R in MIPS.

■	 Floating-point single precision represented as double precision—Single-
precision data are kept as conventional 32-bit formats in memory but are 
converted to 64-bit double-precision format in registers.

■	 Floating-point register F31 is fixed at zero—To simplify comparisons to zero.
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■	 VAX floating-point formats—To maintain compatibility with the VAX 
architecture, in addition to the IEEE 754 single- and double-precision formats 
called S and T, Alpha supports the VAX single- and double-precision formats 
called F and G, but not VAX format D. (D had too narrow an exponent field 
to be useful for double precision and was replaced by G in VAX code.)

■	 Bit count instructions—Version 3 of the architecture added instructions to 
count the number of leading zeros (CTLZ), count the number of trailing zeros 
(CTTZ), and count the number of ones in a word (CTPOP). Originally found 
on Cray computers, these instructions help with decryption.

 D.9 Instructions Unique to SPARC v9

Several features are unique to SPARC.

Register Windows
The primary unique feature of SPARC is register windows, an optimization for 
reducing register traffic on procedure calls. Several banks of registers are used, with 
a new one allocated on each procedure call. Although this could limit the depth of 
procedure calls, the limitation is avoided by operating the banks as a circular buffer, 
providing unlimited depth. The knee of the cost/performance curve seems to be six 
to eight banks.

SPARC can have between two and 32 windows, typically using eight registers 
each for the globals, locals, incoming parameters, and outgoing parameters. (Given 
that each window has 16 unique registers, an implementation of SPARC can have as 
few as 40 physical registers and as many as 520, although most have 128 to 136, so 
far.) Rather than tie window changes with call and return instructions, SPARC has 
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s 
window by pointing to the next window of registers in addition to performing an 
add instruction. The trick is that the source registers are from the caller’s window 
of the addition operation, while the destination register is in the callee’s window. 
SPARC compilers typically use this instruction for changing the stack pointer to 
allocate local variables in a new stack frame. RESTORE is the inverse of SAVE, 
bringing back the caller’s window while acting as an add instruction, with the 
source registers from the callee’s window and the destination register in the caller’s 
window. This automatically deallocates the stack frame. Compilers can also make 
use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could slow 
down the clock rate. This was not the case for early implementations. The SPARC 
architecture (with register windows) and the MIPS R2000 architecture (without) 
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have been built in several technologies since 1987. For several generations, the 
SPARC clock rate has not been slower than the MIPS clock rate for implementations 
in similar technologies, probably because cache access times dominate register 
access times in these implementations. The current-generation machines took 
different implementation strategies—in order versus out of order—and it’s unlikely 
that the number of registers by themselves determined the clock rate in either 
machine. Recently, other architectures have included register windows: Tensilica 
and IA-64.

Another data transfer feature is alternate space option for loads and stores. 
This simply allows the memory system to identify memory accesses to input/ 
output devices, or to control registers for devices such as the cache and memory 
management unit.

Fast Traps
Version 9 SPARC includes support to make traps fast. It expands the single level 
of traps to at least four levels, allowing the window overflow and underflow trap 
handlers to be interrupted. The extra levels mean the handler does not need to 
check for page faults or misaligned stack pointers explicitly in the code, thereby 
making the handler faster. Two new instructions were added to return from this 
multilevel handler: RETRY (which retries the interrupted instruction) and DONE 
(which does not). To support user-level traps, the instruction RETURN will return 
from the trap in nonprivileged mode.

Support for LISP and Smalltalk
The primary remaining arithmetic feature is tagged addition and subtraction. 
The designers of SPARC spent some time thinking about languages like LISP and 
Smalltalk, and this influenced some of the features of SPARC already discussed: 
register windows, conditional trap instructions, calls with 32-bit instruction 
addresses, and multiword arithmetic (see Taylor et  al. [1986] and Ungar et  al. 
[1984]). A small amount of support is offered for tagged data types with operations 
for addition, subtraction, and, hence, comparison. The two least significant bits 
indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc 
set the overflow bit if either operand is not tagged as an integer or if the result is too 
large. A subsequent conditional branch or trap instruction can decide what to do. 
(If the operands are not integers, software recovers the operands, checks the types 
of the operands, and invokes the correct operation based on those types.) It turns 
out that the misaligned memory access trap can also be put to use for tagged data, 
since loading from a pointer with the wrong tag can be an invalid access. Figure 
D.9.1 shows both types of tag support.
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Overlapped Integer and Floating-Point Operations
SPARC allows floating-point instructions to overlap execution with integer 
instructions. To recover from an interrupt during such a situation, SPARC has a 
queue of pending floating-point instructions and their addresses. RDPR allows the 
processor to empty the queue. The second floating-point feature is the inclusion of 
floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions
The remaining unique features of SPARC are as follows:

■	 JMPL uses Rd to specify the return address register, so specifying r31 makes 
it similar to JALR in MIPS and specifying r0 makes it like JR.

■	 LDSTUB loads the value of the byte into Rd and then stores FF16 into 
the addressed byte. This version 8 instruction can be used to implement 
synchronization (see Chapter 2).

■	 CASA (CASXA) atomically compares a value in a processor register to a 
32-bit (64-bit) value in memory; if and only if they are equal, it swaps the 
value in memory with the value in a second processor register. This version 9  

a.  Add, sub, or
compare integers
(coded as 00)

TADDcc r7, r5, r6

00

00

00

(R5)

(R7)

(R6)

b.  Loading via
valid pointer
(coded as 11)

LD rD, r4, –3
–

11

00

3

(R4)

(Word
address)

FIGURE D.9.1 SPARC uses the two least significant bits to encode different data types 
for the tagged arithmetic instructions. a. Integer arithmetic takes a single cycle as long as the 
operands and the result are integers. b. The misaligned trap can be used to catch invalid memory accesses, 
such as trying to use an integer as a pointer. For languages with paired data like LISP, an offset of − 3 can be 
used to access the even word of a pair (CAR) and + 1 can be used for the odd word of a pair (CDR).
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instruction can be used to construct wait-free synchronization algorithms 
that do not require the use of locks.

■	 XNOR calculates the exclusive OR with the complement of the second operand.

■	 BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler can 
give hints to the machine about whether a branch is likely to be taken or not.

■	 ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how 
this is used for proper execution of aggregate returning procedures in C.

■	 POPC counts the number of bits set to one in an operand, also found in the 
third version of the Alpha architecture.

■	 Nonfaulting loads allow compilers to move load instructions ahead of 
conditional control structures that control their use. Hence, nonfaulting 
loads will be executed speculatively.

■	 Quadruple-precision floating-point arithmetic and data transfer allow the 
floating-point registers to act as eight 128-bit registers for floating-point 
operations and data transfers.

■	 Multiple-precision floating-point results for multiply mean that two single- 
precision operands can result in a double-precision product and two 
double-precision operands can result in a quadruple-precision product. 
These instructions can be useful in complex arithmetic and some models of 
floating-point calculations.

 D.10 Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines— 
IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800.

Branch Registers: Link and Counter
Rather than dedicate one of the 32 general-purpose registers to save the return 
address on procedure call, PowerPC puts the address into a special register called 
the link register. Since many procedures will return without calling another 
procedure, the link doesn’t always have to be saved. Making the return address 
a special register makes the return jump faster, since the hardware need not go 
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where the 
program iterates a fixed number of times. By using a special register, the branch 
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hardware can determine quickly whether a branch based on the count register is 
likely to branch, since the value of the register is known early in the execution cycle. 
Tests of the value of the count register in a branch instruction will automatically 
decrement the count register.

Given that the count register and link register are already located with the 
hardware that controls branches, and that one of the problems in branch prediction 
is getting the target address early in the pipeline, the PowerPC architects decided to 
make a second use of these registers. Either register can hold a target address of a 
conditional branch. Thus, PowerPC supplements its basic conditional branch with 
two instructions that get the target address from these registers (BCLR, BCCTR).

Remaining Instructions
Unlike most other RISC machines, register 0 is not hardwired to the value 0. It 
cannot be used as a base register—that is, it generates a 0 in this case—but in base 
+ index addressing it can be used as the index. The other unique features of the 
PowerPC are as follows:

■	 Load multiple and store multiple save or restore up to 32 registers in a single 
instruction.

■	 LSW and STSW permit fetching and storing of fixed- and variable-length 
strings that have arbitrary alignment.

■	 Rotate with mask instructions support bit field extraction and insertion. One 
version rotates the data and then performs logical AND with a mask of ones, 
thereby extracting a field. The other version rotates the data but only places 
the bits into the destination register where there is a corresponding 1 bit in 
the mask, thereby inserting a field.

■	 Algebraic right shift sets the carry bit (CA) if the operand is negative and any 
1 bits are shifted out. Thus, a signed divide by any constant power of two that 
rounds toward 0 can be accomplished with an SRAWI followed by ADDZE, 
which adds CA to the register.

■	 CBTLZ will count leading zeros.

■	 SUBFIC computes (immediate - RA), which can be used to develop a one’s or 
two’s complement.

■	 Logical shifted immediate instructions shift the 16-bit immediate to the left 16 
bits before performing AND, OR, or XOR.
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 D.11 Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed significantly 
in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual 
features of any desktop RISC machine. For example, it has the most addressing 
modes and instruction formats, and, as we shall see, several instructions that are 
really the combination of two simpler instructions.

