4 Model Loading

文本统计:约 511 个字 • 344 行代码

模型加载库 assimp,将模型加载进一个场景对象,Assimp 会将场景载入为一系列的节点(Node),每个节点包含了场景对象中所储存数据的索引

Scene下的 mMeshes 数组储存了真正的Mesh对象,节点中的 mMeshes 数组保存的只是场景中网格数组的索引。

我们需要做的第一件事是将一个物体加载到Scene对象中,遍历节点,获取对应的Mesh对象(我们需要递归搜索每个节点的子节点),并处理每个Mesh对象来获取顶点数据、索引以及它的材质属性。最终的结果是一系列的网格数据,我们会将它们包含在一个Model对象中。

大概内容如上,话不多说,直接看代码

mesh.h

定义顶点和材质的结构体

struct Vertex {
    // position
    glm::vec3 Position;
    // normal
    glm::vec3 Normal;
    // texCoords
    glm::vec2 TexCoords;
    // tangent
    glm::vec3 Tangent;
    // bitangent
    glm::vec3 Bitangent;
    //bone indexes which will influence this vertex
    int m_BoneIDs[MAX_BONE_INFLUENCE];
    //weights from each bone
    float m_Weights[MAX_BONE_INFLUENCE];
};

struct Texture {
    unsigned int id;
    string type;
    aiString path;
};

接着定义网格的类了,网格类中包含了顶点信息,索引信息,材质信息等等,大体的框架如下

class Mesh {
    public:
        /*  网格数据  */
        vector<Vertex> vertices;
        vector<unsigned int> indices;
        vector<Texture> textures;
        /*  函数  */
        Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures);
        void Draw(Shader &shader);
    private:
        /*  渲染数据  */
        unsigned int VAO, VBO, EBO;
        /*  函数  */
        void setupMesh();
};  

setupMesh 中初始化缓冲,然后通过 Draw 函数绘制网格

// initializes all the buffer objects/arrays
void setupMesh()
{
    // create buffers/arrays
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    glBindVertexArray(VAO);
    // load data into vertex buffers
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // A great thing about structs is that their memory layout is sequential for all its items.
    // The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which
    // again translates to 3/2 floats which translates to a byte array.
    glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);

    // 绑定属性数据
    // set the vertex attribute pointers
    // vertex Positions
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
    // vertex normals
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
    // vertex texture coords
    glEnableVertexAttribArray(2);
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));
    // vertex tangent
    glEnableVertexAttribArray(3);
    glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
    // vertex bitangent
    glEnableVertexAttribArray(4);
    glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));
    // ids
    glEnableVertexAttribArray(5);
    glVertexAttribIPointer(5, 4, GL_INT, sizeof(Vertex), (void*)offsetof(Vertex, m_BoneIDs));

    // weights
    glEnableVertexAttribArray(6);
    glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, m_Weights));
    glBindVertexArray(0);
}
// render the mesh
void Draw(Shader& shader)
{
    // bind appropriate textures
    unsigned int diffuseNr = 1;
    unsigned int specularNr = 1;
    unsigned int normalNr = 1;
    unsigned int heightNr = 1;

    //设置材质
    for (unsigned int i = 0; i < textures.size(); i++)
    {
        glActiveTexture(GL_TEXTURE0 + i); // active proper texture unit before binding
        // retrieve texture number (the N in diffuse_textureN)
        string number;
        string name = textures[i].type;
        if (name == "texture_diffuse")
            number = std::to_string(diffuseNr++);
        else if (name == "texture_specular")
            number = std::to_string(specularNr++); // transfer unsigned int to string
        else if (name == "texture_normal")
            number = std::to_string(normalNr++); // transfer unsigned int to string
        else if (name == "texture_height")
            number = std::to_string(heightNr++); // transfer unsigned int to string

        // now set the sampler to the correct texture unit
        glUniform1i(glGetUniformLocation(shader.ID, (name + number).c_str()), i);
        // and finally bind the texture
        glBindTexture(GL_TEXTURE_2D, textures[i].id);
    }

    // draw mesh
    glBindVertexArray(VAO);
    glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()), GL_UNSIGNED_INT, 0);
    glBindVertexArray(0);

    // always good practice to set everything back to defaults once configured.
    glActiveTexture(GL_TEXTURE0);
}

完成 mesh 类之后,需要完成 model 类,model 类主要包含的函数就是加载模型,加载纹理,遍历节点得到 mesh,

class Model 
{
    public:
        vector<Texture> textures_loaded;    // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
        vector<Mesh>    meshes;
        /*  函数   */
        Model(char *path)
        {
            loadModel(path);
        }
        void Draw(Shader shader);   
    private:
        /*  模型数据  */
        vector<Mesh> meshes;
        string directory;
        /*  函数   */
        void loadModel(string path);
        void processNode(aiNode *node, const aiScene *scene);
        Mesh processMesh(aiMesh *mesh, const aiScene *scene);
        vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, 
                                             string typeName);
};

Draw 函数,就是将网格依次绘制

void Draw(Shader &shader)
{
    for(unsigned int i = 0; i < meshes.size(); i++)
        meshes[i].Draw(shader);
}

loadModel 函数

void loadModel(string const& path)
{
    // read file via ASSIMP
    Assimp::Importer importer;
    const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);