Nullification
As shown in Figure D.6.9, several RISC machines can choose not to execute the 
instruction following a delayed branch to improve utilization of the branch slot. 
This is called nullification in PA-RISC, and it has been generalized to apply to any 
arithmetic/logical instruction as well as to all branches. Thus, an add instruction 
can add two operands, store the sum, and cause the following instruction to be 
skipped if the sum is zero. Like conditional move instructions, nullification allows 
PA-RISC to avoid branches in cases where there is just one instruction in the then 
part of an if statement.

A Cornucopia of Conditional Branches
Given nullification, PA-RISC did not need to have separate conditional branch 
instructions. The inventors could have recommended that nullifying instructions 
precede unconditional branches, thereby simplifying the instruction set. Instead, 
PA-RISC has the largest number of conditional branches of any RISC machine. 
Figure D.11.1 shows the conditional branches of PA-RISC. As you can see, several 
are really combinations of two instructions.

Synthesized Multiply and Divide
PA-RISC provides several primitives so that multiply and divide can be synthesized 
in software. Instructions that shift one operand 1, 2, or 3 bits and then add, trapping 
or not on overflow, are useful in multiplies. (Alpha also includes instructions that 
multiply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD, 
S4SUB, and S8SUB.) The divide step performs the critical step of nonrestoring 
divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer et  al. [1988] measured the size of operands in multiplies and divides to 
show how well the multiply step would work. Using these data for C programs, 
Muchnick [1988] found that by making special cases, the average multiply by a 
constant takes six clock cycles and the multiply of variables takes 24 clock cycles. 
PA- RISC has ten instructions for these operations.
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The original SPARC architecture used similar optimizations, but with increasing 
numbers of transistors the instruction set was expanded to include full multiply 
and divide operations. PA-RISC gives some support along these lines by putting 
a full 32-bit integer multiply in the floating-point unit; however, the integer data 
must first be moved to floating-point registers.

Decimal Operations
COBOL programs will compute on decimal values, stored as 4 bits per digit, 
rather than converting back and forth between binary and decimal. PA-RISC has 
instructions that will convert the sum from a normal 32-bit add into proper decimal 
digits. It also provides logical and arithmetic operations that set the condition codes 
to test for carries of digits, bytes, or halfwords. These operations also test whether 
bytes or halfwords are zero. These operations would be useful in arithmetic on 8-bit 
ASCII characters. Five PA-RISC instructions provide decimal support.

Remaining Instructions
Here are some remaining PA-RISC instructions:

■	 Branch vectored shifts an index register left 3 bits, adds it to a base register, 
and then branches to the calculated address. It is used for case statements.

■	 Extract and deposit instructions allow arbitrary bit fields to be selected from 
or inserted into registers. Variations include whether the extracted field is 
sign-extended, whether the bit field is specified directly in the instruction or 
indirectly in another register, and whether the rest of the register is set to zero 
or left unchanged. PA-RISC has 12 such instructions.

noitatoNnoitcurtsnIemaN

COMB Compare and branch }21tesffo+CP--<CP{))2sR,1sR(dnoc(fi
COMIB Compare immediate 

and branch 
}21tesffo+CP--<CP{))2sR,5mmi(dnoc(fi

MOVB Move and branch Rs2 <-- Rs1, if (cond(Rs1,0)) {PC <-- PC + offset12} 
MOVIB Move immediate 

and branch 
Rs2 <-- imm5, if (cond(imm5,0)) {PC <-- PC + offset12} 

ADDB Add and branch Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) {PC <-- PC + offset12} 
ADDIB Add immediate 

and branch 
Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12} 

BB Branch on bit }21tesffo+CP--<CP{))0,psR(dnoc(fi
BVB Branch on variable bit }21tesffo+CP--<CP{))0,rassR(dnoc(fi

FIGURE D.11.1 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the 5-bit 
immediate is called imm5. The 16 conditions are = , < , < =, odd, signed overflow, unsigned no overflow, zero or no overflow unsigned, never, 
and their respective complements. The BB instruction selects one of the 32 bits of the register and branches depending on whether its value is 
0 or 1. The BVB selects the bit to branch using the shift amount register, a special-purpose register. The subscript notation specifies a bit field.
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■	 To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which 
adds a left-adjusted 21-bit constant to a register and places the result in 
register 1. The following data transfer instruction uses offset addressing to 
add the lower 11 bits of the address to register 1. This pair of instructions 
allows PA-RISC to add a 32-bit constant to a base register, at the cost of 
changing register 1.

■	 PA-RISC has nine debug instructions that can set breakpoints on instruction 
or data addresses and return the trapped addresses.

■	 Load and clear instructions provide a semaphore or lock that reads a value 
from memory and then writes zero.

■	 Store bytes short optimizes unaligned data moves, moving either the leftmost 
or the rightmost bytes in a word to the effective address, depending on the 
instruction options and condition code bits.

■	 Loads and stores work well with caches by having options that give hints 
about whether to load data into the cache if it’s not already in the cache. For 
example, a load with a destination of register 0 is defined to be a software-
controlled cache prefetch.

■	 PA-RISC 2.0 extended cache hints to stores to indicate block copies, 
recommending that the processor not load data into the cache if it’s not 
already in the cache. It also can suggest that on loads and stores, there is 
spatial locality to prepare the cache for subsequent sequential accesses.

■	 PA-RISC 2.0 also provides an optional branch target stack to predict indirect 
jumps used on subroutine returns. Software can suggest which addresses get 
placed on and removed from the branch target stack, but hardware controls 
whether or not these are valid.

■	 Multiply/add and multiply/subtract are floating-point operations that can 
launch two independent floating-point operations in a single instruction in 
addition to the fused multiply/add and fused multiply/negate/add introduced 
in version 2.0 of PA-RISC.

 D.12 Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional 
execution of instructions. Every instruction starts with a 4-bit field that determines 
whether it will act as a nop or as a real instruction, depending on the condition 
codes. Hence, conditional branches are properly considered as conditionally 
executing the unconditional branch instruction. Conditional execution allows 
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avoiding a branch to jump over a single instruction. It takes less code space and 
time to simply conditionally execute one instruction.

The 12-bit immediate field has a novel interpretation. The 8 least significant bits 
are zero-extended to a 32-bit value, then rotated right the number of bits specified 
in the first 4 bits of the field multiplied by two. Whether this split actually catches 
more immediates than a simple 12-bit field would be an interesting study. One 
advantage is that this scheme can represent all powers of two in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all 
arithmetic and logical processing operations has the option of being shifted before 
being operated on. The shift options are shift left logical, shift right logical, shift 
right arithmetic, and rotate right. Once again, it would be interesting to see how 
often operations like rotate-and-add, shift-right-and-test, and so on occur in ARM 
programs.

Remaining Instructions
Below is a list of the remaining unique instructions of the ARM architecture:

■	 Block loads and stores—Under control of a 16-bit mask within the 
instructions, any of the 16 registers can be loaded or stored into memory 
in a single instruction. These instructions can save and restore registers on 
procedure entry and return. These instructions can also be used for block 
memory copy—offering up to four times the bandwidth of a single register 
load-store—and today, block copies are the most important use.

■	 Reverse subtract—RSB allows the first register to be subtracted from the 
immediate or shifted register. RSC does the same thing, but includes the 
carry when calculating the difference.

■	 Long multiplies—Similarly to MIPS, Hi and Lo registers get the 64-bit signed 
product (SMULL) or the 64-bit unsigned product (UMULL).

■	 No divide—Like the Alpha, integer divide is not supported in hardware.

■	 Conditional trap—A common extension to the MIPS core found in desktop 
RISCs (Figures D.6.1 through D.6.4), it comes for free in the conditional 
execution of all ARM instructions, including SWI.

■	 Coprocessor interface—Like many of the desktop RISCs, ARM defines a 
full set of coprocessor instructions: data transfer, moves between general- 
purpose and coprocessor registers, and coprocessor operations.

■	 Floating-point architecture—Using the coprocessor interface, a floating-point 
architecture has been defined for ARM. It was implemented as the FPA10 
coprocessor.

■	 Branch and exchange instruction sets—The BX instruction is the transition 
between ARM and Thumb, using the lower 31 bits of the register to set the PC 
and the most significant bit to determine if the mode is ARM (1) or Thumb (0).
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 D.13 Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM 
instructions to get maximum performance, with the less frequently executed ones 
using Thumb to reduce the overall code size of the program. Since typically only a 
few procedures dominate execution time, the hope is that this hybrid gets the best 
of both worlds.

Although Thumb instructions are translated by the hardware into conventional 
ARM instructions for execution, there are several restrictions. First, conditional 
execution is dropped from almost all instructions. Second, only the first eight 
registers are easily available in all instructions, with the stack pointer, link register, 
and program counter used implicitly in some instructions. Third, Thumb uses a two-
operand format to save space. Fourth, the unique shifted immediates and shifted 
second operands have disappeared and are replaced by separate shift instructions. 
Fifth, the addressing modes are simplified. Finally, putting all instructions into 16 
bits forces many more instruction formats.

In many ways, the simplified Thumb architecture is more conventional than 
ARM. Here are additional changes made from ARM in going to Thumb:

■	 Drop of immediate logical instructions—Logical immediates are gone.

■	 Condition codes implicit—Rather than have condition codes set optionally, 
they are defined by the opcode. All ALU instructions and none of the data 
transfers set the condition codes.

■	 Hi/Lo register access—The 16 ARM registers are halved into Lo registers 
and Hi registers, with the eight Hi registers including the stack pointer (SP), 
link register, and PC. The Lo registers are available in all ALU operations. 
Variations of ADD, BX, CMP, and MOV also work with all combinations 
of Lo and Hi registers. SP and PC registers are also available in variations of 
data transfers and add immediates. Any other operations on the Hi registers 
require one MOV to put the value into a Lo register, perform the operation 
there, and then transfer the data back to the Hi register.

■	 Branch/call distance—Since instructions are 16 bits wide, the 8-bit conditional 
branch address is shifted by one instead of by two. Branch with link is specified 
in two instructions, concatenating 11 bits from each instruction and shifting 
them left to form a 23-bit address to load into PC.

■	 Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC.
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 D.14 Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to 
another register to form an address in indirect indexed addressing and PC-relative 
addressing. R0 is used to load constants to give a larger addressing range than can 
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register 
that can be an operand for immediate versions of AND, CMP, OR, and XOR. Below 
is a list of the remaining unique details of the SuperH architecture:

■	 Decrement and test—DT decrements a register and sets the T bit to 1 if the 
result is 0.

■	 Optional delayed branch—Although the other embedded RISC machines 
generally do not use delayed branches (see Appendix A), SuperH offers 
optional delayed branch execution for BT and BF.

■	 Many multiplies—Depending on whether the operation is signed or unsigned, 
if the operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the 
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The 
product is found in the MACL and MACH registers.

■	 Zero and sign extension—Byte or halfwords are either zero-extended (EXTU) 
or sign-extended (EXTS) within a 32-bit register.

■	 One-bit shift amounts—Perhaps in an attempt to make them fit within the 
16-bit instructions, shift instructions only shift a single bit at a time.

■	 Dynamic shift amount—These variable shifts test the sign of the amount in a 
register to determine whether they shift left (positive) or shift right (negative). 
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These 
instructions help offset the 1-bit constant shift amounts of standard shifts.

■	 Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which 
set the T bit with the value rotated, and also have variations that include the 
T bit in the rotations (ROTCL and ROTCR).

■	 SWAP—This instruction swaps either the high and low bytes of a 32-bit word 
or the two bytes of the rightmost 16 bits.

■	 Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are 
placed in another register.

■	 Negate with carry—Like SUBC (Figure D.6.6), except the first operand is 0.

■	 Cache prefetch—Like many of the desktop RISCs (Figures D.6.1 through 
D.6.4), SuperH has an instruction (PREF) to prefetch data into the cache.
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■	 Test-and-set—SuperH uses the older test-and-set (TAS) instruction to 
perform atomic locks or semaphores (see Chapter 2). TAS first loads a byte 
from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not 
0. Finally, it sets the most significant bit of the byte to 1 and writes the result 
back to memory.

 D.15 Instructions Unique to M32R

The most unusual feature of the M32R is a slight VLIW approach to the pairs of 16-
bit instructions. A bit is reserved in the first instruction of the pair to say whether 
this instruction can be executed in parallel with the next instruction— that is, the 
two instructions are independent—or if these two must be executed sequentially. 
(An earlier machine that offered a similar option was the Intel i860.) This feature is 
included for future implementations of the architecture.

One surprise is that all branch displacements are shifted left 2 bits before being 
added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions 
are only 16 bits long, this shift means that a branch cannot go to any instruction 
in the program: it can only branch to instructions on word boundaries. A similar 
restriction is placed on the return address for the branch-and-link and jump-and-
link instructions: they can only return to a word boundary. Thus, for a slightly 
larger branch distance, software must ensure that all branch addresses and all 
return addresses are aligned to a word boundary. The M32R code space is probably 
slightly larger, and it probably executes more nop instructions than it would if the 
branch address was only shifted left 1 bit.

However, the VLIW feature above means that a nop can execute in parallel with 
another 16-bit instruction so that the padding doesn’t take more clock cycles. The 
code size expansion depends on the ability of the compiler to schedule code and to 
pair successive 16-bit instructions; Mitsubishi claims that code size overall is only 
7% larger than that for the Motorola 6800 architecture.

The last remaining novel feature is that the result of the divide operation is the 
remainder instead of the quotient.

 D.16 Instructions Unique to MIPS-16

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full 
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS 
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA 
mode bit determines the width of instructions: 0 means 32-bit-wide instructions 
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and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA 
mode bit to switch to the other ISA. JR and JALR have been redefined to set the ISA 
mode bit from the most significant bit of the register containing the branch address, 
and this bit is not considered part of the address. All jump-and-link instructions 
save the current mode bit as the most significant bit of the return address.

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit 
instructions, but it does not support mixing the two lengths together in a single 
procedure. The one exception is the JAL and JALX: these two instructions need 32 
bits even in the 16-bit mode, presumably to get a large enough address to branch 
to far procedures.

In picking this subset, MIPS decided to include opcodes for some three-operand 
instructions and to keep 16 opcodes for 64-bit operations. The combination of this 
many opcodes and operands in 16 bits led the architects to provide only eight easy-
to-use registers—just like Thumb—whereas the other embedded RISCs offer about 
16 registers. Since the hardware must include the full 32 registers of the 32-bit ISA 
mode, MIPS-16 includes move instructions to copy values between the eight MIPS-
16 registers and the remaining 24 registers of the full MIPS architecture. To reduce 
pressure on the eight visible registers, the stack pointer is considered a separate 
register. MIPS-16 includes a variety of separate opcodes to do data transfers using 
SP as a base register and to increment SP: LWSP, LDSP, SWSP, SDSP, ADJSP, 
DADJSP, ADDIUSPD, and DADDIUSP.

To fit within the 16-bit limit, immediate fields have generally been shortened to 
5 to 8 bits. MIPS-16 provides a way to extend its shorter immediates into the full 
width of immediates in the 32-bit mode. Borrowing a trick from the Intel 8086, the 
EXTEND instruction is really a 16-bit prefix that can be prepended to any MIPS-16 
instruction with an address or immediate field. The prefix supplies enough bits to 
turn the 5-bit field of data transfers and 5- to 8-bit fields of arithmetic immediates 
into 16-bit constants. Alas, there are two exceptions. ADDIU and DADDIU start with 
4-bit immediate fields, but since EXTEND can only supply 11 more bits, the wider 
immediate is limited to 15 bits. EXTEND also extends the 3-bit shift fields into 5-bit 
fields for shifts. (In case you were wondering, the EXTEND prefix does not need to 
start on a 32-bit boundary.)

To further address the supply of constants, MIPS-16 added a new addressing 
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts 
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the 
lower 2 or 3 bits cleared. The constant word or doubleword is then loaded into 
a register. Thus 32-bit or 64-bit constants can be included with MIPS-16 code, 
despite the loss of LIU to set the upper register bits. Given the new addressing 
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and 
place it in a register.

MIPS-16 differs from the other embedded RISCs in that it can subset a 64-bit 
address architecture. As a result it has 16-bit instruction-length versions of 64-bit 
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data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU, 
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the additional 
changes made from the MIPS core instructions in going to MIPS-16:

■	 Drop of signed arithmetic instructions—Arithmetic instructions that can trap 
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

■	 Drop of immediate logical instructions—Logical immediates are gone too: 
ANDI, ORI, XORI.

■	 Branch instructions pared down—Comparing two registers and then 
branching did not fit, nor did all the other comparisons of a register to zero. 
Hence these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, 
BLEZ, and BLTZ. As mentioned in Section D.3, to help compensate MIPS-16 
includes compare instructions to test if two registers are equal. Since compare 
and set on less than set the new T register, branches were added to test the T 
register.

■	 Branch distance—Since instructions are 16 bits wide, the branch address is 
shifted by one instead of by two.

■	 Delayed branches disappear—The branches take effect before the next 
instruction. Jumps still have a one-slot delay.

■	 Extension and distance for data transfer offsets—The 5-bit and 8-bit fields are 
zero-extended instead of sign-extended in 32-bit mode. To get greater range, 
the immediate fields are shifted left 1, 2, or 3 bits depending on whether the 
data are halfword, word, or doubleword. If the EXTEND prefix is prepended to 
these instructions, they use the conventional signed 16-bit immediate of the 
32-bit mode.

■	 Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set on less than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register 
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to 
these instructions, they use the conventional signed 16-bit immediate of the 
32-bit mode. They are still sign-extended for general adds and for adding to 
SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density 
and orthogonality are strange bedfellows in MIPS-16!

■	 Redefining shift amount of 0—MIPS-16 defines the value 0 in the 3-bit shift 
field to mean a shift of 8 bits.

■	 New instructions added due to loss of register 0 as zero—Load immediate, 
negate, and not were added, since these operations could no longer be 
synthesized from other instructions using r0 as a source.



 D.17 Concluding Remarks D-43

 D.17 Concluding Remarks

This appendix covers the addressing modes, instruction formats, and all instructions 
found in 10 RISC architectures. Although the later sections of the appendix 
concentrate on the differences, it would not be possible to cover 10 architectures in 
these few pages if there were not so many similarities. In fact, we would guess that 
more than 90% of the instructions executed for any of these architectures would 
be found in Figures D.3.5 through D.3.11. To contrast this homogeneity, Figure 
D.17.1 gives a summary for four architectures from the 1970s in a format similar 
to that shown in Figure D.1.1. (Imagine trying to write a single chapter in this style 
for those architectures!) In the history of computing, there has never been such 
widespread agreement on computer architecture.