    // check for errors
    if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
    {
    cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
    return;
    }
    // retrieve the directory path of the filepath
    directory = path.substr(0, path.find_last_of('/'));

    // process ASSIMP's root node recursively
    processNode(scene->mRootNode, scene);
}

processNode 函数是遍历 scene 中的所有节点,并将相应的 mesh 加载到 meshes 中

// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode* node, const aiScene* scene)
{
    // process each mesh located at the current node
    for (unsigned int i = 0; i < node->mNumMeshes; i++)
    {
        // the node object only contains indices to index the actual objects in the scene. 
        // the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
        aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
        meshes.push_back(processMesh(mesh, scene));
    }
    // after we've processed all of the meshes (if any) we then recursively process each of the children nodes
    for (unsigned int i = 0; i < node->mNumChildren; i++)
    {
        processNode(node->mChildren[i], scene);
    }
}

processMesh 则是将 assimp 中的mesh 加载到之前我们定义的 mesh 当中,进行一定的转化

处理网格的过程主要有三部分:获取所有的顶点数据,获取它们的网格索引,并获取相关的材质数据。注意一下获取 assimp 中信息的方式

Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
    // data to fill
    vector<Vertex> vertices;
    vector<unsigned int> indices;
    vector<Texture> textures;

    //加载顶点
    // walk through each of the mesh's vertices
    for (unsigned int i = 0; i < mesh->mNumVertices; i++)
    {
        Vertex vertex;
        glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
        // positions
        vector.x = mesh->mVertices[i].x;
        vector.y = mesh->mVertices[i].y;
        vector.z = mesh->mVertices[i].z;
        vertex.Position = vector;
        // normals
        if (mesh->HasNormals())
        {
            vector.x = mesh->mNormals[i].x;
            vector.y = mesh->mNormals[i].y;
            vector.z = mesh->mNormals[i].z;
            vertex.Normal = vector;
        }
        // texture coordinates
        if (mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
        {
            glm::vec2 vec;
            // a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't 
            // use models where a vertex can have multiple texture coordinates so we always take the first set (0).
            vec.x = mesh->mTextureCoords[0][i].x;
            vec.y = mesh->mTextureCoords[0][i].y;
            vertex.TexCoords = vec;
            // tangent
            vector.x = mesh->mTangents[i].x;
            vector.y = mesh->mTangents[i].y;
            vector.z = mesh->mTangents[i].z;
            vertex.Tangent = vector;
            // bitangent
            vector.x = mesh->mBitangents[i].x;
            vector.y = mesh->mBitangents[i].y;
            vector.z = mesh->mBitangents[i].z;
            vertex.Bitangent = vector;
        }
        else
            vertex.TexCoords = glm::vec2(0.0f, 0.0f);

        vertices.push_back(vertex);
    }


    //加载索引
    // now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
    for (unsigned int i = 0; i < mesh->mNumFaces; i++)
    {
        aiFace face = mesh->mFaces[i];
        // retrieve all indices of the face and store them in the indices vector
        for (unsigned int j = 0; j < face.mNumIndices; j++)
            indices.push_back(face.mIndices[j]);
    }

    //加载纹理
    // process materials
    aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
    // we assume a convention for sampler names in the shaders. Each diffuse texture should be named
    // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER. 
    // Same applies to other texture as the following list summarizes:
    // diffuse: texture_diffuseN
    // specular: texture_specularN
    // normal: texture_normalN

    // 1. diffuse maps
    vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
    textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
    // 2. specular maps
    vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
    textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
    // 3. normal maps
    std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
    textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
    // 4. height maps
    std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
    textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());

    // return a mesh object created from the extracted mesh data
    return Mesh(vertices, indices, textures);
}

加载纹理,重复的纹理就不需要再次添加了(注意这里的重复纹理是指同一纹理在多处被使用,不同网格采用了同一纹理)

// checks all material textures of a given type and loads the textures if they're not loaded yet.
// the required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
    vector<Texture> textures;
    for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
    {
        aiString str;
        mat->GetTexture(type, i, &str);
        // check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
        bool skip = false;
        for (unsigned int j = 0; j < textures_loaded.size(); j++)
        {
            if (std::strcmp(textures_loaded[j].path.C_Str(), str.C_Str()) == 0)
            {
                textures.push_back(textures_loaded[j]);
                skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
                break;
            }
        }
        if (!skip)
        {   // if texture hasn't been loaded already, load it
            Texture texture;
            texture.id = TextureFromFile(str.C_Str(), this->directory);
            texture.type = typeName;
            texture.path = str.C_Str();
            textures.push_back(texture);
            textures_loaded.push_back(texture);  // store it as texture loaded for entire model, to ensure we won't unnecessary load duplicate textures.
        }
    }
    return textures;
}

最后是一个工具函数,用于导入纹理并返回相应的编号的

unsigned int TextureFromFile(const char* path, const string& directory, bool gamma)
{
    string filename = string(path);
    filename = directory + '/' + filename;

    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    stbi_set_flip_vertically_on_load(true); // tell stb_image.h to flip loaded texture's on the y-axis.
    unsigned char* data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

评论区

对你有帮助的话请给我个赞和 star => GitHub stars
欢迎跟我探讨!!!