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX 

Date announced 1964/1970 1978 1980 1977 

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, . . . ,  432 

Addressing (size, model) 24 bits, fl at/31 bits, 
fl at 

4 + 16 bits, 
segmented

24 bits, fl at 32 bits, fl at 

Data aligned? Yes 360/No 370 No 16-bit aligned No 

41=953/2sedomgnisserddaataD

egaPlanoitpOenoNegaPnoitcetorP

BK5.0BK23ot52.0—BK4&BK2ezisegaP

deppamyromeMdeppamyromeMedocpOedocpOO/I

Integer registers (size, 
model, number)

16 GPR × 32 bits 8 dedicated data ×
16 bits 

8 data and 8 address ×
32 bits 

15 GPR × 32 bits 

Separate fl oating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0 

Floating-point format IBM (fl oating 
hexadecimal) 

IEEE 754 single, 
double, extended 

IEEE 754 single, 
double, extended 

DEC 

FIGURE D.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure D.1.1, there is little agreement between 
these architectures in any category.

This style of architecture cannot remain static, however. Like people, instruction 
sets tend to get bigger as they get older. Figure D.17.2 shows the genealogy of these 
instruction sets, and Figure D.17.3 shows which features were added to or deleted 
from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address 
architectures, and they have done so fairly painlessly.
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1960

CDC 6600
1963

Cray-1
1976

M32R
1997

Thumb
1995

ARMv4
1995

ARM3
1990

ARM2
1987

ARM1
1985

SPARCv8
1987

SPARCv9
1994

MIPS-16
1996

MIPS I
1986

MIPS II
1989

MIPS III
1992

Alpha
1992

PA-RISC
1986

PA-RISC 1.1
1990

PA-RISC 2.0
1996

RT/PC
1986

Power1
1990

PowerPC
1993

Power2
1993

Alphav3
1996

MIPS IV
1994

MIPS V
1996

MIPS-64
2002

MIPS-32
2002

Berkeley RISC-1
1981 Stanford MIPS

1982

Digital PRISM
1988

IBM ASC 1968

IBM 801
1975

America
1985

SuperH
1992

1965

1970

1975

1980

1985

1990

1995

2000

2002

FIGURE D.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in 
bold. The CDC 6600 and Cray-1 were load-store machines with register 0 fixed at 0, and with separate integer and floating-point registers. 
Instructions could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801 
leading to the unsuccessful RT/PC and America leading to the successful Power architecture. Some people who worked on the 801 later 
joined Hewlett-Packard to work on the PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to 
Furber [1996], the Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both 
architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (There are no ARMv4 
and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not 
introduce it. Instead, DEC shipped workstations using MIPS microprocessors for 3 years before they brought out their own RISC instruction 
set, Alpha 21064, which is very similar to MIPS III and PRISM. The Alpha architecture has had small extensions, but they have not been 
formalized with version numbers; we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and 
halfword loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Digital names chips after 
the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264). “EV” stands for “extended VAX.”
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Load-store FP double X ” ” X ” + ” ” X ” ” 

Semaphore X ” ” X ”  + ” ” X ” ” 

Square root X ” ” X ” + ” ” + ” 

+”””X”X””XSingle-precision FP ops

Memory synchronize X ” ” X ” + ” ” X ” ” 

Coprocessor X ” ” X — X ” ” ” 

””X+”X””Xgnisserddaxedni+esaB

””X”++””sretsigerPFtib-4623.viuqE

Annulling delayed branch X ” ” X ” + ” ” 

Branch register contents X ” ” + X ” ” ” 
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””X+++ehcacotniatadhcteferP

+”+++spo.tni/gnisserddatib-46
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—++dauqPFerots-daoL
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FIGURE D.17.3 Features added to desktop RISC machines. X means in the original machine, + means added later, ” means 
continued from prior machine, and — means removed from architecture. Alpha is not included, but it added byte and word loads and stores, 
and bit count and multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single floating-point operations.
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Answers to Check Yourself

Chapter 1
§1.1, page 10: Discussion questions: many answers are acceptable.
§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds, 
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000 
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than 
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than 
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.
§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 
high volume can make the extra investment to reduce die size by, say, 10% a good 
economic decision, but it doesn’t have to be true.
§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.
§1.6, page 40: b.
§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Chapter 2
§2.2, page 66: RISC-V, C, Java.
§2.3, page 73: 2) Very slow.
§2.4, page 80: 2) −8ten

§2.5, page 89: 3) sub x11, x10, x9
§2.6, page 92: Both. AND with a mask pattern of 1s will leaves 0s everywhere but 
the desired field. Shifting left by the correct amount removes the bits from the left 
of the field. Shifting right by the appropriate amount puts the field into the right-
most bits of the doubleword, with 0s in the rest of the doubleword. Note that AND 
leaves the field where it was originally, and the shift pair moves the field into the 
rightmost part of the doubleword.
§2.7, page 97: I. All are true. II. 1).
§2.8, page 108: Both are true.
§2.9, page 113: I. 1) and 2) II. 3).
§2.10, page 121: I. 4) ±4 K. II. 4) ± 1 M.
§2.11, page 124: Both are true.
§2.12, page 133: 4) Machine independence.

Chapter 3
§3.2, page 177: 2.
§3.5, page 215: 3.
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Chapter 4
§4.1, page 240: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
§4.2, page 243: false. Edge-triggered state elements make simultaneous reading and 
writing both possible and unambiguous.
§4.3, page 250: I. a. II. c.
§4.4, page 262: Yes, Branch and ALUOp0 are identical. In addition, you can use 
the flexibility of the don’t care bits to combine other signals together. ALUSrc and 
MemtoReg can be made the same by setting the two don’t care bits of MemtoReg 
to 1 and 0. ALUOp1 and MemtoReg can be made to be inverses of one another by 
setting the don’t care bit of MemtoReg to 1. You don’t need an inverter; simply use 
the other signal and flip the order of the inputs to the MemtoReg multiplexor!
§4.5, page 275: 1. Stall due to a load-use data hazard of the ld result. 2. Avoid 
stalling in the third instruction for the read-after-write data hazard on x11 by 
forwarding the add result. 3. It need not stall, even without forwarding.
§4.6, page 288: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 314: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§4.9, page 321: The first instruction, since it is logically executed before the others.
§4.10, page 334: 1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware.  
6. Hardware. 7. Both. 8. Hardware. 9. Both.
§4.12, page 344: First two are false and the last two are true.

Chapter 5
§5.1, page 369: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2016 the highest cost is usually the DRAM.)
§5.3, page 390: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 409: 1.
§5.8, page 449: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Chapter 6
§6.1, page 494: False. Task-level parallelism can help sequential applications and 
sequential applications can be made to run on parallel hardware, although it is 
more challenging.
§6.2, page 499: False. Weak scaling can compensate for a serial portion of the 
program that would otherwise limit scalability, but not so for strong scaling.
§6.3, page 504: True, but they are missing useful vector features like gather-scatter 
and vector length registers that improve the efficiency of vector architectures. 
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(As an elaboration in this section mentions, the AVX2 SIMD extensions offers 
indexed loads via a gather operation but not scatter for indexed stores. The Haswell 
generation x86 microprocessor is the first to support AVX2.)
§6.4, page 509: 1. True. 2. True.
§6.5, page 513: False. Since the shared address is a physical address, multiple 
tasks each in their own virtual address spaces can run well on a shared memory 
multiprocessor.
§6.6, page 521: False. Graphics DRAM chips are prized for their higher bandwidth.
§6.7, page 526: 1. False. Sending and receiving a message is an implicit 
synchronization, as well as a way to share data. 2. True.
§6.8, page 528: True.
§6.10, page 540: True. We likely need innovation at all levels of the hardware and 
software stack for parallel computing to succeed.
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Glossary

absolute address A variable’s or routine’s 
actual address in memory.
abstraction A model that renders 
lower-level details of computer systems 
temporarily invisible to facilitate the design 
of sophisticated systems.
access bit Also called use bit or reference 
bit. A field that is set whenever a page is 
accessed and that is used to implement LRU 
or other replacement schemes.
acronym A word constructed by taking 
the initial letters of a string of words. For 
example: RAM is an acronym for Random 
Access Memory, and CPU is an acronym for 
Central Processing Unit.
active matrix display A liquid crystal 
display using a transistor to control the 
transmission of light at each individual pixel.
address A value used to delineate the 
location of a specific data element within a 
memory array.
address translation Also called address 
mapping. The process by which a virtual 
address is mapped to an address used to 
access memory.
addressing mode One of the several 
addressing regimes delimited by their varied 
use of operands and/or addresses.
aliasing A situation in which two addresses 
access the same object; it can occur in 
virtual memory when there are two virtual 
addresses for the same physical page.
alignment restriction A requirement 
that data be aligned in memory on natural 
boundaries.
Amdahl’s Law A rule stating that the 
performance enhancement possible with 
a given improvement is limited by the 
amount that the improved feature is used. 
It is a quantitative version of the law of 
diminishing returns.

AND A logical bit-by-bit operation with 
two operands that calculates a 1 only if there 
is a 1 in both operands.
antidependence Also called name 
dependence. An ordering forced by the 
reuse of a name, typically a register, rather 
than by a true dependence that carries a 
value between two instructions.
antifuse A structure in an integrated circuit 
that when programmed makes a permanent 
connection between two wires.
application binary interface (ABI) The 
user portion of the instruction set plus 
the operating system interfaces used by 
application programmers. It defines a 
standard for binary portability across 
computers.
architectural registers The instruction 
set of visible registers of a processor; for 
example, in RISC-V, these are the 32 integer 
and 32 floating-point registers.
arithmetic intensity The ratio of floating-
point operations in a program to the 
number of data bytes accessed by a program 
from main memory.
arithmetic logic unit (ALU) Hardware that 
performs addition, subtraction, and usually 
logical operations such as AND and OR.
assembler A program that translates a 
symbolic version of instruction into the 
binary version.
assembler directive An operation that tells 
the assembler how to translate a program 
but does not produce machine instructions; 
always begins with a period.
assembly language A symbolic language 
that can be translated into binary machine 
language.
asserted The signal is logically high or true.
asserted signal A signal that is (logically) 
true, or 1.
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backpatching A method for translating 
from assembly language to machine 
instructions in which the assembler builds a 
(possibly incomplete) binary representation 
of every instruction in one pass over 
a program and then returns to fill in 
previously undefined labels.
basic block A sequence of instructions 
without branches (except possibly at the 
end) and without branch targets or branch 
labels (except possibly at the beginning).
behavioral specification Describes how a 
digital system operates functionally.
benchmark A program selected for use in 
comparing computer performance.
biased notation A notation that represents 
the most negative value by 00…000two and 
the most positive value by 11…11two, with 
0 typically having the value 10…00two, 
thereby biasing the number such that the 
number plus the bias has a nonnegative 
representation.
binary digit Also called binary bit. One of 
the two numbers in base 2, 0 or 1, that are 
the components of information.
bisection bandwidth The bandwidth 
between two equal parts of a multiprocessor. 
This measure is for a worst-case split of the 
multiprocessor.
block (or line) The minimum unit of 
information that can be either present or not 
present in a cache.
blocking assignment In Verilog, an 
assignment that completes before the 
execution of the next statement.
branch address table Also called branch 
table. A table of addresses of alternative 
instruction sequences.
branch-and-link instruction An 
instruction that branches to an address and 
simultaneously saves the address of the 
following instruction in a register (usually 
x1 in RISC-V).
branch not taken or (untaken branch) A 
branch where the branch condition is false 
and the program counter (PC) becomes the 
address of the instruction that sequentially 
follows the branch.

branch prediction A method of resolving a 
branch hazard that assumes a given outcome 
for the conditional branch and proceeds 
from that assumption rather than waiting to 
ascertain the actual outcome.
branch prediction buffer Also called 
branch history table. A small memory 
that is indexed by the lower portion of the 
address of the branch instruction and that 
contains one or more bits indicating whether 
the branch was recently taken or not.
branch taken A branch where the branch 
condition is satisfied and the program 
counter (PC) becomes the branch target. All 
unconditional branches are taken branches.
branch target address The address 
specified in a branch, which becomes the 
new program counter (PC) if the branch 
is taken. In the RISC-V architecture, the 
branch target is given by the sum of the 
immediate field of the instruction and the 
address of the branch.
branch target buffer A structure that 
caches the destination PC or destination 
instruction for a branch. It is usually 
organized as a cache with tags, making it 
more costly than a simple prediction  
buffer.
bus In logic design, a collection of data lines 
that are treated together as a single logical 
signal; also, a shared collection of lines with 
multiple sources and uses.
cache memory A small, fast memory that 
acts as a buffer for a slower, larger memory.
cache miss A request for data from the 
cache that cannot be filled because the data 
are not present in the cache.
callee A procedure that executes a series 
of stored instructions based on parameters 
provided by the caller and then returns 
control to the caller.
callee-saved register A register saved by the 
routine making a procedure call.
caller The program that instigates a 
procedure and provides the necessary 
parameter values.
caller-saved register A register saved by the 
routine being called.
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capacity miss A cache miss that 
occurs because the cache, even with full 
associativity, cannot contain all the blocks 
needed to satisfy the request.
central processing unit (CPU) Also called 
central processor unit or processor. The 
active part of the computer, which contains 
the datapath and control and which adds 
numbers, tests numbers, signals I/O devices 
to activate, and so on.
clock cycle Also called tick, clock tick, 
clock period, clock, or cycle. The time for 
one clock period, usually of the processor 
clock.
clock cycles per instruction (CPI) Average 
number of clock cycles per instruction for a 
program or program fragment.
clock period The length of each clock  
cycle.
clock skew The difference in absolute time 
between the times when two state elements 
see a clock edge.
clocking methodology The approach used 
to determine when data are valid and stable 
relative to the clock.
Cloud Computing refers to large 
collections of servers that provide services 
over the Internet; some providers rent 
dynamically varying numbers of servers as 
a utility.
cluster A set of computers connected over 
a local area network that function as a single 
large multiprocessor.
clusters Collections of computers 
connected via I/O over standard network 
switches to form a message-passing 
multiprocessor.
coarse-grained multithreading A version 
of hardware multithreading that implies 
switching between threads only after 
significant events, such as a last-level cache 
miss.
combinational element An operational 
element, such as an AND gate or an ALU.
combinational logic A logic system whose 
blocks do not contain memory and hence 
compute the same output given the same 
input.

commit unit The unit in a dynamic or 
out-of-order execution pipeline that decides 
when it is safe to release the result of an 
operation to programmer-visible registers 
and memory.
compiler A program that translates high-
level language statements into assembly 
language statements.
compulsory miss Also called cold-start 
miss. A cache miss caused by the first  
access to a block that has never been in the 
cache.
conditional branch An instruction that 
tests a value, and that allows for a subsequent 
transfer of control to a new address in the 
program based on the outcome of the test.
conflict miss Also called collision miss. A 
cache miss that occurs in a set-associative 
or direct-mapped cache when multiple 
blocks compete for the same set and that are 
eliminated in a fully associative cache of the 
same size.
context switch A changing of the internal 
state of the processor to allow a different 
process to use the processor that includes 
saving the state needed to return to the 
currently executing process.
control The component of the processor 
that commands the datapath, memory, and 
I/O devices according to the instructions of 
the program.
control hazard Also called branch hazard. 
Arises when the proper instruction cannot 
execute in the proper pipeline clock cycle 
because the instruction that was fetched is 
not the one that is needed; that is, the flow 
of instruction addresses is not what the 
pipeline expected.
control signal A signal used for multiplexor 
selection or for directing the operation of a 
functional unit; contrasts with a data signal, 
which contains information that is operated 
on by a functional unit.
correlating predictor A branch predictor 
that combines local behavior of a particular 
branch and global information about the 
behavior of some recent number of executed 
branches.
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CPU execution time Also called CPU time. 
The actual time the CPU spends computing 
for a specific task.
crossbar network A network that allows 
any node to communicate with any other 
node in one pass through the network.
D flip-flop A flip-flop with one data input 
that stores the value of that input signal in 
the internal memory when the clock edge 
occurs.
data hazard Also called a pipeline data 
hazard. When a planned instruction 
cannot execute in the proper clock cycle 
because data that are needed to execute the 
instruction are not yet available.
data race Two memory accesses forming a 
data race if they are from different threads to 
the same location, at least one is a write, and 
they occur one after another.
data segment The segment of a UNIX 
object or executable file that contains a 
binary representation of the initialized data 
used by the program.
data transfer instruction A command that 
moves data between memory and registers.
data-level parallelism Parallelism achieved 
by performing the same operation on 
independent data.
datapath The component of the processor 
that performs arithmetic operations.
datapath element A unit used to operate 
on or hold data within a processor. In the 
RISC-V implementation, the datapath 
elements include the instruction and data 
memories, the register file, the ALU, and 
adders.
deasserted The signal being logically low 
or false.
deasserted signal A signal that is (logically) 
false, or 0.
decoder A logic block that has an n-bit 
input and 2n outputs, where only one output 
is asserted for each input combination.
defect A microscopic flaw in a wafer or in 
patterning steps that can result in the failure 
of the die containing that defect.
delayed branch A type of branch where 
the instruction immediately following the 

branch is always executed, independent 
of whether the branch condition is true or 
false.
die The individual rectangular sections that 
are cut from a wafer, more informally known 
as chips.
direct-mapped cache A cache structure in 
which each memory location is mapped to 
exactly one location in the cache.
dividend A number being divided.
divisor A number that the dividend is 
divided by.
don’t-care term An element of a logical 
function in which the output does not 
depend on the values of all the inputs. Don’t-
care terms may be specified in different 
ways.
double precision A floating-point value 
represented in a 64-bit doubleword.
doubleword Another natural unit of access 
in a computer, usually a group of 64 bits; 
corresponds to the size of a register in the 
RISC-V architecture.
dynamic branch prediction Prediction 
of branches at runtime using runtime 
information.
dynamic multiple issue An approach to 
implementing a multiple-issue processor 
where many decisions are made during 
execution by the processor.
dynamic pipeline scheduling Hardware 
support for reordering the order of 
instruction execution so as to avoid stalls.
dynamic random access memory 
(DRAM) Memory built as an integrated 
circuit; it provides random access to any 
location. Access times are 50 nanoseconds 
and cost per gigabyte in 2012 was  
$5 to $10.
dynamically linked libraries 
(DLLs) Library routines that are linked to a 
program during execution.
edge-triggered clocking A clocking scheme in 
which all state changes occur on a clock edge.
embedded computer A computer inside 
another device used for running one 
predetermined application or collection of 
software.
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EOR A logical bit-by-bit operation with two 
operands that calculates the exclusive OR 
of the two operands. That is, it calculates a 
1 only if the values are different in the two 
operands.
error detection code A code that enables 
the detection of an error in data, but not the 
precise location and, hence, correction of 
the error.
exception Also called an interrupt. An 
unscheduled event that disrupts program 
execution; used to detect overflow.
exception enable Also called interrupt 
enable. A signal or action that controls 
whether the process responds to an 
exception or not; necessary for preventing 
the occurrence of exceptions during 
intervals before the processor has safely 
saved the state needed to restart.
executable file A functional program in 
the format of an object file that contains no 
unresolved references. It can contain symbol 
tables and debugging information.  
A “stripped executable” does not contain 
that information. Relocation information 
may be included for the loader.
exponent In the numerical representation 
system of floating-point arithmetic,  
the value that is placed in the exponent  
field.
external label Also called global label. 
A label referring to an object that can be 
referenced from files other than the one in 
which it is defined.
false sharing When two unrelated shared 
variables are located in the same cache block 
and the full block is exchanged between 
processors even though the processors are 
accessing different variables.
field programmable devices (FPD) An 
integrated circuit containing combinational 
logic, and possibly memory devices, that are 
configurable by the end user.
field programmable gate array (FPGA) A 
configurable integrated circuit containing 
both combinational logic blocks and flip-
flops.
fine-grained multithreading A version 
of hardware multithreading that implies 

switching between threads after every 
instruction.
finite-state machine A sequential logic 
function consisting of a set of inputs and 
outputs, a next-state function that maps 
the current state and the inputs to a new 
state, and an output function that maps the 
current state and possibly the inputs to a set 
of asserted outputs.
flash memory A nonvolatile semiconductor 
memory. It is cheaper and slower than 
DRAM but more expensive per bit and faster 
than magnetic disks. Access times are about 
5 to 50 microseconds and cost per gigabyte 
in 2012 was $0.75 to $1.00.
flip-flop A memory element for which the 
output is equal to the value of the stored state 
inside the element and for which the internal 
state is changed only on a clock edge.
floating point Computer arithmetic that 
represents numbers in which the binary 
point is not fixed.
flush To discard instructions in a pipeline, 
usually due to an unexpected event.
formal parameter A variable that is 
the argument to a procedure or macro; 
replaced by that argument once the macro is 
expanded.
forward reference A label that is used 
before it is defined.
forwarding Also called bypassing. A 
method of resolving a data hazard by 
retrieving the missing data element from 
internal buffers rather than waiting for it to 
arrive from programmer-visible registers or 
memory.
fraction The value, generally between 0 and 
1, placed in the fraction field.
frame pointer A value denoting the 
location of the saved registers and local 
variables for a given procedure.
fully associative cache A cache structure in 
which a block can be placed in any location 
in the cache.
fully connected network A network that 
connects processor-memory nodes by 
supplying a dedicated communication link 
between every node.
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fused multiply add A floating-point 
instruction that performs both a multiply 
and an add, but rounds only once after the 
add.
gate A device that implements basic logic 
functions, such as AND or OR.
global miss rate The fraction of references 
that miss in all levels of a multilevel cache.
global pointer The register that is reserved 
to point to the static area.
guard The first of two extra bits kept on 
the right during intermediate calculations 
of floating-point numbers; used to improve 
rounding accuracy.
handler Name of a software routine 
invoked to “handle” an exception or 
interrupt.
hardware description language A 
programming language for describing 
hardware, used for generating simulations 
of a hardware design and also as input to 
synthesis tools that can generate actual 
hardware.
hardware multithreading Increasing 
utilization of a processor by switching to 
another thread when one thread is stalled.
hardware synthesis tools Computer-aided 
design software that can generate a gate-level 
design based on behavioral descriptions of a 
digital system.
hexadecimal Numbers in base 16.
high-level programming language A 
portable language such as C, C++, Java, or 
Visual Basic that is composed of words and 
algebraic notation that can be translated by a 
compiler into assembly language.
hit rate The fraction of memory accesses 
found in a level of the memory hierarchy.
hit time The time required to access a level 
of the memory hierarchy, including the time 
needed to determine whether the access is a 
hit or a miss.
hold time The minimum time during 
which the input must be valid after the clock 
edge.
implementation Hardware that obeys the 
architecture abstraction.

imprecise interrupt Also called imprecise 
exception. Interrupts or exceptions in 
pipelined computers that are not associated 
with the exact instruction that was the cause 
of the interrupt or exception.
in-order commit A commit in which the 
results of pipelined execution are written 
to the programmer visible state in the same 
order that instructions are fetched.
input device A mechanism through which 
the computer is fed information, such as a 
microphone.
instruction A command that computer 
hardware understands and obeys.
instruction count The number of 
instructions executed by the program.
instruction format A form of 
representation of an instruction composed 
of fields of binary numbers.
instruction latency The inherent execution 
time for an instruction.
instruction-level parallelism The 
parallelism among instructions.
instruction mix A measure of the dynamic 
frequency of instructions across one or 
many programs.
instruction set architecture Also called 
architecture. An abstract interface between 
the hardware and the lowest-level software 
that encompasses all the information 
necessary to write a machine language 
program that will run correctly, including 
instructions, registers, memory access, I/O, 
and so on.
integrated circuit Also called a chip. A 
device combining dozens to millions of 
transistors.
interrupt An exception that comes from 
outside of the processor. (Some architectures 
use the term interrupt for all exceptions.)
interrupt handler A piece of code that 
is run as a result of an exception or an 
interrupt.
issue packet The set of instructions that 
issues together in one clock cycle; the packet 
may be determined statically by the compiler 
or dynamically by the processor.
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issue slots The positions from which 
instructions could issue in a given clock 
cycle; by analogy, these correspond to 
positions at the starting blocks for a sprint.
Java bytecode Instruction from an 
instruction set designed to interpret Java 
programs.
Just In Time compiler (JIT) The name 
commonly given to a compiler that operates 
at runtime, translating the interpreted 
code segments into the native code of the 
computer.
latch A memory element in which the 
output is equal to the value of the stored 
state inside the element and the state is 
changed whenever the appropriate inputs 
change and the clock is asserted.
latency (pipeline) The number of stages in 
a pipeline or the number of stages between 
two instructions during execution.
least recently used (LRU) A replacement 
scheme in which the block replaced is the 
one that has been unused for the longest 
time.
least significant bit The rightmost bit in a 
RISC-V doubleword.
level-sensitive clocking A timing 
methodology in which state changes occur 
at either high or low clock levels but are not 
instantaneous, as such changes are in edge-
triggered designs.
linker Also called link editor. A systems 
program that combines independently 
assembled machine language programs 
and resolves all undefined labels into an 
executable file.
liquid crystal display A display technology 
using a thin layer of liquid polymers that can 
be used to transmit or block light according 
to whether a charge is applied.
load-use data hazard A specific form of 
data hazard in which the data being loaded 
by a load instruction have not yet become 
available when they are needed by another 
instruction.
loader A systems program that places an 
object program in main memory so that it is 
ready to execute.

local area network (LAN) A network 
designed to carry data within a 
geographically confined area, typically 
within a single building.
local label A label referring to an object 
that can be used only within the file in 
which it is defined.
local miss rate The fraction of references 
to one level of a cache that miss; used in 
multilevel hierarchies.
lock A synchronization device that allows 
access to data to only one processor at a 
time.
lookup tables (LUTs) In a field 
programmable device, the name given to the 
cells because they consist of a small amount 
of logic and RAM.
loop unrolling A technique to get more 
performance from loops that access arrays, 
in which multiple copies of the loop body 
are made and instructions from different 
iterations are scheduled together.
machine language Binary representation 
used for communication within a computer 
system.
macro A pattern-matching and 
replacement facility that provides a simple 
mechanism to name a frequently used 
sequence of instructions.
magnetic disk Also called hard disk. A 
form of nonvolatile secondary memory 
composed of rotating platters coated with a 
magnetic recording material. Because they 
are rotating mechanical devices, access times 
are about 5 to 20 milliseconds and cost per 
gigabyte in 2012 was $0.05 to $0.10.
main memory Also called primary 
memory. Memory used to hold programs 
while they are running; typically consists of 
DRAM in today’s computers.
memory The storage area in which 
programs are kept when they are running, 
and that contains the data needed by the 
running programs.
memory hierarchy A structure that uses 
multiple levels of memories; as the distance 
from the processor increases, the size of the 
memories and the access time both increase.
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message passing Communicating between 
multiple processors by explicitly sending and 
receiving information.
metastability A situation that occurs if a 
signal is sampled when it is not stable for 
the required setup and hold times, possibly 
causing the sampled value to fall into the 
indeterminate region between a high and 
low value.
microarchitecture The organization of the 
processor, including the major functional 
units, their interconnection, and control.
million instructions per second (MIPS)  
A measurement of program execution 
speed based on the number of millions 
of instructions. MIPS is computed as the 
instruction count divided by the product of 
the execution time and 106.
MIMD or Multiple Instruction streams, 
Multiple Data streams. A multiprocessor.
minterms Also called product terms. A set 
of logic inputs joined by conjunction (AND 
operations); the product terms form the first 
logic stage of the programmable logic array 
(PLA).
miss penalty The time required to fetch a 
block into a level of the memory hierarchy 
from the lower level, including the time 
to access the block, transmit it from one 
level to the other, insert it in the level that 
experienced the miss, and then pass the 
block to the requestor.
miss rate The fraction of memory accesses 
not found in a level of the memory 
hierarchy.
most significant bit The leftmost bit in a 
RISC-V doubleword.
multicore microprocessor A 
microprocessor containing multiple 
processors (“cores”) in a single integrated 
circuit. Virtually all microprocessors today 
in desktops and servers are multicore.
multilevel cache A memory hierarchy with 
multiple levels of caches, rather than just a 
cache and main memory.
multiple issue A scheme whereby multiple 
instructions are launched in one clock cycle.

multiprocessor A computer system with 
at least two processors. This computer is in 
contrast to a uniprocessor, which has one, 
and is increasingly hard to find today.
multistage network A network that 
supplies a small switch at each node.
NAND gate An inverted AND gate.
network bandwidth Informally, the peak 
transfer rate of a network; can refer to 
the speed of a single link or the collective 
transfer rate of all links in the network.
next-state function A combinational 
function that, given the inputs and the 
current state, determines the next state of a 
finite-state machine.
nonblocking assignment An assignment 
that continues after evaluating the right-
hand side, assigning the left-hand side the 
value only after all right-hand sides are 
evaluated.
nonblocking cache A cache that allows the 
processor to make references to the cache 
while the cache is handling an earlier miss.
nonuniform memory access (NUMA) A 
type of single address space multiprocessor 
in which some memory accesses are much 
faster than others depending on which 
processor asks for which word.
nonvolatile memory A form of memory that 
retains data even in the absence of a power 
source and that is used to store programs 
between runs. A DVD disk is nonvolatile.
nop An instruction that does no operation 
to change state.
NOR A logical bit-by-bit operation with 
two operands that calculates the NOT of the 
OR of the two operands. That is, it calculates 
a 1 only if there is a 0 in both operands.
NOR gate An inverted OR gate.
normalized A number in floating-point 
notation that has no leading 0s.
NOT A logical bit-by-bit operation with 
one operand that inverts the bits; that is, it 
replaces every 1 with a 0, and every 0 with a 1.
object oriented language A programming 
language that is oriented around objects 
rather than actions, or data versus logic.



 Glossary G-9

one’s complement A notation that 
represents the most negative value by 
10…000two and the most positive value 
by 01…11two, leaving an equal number of 
negatives and positives but ending up with 
two zeros, one positive (00…00two) and one 
negative (11…11two). The term is also used to 
mean the inversion of every bit in a pattern: 
0 to 1 and 1 to 0.
opcode The field that denotes the operation 
and format of an instruction.
OpenMP An API for shared memory 
multiprocessing in C, C++, or Fortran that 
runs on UNIX and Microsoft platforms. It 
includes compiler directives, a library, and 
runtime directives.
OR A logical bit-by-bit operation with two 
operands that calculates a 1 if there is a 1 in 
either operand.
out-of-order execution A situation in 
pipelined execution when an instruction 
blocked from executing does not cause the 
following instructions to wait.
output device A mechanism that conveys 
the result of a computation, such as a display, 
to a user or to another computer.
page fault An event that occurs when 
an accessed page is not present in main 
memory.
page table The table containing the virtual 
to physical address translations in a virtual 
memory system. The table, which is stored 
in memory, is typically indexed by the 
virtual page number; each entry in the 
table contains the physical page number for 
that virtual page if the page is currently in 
memory.
parallel processing program A single 
program that runs on multiple processors 
simultaneously.
PC-relative addressing An addressing 
regime in which the address is the sum of 
the program counter (PC) and a constant in 
the instruction.
personal computer (PC) A computer 
designed for use by an individual, usually 
incorporating a graphics display, a keyboard, 
and a mouse.

personal mobile devices (PMDs) Small 
wireless devices to connect to the Internet; 
they rely on batteries for power, and 
software is installed by downloading apps. 
Conventional examples are smart phones 
and tablets.
physical address An address in main 
memory.
physically addressed cache A cache that is 
addressed by a physical address.
pipeline stall Also called bubble. A stall 
initiated in order to resolve a hazard.
pipelining An implementation technique in 
which multiple instructions are overlapped 
in execution, much like an assembly line.
pixel The smallest individual picture 
element. Screens are composed of hundreds 
of thousands to millions of pixels, organized 
in a matrix.
pop Remove element from stack.
precise interrupt Also called precise 
exception. An interrupt or exception 
that is always associated with the correct 
instruction in pipelined computers.
prefetching A technique in which data 
blocks needed in the future are brought 
into the cache early by the use of special 
instructions that specify the address of the 
block.
procedure A stored subroutine that 
performs a specific task based on the 
parameters with which it is provided.
procedure call frame A block of memory 
that is used to hold values passed to a 
procedure as arguments, to save registers 
that a procedure may modify but that the 
procedure’s caller does not want changed, 
and to provide space for variables local to a 
procedure.
procedure frame Also called activation 
record. The segment of the stack containing 
a procedure’s saved registers and local 
variables.
process Includes one or more threads, the 
address space, and the operating system 
state. Hence, a process switch usually 
invokes the operating system, but not a 
thread switch.
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program counter (PC) The register 
containing the address of the instruction in 
the program being executed.
programmable array logic (PAL) Contains 
a programmable and-plane followed by a 
fixed or-plane.
programmable logic array (PLA) A 
structured-logic element composed of 
a set of inputs and corresponding input 
complements and two stages of logic, the 
first generating product terms of the inputs 
and input complements, and the second 
generating sum terms of the product terms. 
Hence, PLAs implement logic functions as a 
sum of products.
programmable logic device (PLD) An 
integrated circuit containing combinational 
logic whose function is configured by the 
end user.
programmable ROM (PROM) A form of 
read-only memory that can be programmed 
when a designer knows its contents.
propagation time The time required for 
an input to a flip-flop to propagate to the 
outputs of the flip-flop.
protection A set of mechanisms for 
ensuring that multiple processes sharing the 
processor, memory, or I/O devices cannot 
interfere, intentionally or unintentionally, 
with one another by reading or writing each 
other’s data. These mechanisms also isolate 
the operating system from a user process.
pseudoinstruction A common variation of 
assembly language instructions often treated 
as if it were an instruction in its own right.
Pthreads A UNIX API for creating and 
manipulating threads. It is structured as a 
library.
push Add element to stack.
quotient The primary result of a division; a 
number that when multiplied by the divisor 
and added to the remainder produces the 
dividend.
read-only memory (ROM) A memory 
whose contents are designated at creation 
time, after which the contents can only be 
read. ROM is used as structured logic to 
implement a set of logic functions by using 

the terms in the logic functions as address 
inputs and the outputs as bits in each word 
of the memory.
receive message routine A routine used 
by a processor in machines with private 
memories to accept a message from another 
processor.
recursive procedures Procedures that 
call themselves either directly or indirectly 
through a chain of calls.
reduction A function that processes a data 
structure and returns a single value.
reference bit Also called use bit or access 
bit. A field that is set whenever a page is 
accessed and that is used to implement LRU 
or other replacement schemes.
reg In Verilog, a register.
register file A state element that consists 
of a set of registers that can be read and 
written by supplying a register number to be 
accessed.
register renaming The renaming of 
registers by the compiler or hardware to 
remove antidependences.
register use convention Also called 
procedure call convention. A software 
protocol governing the use of registers by 
procedures.
relocation information The segment of a 
UNIX object file that identifies instructions 
and data words that depend on absolute 
addresses.
remainder The secondary result of a 
division; a number that when added to the 
product of the quotient and the divisor 
produces the dividend.
reorder buffer The buffer that holds results 
in a dynamically scheduled processor until 
it is safe to store the results to memory or a 
register.
reservation station A buffer within a 
functional unit that holds the operands and 
the operation.
response time Also called execution time. 
The total time required for the computer 
to complete a task, including disk accesses, 
memory accesses, I/O activities, operating 
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system overhead, CPU execution time, and 
so on.
restartable instruction An instruction that 
can resume execution after an exception is 
resolved without the exceptions affecting the 
result of the instruction.
return address A link to the calling site that 
allows a procedure to return to the proper 
address; in RISC-V, it is usually stored in 
register x1.
rotational latency Also called rotational 
delay. The time required for the desired 
sector of a disk to rotate under the read/
write head; usually assumed to be half the 
rotation time.
round Method to make the intermediate 
floating-point result fit the floating-point 
format; the goal is typically to find the 
nearest number that can be represented in 
the format. It is also the name of the second 
of two extra bits kept on the right during 
intermediate floating-point calculations, 
which improves rounding accuracy.
scientific notation A notation that renders 
numbers with a single digit to the left of the 
decimal point.
secondary memory Nonvolatile memory 
used to store programs and data between 
runs; typically consists of flash memory in 
PMDs and magnetic disks in servers.
sector One of the segments that make up 
a track on a magnetic disk; a sector is the 
smallest amount of information that is read 
or written on a disk.
seek The process of positioning a read/write 
head over the proper track on a disk.
segmentation A variable-size address 
mapping scheme in which an address 
consists of two parts: a segment number, 
which is mapped to a physical address, and a 
segment offset.
selector value Also called control value. 
The control signal that is used to select one 
of the input values of a multiplexor as the 
output of the multiplexor.
semiconductor A substance that does not 
conduct electricity well.

send message routine A routine used 
by a processor in machines with private 
memories to pass a message to another 
processor.
sensitivity list The list of signals that 
specifies when an always block should be 
re-evaluated.
separate compilation Splitting a program 
across many files, each of which can be 
compiled without knowledge of what is in 
the other files.
sequential logic A group of logic elements 
that contain memory and hence whose value 
depends on the inputs as well as the current 
contents of the memory.
server A computer used for running 
larger programs for multiple users, often 
simultaneously, and typically accessed only 
via a network.
set-associative cache A cache that has a 
fixed number of locations (at least two) 
where each block can be placed.
setup time The minimum time that the 
input to a memory device must be valid 
before the clock edge.
shared memory multiprocessor (SMP) A 
parallel processor with a single physical 
address space.
sign-extend Increases the size of a data item 
by replicating the high-order sign bit of the 
original data item in the high-order bits of 
the larger, destination data item.
silicon A natural element that is a 
semiconductor.
silicon crystal ingot A rod composed of 
a silicon crystal that is between 8 and 12 
inches in diameter and about 12 to 24 inches 
long.
SIMD or Single Instruction stream, 
Multiple Data streams. The same instruction 
is applied to many data streams, as in a 
vector processor.
simple programmable logic device 
(SPLD) Programmable logic device, usually 
containing either a single PAL or PLA.
simultaneous multithreading (SMT) A 
version of multithreading that lowers 
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the cost of multithreading by utilizing 
the resources needed for multiple issue, 
dynamically scheduled microarchitecture.
single precision A floating-point value 
represented in a 32-bit word.
single-cycle implementation Also called 
single clock cycle implementation. An 
implementation in which an instruction is 
executed in one clock cycle. While easy to 
understand, it is too slow to be practical.
SISD or Single Instruction stream, Single 
Data stream. A uniprocessor.
Software as a Service (SaaS) delivers 
software and data as a service over the 
Internet, usually via a thin program such as 
a browser that runs on local client devices, 
instead of binary code that must be installed, 
and runs wholly on that device. Examples 
include web search and social networking.
source language The high-level language in 
which a program is originally written.
spatial locality The locality principle 
stating that if a data location is referenced, 
data locations with nearby addresses will 
tend to be referenced soon.
speculation An approach whereby 
the compiler or processor guesses the 
outcome of an instruction to remove it as a 
dependence in executing other instructions.
split cache A scheme in which a level 
of the memory hierarchy is composed of 
two independent caches that operate in 
parallel with each other, with one handling 
instructions and one handling data.
SPMD Single Program, Multiple Data 
streams. The conventional MIMD 
programming model, where a single 
program runs across all processors.
stack A data structure for spilling registers 
organized as a last-in-first-out queue.
stack pointer A value denoting the most 
recently allocated address in a stack that 
shows where registers should be spilled or 
where old register values can be found. In 
RISC-V, it is register x2, also known as sp.
stack segment The portion of memory used 
by a program to hold procedure call frames.

state element A memory element, such as a 
register or a memory.
static data The portion of memory that 
contains data whose size is known to the 
compiler and whose lifetime is the program’s 
entire execution.
static multiple issue An approach to 
implementing a multiple-issue processor 
where many decisions are made by the 
compiler before execution.
static random access memory (SRAM) A 
memory where data are stored statically (as 
in flip-flops) rather than dynamically (as in 
DRAM). SRAMs are faster than DRAMs, 
but less dense and more expensive per bit.
sticky bit A bit used in rounding in 
addition to guard and round that is set 
whenever there are nonzero bits to the right 
of the round bit.
stored-program concept The idea that 
instructions and data of many types can 
be stored in memory as numbers and thus 
be easy to change, leading to the stored 
program computer.
strong scaling Speed-up achieved on a 
multiprocessor without increasing the size of 
the problem.
structural hazard When a planned 
instruction cannot execute in the proper 
clock cycle because the hardware does not 
support the combination of instructions that 
are set to execute.
structural specification Describes how 
a digital system is organized in terms of a 
hierarchical connection of elements.
sum of products A form of logical 
representation that employs a logical sum 
(OR) of products (terms joined using the 
AND operator).
supercomputer A class of computers with 
the highest performance and cost; they are 
configured as servers and typically cost tens 
to hundreds of millions of dollars.
superscalar An advanced pipelining 
technique that enables the processor to 
execute more than one instruction per clock 
cycle by selecting them during execution.
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supervisor mode Also called kernel mode. 
A mode indicating that a running process is 
an operating system process.
swap space The space on the disk reserved 
for the full virtual memory space of a 
process.
symbol table A table that matches names of 
labels to the addresses of the memory words 
that instructions occupy.
synchronization The process of 
coordinating the behavior of two or more 
processes, which may be running on 
different processors.
synchronizer failure A situation in which a 
flip-flop enters a metastable state and where 
some logic blocks reading the output of the 
flip-flop see a 0 while others see a 1.
synchronous system A memory system 
that employs clocks and where data signals 
are read only when the clock indicates that 
the signal values are stable.
system call A special instruction that 
transfers control from user mode to a 
dedicated location in supervisor code space, 
invoking the exception mechanism in the 
process.
system CPU time The CPU time spent in 
the operating system performing tasks on 
behalf of the program.
systems software Software that provides 
services that are commonly useful, including 
operating systems, compilers, loaders, and 
assemblers.
tag A field in a table used for a memory 
hierarchy that contains the address 
information required to identify whether 
the associated block in the hierarchy 
corresponds to a requested word.
task-level parallelism or process-level 
parallelism Utilizing multiple processors 
by running independent programs 
simultaneously.
temporal locality The principle stating that 
if a data location is referenced, then it will 
tend to be referenced again soon.
terabyte (TB) Originally 1,099,511,627,776 
(240) bytes, although communications and 

secondary storage systems developers started 
using the term to mean 1,000,000,000,000 
(1012) bytes. To reduce confusion, we now 
use the term tebibyte (TiB) for 240 bytes, 
defining terabyte (TB) to mean 1012 bytes. 
(Figure 1.1 shows the full range of decimal 
and binary values and names.)
text segment The segment of a UNIX object 
file that contains the machine language code 
for routines in the source file.
thread A thread includes the program 
counter, the register state, and the stack. It 
is a lightweight process; whereas threads 
commonly share a single address space, 
processes don’t.
three Cs model A cache model in which all 
cache misses are classified into one of three 
categories: compulsory misses, capacity 
misses, and conflict misses.
throughput Also called bandwidth. 
Another measure of performance, it is the 
number of tasks completed per unit time.
tournament branch predictor A branch 
predictor with multiple predictions for each 
branch and a selection mechanism that 
chooses which predictor to enable for a 
given branch.
track One of thousands of concentric  
circles that makes up the surface of a 
magnetic disk.
transistor An on/off switch controlled by 
an electric signal.
translation-lookaside buffer (TLB) A 
cache that keeps track of recently used 
address mappings to try to avoid an access 
to the page table.
truth table From logic, a representation of 
a logical operation by listing all the values 
of the inputs and then in each case showing 
what the resulting outputs should be.
underflow (floating-point) A situation 
in which a negative exponent becomes too 
large to fit in the exponent field.
uniform memory access (UMA) A 
multiprocessor in which latency to any 
word in main memory is about the same no 
matter which processor requests the access.
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units in the last place (ulp) The number of 
bits in error in the least significant bits of the 
significand between the actual number and 
the number that can be represented.
unmapped A portion of the address space 
that cannot have page faults.
unresolved reference A reference that 
requires more information from an outside 
source to be complete.
use bit Also called reference bit or access 
bit. A field that is set whenever a page is 
accessed and that is used to implement LRU 
or other replacement schemes.
use latency Number of clock cycles between 
a load instruction and an instruction that 
can use the result of the load without stalling 
the pipeline.
user CPU time The CPU time spent in a 
program itself.
valid bit A field in the tables of a memory 
hierarchy that indicates that the associated 
block in the hierarchy contains valid data.
vector lane One or more vector functional 
units and a portion of the vector register file. 
Inspired by lanes on highways that increase 
traffic speed, multiple lanes execute vector 
operations simultaneously.
vectored interrupt An interrupt for which 
the address to which control is transferred is 
determined by the cause of the exception.
Verilog One of the two most common 
hardware description languages.
very-large-scale integrated (VLSI) 
circuit A device containing hundreds of 
thousands to millions of transistors.
very long instruction word (VLIW) A 
style of instruction set architecture that 
launches many operations that are defined to 
be independent in a single wide instruction, 
typically with many separate opcode fields.
VHDL One of the two most common 
hardware description languages.
virtual address An address that 
corresponds to a location in virtual space 
and is translated by address mapping to a 
physical address when memory is accessed.

virtual machine A virtual computer that 
appears to have nondelayed branches and 
loads and a richer instruction set than the 
actual hardware.
virtual memory A technique that uses 
main memory as a “cache” for secondary 
storage.
virtually addressed cache A cache that is 
accessed with a virtual address rather than a 
physical address.
volatile memory Storage, such as DRAM, 
that retains data only if it is receiving power.
wafer A slice from a silicon ingot no more 
than 0.1 inches thick, used to create chips.
weak scaling Speed-up achieved on a 
multiprocessor while expanding the size of 
the problem proportionally to the increase 
in the number of processors.
wide area network (WAN) A network 
extended over hundreds of kilometers that 
can span a continent.
wire In Verilog, specifies a combinational 
signal.
word The natural unit of access in a 
computer, usually a group of 32 bits.
workload A set of programs run on a 
computer that is either the actual collection 
of applications run by a user or constructed 
from real programs to approximate such a 
mix. A typical workload specifies both the 
programs and the relative frequencies.
write buffer A queue that holds data  
while the data are waiting to be written to 
memory.
write-back A scheme that handles writes 
by updating values only to the block in the 
cache, then writing the modified block to 
the lower level of the hierarchy when the 
block is replaced.
write-through A scheme in which writes 
always update both the cache and the 
next lower level of the memory hierarchy, 
ensuring that data are always consistent 
between the two.
yield The percentage of good dies from the 
total number of dies on the wafer.
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